The developmental role of Agouti in color pattern evolution

Marie Manceau1,3, Vera S. Domingues1,3, Ricardo Mallarino2 and Hopi E. Hoekstra1,3*

126 Oxford Street and 216 Divinity Avenue, Department of Organismic and Evolutionary Biology, 3the Museum of Comparative Zoology, Harvard University, Cambridge MA 02138

*To whom correspondence should be addressed. Email: hoekstra@oeb.harvard.edu

Running head: Agouti and color pattern evolution

Animal color patterns can affect fitness in the wild, however little is known about the mechanisms that control their formation and subsequent evolution. We took advantage of two locally camouflaged populations of \textit{Peromyscus} mice to show that the negative regulator of adult pigmentation, Agouti, also plays a key developmental role in color pattern evolution. Genetic and functional analyses demonstrate that ventral-specific embryonic expression of \textit{Agouti} establishes a pre-pattern by delaying the terminal differentiation of ventral melanocytes. Moreover, a skin-specific increase in both the level and spatial domain of \textit{Agouti} expression prevents melanocyte maturation in a regionalized manner, resulting in a novel and adaptive color pattern. Thus, natural selection favors late-acting, tissue-specific changes in embryonic \textit{Agouti} expression to produce large changes in adult color pattern.
Variation in pigment type (i.e., color) and distribution (i.e., color pattern) can profoundly impact fitness of organisms in the wild (1). In vertebrates, several genes involved in pigment-type switching (2, 3) and those necessary for proper pigment patterning in mice (4, 5) and fish (4, 6, 7) have been described; however, this work has focused on laboratory mutants rather than natural variation. Therefore, the molecular factors responsible for color pattern formation and evolution (i.e., the genes and developmental processes targeted by selection) remain poorly understood in wild vertebrates.

Here we take advantage of the striking color pattern variation in natural populations of deer mice (genus Peromyscus). Mainland mice (P. polionotus subgriseus) inhabit oldfields with dark soil and have the most common color pattern observed in vertebrates — a dark dorsum and light ventrum (Fig. 1A). Beach mice (P. p. leucocephalus), which have recently colonized the light-colored sand dunes of the Florida’s Gulf Coast, have evolved adaptive differences in color (i.e., lighter overall pigmentation) and pattern (i.e., absence of pigmentation on the face, flanks and tail) relative to their mainland ancestors (Fig. 1B; 8, 9).

We characterized these differences in adult pigment pattern of a mainland and beach mouse subspecies by classifying hair into four distinct types (based on the distribution of pigments along individual hairs; 10) and quantifying the proportion of each type along the dorso-ventral axis. Although both subspecies have all types of hair, their distribution differs: the dorsal region, which has black and banded hairs, is reduced in beach mice (i.e., the dorso-ventral boundary is shifted upwards) and their ventral region is comprised of hairs entirely lacking pigments compared to mainland mice, which have bi-colored hairs (i.e., melanic base, un-pigmented tip) (Fig. 1C, D). These subspecific differences in pigment pattern are visible at birth (Fig. 1E, F), which indicates that they are established during embryonic development.
Mutations in three genetic loci explain most of the pigment variation in adult pelage between beach and mainland mice (11). We focused on the locus containing the candidate pigmentation gene Agouti because in laboratory mice, ventral Agouti expression is necessary for the establishment of dorso-ventral differences in pigmentation (5, 12, 13, 14). While the developmental mechanism through which Agouti acts to establish these color differences remains unclear, it may contribute to color pattern evolution in natural populations.

We confirmed that Agouti is a causal gene responsible for color pattern differences between beach and mainland mice using a genetic approach (Fig. 2A; fig. S1; 10). Because there were no differences in Agouti protein sequence between beach and mainland mice (11), we measured allele-specific expression of Agouti in the two tissues, skin and testis, where it is expressed in Mus (15). We found that Agouti expression is higher in the ventral skin of beach mice compared to mainland mice (Fig. 2B). In F1 hybrids, the beach mouse (light) allele shows significantly higher expression than the mainland (dark) allele (17 fold, p=0.01, one-tailed Student’s T-test; Fig. 2B). This expression level difference is replicated but smaller in dorsal skin (4 fold, p=0.015, one-tailed Student’s T-test; fig. S2). By contrast, no Agouti expression differences were detected in the testes (Fig. 2C). These data show that mutation(s) in Agouti are cis-acting, and likely involve a skin-specific regulatory element.

To determine the specific effects of these Agouti expression differences on color pattern, we generated Peromyscus individuals homozygous for the light allele of Agouti (Agouti LL) and dark alleles at the two other implicated pigment loci (10). Adult Agouti LL mice displayed both an upward shift in the dorso-ventral boundary and white ventral hairs (Fig. 2D, E; fig. S2), thereby partly recapitulating the derived color pattern of wild beach mice. Because these
differences are apparent at birth (fig. S2), changes in Agouti expression pattern contribute to changes in pigment pattern through developmental modifications.

We next described typical stages of Peromyscus development (fig. S3) and compared the embryonic expression patterns of dark and light Agouti alleles. In embryos from mainland mice, Agouti’s expression was restricted to the ventral half of the dermis in early developmental stages (Fig. 3A, B) and to the ventral dermis and hair follicles at fetal stages (Fig. 3C, D), which is tightly correlated with the light-colored ventrum in adult skin. This suggests that the color pattern is spatially determined early in embryonic development by a pre-pattern established by Agouti. By comparison, in Agouti LL embryos, the ventral expression of Agouti showed an upward shift (Fig. 3F) that corresponds to the dorsal displacement of the pigment boundary observed in adult mice. In addition, ventral Agouti expression was significantly higher in Agouti LL than in mainland embryos (~4.9 fold at E12 and ~4.4 fold at E14, p=0.03 and p=0.003, respectively, one-tailed Student’s T-tests; Fig. 3I, J); these differences were allele-specific (fig. S2) and correlated with the presence or absence of adult pigmentation in the ventrum. These results suggest that modifications in the embryonic pre-pattern defined by Agouti contribute to color pattern evolution in beach mice.

In vitro studies suggested that Agouti may also cause melanocyte dedifferentiation by down-regulating pigment-cell-specific genes (16, 17, 18). We tested how Agouti expression changes affected melanocyte behavior in vivo by comparing the distribution and maturation of melanocytes during Peromyscus embryogenesis. We used Trp2 (also known as Dct) and Trp1, two enzymes consecutively expressed in melanocytes during both their migration in the dermis and maturation in hair follicles, as markers of early and late differentiation, respectively (19). In both mainland and Agouti LL E14 embryos, Trp2-positive (Trp2+) melanocytes had colonized
the entire embryonic dermis (fig. S4), demonstrating that the formation of dorso-ventral color differences and the evolution of the novel color pattern are not caused by changes in melanocyte migration. By contrast, fully differentiated (Trp1+) melanocytes were restricted to a dorsal region complementary to the ventral domain of Agouti expression (Fig. 3K, L; fig. S5), suggesting that their distribution early in development is restricted by the extent of Agouti expression.

During late fetal stages, Trp2+ cells successfully colonized hair follicles in the dorsum, but in the ventrum they were confined to the dermis (fig. S4), and were both fewer in number and proliferated less (fig. S6), showing that melanocyte differentiation and proliferation were impaired in this region. Dorsal Trp1+ melanocyte behavior in Agouti LL fetuses was similar to that observed in mainland mice (Fig. 3M, O). However, in the ventrum, Trp1+ melanocytes were present, but did not reach the epidermal compartment or hair follicles as they did in mainland fetuses (Fig. 3N, P) and thus remained similar in distribution to less mature (Trp2+) melanocytes (fig. S4). These results suggest that increased ventral expression levels of Agouti repress the terminal differentiation of ventral melanocytes and their colonization of the epidermis, and that this is the developmental mechanism by which the absence of pigmentation in the beach mouse ventrum and flanks evolved.

To functionally test Agouti’s embryonic role in vivo, we took advantage of a natural strain of Peromyscus (“Non-Agouti”, NA) in which a large deletion in the Agouti locus results in a loss-of-function (20). NA mice, as in Mus musculus Agouti mutants (21), displayed no visible patterning, with a homogenously black color (Fig. 4A) present at birth (Fig. 4B). This observation confirms that Agouti is necessary for establishing color pattern in Peromyscus. The melanocytes in NA embryos expressed both Trp2 and Trp1 in the ventral dermis (Fig. 4D; fig. S7), and, at fetal stages, Trp1+ cells localized in the hair follicles (Fig. 4F) to produce pigments
(fig. S8) similar to dorsal melanocytes (Fig. 4E), while Trp2 expression was no longer detectable (fig. S7). These results, consistent with previous in vitro studies (18, 17), clearly demonstrate in vivo that Agouti represses the terminal maturation of (Trp1+/Trp2+) melanocytes in the ventral embryonic skin.

To further understand Agouti’s function during development, we ectopically expressed Agouti in hair follicles of mainland embryos using ultrasound-assisted retroviral infection in utero (22). Embryos collected 10 days after injection (10) displayed a robust ectopic expression of Agouti in all neural derived GFP+ cell lineages, including the melanocytes, and epidermal cells of the hair follicle wall (Fig. 4, G-L). GFP+ melanocytes were detected in both the dorsal and ventral parts of the fetal skin (Fig. 4G, J), confirming that Agouti does not interfere with dorsal-ventral melanocyte migration. In the dorsum, while many Trp1+ melanocytes were present in hair follicles infected with viruses containing control GFP only (Fig. 4H, O), their numbers decreased in mice infected with the virus expressing Agouti (Fig. 4K-O). This confirms that higher expression of Agouti prevents melanocytes from undergoing terminal differentiation in the epidermis.

Our results indicate that the level and extent of Agouti expression during development affects adult color pattern by modulating the degree of repression of a terminal step in melanocyte differentiation. In mainland mice, where Agouti is expressed at low levels in the ventrum, ventral melanocyte differentiation is delayed, which leads to the formation of partially pigmented (bicolored) hairs (fig. S8). In beach mice, changes in Agouti expression contribute to the evolution of their novel and adaptive color pattern. Specifically, in Agouti LL individuals, the expression of Agouti in a new spatial domain causes an upward shift in the pigment boundary, and an increase
in its expression level completely prevents ventral melanocyte maturation, leading to an absence of pigment production in ventral hairs.

While Agouti’s role in adult pigmentation and its pleiotropic effects on obesity (2, 3, 23) have been well described, our study has identified a developmental mechanism through which the region-specific expression of Agouti controls the distribution of pigments across the body. Here, Agouti establishes an embryonic pre-pattern, which subsequently evolved through skin-specific changes to Agouti expression which, in turn, affect the late stages of pigment cell differentiation, thereby minimizing pleiotropy in two ways. Because some minimally pleiotropic developmental loci might constitute “hotspots” for morphological evolution (25, 26, 27, 28), one may speculate that even small changes in Agouti expression during embryogenesis contribute to the establishment of more complex vertebrate pigment patterns.

References

10. Material and methods are available as supporting material on *Science* Online.

29. We thank R. Kanadia, C. Punzo, E. McGlinn, J. Gros, A. Abzhanov and C. Tabin for technical assistance and G. Barsh for helpful discussions. *In situ* hybridizations on sections and *in utero* injections were conducted in the Abzhanov and Tabin/Cepko laboratories. V. Hearing provided the anti-Trp1/anti-Trp2 antibodies. C. Desplan, C. Tabin, A. Abzhanov, C. Linnen and J. Gros commented on the manuscript. V.S.D was supported by the Portuguese Foundation for Science & Technology. Research was funded by a grant from the National Science Foundation.
Figures Legends

Fig. 1. (A, B) Mainland and beach mice differ in coat-color pattern, which provides camouflage in their respective habitats (inset = local soil sample). (C, D) Position of the boundary between the dorsal region, comprised of banded and black hairs, and ventral region, comprised of bi-colored or white hairs, in mainland and beach mice (black dotted lines). (E, F) The position of the dorso-ventral boundary is established before birth (1 day old pups). Error bars indicate standard error of the mean (SEM).

Fig. 2. (A) Fine-scale mapping of the causal locus in Peromyscus by quantitative trait loci (QTL) (left) and recombinant-breakpoint analyses (right). (B, C) Quantitative PCR (qPCR) analyses of Agouti mainland (dark) and beach (light) allele transcript levels in the ventral skin and testes of mainland mice, beach mice, and their F1 hybrids. (D) Coat-color pattern of Agouti LL mice. (E) Pigment of ventral hairs and position of dorso-ventral boundary in mainland, beach and Agouti LL mice. Error bars indicate SEM.

Figure 3. (A to H) In situ hybridization against Agouti in mainland (top) and Agouti LL (bottom) embryos. Agouti expression at E12 and E14 in the dermis of embryos; arrowheads indicate the dorsal limit of Agouti expression in mainland (brown) and Agouti LL (orange) embryos. Tissue sections show Agouti expression in the ventral and dorsal skin and hair follicles of E22 fetuses. Enlargements correspond to the area outlined by squares. (I, J) Relative Agouti transcript levels
at E12 and E14 in the dorsal and ventral regions of mainland and \textit{Agouti LL} embryos quantified by qPCR. (K to P) Distribution of melanocytes (arrowheads) stained with Trp1 (in white) along the dorso-ventral axis in transverse sections at E14 (schemes based on embryos in fig. S5) and E22 relative to the future position of the dorso-ventral pigment boundary (dotted lines). (Q, R) Relative proportions of Trp1+ melanocytes within the dermal or the epidermal compartments at E22. Error bars indicate SEM. nt, neural tube; n, notochord; end, endoderm; d, dermis; ep, epidermis.

\textbf{Fig. 4.} (A) Adult Non-Agouti (NA) \textit{Peromyscus} mice have a homogeneously black coat. (B) Lack of dorso-ventral color difference is visible at birth. (C to F) Dorsal and ventral views of NA skins at E14 and E22 stained with a Trp1 antibody. (G to L) Transgenic expression of retroviruses coding for the nuclear GFP-only or the \textit{Peromyscus Agouti} gene with the nuclear GFP are shown in whole mount embryos or transverse views of dorsal GFP+ hair follicles stained with GFP (in green) and Trp1 (in red). (I, L) Robust ectopic expression of \textit{Agouti} detected in dorsal hair follicles infected with the GFP/Agouti virus, but absent from the control, GFP+, dorsal hair follicles. (M, N) Dorsal and ventral hair follicles (Dapi in blue) containing typical numbers of Trp1+ melanocytes (in green). (O) Percentage of GFP+ hair follicles containing 0, 1, 2, or >3 Trp1+ cells for the control (left) and the GFP/Agouti (right) viruses. d, dermis; ep, epidermis.