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 ABSTRACT 

Dielectric breakdown measurements were conducted on self-assembled 

monolayer (SAM)/native silicon oxide hybrid dielectrics using conductive atomic 

force microscopy (C-AFM).  By depositing silane coupling agents (SCAs) 

through a diffusional barrier layer, SAM roughness was decoupled from 

chemistry to compare the chemical effects of exposed R-group functionality on 
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dielectric breakdown.  Using Weibull and current-voltage (I-V) analysis, the 

breakdown strength was observed to be independent of SCA R-group length, and 

the addition of a SAM was seen to improve the breakdown strength relative to 

native silicon oxide by up to 158%.  Fluorinated SCAs were observed to suppress 

tunneling leakage and exhibited increased breakdown strength relative to their 

hydrocarbon analogs.  Electron trapping, scattering, or attachment processes 

inherent to the fluorinated moieties are thought to be the origin of the improved 

breakdown properties. 

 

I. INTRODUCTION 

In the concerted effort to increase transistor density in integrated circuits, self-assembled 

monolayers (SAMs) have been identified as promising materials for transistor gate 

insulators.  When coupled with inorganic layers, SAMs demonstrate exceptionally low 

leakage currents,1-2 while contributing <2 nm to the gate insulator thickness, permitting 

high capacitance without the leakage currents traditionally associated with thin (<2 nm)  

silicon dioxide insulators.  In addition to reducing the gate insulator thickness, low 

leakage increases on/off ratios, lowers power consumption, and increases the permissible 

operating gate bias of transistors.  As such, SAMs have been used with oxides as 

insulators for functional devices3-5 and probing charge transfer mechanisms.6-8   

However, the SAMs used are often complex and multilayer in nature, illustrating the 

need for a more fundamental understanding of how specific chemical groups within the 

SAM act as electrical insulators to facilitate selection of appropriate compounds.  In 

particular, elucidating the relationship between SAM chemistry and dielectric breakdown 
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is necessary to fabricate reliable hybrid gate insulators.  In this article, we present 

through-thickness (strike) breakdown data for a variety of silane coupling agent (SCA) 

SAMs on native silicon oxide as evaluated by conductive atomic force microscopy (C-

AFM).  A barrier layer deposition technique9 is employed to deposit reactive SCAs as 

SAMs to achieve comparable sample morphologies across a wide variety of chemistries.  

Weibull and current-voltage (I-V) analysis are used to interpret these data to correlate 

breakdown metrics and mechanisms with SAM chemistry (i.e., SCA length, 

halogenation, and number of binding groups). 

 

Measuring dielectric breakdown is challenging because it is highly sensitive to electric 

field distributions within the material.10 For example, high electric fields can be found 

close to filler particles or defects in a matrix because of dielectric constant mismatch as 

found in nanocomposites.11-12  As smaller insulator volumes are probed, fewer defects are 

encountered, which tends to increase the breakdown strength towards an ultimate 

intrinsic limit.13  C-AFM was originally used in the 1990’s as a technique to investigate 

electrical breakdown of nanoscale materials,14-15 with significant effort concentrated on 

evaluating the breakdown of silica and hafnia inorganic insulating layers for transistor 

gate applications.16-21  More recently, C-AFM breakdown measurements have been 

performed on nanoscale organic insulator systems.22-23  For several reasons, we believe 

that C-AFM is an effective method for evaluating dielectric breakdown on nanoscale thin 

films: multiple I-V curves can be collected with relative ease through automated routines, 

the high lateral resolution allows avoidance of obvious defects, and the choice of a solid 

doped diamond tip, in combination with a current limiting resistor, affords a relatively 
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reliable electrode geometry.  Additionally, if a constant, small contact force (<10 nN) is 

applied by the tip to the SAM, the organic molecules have been shown not to appreciably 

deform.22, 24-25  Other methods of conducting breakdown investigations on SAM-coated 

surfaces can involve metal evaporation through a shadow mask, which may more closely 

approximate practical device fabrication conditions than C-AFM, the technique can lead 

to diffusion of metal atoms into the SAM,26 thereby increasing the probability that defects 

are measured, rather than intrinsic electrical properties.  Although thiol-terminated SAMs 

reduce the incidence of gold penetration, this is a special case, and the use of other non-

thiolated SCA molecules is often desired.  However, we believe the distinction between 

local breakdown observed by C-AFM to provide complementary information relative to 

sampling weakest link statistics obtained via device testing.  In this investigation, we 

make use of the fine spatial resolution afforded by C-AFM to minimize exposure to film 

defects, electrically interrogate SAMs on oxide in a highly local manner, and further 

understand the relationship between chemical and electrical breakdown characteristics of 

such systems.  

 

In addition to the use of C-AFM to measure dielectric breakdown of nanoscale insulator 

films, it is imperative that the sample surface is homogeneous to compare results between 

multiple organic monolayer chemistries, especially when evaluating those prone to 

forming agglomerates.  Through creating a viscous oil barrier on the sample surface 

before SCA vapor deposition, agglomerates can be screened out through differences in 

diffusion rates with individual molecules.  Relative to SCA deposition without the barrier 

layer, this method9 allows smoother monolayers to be formed under ambient conditions 
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and facilitates the formation of similar monolayer morphologies and densities somewhat 

independent of SCA reactivity.  For example, inherent differences in SCA reactivity and 

consequent likelihood to bond to the surface, such as between trichlorosilanes and 

monochlorosilanes, influence their ability to pack on the surface.  If left to form the 

densest monolayer possible for a particular SCA, breakdown measurements may result in 

probing packing density as a variable, observed to affect breakdown strength,27 rather 

than chemistry.  Intentional aggregate removal and disordered monolayer formation 

through the barrier layer deposition technique is seen as a way forward in isolating the 

effect of chemistry on dielectric breakdown. 

 

II.  EXPERIMENTAL DETAILS 

A. Wafer preparation: 

A single degenerately doped silicon wafer (Sb-doped, (111), 5x10-3 – 1.8x10-3 Ω-cm, 

prime grade, 0.5 mm thick, University Wafer, Inc.) was diced into 1 cm squares and 

sonicated in acetone for 5 mins before rinsing in isopropanol and deionized (DI) water in 

a cleanroom environment.  After blow drying with nitrogen, the wafer pieces were 

immersed in hot (90oC) Nanostrip (Cyantek, Co.) for 1 min to remove any remaining 

organics, rinsed with DI water, immersed in hydrofluoric acid (J.T. Baker, Co., 49%), 

rinsed with DI water, and immersed in hot Nanostrip for 6 hrs to grow a native oxide.  

After rinsing in DI water, the samples were dehydrated (115oC, 15 mins) prior to 

measuring the native oxide thickness by spectroscopic ellipsometry, yielding an average 

thickness of 1.5 nm.  To give an indication of the repeatability of the oxide growth, ten 

different regions of a single, cleaned and oxidized 100 mm diameter wafer were 
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measured via ellipsometry, whose standard deviation was <0.05 nm.  To prevent 

subsequent surface contamination, the samples were vacuum sealed under dry argon until 

tested. 

 

B. SCA deposition: 

All SCAs used were purchased from Gelest, Inc. and filtered through a 0.2 µm PTFE 

syringe filter immediately before deposition; a complete list of chemical names and 

abbreviations can be found in the supplemental information.28     Tridecafluoro-1,1,2,2-

tetrahydrooctyldimethylmethoxysilane (tDF-dMeM) was not commercially available and 

was produced from its chlorosilane analog29 through the addition of anhydrous methanol 

under an inert atmosphere.  

 

The experimental procedure for forming SCA SAMs on silicon dioxide has been 

published previously,9 and is outlined briefly as follows.  A 1% v/v solution of silicone 

oil (Dow Corning Fluid 200, 50cSt) in heptane (Sigma Aldrich) was spin coated on a 

wafer (5 krpm, 40 s) to form a ~70 nm barrier layer.  SCA molecules were vapor 

deposited onto the samples in a 1 L Teflon jar for 1 hr in a dry argon atmosphere.  The 

silicone oil was removed through sonication in xylenes (Sigma Aldrich) for 1 hr and 

acetone for 30 mins, then rinsed with isopropanol and DI water; the samples were 

subsequently heat treated (115oC, 10 mins) to promote SCA fixation to the surface via 

covalent bonds.  Two controls were also exposed to the same cleaning, washing, and 

heating regimen: one without silicone oil or SCA, and one with only silicone oil.  SCA 

chemical names, abbreviations, and structures are found in Table I. 
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Table I.  Chemical structures of SCAs used in this investigation and their abbreviations 

for the purposes of this manuscript.  Methoxy binding groups are highlighted in red, and 

chloro groups are highlighted in green. 

 

C. Film thickness determination: 

Spectroscopic ellipsometry (WVASE32, J.A. Woollam, Inc.) was conducted over λ = 

500-1000 nm at 55o, 65o, and 75o relative to the sample normal to determine SAM 

thicknesses.  The thicknesses were fit using a 1.5 nm (rounded) fixed oxide layer below a 

Cauchy layer (initial guess 2 nm) with refractive indices corresponding to the SCA bulk 

values, using thermal SiO2 and Si layer optical constants provided by J.A. Woollam, 

Co.30 and Cauchy parameters as follows: An = (SCA bulk refractive index), Bn = 0.01, Cn 

= 0, k amplitude = 0, exponent = 1.5, band edge = 400 nm.  Although silicone oil is an 
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adequate barrier material for a wide range of SCA chemistries, the fluorinated 

hydrocarbon trichlorosilanes (nF-tC, tDF-tC, and hDF-tC) yielded more aggregates than 

desirable because of the highly reactive trichlorosilane moieties, in combination with the 

use of a relatively thin barrier layer.  Consequently, the trichlorosilane SAM thicknesses 

were greater than expected as measured by ellipsometry, whose data were averaged over 

a 1.5 mm diameter spot size.  Nevertheless, agglomerates, which skewed trichloro-

functional SAM thickness values, were easily observed during the C-AFM tests and 

could be avoided; it was assumed that the thickness values from another set of identically 

produced yet agglomerate-free samples would suffice to calculate breakdown strengths 

for the trichlorosilanes.  The difficulty in reproducing these fluorinated SCA SAMs has 

since been improved with the use of PFPE barrier layers.9  It must be emphasized that the 

conclusions of this article are not affected by this thickness assumption; a direct 

comparison between fluorinated and non-fluorinated SCA analogs was made, both of 

which repeatedly formed smooth SAMs.  The trichlorosilane data were included to lend 

additional support to the conclusions as the local SAM thicknesses are unaffected by the 

presence of agglomerates. 

 

D. C-AFM breakdown measurements: 

After SCA deposition, samples were tested with boron-doped solid diamond C-AFM tips 

of nominal radius ~35 nm (NaDiaProbes, ND-CTIR1-4, 0.04 N/m, Nanoscience 

Instruments, Inc.) in conjunction with an Asylum MFP-3D AFM.  A Keithley 2400 

sourcemeter was electrically connected directly to the cantilever holder (positive lead) 

with a 1 GΩ current limiting resistor in series, and ohmic connection was made with the 
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doped Si substrate (negative lead) through an indium solder contact.  The sample was 

first scanned to clean the tip (7 nN, 1 Hz) and image the sample surface (256 x 256 lines, 

40 µm x  40 µm image).  The image was then used to select the flattest areas to test, as 

demonstrated in Figure 1.  The tip was then moved to a clean region of the sample and a 

7 nN contact force was exerted by the tip on the surface, low enough to prevent 

significant SAM deformation25 but high enough to ensure an ohmic contact on a clean 

platinum surface, which was verified before each sample test.  The spring constant of the 

AFM cantilever was determined using a force-deflection curve in conjunction with the 

thermal noise method, which employs the equipartition theorem.31  Twenty five I-V 

measurements were made for each sample in a 5 x 5 square array, stepping 5 µm between 

tests, during which a ramped bias of 0.75 V/s was applied.  When the breakdown 

threshold of 5 nA was detected, the measurement was terminated through the use of a 

LabVIEW control program.  This current level was chosen as a breakdown criterion as it 

is large relative to the pA level leakage observed at low bias, but also low enough to 

preserve integrity of the C-AFM tip over multiple tests.  The first breakdown value for 

each sample was discarded as it was found in every case to be unusually large, likely 

caused by the accumulation of adsorbed molecules and naturally occurring carbon on the 

tip surface during the initial scan.  After each sample was tested in breakdown, the tip’s 

contact resistance was checked on an evaporated platinum film on silicon.  Hard scanning 

(46 nN applied contact force) and heating (application of current) allowed removal or 

desorption of organic contaminants until ohmic contact was made consistently to the 

platinum surface using a 7 nN applied contact force. 
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Figure 1.  Contact mode AFM topographic images of samples taken prior to breakdown 

tests. (a) native silicon oxide without silicone oil, (b) tDF-dMeM with silicone oil, and (c) 

o-dMeM with silicone oil.  All scans are 40 µm x 40 µm.  Agglomerates seen in (b) 

(arrows) were easily avoided during I-V testing.  

 

Figure 1 shows morphology typical of the SCA SAM samples, and Table II summarizes 

roughness measurements of the SAM films.  The few agglomerates encountered were 

avoided during the test as only a 25 µm x 25 µm agglomerate-free region was necessary.  

Image quality was compared before and after testing to ensure that the tip geometry had 

not been altered. 
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SCA 

RMS 
roughness: 

40µm x 
40µm scan 

(nm) 

RMS 
roughness: 

25µm x 
25µm scan 

(nm) 

Total 
insulator 
thickness 

(nm) 

Bare native 
oxide 0.53 0.35 1.7 

Native oxide 
with silicone oil 0.339 0.334 1.6 

o-dMeM 0.37 0.35 1.9 
oD-dMeM 0.43 0.38 1.7 
tDF-dMeM 0.5 0.36 2.0 
tDF-dMeC 0.5 0.47 2.3 
tDF-MedC 0.45 0.47 2.9 
hDF-tC 1 0.6 3.5 
tDF-tC 0.56 0.53 2.8 
nF-tC 3.4 2.1 2.3 

Table II.  RMS roughness (determined by AFM) and ellipsometry thickness values for 

the samples, measured immediately before breakdown testing.  Thickness values were 

rounded to the nearest 0.1 nm owing to the precision of the measurement equipment; 

error in the thickness measurement was below 0.1 nm in all cases.  The direct comparison 

between non-fluorinated hydrocarbon and perfluorinated carbon R-group SCAs are 

highlighted in blue.  RMS roughness values are calculated from topographic images after 

median line matching, polynomial background subtraction, and excluding obvious scars 

with Gwyddion software.  25 µm x 25 µm data are taken from the smoothest region in the 

40 µm x 40 µm original image (256 lines, 1 Hz, 0.3 V set point, contact mode with 

conductive diamond tip) and are included to illustrate the surface roughness without 

imaging artifacts or agglomerate bias.   

 

E. Contact angle analysis: 



12 
 

A Ramé-Hart model 500-F1 Advanced Goniometer with DropImage Advanced software 

was used to evaluate contact angles of DI water on each of the sample surfaces.  A 5 µL 

droplet and 2 µL retraction were used to determine the advancing and receding contact 

angles, respectively. 

 

III. RESULTS AND DISCUSSION 

A. I-V analysis 

Data analysis was conducted through I-V curve evaluation and Weibull failure analysis.  

With the aid of a MATLAB routine, the I-V data were matched through visual 

comparison to one of four characteristic curve types: ‘Spike’, ‘Spike-Ohmic’, ‘Ohmic’, 

and ‘Discharge’ (see Figure 2).  Breakdown was defined as the maximum voltage 

withstood before sustained, significant current started flowing; ‘Significant’ current was 

taken to mean large current values relative to the low field leakage current (>1 nA), 

illustrating the need for I-V categorization.  Automated detection of breakdown through 

monitoring high I-V slopes was not adequate due to false positives from noise and 

hardware sampling limits of the system.  Breakdown strength was defined as the 

breakdown voltage divided by the total insulator thickness (oxide + SCA layer) 

determined by spectroscopic ellipsometry.  The purpose of this method of evaluation is 

twofold: (1) to provide a practical and consistent definition of breakdown, and (2) to 

enhance the Weibull analysis by categorizing the breakdown types within a sample 

population. 
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Figure 2.  Characteristic I-V plots illustrating the four trends observed in the C-AFM 

tests.  The highest voltage where ‘significant’ current flows, relative to the baseline 

leakage current, is defined as the breakdown voltage, denoted in each characteristic above 

by a red circle.  ‘Spike’ is a sudden, abrupt increase in current.  ‘Ohmic’ is a quasi-linear 

increase in current.  ‘Spike-Ohmic’ is an increase in current with significant fluctuations 

superimposed over a linear trend.  ‘Discharge’ involves current flows greater than 1 nA 

which do not continue monotonically, but ultimately leads to a runaway increase in 

current.  Each test was stopped when the recorded current reached 5 nA.  

The definitions of breakdown are as follows, and are evaluated after the system has 

reached a current threshold of 5 nA: ‘Spike’ breakdown is defined as a current increase of 

greater than 5 nA over at most 3 data points, where the breakdown voltage is recorded at 
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the data point with the highest voltage before such an increase.  ‘Ohmic’ is defined as a 

quasi-linear increase in the I-V curve possessing a discontinuous slope (of greater than 5 

data points) from the baseline current, with no more one instance of 50% variation in 

current between adjacent data points, whose breakdown voltage was identified at the 

onset of such a slope discontinuity.  ‘Discharge’ is defined as having current flow greater 

than 1 nA  return to baseline levels for more than 3 data points, whose breakdown voltage 

is recorded at the highest voltage where the data exist on the baseline current.  ‘Spike-

ohmic’, considered the remainder of the situations observed, is defined as an increase in 

current with greater than 1 instance of 50% variation in current between adjacent data 

points, after the onset of a discontinuity in slope observed over greater than 5 data points; 

breakdown voltage is recorded at the highest voltage where the data exist on the baseline 

before such a discontinuity. 

 

B. Weibull analysis 

To illustrate which breakdown type occurs, the Weibull plot data in Figure 3 have been 

color coded as follows.  The inner marker color indicates the I-V type while the shape 

and outer marker color indicate the particular SCA molecule and sample treatment.  The 

breakdown voltages are then divided by the thickness of the total insulator (SCA + oxide) 

to determine the breakdown strength, which are plotted according to a two-parameter 

Weibull distribution, and fit with a mixed two-parameter, two-mode maximum likelihood 

estimate, developed by Razali and Salih:32 

𝐹 𝑥 = 𝑤𝐹! 𝑥 + (1− 𝑤)𝐹!(𝑥),    (1) 
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where 𝐹! 𝑥  and 𝐹! 𝑥  are separate two-parameter Weibull cumulative distribution 

functions, and 𝑤 is a weighting factor optimized by maximum likelihood estimation in 

MATLAB.  Given the characteristic ‘dogleg’ shapes of the data, the model fits agree 

well, providing evidence that  failure occurs by either one or the other of two different 

‘modes’.  

 

 

Figure 3.  Weibull plot of C-AFM strike breakdown data for different SCA molecules 

bound to the indicated surfaces.  The outer marker colors and symbol shapes correspond 

to samples according to the inset legend. Inner marker colors correspond to I-V type 

according to the legend above the graph.  Two-parameter, two-mode Weibull maximum 

likelihood estimate fits to the data are included as the solid lines.  Two equivalent 
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ordinates are shown: the failure probability and the cumulative failure distribution 

function (CDF). 

 

Several conclusions can be drawn from Figure 3.  The bare native oxide is clearly the 

weakest insulator of the samples evaluated in this investigation.  SCA attachment to the 

oxide increased the breakdown field in every case, with a maximum observed increase of 

158% for hDF-tC, measured at 63.2% failure probability for the low field Weibull mode. 

 

Failures of the bare native oxide are seen to occur largely with ‘Ohmic’ type I-V curves.  

As such, the ‘Ohmic’ breakdown process is likely dictated by quantum mechanical 

tunneling processes, which have been observed for thin oxides in several other studies.33-

36  The native oxide with silicone oil, as well as the oxide with SCAs bearing saturated 

hydrocarbon R-groups, share similar distributions and exhibit significant ‘Ohmic’ failure.  

The silicone oil is expected to exist on the surface as a partial monolayer through 

adsorption to the silicon dioxide; further removal of the oil may be facilitated by 

exposure to SCA binding groups, although the mechanism is unclear.37  Regardless, like 

the native oxide, the residual oil is not the dominant resistance in the system; in that case 

no change in breakdown strength or distribution would be observed with SCA addition.  

In Figure 3, the separation along the abscissa between the silicone oil-treated and bare 

native oxide data indicates that residual silicone oil is likely bound to the surface.  Strong 

hydrogen bonding between the silica surface silanols and silicone oil has been noted 

previously, but the silicone oil likely exists as a partial monolayer on the surface as the 

excess has been washed off in a good solvent.37  ‘Spike’ breakdown, because of its 
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sudden, high slope, is estimated by the authors to possess greater electronic character 

than the other I-V types because of its abrupt nature relative to thermal processes;10, 38 

however, given the limited time resolution of our experiments, conclusive evidence of 

this character is not presented.  The complex nature of the ‘Spike-Ohmic’ and 

‘Discharge’ I-V types probably consist of both electronic and thermal breakdown 

mechanisms operating simultaneously, although ‘Discharge’ may also represent other 

pre-breakdown phenomena, such as those associated with avalanche quenching.10  

 

The SCA hydrocarbon R-group is not seen to suppress tunneling behavior as evidenced 

by the presence of ‘Ohmic’ I-V data  recorded from the octyldimethylmethoxysilane (o-

dMeM) and n-octadecyldimethylmethoxysilane (oD-dMeM) samples.  Other researchers 

have observed tunneling suppression with similar saturated hydrocarbon chains as an 

effect of increasing the tunneling barrier height.2 The SAMs in this investigation are 

intentionally disordered through formation of a partial monolayer to ensure that a 

particular SCA’s propensity to form defects, from steric or other differences, did not 

influence the breakdown results.  This precaution was taken to further isolate SCA 

chemistry as the only independent variable in the experiment.  Water contact angle data, 

listed in Table III, show that both hydrocarbon and fluorocarbon SCAs exhibit 

hydrophobicity well below what is expected for densely packed SAMs indicating 

molecular disorder; fully dense monolayers are expected to exhibit advancing contact 

angles of approximately 115o and 112o for fluorinated and hydrocarbon functionality, 

respectively.39-40  It is useful to note that the electrical resistance of the SCA layer has 
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been observed to be significantly higher than that of the native oxide,2 as illustrated in 

Figure 3. 

 
SCA θadv [deg] θrec [deg] θhys [deg] 

o-dMeM 83.8±(1.2) 62.5±(1.2) 21.3 
oD-
dMeM 83.7±(0.4) 63.5±(1.7) 20.2 

tDF-
dMeM 86.3±(0.7) 66.0±(2.6) 20.3 

tDF-
dMeC 86.6±(0.2) 66.9±(1.3) 19.7 

tDF-
MedC 88.3±(0.6) 66.6±(4.0) 20.4 

hDF-tC 90.4±(0.1) 69.8±(2.5) 20.6 
tDF-tC 88.3±(2.8) 74.1±(2.1) 14.2 
nF-tC 88.9±(0.0) 69.4±(3.3) 19.5 

Table III.  Water contact angle analysis for various SCA-SAM samples.  The low 

advancing contact angles and high hysteresis values, relative to what is expected for a 

fully dense SCA monolayer, imply that the SCA treatments created partial monolayers 

with significant molecular disorder.  θadv and θrec, indicate average advancing and 

receding water contact angles ± one standard deviation, respectively; θhys indicates the 

average contact angle hysteresis. 

 
At high breakdown fields, the number of SCA binding groups leads to subtle effects seen 

in Figure 3.  For fluorinated SCAs with eight carbons, the slope is large at high 

breakdown fields for SCAs with trifunctional binding groups, and monotonically 

decreases as the number of binding groups is reduced, indicating higher consistency with 

more binding groups.  However, the breakdown strength of these high field tails 

decreases in absolute terms when reducing the number of binding groups.  Therefore, 
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fewer binding groups yield potentially higher breakdown strengths at the cost of lower 

consistency.  This trend can be understood as a consequence of local SCA packing: 

molecules with fewer binding groups experience less steric hindrance, allowing the 

possibility of higher molecular packing efficiency in the plane of the substrate, and thus 

greater breakdown strength.  However, the high molecular packing efficiency is not 

consistent because of the reduced probability of surface attachment associated with fewer 

binding groups.  In contrast, SCA molecules with multiple binding groups suffer from 

steric packing problems but adhere more consistently to the surface, yielding a more 

reliable electrically-insulating SAM on average.  Previously observed41 high field 

Weibull ‘tails’ have been ignored largely ignored as non-idealities. 

 

Fluorinated SCA functionalities are thought to suppress tunneling and increase 

breakdown strength through high field electron attachment behavior observed in both 

sulfur hexafluoride42 and perfluorinated liquids.43  Additionally, the highly 

electronegative nature of fluorine and the ionic C-F bond may cause scattering of ballistic 

electrons44-45 and act as electronic traps.10  Additionally, molecular dipole moments have 

been correlated directly with mean electron scattering cross-sections.46  Although it is not 

presently clear which mechanism is primarily responsible for breakdown suppression in 

fluorinated compounds, their comparison with hydrogenated analogs illustrates the effect 

of bonding character differences on dielectric breakdown.  It can be seen in Figure 3 that 

SCAs with fluorinated R- outperformed those which were not.  The number of ‘Ohmic’ 

events also decreased greatly with fluorination, which were largely replaced with ‘Spike-

Ohmic’ events.  The greater thickness of the fluorinated SCA SAMs relative to their 
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hydrocarbon counterparts contributes to tunneling suppression and increased breakdown 

strength because of exponential tunneling current decay with distance.  However, a direct 

comparison between o-dMeM and its fluorinated analog tDF-dMeM reveals that 

fluorination directly affects the SAM’s ability to resist electrical breakdown.  Comparing 

the breakdown strength values at the 63.2% failure probability, the fluorinated SCA 

exhibits a 48% increase relative to its hydrocarbon counterpart.   In a closer comparison 

of the data in Figure 3, the only difference between the two samples is R-group 

fluorination: the molecules possess the same hydrocarbon backbone length, similar RMS 

roughness values (0.01 nm, 25 µm x 25 µm scans, Table II), and nearly identical SAM 

thicknesses (1 Å different).  

 

Although the scope of this research does not permit detailed analysis of the breakdown 

mechanisms of fluorinated SCAs, we hypothesize that thermal processes are involved in 

conduction, either through field-assisted or defect-mediated hopping mechanisms 

because of the large proportion of observed ‘Spike-Ohmic’ I-V events.48-49  However, it 

is believed that this thermally influenced conduction competes with electron scattering or 

capture by highly polar C-F bonds10 or ionized fluorine atoms,50 leading to tunneling 

suppression.  As described above, it is assumed that tunneling is responsible for the 

majority of conduction for disordered hydrocarbon SCAs, native oxide, and residual 

silicone oil on native oxide samples. 

 

The internal electric field experienced by the SCA per bond is expected to be similar 

between the molecules examined, regardless of their length, due to the lack of defects in 
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such short chains.  This is consistent with the data in Figure 3, in which the homologous 

series of fluorinated SCAs is seen to exhibit similar breakdown strengths largely 

independent of chain length, an effect which has been observed previously.22-23,51  To 

further illustrate the chemical effects of fluorination on breakdown, the data in Figure 3 

were normalized by the dielectric constant of the particular SCA molecule, as seen in 

Figure 4.28  This represents the internal electric field experienced by an average molecule 

in the SAM, allowing further normalization of physical differences between the SCA 

chemistries.  As the dielectric constants of the SCAs in this investigation are all within 

16%, it is expected that the Weibull plots in Figures 3 and 4 should also be similar.  

Indeed, only the relative position of the data from the silicone oil on silicon dioxide 

changes significantly relative to the other data sets, as the silicone oil layer is extremely 

thin.  As such, fluorinated SCAs can be seen to withstand higher breakdown strengths 

than their hydrocarbon counterparts as evidenced by their higher internal electric fields at 

breakdown. 
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Figure 4.  Weibull plot of the breakdown data normalized by the dielectric constant of 

the SCA molecules.  The total insulator thicknesses shown in Table II include the 1.5 nm 

native oxide, yielding the SAM thickness used to calculate the internal breakdown field.  

DC dielectric constants were taken as the square of the bulk refractive index of the 

SCA.28  The two-parameter, two-mode Weibull maximum likelihood estimate fits of the 

data are included as solid lines.   

 

IV. CONCLUSIONS 

It has been demonstrated that vapor-deposited SCA monolayers on native oxide can 

dramatically improve nanoscale dielectric breakdown strength, in some cases by up to 

158%.  Through the formation of deliberately disordered partial monolayers, direct 

comparison between saturated hydrocarbon and fluorocarbon moieties was conducted 
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using C-AFM.  It was observed that fluorination increases the dielectric breakdown 

strength and helps suppress tunneling.  The SCA length did not affect the breakdown 

strength significantly, and high field breakdown was seen to correlate with the number of 

SCA linking groups.  Normalization of the breakdown strength by the dielectric constant 

of the individual SCA molecules yielded similar trends to the raw Weibull data.  Electron 

attachment, capture, or scattering effects from the highly electronegative fluorine atom 

are thought to be responsible for the increase in breakdown strength achieved by 

fluorination.   
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