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Abstract 

How do living cells achieve sufficient abundances of functional protein complexes while 
minimizing promiscuous non-functional interactions? Here we study this problem using a first-
principle model of the cell whose phenotypic traits are directly determined from its genome 
through biophysical properties of protein structures and binding interactions in crowded cellular 
environment. The model cell includes three independent prototypical pathways, whose 
topologies of Protein-Protein Interaction (PPI) sub-networks are different, but whose 
contributions to the cell fitness are equal. Model cells evolve through genotypic mutations and 
phenotypic protein copy number variations. We found a strong relationship between evolved 
physical-chemical properties of protein interactions and their abundances due to a “frustration” 
effect: strengthening of functional interactions brings about hydrophobic interfaces, which make 
proteins prone to promiscuous binding. The balancing act is achieved by lowering concentrations 
of hub proteins while raising solubilities and abundances of functional monomers. Based on 
these principles we generated and analyzed a possible realization of the proteome-wide PPI 
network in yeast. In this simulation we found that high-throughput affinity capture - mass 
spectroscopy experiments can detect functional interactions with high fidelity only for high 
abundance proteins while missing most interactions for low abundance proteins. 
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Introduction 

Understanding general design principles that govern biophysics and evolution of protein-
protein interactions (PPI) in living cells remains elusive despite considerable effort. While 
strength of interactions between functional partners is undoubtedly a crucial component of a 
successful PPI (positive design), this factor represents only one aspect of the problem. As with 
many other design problems, an equally important aspect is negative design, i.e. assuring that 
proteins do not make undesirable interactions in crowded cellular environments. The negative 
design problem for PPI got some attention only recently (1, 2). Furthermore, interaction between 
two proteins depends not only on their binding affinity but also on their (and possibly other 
proteins) concentrations in living cells (2). Therefore one might expect that control of protein 
abundances is a third important factor in design and evolution of natural PPI. Mechanistic 
insights of how PPI co-evolve with protein abundances could best be gleaned from a detailed 
bottom up model, where biophysically realistic thermodynamic properties of proteins and their 
interactions in crowded cellular environments are coupled with population dynamics of their 
carrier organisms. 

 Recently we proposed a new multiscale physics-based microscopic evolutionary model of 
living cells (3, 4). In the model, the genome of an organism consists of several essential genes 
that encode simple coarse-grained model proteins. The physical-chemical properties of the model 
proteins, such as their thermodynamic stability and interaction with other proteins are derived 
directly from their genome sequences and intracellular concentrations using knowledge-based 
interaction potentials and statistical-mechanical rules governing protein folding and protein-
protein interactions. A simple functional PPI network is postulated, and organismal fitness (or 
cell division rate) is presented as a simple intuitive function of concentration of functional 
complexes (4). While clearly quite simplified, this model provided insights into mechanisms of 
clonal dominance in bacterial populations and their adaptation from first principles physics-
based analysis (4, 5). Here, we extend this microscopic multiscale model to study how functional 
PPI are achieved in co-evolution with protein abundance in living cells. We postulate a 
straightforward fitness function that depends on simple yet diverse functional PPI network and 
find that intra-cellular abundances of proteins evolve to anti-correlate with their node degrees in 
this network. A proteome-wide simulation, which incorporates correlations between PPI network 
topology, protein abundances, and interaction strengths predicted by our simple model, 
reproduces well the observations from high throughput Affinity Capture – Mass Spectrometry 
(AC-MS) experiments in yeast thus providing guidance to their interpretation. 
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Results 

We designed a model cell for computer simulations, which consists of two different 
functional gene groups: cell division controlling genes (CDCG) and a mutation rate controlling 
gene (MRCG) mimicking the mutS protein in Escherichia coli and similar systems in higher 
organisms (see Methods). Products of CDCGs determine growth rate (fitness) as described 
below (Eq.(3)), while the product of MRCG determines mutation rate as in earlier study (5). All 
proteins can interact in the cytoplasm of model cell. Though real metabolic networks responsible 
for cell growth and division are very complex, we postulate a highly simplified yet diverse PPI 
network of CDCG as shown in Fig. 1A.  Out of six CDCGs, protein product of the “first” gene is 
functional in a monomeric form, protein products of the “second” and “third” genes must form a 
heterodimer (“stable pair”) to function, and protein products of the “fourth”, “fifth”, and “sixth” 
genes form a triangle PPI sub-network as shown in Fig. 1A, meaning that each protein can 
functionally interact by forming a heterodimer with any other protein from this sub-network (a  
“date triangle”). Such motifs formed by pairwise interactions of low-degree proteins with each 
other are common in real-life PPI networks  (see ref. (6)). In this study we prohibit the formation 
of multi-protein complexes containing three and more simultaneously interacting proteins. 
Further, we posit: 

1) Proteins can function only in their native conformation(s). For each protein we designate one 
(arbitrarily chosen) conformation as “native”. 

2) Protein complexes are functional only in a specific docked configuration. For each pair of 
proteins, which form a functional complex we designate one of their docked configuration (out 
of total 144 possible docked configurations of our model proteins, as explained in (4) and 
Methods) as functional. “Stable pair” proteins (proteins “2” and “3”, k=1) have one functional 
surface each and participants in “date triangles” (proteins “4”, “5”,”6”, k=2) have two distinct 
functional surfaces each (7)) .  

Under these assumptions we define effective, i.e. functional concentrations of functional 
monomeric protein and all functional dimeric complexes: 

   G1 = F1Pnat
1

 (1) 

where   F1  is total concentration of protein “1” in its monomeric form (determined from Law of 

Mass Action (LMA) Equations, see Ref (4) and Supplementary Text) and   Pnat
1 is Boltzmann 

probability for this protein to be in its native state (see Methods). Functional form of “stable 
pair” proteins 2 and 3 and “date triangle” proteins 4,5,6 are heterodimers (the “date triangle” 
proteins can form more than one functional heterodimer). Effective concentrations of functional 
heterodimers of various types (i.e. 2-3, 4-5,4-6,5-6) in our model are 
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Gij = Dij Pint

ij Pnat
i Pnat

j   (2) 

where  
Dij  is concentration of the dimeric complex between proteins i and j in any of the 144 

docked configurations   Pint
ij  is Boltzmann probability that proteins are docked in their functional 

configuration (see Ref (4) and Methods). According to the LMA 
 
Dij =

Fi Fj

Kij

 where  
Kij  is the 

dissociation constant between proteins. The cell division rate, i.e. fitness of a cell is postulated to 
be multiplicatively proportional to all effective functional concentrations: 

 

  

b = b0

G1 ⋅G23 ⋅ G45G56G64
3

1+α Ci
i=1

7

∑ − C0

%

&'
(

)*

2 , (3) 

where   b0  is a base replication rate,  Ci is the total (i.e. including monomeric and dimeric forms) 

concentration of protein i,   C0 is a total optimal concentration for all proteins in a cell, and α  is a 
control coefficient which sets the range of allowed deviations from total optimal production for 
all proteins. The denominator in Eq.(3) reflects the view that there is an optimal gross production 
level of proteins in the cell and deviations from it in either direction are penalized. Its main role 
is to prevent the scenario when fitness is increased due to a mere overproduction of proteins. The 
form of Eq.(3) is a “bottleneck”-like “AND-type” fitness function, which assumes that all 
CDCGs are essential for cell division. The rationale for cubic root in Eq.(3) is given in 
Supplementary Text. 

Our first aim was to study how organisms co-evolve protein sequences and their 
abundances to establish functional PPI. Fig. 2A shows evolution of protein abundances. The 
abundance of the functionally monomeric protein (the green solid line in Fig. 2A) increases. 
Monomeric protein can evolve hydrophilic surfaces because the monomer does not need to have 
a hydrophobic binding surface shared with its functional interacting partners. (Supplementary 
Table I). However, abundances of functional “stable pairs” (red line) and functional “date 
triangles” (blue line) show quite a different trend compared with the concentration of the 
monomer. The total abundance of “stable pairs” proteins (k=1) remained approximately constant 
and, moreover, the total abundance of “date triangles” with k=2 diminished with time. In contrast 
to monomers, “stable pair” dimers and “date triangles” should strengthen their functional 
interactions by evolving strongly interacting surfaces (one surface for each “stable pair” protein 
and 2 surfaces for each member of “date triangle”). (see Supplementary Table I). We find that 
this factor limits the abundance of “stable pairs” and “date triangles” due to their enhanced 
propensity to form nonfunctional complexes with arbitrary partners. 
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In order to address the microscopic molecular mechanisms that determine optimal protein 
abundances, we evaluated, for each protein, the fraction of its nonspecific interactions, nsi . This 
quantity is defined as: 

 
  
nsi = 1−

1
Ci Pnat

i Gi + Gij
j
∑

#

$
%

&

'
( , (4) 

where summation is taken over all functional interactions of the protein i (i.e. no terms in 
summation for protein 1, one functional partner for each of the “stable pair” proteins 2, 3 and 2 
partners for “date triangle” proteins 4,5,6. The negative term in the Eq. (4) essentially is an 
estimate of the fraction of time that the protein spends in its monomeric state and/or participating 
in each of its functional interactions; naturally the rest of the time is spent participating in 
promiscuous non-functional interactions (PNF-PPI). The latter is defined as any interaction 
between proteins, which does not produce a functional complex. PNF-PPI include not only 
interactions between non-functional partners but also interactions between functional partners in 
non-functional docked states. The evolution of nsi is shown in Fig. 2B, while the evolution of 
functional protein interaction strengths,   Pint is shown in Fig. 2C. Initially, all proteins were 

designed to be stable but not necessarily soluble: they participated in many PNF-PPI (see Fig. 
S1). The fraction of PNF-PPI of the functional monomer (k=0) diminished to the lowest level as 
proteins evolved, apparently making its surface more hydrophilic (Supplementary Table I). On 
the other hand, the fractions of PNF-PPI of “stable pair” and “date triangle” proteins (k=1 and 2 
correspondingly) still remain at higher levels.  “Stable pair” proteins (k=1) evolved strong 
functional interaction, while keeping their non-functional surfaces less hydrophilic 
(Supplementary Table I). However “date triangle” proteins with two interaction partners evolved 
weaker functional PPI (Fig.2C), while becoming overall more hydrophobic than both functional 
monomer and “stable pair” dimer (see Supplementary Table I). 

To get a deeper insight into the physical origin of co-evolution between protein abundances and 
PPI, we investigated how relative populations of various interaction states of proteins depend on 
their total abundances  Ci   (dosage sensitivity effects, Supplementary Figure 2). Functional 
dimers and party trimers are most susceptible to changes in their overall abundances – in fact 
their overproduction can cause a drastic decrease in their functional concentrations. We also note 
that loss of functional concentrations of dimers and party trimers occurred to a considerable 
extent due to formation of homodimers, in line with the analysis in (8). 

Functional surfaces of proteins evolved in our model are enriched in several hydrophobic 
amino acids. This model finding agrees well with the analyses of PPI interfaces of real proteins 
(9, 10), which also suggest that hydrophobic interactions are the dominant force behind 
functional PPI (10, 11). Figure 3 compares amino acid composition on functional PPI interfaces 
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of model and real proteins. Quite remarkably, our simple model correctly captures all six amino 
acid types, which are enriched in conservative clusters on PPI interfaces (12) (except swap 
between Aspartic and Glutamic acids, which such simple potential apparently cannot distinguish 
between). Highly significant correlation between model and real propensities for all 20 amino 
acids (correlation coefficient is 0.6129 and p-value is 0.0041) suggests that our model and its 
knowledge-based potential, despite their simplicity, capture essential aspects of the physical 
chemistry of PPI. 

In summary, our simple model predicts that: 1) Abundance of a protein in cytoplasm is 
negatively correlated with the number of its functional interaction partners (Fig.4A); 2) Strength 
of functional interactions of a protein is also negatively correlated with its node degree in the PPI 
network (Fig.2C); 3) Less abundant proteins engage in stronger PNF-PPI (see Fig.4B). 
Interestingly we observe an opposite trend in evolution of functional and PNF-PPI: while 
strength of functional PPI decreases with node degree (see Fig.2A) and are weaker at lower 
abundances, PNF-PPI is stronger for proteins with higher node degree and at lower abundances 
(see Supplementary Figure 3)   

Now we wish to test these predictions. This is not an easy task because interactomes 
reported in high-throughput experiments may be different from real ones due to significant 
fraction of false positives and missed weak functional interactions: PPI networks reported by 
various techniques differ greatly between techniques and experimental realizations (13). 
Furthermore, whole-proteome measurements of binding affinities for functional and PNF-PPI are 
not available. Therefore we developed the following strategy. First, we designed a reference,  
“true” Baker Yeast interactome, which exhibits correlations observed in the simple model. Next, 
we “experimentally” study this interactome using a computational counterpart of the Affinity-
Capture Mass-Spec (AC-MS) PPI experiments to determine the “apparent” interactome, which 
might differ from the “true” one. Finally we compare the “apparent” interactome obtained 
computationally from the underlying “true” one with the interactome obtained in real AC-MS 
experiments to determine whether experimental data bear signatures of the correlations predicted 
from simple exact model. 

We built a “true” Baker’s Yeast interactome for its 3,868 proteins, whose intracellular 
abundances are known from experiment (14) by rewiring the published PPI network obtained in 
AC-MS experiments (15) to preserve its scale free character (see Figure S4) and to introduce 
anti-correlations between node degree and abundance as predicted by the model (see Fig.5A).  

Dissociation constants of functional binary protein complexes Kij
F  were assigned to 

reflect the negative correlations between node degree and affinity of functional complexes as 
found in the simple model: 
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Kij

F = 0.01exp 1.5(ki + k j ){ }                                             (5) 

Dissociation constants for PNF-PPI between all proteins were assigned to positively 
correlate with evolved abundances as predicted by the model (see Fig 4B and Supplementary 
Figure 3): 

                               
   
Kij

NF = 15imax(Ci ,C j ) ,                                              (6) 

By solving 3,868 coupled nonlinear LMA equations we obtained all possible binary complex 
concentrations,  

Dij  for the designed reference interactome. Then we mimic the AC-MS 

experiments by ‘’capturing’’ only complexes whose concentration exceeds a certain “detection 
threshold”, i.e.  

Dij / Ci ≥ THR . Here  Ci is the concentration of the “bait” protein and the threshold 

emulates finite sampling of captured complexes by mass spectroscopy.  By varying the detection 
threshold we can approximately mimic the stringency of the detection of interactions in the AC-
MS experiments by the criterion  MS ≥ w  where  w  is the number of times an interaction is 
reproduced in independent AC-MS experiments.  

The model counterpart of the MS ≥ 1 interactions (low THR=1/400) shows an almost 
monotonic positive dependence of the averaged detected node degree, 〈k〉 	  on protein abundance 
except for highly abundant proteins (Fig. 5A, black line), while the model counterpart of the 
more stringent MS ≥ 3  dataset (higher detection threshold THR=1/20) shows a non-monotonic 
behavior with highest  〈k〉 	  corresponding to proteins of medium abundance (Fig.5A, red line). 
Strikingly, independent of the threshold the “apparent” node degrees of low abundance proteins 
are much lower than their degrees in the “true” functional PPI network as most functional 
interactions for these proteins are missed. The probability to detect functional PPI increases 
drastically with protein abundance (Fig.5B). On the other hand, for high values of threshold THR 
“true” and “apparent” PPIs of highly abundant proteins exactly match each other corresponding 
to the set of highly reproducible (MS ≥ 3) interactions, (Fig.5A) while lower values of THR (or 
MS ≥ 1dataset) still include many false-positive PPI even for high abundance proteins (see 
Fig.5C). As regards false positives (i.e. PNF-PPI) in AC-MS experiments many of them are 
detected for highly abundant proteins at low detection threshold  (i.e.w ≥ 1) and are eliminated 
for all proteins regardless of abundance at a more stringent detection threshold (corresponding to 
w ≥ 3  or greater). (Fig. 5C).  

We compared the predictions of our model shown in Fig. 5A with large-scale proteomics data on 
S. cerevisiae shown in Fig. 5D. We used PPIs marked as “AC–MS” in the BioGRID database 
(15, 16) and protein copy numbers experimentally measured (14) under  normal (rich medium) 
conditions. Fig. 5D plots the average degree  〈k〉  vs. protein copy numbers for each of two 
datasets extracted from BioGRID: all MS-detected interactions (MS ≥ 1, black symbols), and 
interactions reproduced in three or more independent experiments (MS ≥ 3 , red symbols). 
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Similar to the yeast proteome model, the MS ≥ 1and MS ≥ 3  data exhibit different trends in  〈k〉  
for proteins of above C > 2 ×104 copies/cell. Whereas in the MS ≥ 1 dataset  〈k〉  systematically 
increases with concentration until high copy number range, in the MS ≥ 3  dataset  〈k〉 	  reaches 

maximum value  ≈ 2  at protein concentrations around  2 ×104  copies/cell and then starts to 
systematically decrease with C, exactly as found for the ‘’true’’ model proteome in which 
correlations predicted by the simple model are built in.  

Discussion 

           In this work we used a multiscale first-principle model of living cells to investigate the 
complex relationship among functional PPI, PNF-PPI, and the evolution of growth-optimal 
protein abundances. Despite its simplicity the model allows a microscopic ab initio approach to 
address these complex and interrelated issues. Unlike traditional population genetics models here 
we do not make any a priori assumptions of which changes are beneficial and which ones are 
not. Rather we base our model on a biologically intuitive genotype-phenotype relationship 
(GPR) Eq. (3), which posits that growth rate depends on biologically functional concentrations 
of key enzymes (or multi-enzyme complexes). This assumption is supported by high-throughput 
data of Botstein and coworkers (17, 18). Overall one should expect that for enzymes whose 
substrate concentrations in living cells exceed their K M , the turnover rates of their metabolites 
would be proportional to their concentrations, giving rise to GPR in Eq. (3).  

Our findings provide a general framework for understanding the physical factors 
determining protein abundances in living cells. We found that functional monomers evolved 
largely hydrophilic surfaces, which allowed their production level to increase with apparent 
fitness benefit and minimal cost due to PNF-PPI. This finding is consistent with the observation 
that in E. coli more abundant proteins are less hydrophobic (19). In contrast intracellular copy 
numbers of proteins participating in multiple functional PPI evolve under a peculiar physical 
constraint: such proteins have to evolve hydrophobic interacting surfaces to provide strong 
functional PPI, as found in our simulations and also established in several statistical analyses of 
known functional complexes (20, 21). However the same hydrophobic surfaces contribute to 
PNF-PPI. This “frustration” between functional and non-functional interactions is resolved by 
limiting effective concentrations of “stable pairs” and “date triangles” in our model cells and 
weakening of their functional PPI. Recent computational analysis of PPI energetics confirmed 
this prediction by demonstrating that proteins which have more functional partners in the PPI 
network have weaker functional interactions (22).  An interesting possibility to overcome this 
frustration effect is to keep sequences of some proteins, which have multiple interaction partners, 
hydrophilic by making these proteins intrinsically disordered as has been indeed observed (23).   

While this work was in review, a simple model analysis of PNF-PPI, came out in Ref. 
(24). The conceptual basis of our work is different from that of Ref.(24). Here we assume that 
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the topology of a functional PPI network is determined by the need to carry out specific 
Biological functions, so that protein interactions and abundances adjust to a fixed functional PPI 
network to evolve towards higher fitness. In contrast, the premise of Ref.(24) is that functional 
PPI networks may adjust their topology to increase the energy gap between functional PPI and 
PNF-PPI (1). The authors of (24) indeed observed a slight difference (~1kT) in designed energy 
gaps between most and least optimal PPI topologies. However this study shows that protein 
concentrations in cellular compartments can evolve to alleviate, at least partly, energetic 
‘’frustrations’’ imposed by the topology of the PPI network. 

Our high-throughput computational analysis of functional and PNF-PPI in proteome of 
S.cerevisae provided an insight into inner working of AC-MS experiments and a guidance to 
their interpretation. It appears that functional PPI of highly abundant proteins (copy numbers in 
cytoplasm exceeding 2 ×104 ) are recovered quite well when an interaction is reproduced in 
multiple independent AC-MS experiments. The situation is not so rosy for low abundance 
proteins since large fraction of their functional interactions is not captured in AC-MS data at any 
detection threshold. Lowering the detection threshold somewhat increases the fraction of 
detected functional interactions for medium abundance proteins but at a cost of mixing in even 
larger number of non-specific interactions. 

Our model while capturing many realistic biophysical aspects of proteins and their 
interactions is still minimalistic as it focuses on the relation of the physical properties of proteins 
to cell’s fitness and disregards certain aspects of their functional behavior in living cells. One 
possible limitation is that our model of PPI interfaces and interaction potentials may be too 
simple to capture complex aspects of PPI specificity such as steric complementarity (lock and 
key), conformational change and highly specific directional interactions. However a thorough 
analysis of PPI energetic and structural data by many groups (reviewed in (10, 11)) shows that: 
1) The majority (over 90%) of PPI interfaces are planar 2) the same majority of interfaces exhibit 
very little if any conformational change and 3) the major contribution to stability of PPI comes 
from hydrophobic interactions (mostly aromatic but aliphatic as well) as seen from alanine scan 
experiments and interface composition analyses. However there are known cases (e.g. involving 
intrinsically disordered proteins (23)) when conformational changes leading to formation of PPI 
interfaces are apparent, and our model does not apply to these situations. To that end our 
predictions are of intrinsically statistical nature.  Nevertheless, the physical mechanisms 
discussed here are common to most proteins in the cell and we expect that interplay between 
functional and non-functional interactions prove to be an important factor determining evolution 
of protein abundance.  

Methods 

Protein structure and interactions 
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Our model cells carry explicit genome, which is translated into 7 different proteins: 6 
products of CDCGs  and a homodimeric protein defining the mutation rate of the cell. For simple 
and exact calculations, proteins are modeled to have 27 amino acid residues and to fold into 
3x3x3 lattice structures (25). Only amino acids occupying neighboring sites on the lattice can 
interact and the interaction energy depends on amino acid types according to the Miyazawa-
Jernigan potential (26) both for intra- and inter-molecular interactions. For fast computations of 
thermodynamic properties we selected 10,000 out of all possible 103,346 maximally compact 
structures (25) as our structural ensemble. This representative ensemble was carefully selected to 
avoid possible biases (4). As a measure of protein stability, we use the Boltzmann probability, 

 Pnat , that a protein folds into its native structure.

 

   

Pnat =
exp −E0 / T"# $%

exp −Ei / T"# $%
i=1

10000

∑
 (7)

 

where   E0  is the energy of the native structure – a conformation, which is a priori designated as 
the functional form of the protein, and   T is the environmental temperature in dimensionless 
arbitrary energy units. 

 We use the rigid docking model for protein-protein interactions. Because each 3x3x3 
compact structure has 6 binding surfaces with 4 rotational symmetries, a pair of proteins has 144 
binding modes. For each protein that participates in a given functional PPI one surface is a priori 
designated as “functionally interacting” and one heterodimeric configuration/orientation is a 
priori designated as the functional binding mode. Proteins 4,5,6 forming “date triangles” have 
two binding surfaces each. The Boltzmann probability,   Pint

ij that two proteins forming a binary 

complex interact in their functional binding mode (out of 144 possible ones) and the binding 
constant,  

Kij between proteins i and j are evaluated as follows: 

 

  

Pint
ij =

exp −E f
ij / T"

#
$
%

exp −Ek
ij / T"# $%

k=1

144

∑
, Kij =

1

exp −Ek
ij / T"# $%

k=1

144

∑
 

(8) 

where  
E f

ij and  Ek
ij  are respectively the interaction energy in the functional binding mode (where 

applicable) and the interaction energy of k-th binding mode out of 144 possible pairs of sides and 
mutual orientations between the proteins i and j.  

Simulation 



	   12	  

Initial sequences of proteins were designed (27) to have high stabilities (  Pnat
i > 0.8 ) and 

their native structures were assigned at this stage and fixed throughout the simulations. Initially, 
500 identical cells were seeded in the population and started to divide at rate of b given by Eq. 
(3). In order for both genotypic and phenotypic traits of organisms to be transferred to offspring, 
a cell division was designed to generate two daughter cells, whose genomes and protein 
production levels,  Ci s are identical to those of their mother cell except genetic mutations that 
arise upon division at the rate of  m  per gene per replication as following: 

 
  
m = m0 1−

G77

G77
0

"

#
$

%

&
' , (9) 

where   G77
0 is the initial functional concentration of mismatch repair homodimers of the seventh 

protein. At each time step, we stochastically change the protein production level,  Ci with rate of 

  r = 0.01 to implicitly model epigenetic variation of gene expression (5, 28).  

   
Ci

new = Ci
old 1+ ε( ) , (10) 

where  Ci
old and  Ci

new are the old and new expression levels of protein product of i-th gene, and ε  
is the change parameter which follows a Gaussian distribution whose mean and standard 
deviation are 0 and 0.1, respectively. 

The population evolved in the chemostat regime: the total population size was randomly 
trimmed down to the maximum population size of 5000, when it exceeded the maximum size. 
The optimal total concentration of all proteins,   C0 , is set to 0.7. The death rate, d, of cells is 

fixed at 0.005 per time units, and the parameter   b0  is adjusted to set the initial birth rate to fixed 
death rate (b=d). The control coefficient α  in Eq. (3) is set to 100. 200 independent simulations 
are carried out at each condition to obtain the ensemble averaged evolutionary dynamics 
pathways. 
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Figure captions 

Figure 1. A schematic diagram of the model cell.  (A) A model cell consists of six cell division 
controlling genes (CDCG) which are expressed into multiple copies of proteins. The CDCGs 
constitute three independent pathways with different PPI network topologies. The first protein 
functions in a free state (monomer, green cubes). The second and third proteins exclusively form 
a functional heterodimer (“stable pair”) (red), but the fourth, fifth and sixth proteins circularly 
establish three functional heterodimers. (“date triangle”, blue). (B) Within a cell, proteins can 
stay as monomers or form dimers, whose concentrations are determined by interaction energies 
among them through the Law of Mass Action Eqs. (S4, S5). The cubes colored as in (A) 
represent CDC proteins in their functional states that contribute to organism’s fitness (growth 
rate) according to Eq. (3). Gray cubes represent proteins in their non-functional states. 

Figure 2. Evolution of protein abundances and PPIs after several rounds of pre-equilibration 
(see Fig.S1 for details).  Green curves correspond to functional monomer, red curve is average 
over two proteins forming a “stable pair” hetero-dimer (k=1), and blue curve corresponds to 
average over three “date triangle”, proteins (k=2). A: mean concentration of each protein, Ci . B: 

The fraction of protein material that is sequestered in non-functional interactions, nsi . C: The 

strength of PPI in the functional complex,  Pint , except the first protein that does not form any 
functional complex. All curves are ensemble averaged over 200 independent simulation runs.  

Figure 3. Scatter plot between amino acid propensities on functional interfaces of model 
and real proteins. We calculated the propensities for all model proteins from protein orthologs 
from 152 representative strains as described in Eq. (S6). The propensities for real proteins are 
obtained from Table 2 of ref. (9). The color scheme is as follows: hydrophobic (black), positively 
charged (red), negatively charged (blue), uncharged polar (cyan), and remaining amino acids 
(green). 
 
Figure 4. The node degree in the functional PPI network and the strength of PNF-PPI 
negatively correlate with protein abundance. Both the average degree <k> in the functional 
PPI network (A) and the dissociation constants of PNF-PPI complexes,  

Kij
NF which is inversely 

proportional to the strength of PNF-PPI (B) are plotted as function of protein abundance, Ci .  

Figure 5. System-wide proteomics simulation of PPI detection and comparison with AC-
MS high throughput experiments. (A) Simulated “AC-MS” type of experiment in our 
model. We “designed” a set of 6228 functional interactions among 3868 proteins and assigned 
dissociation constants to all PPI as described in Eqs. (5,6). Blue dashed line represents the 
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average node degree of designed “true” PPI and black and red solid lines correspond to the node 
degrees of “captured” PPI networks in our proteomics model at different values of detection 
threshold. (B) The fractions of functional PPIs out of all “captured” PPI in our simulation at low 
(black) and high (red) thresholds are plotted as a function of protein abundance. (C) The 
fraction of detected PNF-PPI out of all ‘’captured’’ PPI. (D) The average degree of a protein 
in the S. cerevisiae PPI network vs. protein abundance.  Black symbols correspond to all 
~28,800 AC-MS labeled interactions in the BioGRID database, while red symbols correspond to 
~2,600 highly reproducible interactions confirmed in three or more independent experiments. 

 

  

	  


