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The Computational Complexity of Nash Equilibria in Concisely

Represented Games∗

Grant R. Schoenebeck † Salil P. Vadhan‡

March 5, 2012

Abstract

Games may be represented in many different ways, and different representations of games
affect the complexity of problems associated with games, such as finding a Nash equilibrium.
The traditional method of representing a game is to explicitly list all the payoffs, but this incurs
an exponential blowup as the number of agents grows.

We study two models of concisely represented games: circuit games, where the payoffs are
computed by a given boolean circuit, and graph games, where each agent’s payoff is a function
of only the strategies played by its neighbors in a given graph. For these two models, we study
the complexity of four questions: determining if a given strategy is a Nash equilibrium, finding a
Nash equilibrium, determining if there exists a pure Nash equilibrium, and determining if there
exists a Nash equilibrium in which the payoffs to a player meet some given guarantees. In many
cases, we obtain tight results, showing that the problems are complete for various complexity
classes.

1 Introduction

In recent years, there has been a surge of interest at the interface between computer science and
game theory. On one hand, game theory and its notions of equilibria provide a rich framework
for modeling the behavior of selfish agents in the kinds of distributed or networked environments
that often arise in computer science and offer mechanisms to achieve efficient and desirable global
outcomes in spite of the selfish behavior. On the other hand, classical game theory ignores compu-
tational considerations, and it is unclear how meaningful game-theoretic notions of equilibria are
if they are infeasible to compute. Finally, game-theoretic characterizations of complexity classes
have proved to be extremely useful even in addressing questions that a priori have nothing to
do with games, of particular note being the work on interactive proofs and their applications to
cryptography and hardness of approximation [GMR89, GMW91, FGL+96, AS98, ALM+98].

A central topic at the interface of computer science and economics is understanding the com-
plexity of computational problems involving equilibria in games. While these types of questions
are already interesting (and often difficult) for standard two-player games presented in explicit “bi-
matrix” form [MP91, CS08, GZ89, LMM03], many of the current motivations for such games come
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from settings where there are many players (e.g. the Internet) or many strategies (e.g. combinato-
rial auctions). However, in n-player games and in games with many strategies, the representation
of the game becomes an important issue. In particular, explicitly describing an n-player game in
which each player has only two strategies requires an exponentially long representation (consisting
of N = n · 2n payoff values). Thus the complexity of this problem is more natural for games given
by some type of concise representation, such as the graph games recently proposed by Kearns,
Littman, and Singh [KLS01].

Motivated by the above considerations, we undertake a systematic study of the complexity
of Nash equilibria in games given by concise representations. We focus on two types of concise
representations. The first are circuit games, where the game is specified by a boolean circuit
computing the payoffs. Circuit games were previously studied in the setting of two-player zero-
sum games, where computing (resp., approximating) the “value” of such a game is shown to be
EXP-complete [FKS95] (resp., S2P-complete [FIKU08]). They are a very general model, capturing
essentially any representation in which the payoffs are efficiently computable. The second are graph
games [KLS01], where the game is presented by a graph whose nodes are the players and the payoffs
of each player are a function only of the strategies played by each player’s neighbors. (Thus, if the
graph is of low degree, the payoff functions can be written very compactly). Kearns et al. [KLS01]
showed that if the graph is a tree and each player has only two strategies, then approximate Nash
equilibria can be found in polynomial time. Gotlobb, Greco, and Scarcello [GGS03] recently showed
that the problem of deciding if a degree-4 graph game has a pure-Nash equilibrium is NP-complete.

In each of these two models (circuit games and graph games), we study 4 problems:

1. IsNash: Given a game G and a randomized strategy profile θ, determine if θ is a Nash
equilibrium in G,

2. ExistsPureNash: Given a game G, determine if G has a pure (i.e. deterministic) Nash
equilibrium,

3. FindNash: Given a game G, find a Nash equilibrium in G, and

4. GuaranteeNash: Given a game G, determine whether G has a Nash equilibrium that
achieves certain payoff guarantees for each player. (This problem was previously studied by
[GZ89, CS08], who showed it to be NP-complete for two-player, bimatrix games.)

We study the above four problems in both circuit games and graphical games, in games where each
player has only two possible strategies and in games where the strategy space is unbounded, in n-
player games and in 2-player games, and with respect to approximate Nash equilibria for different
levels of approximation (exponentially small error, polynomially small error, and constant error).

Our results include:

• A tight characterization of the complexity of all of the problems listed above except for
FindNash, by showing them to be complete for various complexity classes. This applies to all
of their variants (w.r.t. concise representation, number of players, and level of approximation).
For the various forms of FindNash, we give upper and lower bounds that are within one
nondeterministic quantifier of each other.

• A general result showing that n-player circuit games in which each player has 2 strategies are
a harder class of games than standard two-player bimatrix games (and more generally, than
the graphical games of [KLS01]), in that there is a general reduction from the latter to the
former which applies to most of the problems listed above.
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Independent and Subsequent Results Several researchers have independently obtained some
results related to ours. Specifically, Daskalakis and Papadimitriou [DP05a] give complexity results
on concisely represented graphical games where the graph can be exponentially large (whereas we
always consider the graph to be given explicitly), and Alvarez, Gabarro, and Serna [AGS05] give
results on ExistsPureNash that are very similar to ours.

Subsequent to the original versions of our work [Sch04, SV06], there have been several exciting
new results that give tight characterizations of the complexity of FindNash (recall that this is the
problem for which our upper and lower bounds do not match). First, Goldberg and Papadimitriou
[GP06] give a reduction for FindNash from degree-d graph games to d2-player explicit (aka normal-
form) games.1 Their reduction uses a technique similar to one in our paper (which appeared in
the original version [SV06]). In addition, they give a reduction from d-player games to degree-3
graph games in which each player has two strategies, strengthening our second bullet above. By
composing these reductions, they show that for any constant C, FindNash in games with at most
C players, can be reduced to FindNash in 4-player games.

Subsequently, Goldberg, Daskalakis, and Papadimitriou [DGP06] prove that for C ≥ 4 Find-
Nash in C-player games is complete for the class PPAD [MP91]. Daskalakis and Papadimitriou
[DP05b] and Chen and Deng [CD05] independently strengthen the result to hold for C = 3. Finally,
Chen and Deng [CD06] prove FindNash in 2-player, bimatrix games is PPAD-complete. Using
the aforementioned reduction of [GP06], this also implies that FindNash in a degree-3 graph game
in which each player has 2 strategies is PPAD-complete.

Furthermore, Chen, Deng, and Teng [CDT06] show that even finding approximate Nash-
equilibrium in bimatrix and graph games is PPAD-complete.

We will further discuss the relationship of these subsequent results to our work in the relevant
sections.

Organization We define game theoretic terminology and fix a representation of strategy profiles
in Section 2. Section 3 contains formal definitions of the concise representations and problems
that we study. Section 4 looks at relationships between these representations. Sections 5 through
8 contain the main complexity results on IsNash, ExistsPureNash, FindNash, and Guaran-
teeNash.

2 Background and Conventions

Game Theory A game G = (s, ν) with n agents, or players, consists of a set s = s1 × · · · × sn
where si is the strategy space of agent i, and a valuation or payoff function ν = ν1× . . .× νn where
νi : s → R is the valuation function of agent i. Intuitively, to “play” such a game, each agent i
picks a strategy si ∈ si, and based on all players’ choices realizes the payoff νi(s1, . . . , sn). We call
a game constant-sum if for any set of strategies, the sum of all players’ payoffs is constant2.

For us, si will always be finite and the range of νi will always be rational. An explicit (or
normal-form) representation of a game G = (s, ν) is composed of a list of each si and an explicit
encoding of each νi. This encoding of ν consists of n · |s| = n · |s1| · · · |sn| rational numbers. An
explicit game with exactly two players is call a bimatrix game because the payoff functions can be
represented by two matrices, one specifying the values of ν1 on s = s1×s2 and the other specifying
the values of ν2.

1A normal-form game is one where the payoffs are explicitly specified for each possible combination of player
strategies. When there are two players, this is simply the standard “bimatrix” representation.

2Constant-sum games are computationally equivalent to zero-sum games
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A pure strategy for an agent i is an element of si. A mixed strategy θi, or simply a strategy,
for a player i is a random variable whose range is si. The set of all strategies for player i will
be denoted Θi. A strategy profile is a sequence θ = (θ1, . . . , θn), where θi is a strategy for agent
i. We will denote the set all strategy profiles Θ. ν = ν1 × · · · × νn extends to Θ by defining
ν(θ) = Es←θ[ν(s)]. A pure-strategy profile is a strategy profile in which each agent plays some pure-
strategy with probability 1. A k-uniform strategy profile is a strategy profile where each agent
randomizes uniformly between k, not necessarily unique, pure strategies. The support of a strategy
(or of a strategy profile) is the set of all pure-strategies (or of all pure-strategy profiles) played with
nonzero probability. If a strategy is rational, we represent it as a rational number (the quotient of
two integers). We assume that all strategy profiles that are inputs to functions are rational (see
Section 3 for a discussion on why this is reasonable). Some of our results, but not all, will carry
over to the more general setting where the only thing assumed about the way that probabilities
are represented in a strategy profile is that the first k bits of the decimal representation can be
recovered in time polynomial in k.

We define a function Ri : Θ×Θi → Θ that replaces the ith strategy in a strategy profile θ by
a different strategy for agent i, so Ri(θ, θ

′
i) = (θ1, . . . , θ

′
i, . . . , θn). This diverges from conventional

notation which writes (θ−i, θ
′
i) instead of Ri(θ, θ

′
i).

Given a strategy profile θ, we say agent i is in equilibrium if he cannot increase his expected
payoff by playing some other strategy (giving what the other n − 1 agents are playing). Formally
agent i is in equilibrium if νi(θ) ≥ νi(Ri(θ, θ

′
i)) for all θ′i ∈ Θi. Because Ri(θ, θ

′
i) is a distribution

over Ri(θ, si) where si ∈ si and νi acts linearly on these distributions, Ri(θ, θ
′
i) will be maximized

by playing some optimal si ∈ si with probability 1. Therefore, it suffices to check that νi(θ) ≥
νi(Ri(θ, si)) for all si ∈ si. For the same reason, agent i is in equilibrium if and only if each
strategy in the support of θi is an optimal response. A strategy profile θ is a Nash equilibrium
[Nas51] if all the players are in equilibrium. Given a strategy profile θ, we say player i is in ϵ-
equilibrium if νi(Ri(θ, si)) ≤ νi(θ)+ ϵ for all si ∈ si. A strategy profile θ is an ϵ-Nash equilibrium if
all the players are in ϵ-equilibrium. A pure-strategy Nash equilibrium (respectively, a pure-strategy
ϵ-Nash equilibrium) is a pure-strategy profile which is a Nash equilibrium (respectively, an ϵ-Nash
equilibrium).

Pennies is a 2-player game where s1 = s2 = {0, 1}, and the payoffs are as follows:

Player 2
Heads Tails

Player 1 Heads (1, 0) (0, 1)
Tails (0, 1) (1, 0)

The first number in each ordered pair is the payoff of player 1 and the second number is the payoff
to player 2.

Pennies has a unique Nash equilibrium where both agents randomize uniformly between their
two strategies. In any ϵ-Nash equilibrium of 2-player pennies, each player randomizes between each
strategy with probability 1

2 ± 2ϵ (see Appendix A for details).

Complexity Theory A promise-language L is a pair (L+, L−) such that L+ ⊆ Σ∗, L− ⊆ Σ∗, and
L+∩L− = ∅. We call L+ the positive instances, and L− the negative instances. An algorithm decides
a promise-language if it accepts all the positive instances and rejects all the negative instances.
Nothing is required of the algorithm if it is run on instances outside L+ ∪ L−; effectively it is
“promised” that the input is in L+ ∪ L−.
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Because we consider approximation problems in this paper, which are naturally formulated
as promise languages, all complexity classes used in this paper are classes of promise
languages. We refer the reader to the recent survey of Goldreich [Gol05] for about the usefulness
and subtleties of working with promise problems.

P

BPP

S2P

BPPNP

P#P

EXP

NP

MA = NPBPP

Σ2P

NP#P

NEXP

coNP

coMA = coNPBPP

Π2P

coNP#P

coNEXP

Tractable

Intractable

Figure 1: Relationships between complexity classes

Figure 1 shows the relationships between the complexity classes used in this paper. If a line
connects two complexity classes in the figure, it indicates that the class lower on the page is con-
tained in the complexity class higher on the page. EXP and NEXP are the classes of languages
that can be decided in exponential time and nondeterministic exponential time, respectively. Both
of these classes are provably not equal to P. #P is the class of NP counting functions. Func-
tions in these class answer how many accepting computations a nondeterministic polynomial-time
Turing machine has (rather than whether or not an accepting computation exists, like NP). #P
is generally thought to contain much harder problems than NP. BPP is the class of languages
that can be computed by a randomized algorithm with two-sided error in polynomial time. BPP
is generally considered a class of tractable problems. P̃, called quasipolynomial time, contains lan-
guages that can be deterministically decided in time 2poly(log(|x|)) on input x. P̃, usually considered
nearly tractable, clearly contains P and is contained by EXP. A promise language L is in S2P if
there exists a polynomial time computable and polynomially bounded relation R ⊂ Σ∗ × Σ∗ × Σ∗

such that:

1. If x ∈ L+ then ∃ y such that ∀ z, R(x, y, z) = 1.

2. If x ∈ L− then ∃ z such that ∀ y, R(x, y, z) = 0.

If C and D are two complexity classes then the complexity class CD is the set of languages that
can be decided in C augmented by oracle access to some language in D. For example, since SAT
is NP-complete, a language is in Σ2P = NPNP iff it can be decided by a nondeterministic
polynomial-time Turing machine with oracle access to SAT.

A search problem, is specified by a relation R ⊆ Σ∗ × Σ∗. We say that a Turing machine
T computes R if given an x ∈ Σ∗, T either outputs y ∈ Σ∗ such that (x, y) ∈ R or outputs the
special character ⊔ if no such y exists. We say that a non-deterministic Turing machine T computes
a search problem R if, on input x, every computational path of T (x) either outputs y such that
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(x, y) ∈ R or fails. Moreover, if there exists a y such that (x, y) ∈ R then at least one computational
path of T (x) must output such a y.

We say that a search problem R is in FP if there exists a polynomial time Turing Machine
that computes the search problem specified by R. We similarly define FP̃, FNP, FΣ2P, FNP#P,
FNPBPP = FMA, and FNEXP as containing the search problems that can be computed with
quasipolynomial time Turing machines, nondeterministic polynomial time Turing machines, non-
deterministic polynomial time Turing machines with access to an NP oracle, nondeterministic
polynomial time Turing machines with access to a #P oracle, nondeterministic polynomial time
Turing machines with access to a BPP oracle, and nondeterministic exponential-time Turing ma-
chines respectively. 3 TFP is the family of total search problems R where R ∈ FP and for all x
there exists y such that (x, y) ∈ R. The classes TFP̃, TFNP, TFΣ2P, TFNP#P, TFNPBPP,
and TFNEXP are similarly defined. This will always be the case for us.

We define Karp and Cook reductions for (promise-)languages and search problems. We will be
using Karp reductions unless we explicitly state otherwise.

Definition 2.1 (Karp Reductions) We say that promise-language L1 reduces to promise-language
L2 via a logspace Karp reduction if there exists a logspace-computable function f such that x ∈
L+
1 ⇒ f(x) ∈ L+

2 and x ∈ L−1 ⇒ f(x) ∈ L−2 . We say that promise-language L1 reduces to search
problem R2 via a logspace Karp reduction if there exists logspace-computable functions f and g such
that for every mapping h : Σ∗ → Σ∗ ∪ {⊔} that computes R2, g(h(f(x))) decides L1. Finally, we
say that search problem R1 reduces to search problem R2 via a logspace Karp reduction if there
exists a logspace computable functions f and g such that for every mapping h : Σ∗ → Σ∗ ∪{⊔} that
computes R2, g(h(f(x))) computes R1.

Definition 2.2 (Cook Reductions) We say that promise-language L1 reduces to promise-language
L2 via a Cook reduction if there exists a polynomial time Turing machine with oracle access to L2

that decides L1. Likewise we say that promise-language L1 reduces to search problem R2 via a Cook
reduction if there exists a polynomial time Turing machine with oracle access to R2 that decides
L1.

When reducing to a search problem via an oracle, it is required that any valid response from
the oracle yields a correct answer; similarly, any response for oracle queries outside L+∪L− should
yield a correct answer.

3 Concise Representations and Problems Studied

We now give formal descriptions of the problems which we are studying. First we define the two
different representations of games.

Definition 3.1 A circuit game is a game G = (s, ν) specified by integers k1, . . . , kn and circuits
C1, . . . , Cn such that si ⊆ {0, 1}ki and Ci(s) = νi(s) if si ∈ si for all i or Ci(s) = ⊥ otherwise. We
assume that all payoffs of ν are rational and that they are represented by Ci as the quotient of two
integers.

3This definition of FNP differs from the commonly used notation where it is required that deciding if (x, y) ∈ R is
polynomial time computable. Our definition yields a larger class (since we do not require the relation R be polynomial-
time decidable), but it is morally capturing the same level of complexity, and generalizes to higher complexity class.
If a relation R is in FNP according to our definition, then there is a relation R′ such that deciding (x, y) ∈ R′ is
polynomially decidable and such that R reduces to R′ in the since of Definition 2.1. Let (x, y) ∈ R′ if y describes a
non-failing computational path of the nondeterministic polynomial-time machine computing R. In this case R is no
harder to compute than R′.
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In a game G = (s, ν), we write i ∝ j if ∃s ∈ s, s′i ∈ si such that νj(s) ̸= νj(Ri(s, s
′
i)). Intuitively,

i ∝ j if agent i can ever influence the payoff of agent j.

Definition 3.2 [KLS01] A graph game is a game G = (s, ν) specified by a directed graph G =
(V,E) where V is the set of agents and E ⊇ {(i, j) : i ∝ j}, the strategy space s, and explicit
representations of the function νj for each agent j defined on the domain

∏
(i,j)∈E si, which encodes

the payoffs. A degree-d graph game is a graph game where the in-degree of the graph G is bounded
by d. We assume that all payoffs of ν are rational and that they are represented as the quotient of
two integers.

This definition was proposed in [KLS01]. We change their definition slightly by using directed
graphs instead of undirected ones (this only changes the constant degree bounds claimed in our
results).

Note that any game (with rational payoffs) can be represented as a circuit game or a graph
game. However, a degree-d graph game can only represent games where no one agent is influenced
directly by the strategies of more than d agents.

A circuit game can encode the games where each player has exponentially many pure-strategies
in a polynomial amount of space. In addition, unlike in an explicit representation, there is no
exponential blow-up as the number of agents increases. A degree-d graph game, where d is constant,
also avoids the exponential blow-up as the number of agents increases. For this reason we are
interested mostly in bounded-degree graph games.

We study two restrictions of games. In the first restriction, we restrict a game to having only
two players. In the second restriction, we restrict each agent to having only two strategies. We
will refer to games that abide by the former restriction as 2-player, and to games that abide by the
latter restriction as boolean.

If we want to find a Nash equilibrium, we need an agreed upon manner in which to encode the
result, which is a strategy profile. We represent a strategy profile by enumerating, by agent, each
pure strategy in that agent’s support and the probability with which the pure strategy is played.
Each probability is given as the quotient of two integers.

This representation works well in bimatrix games, because the following proposition guarantees
that for any 2-player game there exists Nash equilibrium that can be encoded in reasonable amount
of space.

Proposition 3.3 Any 2-player game with rational payoffs has a rational Nash equilibrium where
the probabilities are of bit length polynomial with respect to the number of strategies and bit-lengths
of the payoffs. Furthermore, if we restrict ourselves to Nash equilibria θ where νi(θ) ≥ gi for
i ∈ {1, 2} where each guarantee gi is a rational number then either 1) there exists such a θ where
the probabilities are of bit length polynomial with respect to the number of strategies and bit-lengths
of the payoffs and the bit lengths of the guarantees or 2) no such θ exists.

Proof Sketch: If we are given the support of some Nash equilibrium, we can set up a polynomially
sized linear program whose solution will be a Nash equilibrium in this representation, and so it is
polynomially sized with respect to the encoding of the game. (Note that the support may not be
easy to find, so this does not yield a polynomial time algorithm). If we restrict ourselves to Nash
equilibria θ satisfying νi(θ) ≥ gi as in the proposition, this merely adds additional constraints to
the linear program. �
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This proposition implies that for any bimatrix game there exists a Nash equilibrium that is
at most polynomially sized with respect to the encoding of the game, and that for any 2-player
circuit game there exists a Nash equilibrium that is at most exponentially sized with respect to the
encoding of the game.

However, there exist 3-player games with rational payoffs that have no Nash equilibrium with
all rational probabilities [NS50]. Therefore, we cannot hope to always find a Nash equilibrium in
this representation. Instead we will study ϵ-Nash equilibrium when we are not restricted to 2-player
games. The following result from [LMM03] states that there is always an ϵ-Nash equilibrium that
can be represented in a reasonable amount of space.

Theorem 3.4 [LMM03] Let θ be a Nash equilibrium for an n-player game G = (s, ν) in which all

the payoffs are between 0 and 1, and let k ≥ n2 log(n2 maxi |si|)
ϵ2

. Then there exists a k-uniform ϵ-Nash
equilibrium θ′ where |νi(θ)− νi(θ

′)| ≤ ϵ
2 for 1 ≤ i ≤ n.

Recall that a k-uniform strategy profile is a strategy profile where each agent randomizes uni-
formly between k, not necessarily unique, pure strategies. The number of bits needed to represent
such a strategy profile is O((

∑
imin{k, |si|}) · log k). Thus, Theorem 3.4 implies that for any that

for any n-player game (g1, . . . , gn) = (s, ν) in which all the payoffs are between 0 and 1, there exists
an ϵ-Nash equilibrium of bit-length poly(n, 1/ϵ, log(maxi |si|)). There also is an ϵ-Nash equilibrium
of bit-length poly(n, log(1/ϵ),maxi |si|).

We want to study the problems with and without approximation. All the problems that we
study will take as an input a parameter ϵ related to the bound of approximation. We define four
types of approximation:

1a) Exact: Fix ϵ = 0 in the definition of the problem.

1b) Exp-Approx: input ϵ > 0 as a rational number encoded as the quotient of two integers.

2) Poly-Approx: input ϵ > 0 as 1k where ϵ = 1/k

3) Const-Approx: Fix ϵ > 0 in the definition of the problem.

With all problems, we will look at only 3 types of approximation. Either 1a) or 1b) and
both 2 and 3. We consider Exact only when we are guaranteed to be dealing with rational
Nash equilibrium. This is the case in all games restricted to 2-players and when solving problems
relating to pure-strategy Nash equilibrium such as determining if a pure-strategy profile is a Nash
equilibrium and determining if there exists a pure-strategy Nash equilibrium. We consider Exp-
Approx in the case where a rational Nash equilibrium is not guaranteed to exist, namely in k-player
games for k ≥ 3 for the problems IsNash, FindNash, and GuaranteeNash. With many of the
problems we study, approximating using 1a) and 1b) yield identical problems.

Since the notion of ϵ-Nash equilibrium is with respect to additive error, the above notions of
approximation refer only to games whose payoffs are between 0 and 1 (or are scaled to be such).
Therefore we assume that all games have payoffs which are between 0 and 1 unless
otherwise explicitly stated. Many times our constructions of games use payoffs which are not
between 0 and 1 for ease of presentation. In such a cases the payoffs can be scaled.

Now we define the problems which we will examine.

Definition 3.5 For a fixed representation of games, IsNash is the promise language defined as
follows:

8



Positive instances: (G, θ, ϵ) such that G is a game given in the specified representation, and θ
is strategy profile which is a Nash equilibrium for G.

Negative instances: (G, θ, ϵ) such that θ is a strategy profile for G which is not a ϵ-Nash
equilibrium.

Notice that when ϵ = 0 this is just the language of pairs (G, θ) where θ is a Nash equilibrium of
G.

The the definition of IsNash is only one of several natural variations. Fortunately, the manner
in which it is defined does not affect our results and any reasonable definition will suffice. For
example, we could instead define IsNash where:

1. (G, θ, ϵ) a positive instance if θ is an ϵ/2-Nash equilibrium of G; negative instances as before.

2. (G, θ, ϵ, δ) is a positive instance if θ is an ϵ-Nash equilibrium; (G, θ, ϵ, δ) is a negative instance
if θ is not a (ϵ+ δ)-Nash equilibrium. δ is represented in the same way is ϵ.

Similar modifications can be made to Definitions 3.6, 3.7, and 3.9. The only result affected is the
reduction in Corollary 4.6.

Definition 3.6 We define the promise language IsPureNash to be the same as IsNash except
we require that, in both positive and negative instances, θ is a pure-strategy profile.

Definition 3.7 For a fixed representation of games, ExistsPureNash is the promise language
defined as follows:

Positive instances: Pairs (G, ϵ) such that G is a game in the specified representation in which
there exists a pure-strategy Nash equilibrium.

Negative instances: (G, ϵ) such that there is no pure-strategy ϵ-Nash equilibrium in G.

Note that Exact ExistsPureNash is just a language consisting of pairs of games with pure-
strategy Nash equilibria.

Definition 3.8 For a given a representation of games, the problem FindNash is a search problem
where, given a pair (G, ϵ) such that G is a game in a specified representation, a valid solution is
any strategy-profile that is an ϵ-Nash equilibrium in G.

As remarked above, when dealing with FindNash in games with more than 2 players, we use
Exp-Approx rather than Exact. This error ensures the existence of some Nash equilibrium in
our representation of strategy profiles; there may be no rational Nash equilibrium.

Definition 3.9 For a fixed representation of games, GuaranteeNash is the promise language
defined as follows:

Positive instances: (G, ϵ, (g1, . . . , gn)) such that G is a game in the specified representation in
which there exists a Nash equilibrium θ such that, for every agent i, νi(θ) ≥ gi.

Negative instances: (G, ϵ, (g1, . . . , gn)) such that G is a game in the specified representation in
which there exist no ϵ-Nash equilibrium θ such that, for every agent i νi(θ) ≥ gi − ϵ.

When we consider IsNash, FindNash, andGuaranteeNash in k-player games, k > 2, we will
not consider Exact, but only the other three types: Exp-Approx, Poly-Approx, and Const-
Approx. The reason for this is that no rational Nash equilibrium is guaranteed to exist in these
cases, and so we want to allow a small rounding error. With all other problems we will not consider
Exp-Approx, but only the remaining three: Exact, Poly-Approx, and Const-Approx.
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4 Relations between concise games

We study two different concise representations of games: circuit games and degree-d graph games;
and two restrictions: two-player games and boolean-strategy games. It does not make sense to
impose both of these restrictions at the same time, because in two-player, boolean games all the
problems studied are trivial.

This leaves us with three variations of circuit games: circuit games, 2-player circuit games, and
boolean circuit games. Figure 2 shows the hierarchy of circuit games. A line drawn between two
types of games indicates that the game type higher in the diagram is at least as hard as the game
type lower in the diagram in that we can efficiently reduce questions about Nash equilibria in the
games of the lower type to ones in games of the higher type. (One caveat is that for 2-player circuit
games we consider Exact but not Exp-Approx, and for circuit games we consider Exp-Approx
but not Exact, and these models seem incomparable.)

This also leaves us with three variations of degree-d graph games: degree-d graph games, 2-
player degree-d graph games, and boolean degree-d graph games. A 2-player degree-d graph game
is simply a bimatrix game (if d ≥ 2) so the hierarchy of games is as shown in Figure 2. (Again, the
same caveat applies. For bimatrix games we consider Exact but not Exp-Approx, and for graph
games and boolean graph games we consider Exp-Approx but not Exact, and these models seem
incomparable.)

It is easy to see that given a bimatrix game, we can always efficiently construct an equivalent
2-player circuit game. We will presently illustrate a reduction from graph games to boolean strategy
circuit games. This gives us the relationship in Figure 2.

Circuit

Graph

Bimatrix Boolean 
Graph

2-player 
Circuit

Boolean 
Circuit

Circuit

2-player 
Circuit

Boolean 
Circuit

Graph

Bimatrix Boolean 
Graph

All GamesGraph Games

Circuit Games

Figure 2: Relationships between games

Theorem 4.1 Given an n-player graph game of arbitrary degree G = (G, s, ν), in logarithmic
space, we can create an n′-player boolean circuit game G′ = (s′, ν ′) where n ≤ n′ ≤

∑n
i=1 |si| and

a logarithmic space function f : Θ → Θ′ and a polynomial time function g : Θ′ → Θ 4with the
following properties:

1. f and g map pure-strategy profiles to pure-strategy profiles.

2. f and g map rational strategy profiles to rational strategy profiles.

4More formally, we specify f and g by constructing, in space O(log(|G|)), a branching program for f and a circuit
that computes g.
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3. g ◦ f is the identity map.

4. For each agent i in G there an agent i in G′ such that for any strategy profile θ of G, νi(θ) =
ν ′i(f(θ)) and for any strategy profile θ′ of G′, ν ′i(θ′) = νi(g(θ

′)).

5. If θ′ is an ϵ-Nash equilibrium in G′ then g(θ′) is a (⌈log2 k⌉ · ϵ)-Nash equilibrium in G where
k = maxi |si|.

6. • For every θ ∈ Θ, θ is a Nash equilibrium in G if and only if f(θ) is a Nash equilibrium
in G′.

• For every pure-strategy profile θ ∈ Θ, θ is an ϵ-Nash equilibrium if and only if f(θ) is
an ϵ-Nash equilibrium.

Subsequent Results The reductions in [GP06] and [DGP08]5 are incomparable with our results.
They show a reduction from degree-d graph games to d2-player explicit (aka normal form) games6

and a reduction from d-player games to degree-3 boolean graph games. However, these reductions
only apply to FindNash and only preserve the approximation to within a polynomial factor, where
as our reduction applies to all the problems we consider and only loses a logarithmic factor in the
approximation error.

Proof:

Construction of G′
Given a graph game G, to construct G′, we create a binary tree ti of depth log |si| for each
agent i, with the elements of si at the leaves of the tree. Each internal node in ti represents an
agent in G′. The strategy space of each of these agents is {left, right}, each corresponding
to the choice of a subtree under his node. We denote the player at the root of the tree ti as i.

There are n′ ≤
∑n

i=1 |si| players in G′, because the number of internal nodes in any tree is
less than the number of leaves. s′ = {left, right}n′

.

For each i, we can recursively define functions αi′ : s′ → si that associate pure strategies of
agent i in G with each agent i′ in ti given a pure-strategy profile for G′ as follows:

• if s′i′ = right and the right child of i′ is a leaf corresponding to a strategy si ∈ si, then
αi′(s

′) = si

• if s′i′ = right and the right child of i′ is another agent j′, then αi′(s
′) = αj′(s

′).

• If s′i′ = left, αi′(s
′) is similarly defined.

Notice each agent i′ in the tree ti is associated with a strategy of si that is a descendant of
i′. This implies that i is the only player in ti that has the possibility of being associated with
every strategy of agent i in G.
Let s′ be a pure-strategy profile of G′ and let s = (s1, . . . , sn) be the pure-strategy profile of G
where si = αi(s

′). Then we define the payoff of an agent i′ in ti to be ν
′
i′(s
′) = νi(Ri(s, αi′(s

′))).
So, the payoff to agent i′ in tree ti in G′ is the payoff to agent i, in G, playing αi′(s

′) when
the strategy of each other agent j is defined to be αj(s

′).

By inspection, G′ can be computed in log space.

We note for use below, that αi′ : s′ → si induces a map from Θ′ (i.e. random variables on s)
to Θi (i.e. random variables on si) in the natural way.

5The pre-journal manuscript [DGP08] combines and expands the results of [GP06] and [DGP06].
6An explicit game is one where the payoffs are explicitly specified for each possible combination player strategies.
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Construction of f : Θ → Θ′

Fix θ ∈ Θ. For each agent i′ in tree ti in G′ let Li′ , Ri′ ⊆ si be the set of leaves in the left and
right subtrees under node i′ respectively. Now let f(θ) = θ′ where Pr[θ′i′ =left] = Pr[θi ∈
Li′ ]/Pr[θi ∈ Li′ ∪Ri′ ] = Pr[θi ∈ Li′ |θi ∈ Li′ ∪Ri′ ].

Note that if i′ is an agent in ti and some strategy si in the support of θi is a descendant
of i′, then this uniquely defines θi′ . However, for the other players this value is not defined
because Pr[θi ∈ Li′ ∪ Ri′ ] = 0. We define the strategy of the rest of the players inductively.
The payoffs to these players are affected only by the mixed strategies associated to the roots
of the other trees, i.e. {αj(θ

′), i ̸= j}–which is already fixed–and the strategy to which they
are associated. By induction, assume that the strategy to any descendant of a given agent
i′ is already fixed, now simply define θ′i′ to be the pure strategy that maximizes his payoff
(we break tie in some fixed but arbitrary manner so that each of these agents plays a pure
strategy).

By inspection, this f be computed in polynomial time given G and s, which implies that given
G, in log space we can construct a circuit computing f .

Construction of g : Θ′ → Θ
Given a strategy profile θ′ for G′, we define g(θ′) = (α1(θ

′), . . . , αn(θ
′)).

This can be done in log space because computing the probability that each pure strategy is
played only involves multiplying a logarithmic number of numbers together, which is known
to be in log space [HAB02]. This only needs to be done a polynomial number of times.

Proof of 1
If θ is pure-strategy profile, then for each agent i, there exists si ∈ si such that Pr[θi = si] = 1.
So all the agents in ti that have si as a descendant must choose the child whose subtree contains
si with probability 1, a pure strategy. The remaining agents merely maximize their payoffs,
and so always play a pure strategy (recall that ties are broken in some fixed but arbitrary
manner that guarantees a pure strategy).

αi′ : s′ → si maps pure-strategy profiles to pure-strategies, so g(s′) = (α1(s
′), . . . , αn(s

′))
does as well.

Proof of 2
For f we recall that if agent i′ in tree ti has a descendant in the support of θi, then
Pr[f(θ)i′ =left] = Pr[θi ∈ Li′ ]/Pr[θi ∈ Li′ ∪ Ri′ ] (Li′ and Ri′ are as defined in the con-
struction of f), so it is rational if θ is rational. The remaining agents always play a pure
strategy.

For g we have Pr[g(θ′)i = s] =
∑

s′:αi(s′)=s Pr[θ
′ = s′], which is rational if θ′ is rational.

Proof of 3
Since g(f(θ)) = (α1(f(θ)), . . . , αn(f(θ))), the claim g ◦ f = id is equivalent to the following
lemma.

Lemma 4.2 The random variables αi(f(θ)) and θi are identical.

Proof: We need to show that for every si ∈ si, Pr[αi(f(θ)) = si] = Pr[θi = si]. Fix
si, let i = i′0, i

′
1, . . . , i

′
k = si be the path from the root i to the leaf si in the tree ti, let
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dirj ∈ {left, right} indicate whether i′j+1 is the right or left child of i′j , and let Si′ be the
set of all leaves that are descendants of i′. Then

Pr[αi(f(θ)) = si] =

k−1∏
j=0

Pr[f(θ)i′j = dirj ] =

k−1∏
j=0

Pr[θi ∈ Si′j+1
|θi ∈ Si′j

] (by the definition of f)

= Pr[θ ∈ Si′k
|θi ∈ Si′0

] (by Bayes’ Law)

= Pr[θi = si] (because Si′k
= {si} and Si′0

= si)

Proof of 4
We first show that ν ′i(θ

′) = νi(g(θ
′)). Fix some θ′ ∈ Θ′.

ν ′i(θ
′) = νi(Ri((α1(θ

′), . . . , αn(θ
′)), αi(θ

′))) (by definition of ν ′i)

= νi(α1(θ
′), . . . , αn(θ

′)) = νi(g(θ
′)) (by definition of g)

Finally, to show that ν ′i(f(θ)) = νi(θ), fix θ ∈ Θ and let θ′ = f(θ). By what we have just
shown

ν ′i(θ
′) = νi(g(θ

′)) ⇒ ν ′i(f(θ)) = νi(g(f(θ))) = νi(θ)

The last equality comes from the fact that g ◦ f = id.

Proof of 5
Fix some ϵ-Nash equilibrium θ′ ∈ Θ′ and let θ = g(θ′).

We must show that νi(θ) is within ⌈log2 k⌉ · ϵ of the payoff for agent i’s optimal response.
To do this we show by induction that νi(Ri(θ, αi′(θ

′)) ≥ νi(Ri(θ, si)) − dϵ for all si that are
descendants of agent i′ in tree ti, where d is the depth of the subtree with agent i′ at the
root. We induct on d. The result follows by taking i′ = i, and noting that Ri(θ, αi(θ

′)) = θ
and d ≤ ⌈log2 k⌉.
We defer the base case and proceed to the inductive step. Consider some agent i′ in tree ti such
that the subtree of i′ has depth d. i′ has two strategies, {left, right}. Let Ei′ = νi′(θ

′) =
ν(Ri(θ, αi(θ

′)) be the expect payoff of i′, and let Opti′ be the maximum of ν(Ri(θ, si)) over
si ∈ si that are descendants of i′. Similarly define El, Optl, Er, and Optr for the left subtree
and right subtree of i′ respectively. We know Ei′ ≥ max{El, Er} − ϵ because otherwise
i′ could do ϵ better by playing left or right. By induction El ≥ Optl − (d − 1)ϵ and
Er ≥ Optr − (d− 1)ϵ. Finally, putting this together, we get that

Ei′ ≥ max{El, Er} − ϵ ≥ max{Optl, Optr} − (d− 1)ϵ− ϵ = Opti′ − dϵ

The proof of the base case, d = 0, is the same except that instead of employing the inductive
hypothesis, we note that there is only one pure strategy in each subtree and so it must be
optimal.

Proof of 6
Fix some strategy profile θ ∈ Θ and let θ′ = f(θ). Let θ be a Nash equilibrium and let i′ be
an agent in ti that has a descendant which is a pure strategy in the support of θi. All the
strategies in the support of αi′(θ

′) are also in the support of θi; but, all the strategies in the
support of θi are optimal and therefore agent i′ cannot do better. All of the remaining agents
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are in equilibrium because they are playing an optimal strategy by construction. Conversely,
if f(θ) is a Nash equilibrium, then g(f(θ)) is also by Part 5 above. But by Part 3 above,
g(f(θ)) = θ, and therefore θ is a Nash equilibrium.

Let θ be a pure-strategy ϵ-Nash equilibrium for G. Fix some agent i, and let si ∈ s be such
that Pr[θi = si] = 1. Then any agent in ti that does not have si as a descendant plays
optimally in f(θ). If agent i′ does have si as a descendant then according to f(θ), agent i′

should select the subtree containing si with probability 1. Assume without loss of generality
this is in the right subtree. If agent i′ plays right, as directed by f(θ), his payoff will be
νi(θ). If he plays left, his payoff will be νi(Ri(θ, s

′
i)), where s′i is the strategy that α assigns

to the left child of i′. But νi(θ) + ϵ ≥ νi(Ri(θ, s
′
i)) because θ is an ϵ-Nash equilibrium.

Now say that f(θ) is a pure-strategy ϵ-Nash equilibrium for G′ where θ ∈ Θ is a pure-strategy
profile. Fix some agent i, and let si ∈ s be such that Pr[θi = si] = 1. If si is an optimal
response to θ, then agent i is in equilibrium. Otherwise, let s′i ̸= si be an optimal response
to θ. Then let i′ be the last node on the path from i to si in the tree ti such that i′ has s′i as
a descendant. By definition of f and ν ′, agent i′ gets payoff νi(Ri(θ, si)) = νi(θ), but would
get payoff νi(Ri(θ, s

′
i)) if he switched strategies (because the nodes off of the path from i to

si in the tree ti play optimally). Yet f(θ) is an ϵ-Nash equilibrium, and so we conclude that
these differ by less than ϵ, and thus agent i is in an ϵ-equilibrium in G.

Corollary 4.3 There exist boolean games without rational Nash equilibria.

Proof: We know that there is some 3-player game G with rational payoffs but no rational Nash
equilibrium [NS50]. Applying the reduction in Theorem 4.1 to this game results in a boolean game
G′. If θ′ were some rational Nash equilibrium for G′, then, by parts 2 and 5 of Theorem 4.1, g(θ′)
would be a rational Nash equilibrium for G.

Corollary 4.4 With Exp-Approx and Poly-Approx, there is a log space reduction from graph
game ExistsPureNash to boolean circuit game ExistsPureNash

Proof: Given an instance (G, ϵ) where G is a graph game, we construct the corresponding boolean
circuit game G′ as in Theorem 4.1, and then solve ExistsPureNash for (G′, ϵ/ log2 k).

We show that (G, ϵ) is a positive instance of ExistsPureNash if and only if (G′, ϵ/ log2 k) is
also. Say that (G, ϵ) is a positive instance of ExistsPureNash. Then G has a pure-strategy Nash
equilibrium θ, and, by Parts 1 and 6 of Theorem 4.1, f(θ) will be a pure-strategy Nash equilibrium
in G′. Now say that (G′, ϵ/⌈log2 k⌉) is not a negative instance of ExistsPureNash. Then there
exists a pure-strategy profile θ′ that is an ϵ/ log2 k-Nash equilibrium in G′. If follows from Part 5
of Theorem 4.1 that g(θ′) is a pure-strategy ϵ-Nash equilibrium in G.

We do not mention IsNash or IsPureNash because they are in P for graph games (see Sec-
tion 5.)

Corollary 4.5 With Exp-Approx and Poly-Approx, there is a log space reduction from graph
game FindNash to boolean circuit game FindNash.

Proof: Given an instance (G, ϵ) of n-player graph game FindNash we transform G into an boolean
circuit game G′ as in the Theorem 4.1. Then we can solve FindNash for (G′, ϵ/⌈log2 k⌉), where k
is the maximum number of strategies of any agent to obtain an (ϵ/⌈log2 k⌉)-Nash equilibrium θ′ for
G′, and return g(θ′) which is guaranteed to be an ϵ-Nash equilibrium of G by Part 5 of Theorem 4.1.
G′ and g(θ′) can be computed in log space.
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Corollary 4.6 With Exp-Approx and Poly-Approx, there is a log space reduction from graph
game GuaranteeNash to boolean circuit game GuaranteeNash.

Proof: Given an instance (G, ϵ, (g1, . . . , gn)) of graph game GuaranteeNash we transform G
into an boolean circuit game G′ as in the Theorem 4.1. Then we can solve GuaranteeNash for
(G′, ϵ/⌈log2 k⌉, (g1, . . . , gn, 0, . . . , 0), where k is the maximum number of strategies of any agent. So
that we require guarantees for the agents at the roots of the trees, but have no guarantee for the
other agents.

We show that if (G, ϵ, (g1, . . . , gn)) is a positive instance of GuaranteeNash then so is
(G′, ϵ/⌈log2 k⌉, (g1, . . . , gn, 0, . . . , 0)). Say that (G, ϵ, (g1, . . . , gn)) is a positive instance of Guaran-
teeNash. Then there exists some Nash Equilibrium of G, θ, such that νi(θ) ≥ gi for each agent
i. But then by Parts 6 and 4 of Theorem 4.1 respectively, f(θ) is a Nash Equilibrium of G′ and
ν ′i(f(θ)) = νi(θ) ≥ gi for each agent i of G and corresponding agent i of G′.

Say that (G′, ϵ/⌈log2 k⌉, (g1, . . . , gn, 0, . . . , 0)) is not a negative instance of GuaranteeNash.
Then there exists some (ϵ/⌈log2 k⌉)-Nash equilibrium θ′ of G′ such that ν ′i(θ

′) > gi − ϵ/⌈log2 k⌉ for
each agent i at the root of a tree. But then by Parts 5 and 4 of Theorem 4.1 respectively, g(θ′) is
an ϵ-Nash Equilibrium of G and νi(g(θ)) = ν ′i(θ

′) ≥ gi − ϵ/⌈log2 k⌉ ≥ gi − ϵ.
G′ can be computed in log space.

5 IsNash and IsPureNash

In this section, we study the problem of determining whether a given strategy profile is a Nash
equilibrium. Studying this problem will also help in studying the complexity of other problems.

5.1 IsNash

A summary of the results for IsNash is shown in Figure 3.
Notice that with Poly-Approx and Const-Approx everything works much as with Exp-

Approx and Exact, but #P, counting, is replaced by BPP, approximate counting.
IsNash is in P for all graph games. When allowing arbitrarily many players in a boolean circuit

game, IsNash becomes P#P-complete (under Cook reductions). When allowing exponentially
many strategies in a 2-player circuit game, it becomes coNP-complete. IsNash for a generic
circuit game combines the hardness of these 2 cases and is coNP#P-complete.

Proposition 5.1 In all approximation schemes, graph game IsNash is in P.

Proof: Given a instance (G, θ, ϵ), where G is a graph game, θ is an ϵ-Nash equilibrium if and only
νi(θ) + ϵ ≥ νi(Ri(θ, si)) for all agents i and for all si ∈ si. But there are only polynomially many
of these inequalities, and we can compute νi(θ) and νi(Ri(θ, si)) in polynomial time.

Proposition 5.2 In all approximation schemes, 2-player circuit game IsNash is coNP-complete.
Furthermore, it remains in coNP for any constant number of players, and it remains hard as long
as approximation error ϵ < 1.

Proof: In a 2-player circuit game, Exact IsNash is in coNP because given a pair (G, θ), we
can prove θ is not a Nash equilibrium by guessing an agent i and a strategy s′i, such that agent i
can do better by playing s′i. Then we can compute if νi(Ri(θ, s

′
i)) > νi(θ) + ϵ. This computation

is in P because θ is in the input, represented as a list of the probabilities of each strategy in the
support of each player. The same remains true if G is restricted to any constant number of agents.
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Figure 3: Summary of IsNash Results

It is coNP-hard because even in a one-player game we can offer an agent a choice between a
payoff of 0 and the output of a circuit C with an input chosen by the player. If the agent settling
for a payoff of 0 is a Nash equilibrium, then C is unsatisfiable. Notice that in this game, the range
of payoffs is 1, and as long as ϵ < 1, the hardness result will still hold.

In the previous proof, we obtain the hardness result by making one player choose between many
different strategies, and thus making him assert something about the evaluation of each strategy.
We will continue to use similar tricks except that we will often have to be more clever to get many
strategies. Randomness provides one way of doing this.

Theorem 5.3 Boolean circuit game Exp-Approx IsNash is P#P-complete under Cook reduc-
tions.

Proof: We first show that it is P#P-hard. We reduce fromMajoritySat which is P#P-complete
under Cook reductions. A circuit C belongs to MajoritySat if it evaluates to 1 on at least half
of its inputs.

Given a circuit C with n inputs (without loss of generality, n is even), we construct an (n+1)-
player boolean circuit game. The payoff to agent 1 if he plays 0 is 1

2 , and if he plays 1 is the output
of the circuit, C(s2, . . . , sn+1), where si is the strategy of agent i. The payoffs of the other agents
are determined by a game of pennies (for details see Section 2) in which agent i plays against agent
i+ 1 where i is even.

Let ϵ = 1/2n+1, and let θ be a mixed strategy profile where Pr[θ1 = 1] = 1, and Pr[θi = 1] = 1
2

for i > 1. We claim that θ is a Nash equilibrium if and only if C ∈MajoritySat. All agents
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besides agent 1 are in equilibrium, so it is a Nash equilibrium if the first player cannot do better
by changing his strategy. Currently his expected payoff is m

2n where m is the number of satisfying
assignments of C. If he changes his strategy to 0, his expected payoff will be 1

2 . He must change
his strategy if and only if 1

2 > m
2n + ϵ.

Now we show that determining if (G, θ, ϵ) ∈ IsNash is in P#P. θ is an ϵ-Nash equilibrium if
νi(θ) + ϵ ≥ νi(Ri(θ, s

′
i)) ∀ i ∀ s′i ∈ {0, 1}. There are only 2n of these equations to check. For any

strategy profile θ, we can compute νi(θ) as follows:

νi(θ) =
∑

s1∈supp(θ1),··· ,sn∈supp(θn)

Ci(s1, s2, . . . , sn)

n∏
j=1

Pr[θj = sj ] (1)

where Ci is the circuit that computes νi. Computing such sums up to polynomially many bits of
accuracy can easily be done in P#P.

Remark 5.4 In the same way we can show that, given an input (G, θ, ϵ, δ) where ϵ and δ are
encoded as in Exp-Approx, it is in P#P to differentiate between the case when θ is an ϵ-Nash
equilibrium in G and the case where θ is not a (ϵ+ δ)-Nash equilibrium in G.

Theorem 5.5 Circuit game Exp-Approx IsNash is coNP#P-complete.

We first use a definition and a lemma to simplify the reduction:

Definition 5.6 #CircuitSat is the function which, given a circuit C, computes the number of
satisfying assignments to C.

It is known that #CircuitSat is #P-complete. It follows that every problem in NP#P can be
solved in NP with an oracle to #CircuitSat. However, using nondeterminism, we can reduce the
number of oracle queries to one (which enables us to avoid the need for a Cook reduction, as was
used in Theorem 5.3:

Lemma 5.7 Any language L ∈ NP#P is recognized by a nondeterministic polynomial-time TM
that has all its nondeterminism up front, makes only one #CircuitSat oracle query, encodes a
guess for the oracle query result in its nondeterminism, and accepts only if the oracle query guess
encoded in the nondeterminism is correct.

Proof: Let L ∈ NP#P and let M be a nondeterministic polynomial-time TM with access to a
#CircuitSat oracle that decides L. Then if M fails to satisfy the statement of the lemma, we
build a new TM M ′ that does the following:

1. Use nondeterminism to:

• Guess nondeterminism for M .

• Guess all oracle results for M .

• Guess the oracle query result for M ′.

2. SimulateM using guessed nondeterminism forM and assuming that the guessed oracle results
for M are correct. Each time an oracle query is made, record the query and use the previously
guessed answer.
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3. Use one oracle query (as described below) to check if the actual oracle results correspond
correctly with the guessed oracle results.

4. Accept if all of the following occurred:

• The simulation of M accepts

• The actual oracle query results of M correctly correspond with the guessed oracle results
of M

• The actual oracle query result of M ′ correctly corresponds with the guessed oracle result
of M ′

Otherwise reject

It is straightforward to check that, if M ′ decides L, then M ′ fulfills the requirements of the
Lemma.

Now we argue that M has an accepting computation if and only if M ′ does also. Say that a
computation is accepted on M . Then the same computation where the oracle answers are correctly
guessed will be accepted on M ′. Now say that an computation is accepted by M ′. This means that
all the oracle answers were correctly guessed, and that the simulation of M accepted; so this same
computation will accept on M .

Finally, we need to show that step 3 is possible. That is that we can check whether all the
guessed oracle query results are correct with only one query to a #CircuitSat oracle. Specifically,
we need to test if circuits C1, . . . , Ck with n1, . . . , nk inputs, respectively, have q1, . . . , qk satisfying
assignments, respectively. For each circuit Ci create a new circuit C ′i by adding

∑i−1
j=1 nj dummy

variables to Ci. Then create a circuit C which takes as input an integer i and a bit string X of size∑k
j=1 nj , as follows:

1. If the last
∑k

j=i+1 nj bits of X are not all 0 then C(i,X) = 0,

2. Otherwise, C(i,X) = C ′i(X) where we use the first
∑i

j=1 nj bits of X as an input to C ′i.

The circuit C has
∑k

i=1 (q
′
i · 2n1+n2+···+ni−1) satisfying assignments where q′i is the number of

satisfying assignments of Ci. Note that this number together with the ni’s uniquely determines
the q′i’s. Therefore it is sufficient to check if the number of satisfying assignments of C equals∑k

i=1 (qi · 2n1+n2+···+ni−1).

Corollary 5.8 Any language L ∈ coNP#P is recognized by a co-nondeterministic polynomial-time
TM that has all its nondeterminism up front, makes only one #CircuitSat oracle query, encodes
a guess for the oracle query result in its nondeterminism, and rejects only if the oracle query guess
encoded in the nondeterminism is correct.

Proof: Say L ∈ coNP#P, then the compliment of L, L̄, is in NP#P. We can use Lemma 5.7
to design a TM M as in the statement of Lemma 5.7 that accepts L̄. Create a new TM M ′

from M where M ′ runs exactly as M accept switches the output. Then M ′ is a nondeterministic
polynomial-time TM that has all its nondeterminism up front, makes only one#CircuitSat oracle
query, and rejects only if an oracle query guess encoded in the nondeterminism is correct.
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Proof of Theorem 5.5: First we show that given an instance (G, θ, ϵ) it is in coNP#P to
determine if θ is a Nash equilibrium. If θ is not a Nash equilibrium, then there exists an agent i
with a strategy si such that νi(Ri(θ, si)) > νi(θ). As in the proof of Theorem 5.3 (see Equation 1),
we can check this in #P (after nondeterministically guessing i and si).

To prove the hardness result, we first note that by Corollary 5.8 it is sufficient to consider only
co-nondeterministic Turing machines that make only one query to an #P-oracle. Our oracle will
use the #P-complete problem #CircuitSat, so given an encoding of a circuit, the oracle will
return the number of satisfying assignments.

Given a coNP#P computation with one oracle query to #CircuitSat, we create a circuit
game with 1 + 2q(|x|) agents where q(m) is a polynomial which provides an upper bound on the
number of input gates in the circuit that is fed to the #CircuitSat oracle on input string x of
length m. Agent 1 can either play a string s1, that is interpreted as containing the nondeterminism
to the computation and an oracle result, or he can play some other strategy ∅. The rest of the
agents, agent 2 through agent 2q(|x|) + 1, have a strategy space si = {0, 1}.

The payoff to agent 1 on the strategy s = (s1, s2, . . . , s2q(|x|)+1) is 0 if s1 = ∅, and otherwise
is 1 − f(s1) − g(s), where f(s1) is the polynomial-time function checking if the computation and
oracle-response specified by s1 would cause the co-nondeterministic algorithm to accept, and g(s) is
a function to be constructed below such that Es2,...,s2q(|x|)+1

[g(s)] = 0 if s1 contains the correct oracle
query and Es2,...,s2q(|x|)+1

[g(s)] ≥ 1 otherwise, where the expectations are taken over s2, . . . , s2q(|x|)+1

chosen uniformly at random. The rest of the agents, agent 2 through agent 2q(|x|) + 1, receive
payoff 1 regardless.

This ensures that if agent 1 plays ∅ and the other agents randomize uniformly, this is a Nash
equilibrium if there is no rejecting computation and is not even a 1/2-Nash equilibrium if there is
a rejecting computation. If there is a rejecting computation then the first player can just play that
computation and his payoff will be 1. If there is no rejecting computation, then either f(s1) = 1
or contains an incorrect query result, in which case Es→θ[g(s)] ≥ 1. If either the circuit accepts or
his query is incorrect, then the payoff will always be at most 0.

Now we construct g(s1, s2, . . . , s2q(|x|)+1). Let C, a circuit, be the oracle query determined by the
nondeterministic choice of s1, let k be the guessed oracle results, and let S1 = s2s3 . . . sq(|x|)+1 and
S2 = sq(|x|)+2sq(|x|)+3 . . . s2q(|x|)+1. For convenience we will write g in the form g(k,C(S1), C(S2)).

g(k, 1, 1) = k2 − 2n+1k + 22n

g(k, 0, 1) = g(k, 1, 0) = −2nk + k2

g(k, 0, 0) = k2

Now let m be the actual number of satisfying assignments of C. Then, if agent 2 through agent
2q(|x|) + 1 randomize uniformly over their strategies:

E[g(k,C(S1), C(S2))]

= (m/2n)2g(k, 1, 1) + 2(m/2n)(1− (m/2n))g(k, 0, 1) + (1− (m/2n))2g(k, 0, 0)

= 22n(m/2n)2 − 2n+1(m/2n)k + k2 = (m− k)2

So if m = k then E[g] = 0, but if m ̸= k then E[g] ≥ 1. In the game above, the range of payoffs is
not bounded by any constant, so we scale G to make all payments in [0, 1] and adjust ϵ accordingly.

19



Notice that even if we allow just one agent in a boolean circuit game to have arbitrarily many
strategies, then the problem becomes coNP#P-complete.

We now look at the problem when dealing with Poly-Approx and Const-Approx.

Theorem 5.9 With Poly-Approx and Const-Approx, boolean circuit game IsNash is BPP-
complete.7 Furthermore, this holds for any approximation error ϵ < 1.

Proof: We start by showing boolean circuit game Poly-Approx IsNash is in BPP. Given
an instance (G, θ, ϵ), for each agent i and each strategy si ∈ {0, 1}, we use random sampling of
strategies according to θ to distinguish the following two possibilities in probabilistic polynomial
time:

• νi(θ) ≥ νi(Ri(θ, si)), OR

• νi(θ) + ϵ < νi(Ri(θ, si))

(We will show how we check this in a moment.) If it is a Nash equilibrium then the first case is
true for all agents i and all si ∈ {0, 1}. If it is not an ϵ-Nash equilibrium, then the second case is
true for some agents i and some si ∈ {0, 1}. So, it is enough to be able to distinguish these cases
with high probability.

Now the first case holds if νi(θ) − νi(Ri(θ, si)) ≥ 0 and the second case holds if νi(θ) −
νi(Ri(θ, si)) ≤ −ϵ. We can view νi(θ) − νi(Ri(θ, si)) as a random variable with the range [−1, 1]
and so, by a Chernoff bound, averaging a polynomial number of samples (in 1/ϵ) the chance that
the deviation will be more than ϵ/2 will be exponentially small, and so the total chance of an error
in the 2n computations is < 1

3 by a union bound.

Remark 5.10 In the same way we can show that, given an input (G, θ, i, k, ϵ) where G is a circuit
game, θ is a strategy profile of G, ϵ is encoded as in Poly-Approx, it is in BPP to differentiate
between the case when νi(θ) ≥ k and νi(θ) < k − ϵ.

Remark 5.11 Also, in this way we can show that, given an input (G, θ, ϵ, δ) where G is a boolean
circuit game, θ is a strategy profile of G, and ϵ and δ are encoded as in Poly-Approx, it is in
BPP to differentiate between the case when θ is an ϵ-Nash equilibrium in G and the case where θ
is not a (ϵ+ δ)-Nash equilibrium in G.

We now show that boolean circuit game Const-Approx IsNash is BPP-hard. Fix some ϵ < 1.
Let δ = min{1−ϵ

2 , 14}.
We create a reduction as follows: given a language L in BPP there exists an algorithm A(x, r)

that decides if x ∈ L using coin tosses r with two-sided error of at most δ. Now create G with
|r|+ 1 agents. The first player gets paid 1− δ if he plays 0, or the output of A(x, s2s3 . . . sn) if he
plays 1. All the other players have a strategy space of {0, 1} and are paid 1 regardless. Let the
strategy profile θ be such that Pr[θ1 = 1] = 1 and Pr[θi = 1] = 1

2 for i > 1.
Each of the players besides the first player are in equilibrium because they always receive their

maximum payoff. The first player is in equilibrium if Pr[A(x, s2s3 . . . sn)] ≥ 1 − δ which is true if
x ∈ L. However, if x ̸∈ L, then ν1(θ) = Pr[A(x, s2s3 . . . sn)] < δ, but ν1(R1(θ, 0)) = 1− δ. So agent
1 could do better by ν1(R1(θ, 0))− ν1(θ) > 1− δ − δ ≥ ϵ.

7Recall that all our complexity classes are promise classes, so this is really prBPP.
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Theorem 5.12 With Poly-Approx and Const-Approx, circuit game IsNash is coNPBPP =
coMA-complete. Furthermore, this holds for any approximation error ϵ < 1.

ACAPP, the Approximate Circuit Acceptance Probability Problem is the promise-language
where positive instances are circuits that accept at least 2/3 of their inputs, and negative instances
are circuits that reject at least 2/3 of their inputs. ACAPP is in prBPP and any instances of a
BPP problem can be reduced to an instance of ACAPP.

Lemma 5.13 Any language L ∈ NPBPP is recognized by a nondeterministic polynomial-time TM
that has all its nondeterminism up front, makes only one ACAPP oracle query, encodes an oracle
query guess in its nondeterminism, and accepts only if the oracle query guess is correct.

Proof: The proof is exactly the same as that for Lemma 5.8 except that we now need to show
that we can check arbitrarily many BPP oracle queries with only one query.

Because any BPP instance can be reduced to ACAPP we can assume that all oracle calls are
to ACAPP. We are given circuits C1, . . . , Cn and are promised that each circuit Ci either accepts
at least 2/3 of their inputs, or accepts at most 1/3 of its inputs. Without loss of generality, we are
trying to check that each circuit accepts at least 2/3 of their inputs (simply negate each circuit that
accept fewer than 1/3 of its inputs). Using boosting, we can instead verify that circuits C ′1, . . . , C

′
n

each reject on fewer than 1
2n+1 of their inputs). So simply and the C ′i circuits together to create

a new circuit C ′′, and send C ′′ to the BPP oracle. Now if even one of the Ci does not accept 2/3
of its inputs, then C ′i will accept at most a 1

2n+1 faction of inputs. So also, C ′′ will accept at most
a 1

2n+1 faction of inputs. But if all the Ci accept at least 2/3 of their inputs, then each of the C ′i
will accept a least a 1 − 1

2n+1 faction of their inputs. So C ′′ will accept at least a 1 − n
2n+1 > 2/3

fraction of its inputs.

Lemma 5.14 Any language L ∈ coNPBPP is decided by co-nondeterministic TM that only uses
one BPP oracle query to ACAPP, has all its nondeterminism up front, encodes an oracle query
guess in its nondeterminism, and rejects only if the oracle query guess is correct.

Proof: This corollary follows from Lemma 5.13 in exactly the same way as Corollary 5.8 followed
from Lemma 5.7.

Proof of Theorem 5.12: First we show that circuit game Poly-Approx IsNash is in
coNPBPP. Say that we are given an instance (G, θ, ϵ). We must determine if θ is an Nash
equilibrium or if it is not even an ϵ-Nash equilibrium.

To do this, we define a promise language L with the following positive and negative instances:

L+ = {((G, θ, ϵ), (i, s′i)) : s′i ∈ si, νi(Ri(θ, s
′
i)) ≤ νi(θ)}

L− = {((G, θ, ϵ), (i, s′i)) : s′i ∈ si, νi(Ri(θ, s
′
i) > νi(θ) + ϵ}

Now if for all pairs (i, s′i), ((G, θ, ϵ), (i, s′i)) ∈ L+, then θ is a Nash equilibrium of G, but if there
exists (i, s′i), such that ((G, θ, ϵ), (i, s′i)) ∈ L−, then θ is not an ϵ-Nash equilibrium of G. But
L ∈ BPP because, by Remark 5.10, as we saw in the proof of Theorem 5.9, we can just sample
νi(θ)− νi(Ri(θ, s

′
i)) = Es←θ[νi(s)− νi(Ri(s, s

′
i))] to see if it is ≥ 0 or < −ϵ.

Remark 5.15 In the same way we can show that, given an input (G, θ, ϵ, δ) where G is a circuit
game, θ is a strategy profile of G, and ϵ and δ are encoded as in Poly-Approx, it is in coNPBPP

to differentiate between the case when θ is an ϵ-Nash equilibrium in G and the case where θ is not
a (ϵ+ δ)-Nash equilibrium in G.
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Now we show that circuit game Const-Approx IsNash is coNPBPP-hard. The proof is
similar to the proof of Theorem 5.5

Fix ϵ < 1 and let δ = min{1−ϵ
2 , 14}. Given a coNPBPP computation with one oracle query, we

create a circuit game with q(|x|)+ 1 agents, where q is some polynomial which we will define later.
Agent 1 can either play a string s1 that is interpreted as containing the nondeterminism to be used
in the computation and an oracle answer, or he can play some other strategy ∅. The other agents,
agent 2 through agent q(|x|) + 1, have strategy space si = {0, 1}.

The payoff to agent 1 is δ for ∅, and 1−max{f(s1), g(s)} otherwise, where f(s1) is the polynomial
time function that we must check, and Es2,...,sq(|x|)+1

[g(s)] > 1 − δ if the oracle guess is incorrect,
and Es2,...,sq(|x|)+1

[g(s)] < δ of the oracle guess is correct. The other agents are paid 1 regardless.
We claim that if agent 1 plays ∅ and the other agents randomize uniformly, this is an Nash

equilibrium if there is no rejecting computation and is not even a δ-Nash equilibrium if there is a
failing computation.

In the first case, if the first agent does not play ∅, either the computation will accept and his
payoff will be 0, or the computation will reject but the guessed oracle results will be incorrect and
his expected payoff will be:

1−max{f(s1), g(s)} = 1−max{0, g(s)} = 1− E[g(s)] > 1− (1− δ) = δ

So he would earn at least that much by playing ∅.
In the latter case where there is a failing computation, by playing that and a correct oracle

result, agents 1’s payoff will be 1 −max{f(s1), g(s)} > 1 − δ. And if we compare this to what he
would be paid for playing ∅, we see that it is greater by [1− δ]− [δ] ≥ ϵ.

Now we define g(s). Let Cs1 be the circuit corresponding to the oracle query in s1, and let,

C
(k)
s1 be the circuit corresponding to running Cs1 k times, and taking the majority vote. We define

g(s) = 0 if C
(k)
s1 (s2s3 · · · sq(|x|)) agrees with the oracle guess in s1 and g(s) = 1 otherwise. Now if the

oracle result is correct, then the probability that C
(k)
s1 (s2s3 · · · sq(|x|)) agrees with it is 1 − 2−Ω(k),

and if the oracle results is incorrect, the probability that C
(k)
s1 (s2s3 · · · sq(|x|)) agrees with the oracle

results (in s1) is 2−Ω(k), so by correctly picking k, g(s) will have the desired properties. Define
q(|x|) accordingly.

Note that when approximating IsNash, it never made a difference whether we approximated
by a polynomially small amount or by any constant amount less than 1.

5.2 IsPureNash

In this section we will study a similar problem: IsPureNash. In the case of non-boolean circuit
games, IsPureNash is coNP-complete. With the other games examined, IsPureNash is in P.

Proposition 5.16 With any approximation scheme, circuit game and 2-player circuit game Is-
PureNash is coNP-complete. Furthermore, it remains hard for any approximation error ϵ < 1.

Proof: The proof is the same as that for Proposition 5.2: in the reduction for the hardness result
θ is always a pure-strategy profile. It is in coNP because it is more restricted class of problems
than circuit game IsPureNash which is in coNP.

Proposition 5.17 With any approximation scheme, boolean circuit game IsPureNash is P-
complete, and remains so even for one player and any approximation error ϵ < 1.
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Proof: It is in P because each player has only one alternative strategy, so there are only polyno-
mially many possible deviations, and the payments for each any given strategy can be computed
in polynomial time.

It is P-hard even in a one-player game because, given a circuit C with no inputs (an instance
of CircuitValue which is P-hard), we can offer an agent a choice between a payoff of 0 and the
output of the circuit C. If the agent settling for a payoff of 0 is a Nash equilibrium, then C then
must evaluate to 0. Notice that in this game, the range of payoffs is 1, and as long as ϵ < 1, the
hardness result will still hold.

Proposition 5.18 With any approximation scheme, graph game IsPureNash is in P for any
kind of graph game.

Proof: In all these representations, given a game G there are only a polynomial number of
players, and each player has only a polynomial number of strategies. To check that s is an ϵ-Nash
equilibrium, one has to check that for all agents i and strategies s′i ∈ si, νi(s) ≥ νi(Ri(s, si)). But
as mentioned there are only polynomially many of these strategies and each can be evaluated in
polynomial time.

6 Existence of pure-strategy Nash equilibria

We now will use the previous relationships to study the complexity of ExistsPureNash. Figure 4
gives a summary of the results.

Circuit

Boolean 
Circuit

2-player 
Circuit

Graph

Boolean 
Graph

Bimatrix

All approximation schemes

in P

NP-complete
[Thm 6.2]

Σ P –
complete
[Thm 6.1]

2

Figure 4: Summary of ExistsPureNash Results

The hardness of these problems is directly related to the hardness of IsPureNash. We can
always solve ExistsPureNash with one more nondeterministic alternation because we can nonde-
terministically guess a pure-strategy profile, and then check that it is pure-strategy Nash equilib-
rium. Recall that in the case of non-boolean circuit games, IsPureNash is coNP-complete. With
the other games examined, IsPureNash is in P (but is only proven to be P-hard in the case of
boolean circuit games; see Subsection 5.2). As shown in Figure 4 this strategy of nondeterminis-
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tically guessing and then checking is the best that one can do. However, for bimatrix games the
problem still remains in P because there are only a polynomial number of possible guesses.

We first note that ExistsPureNash is an exceedingly easy problem in the bimatrix case
because we can enumerate over all the possible pure-strategy profiles and check whether they are
Nash equilibria.

ExistsPureNash is interesting because it is a language related to the Nash equilibrium of
bimatrix games that is not NP-complete. One particular approach to the complexity of finding a
Nash equilibrium is to turn the problem into a language. Both [GZ89] and [CS08] show that just
about any reasonable language that one can create involving Nash equilibrium in bimatrix games
is NP-complete; however, ExistsPureNash is a notable exception. Our results show that this
phenomenon does not extend to concisely represented games.

Theorem 6.1 Circuit game ExistsPureNash and 2-player circuit game ExistsPureNash are
Σ2P-complete with any of the defined notions of approximation. Furthermore, it remains hard as
long as approximation error ϵ < 1 and even in zero-sum games.

Proof: Membership in Σ2P follows by observing that the existence of a pure-strategy Nash
equilibrium is equivalent to the following Σ2P predicate:

∃s ∈ s,∀ i, s′i ∈ si
[
νi(Ri(s, s

′
i)) ≤ νi(s) + ϵ

]
To show it is Σ2P-hard, we reduce from the Σ2P-complete problem

QCircuitSat2 = {(C, k1, k2) : ∃x1 ∈ {0, 1}k1 ,∀x2 ∈ {0, 1}k2 C(x1, x2) = 1},

where C is a circuit that takes k1+k2 boolean variables. Given an instance (C, k1, k2) ofQCircuitSat2,
create 2-player circuit game G = (s, ν), where si = {0, 1}ki ∪ {⊥}.

Player i has the choice of playing a strategy xi ∈ {0, 1}ki or a strategy xi = ⊥. The payoffs for
the first player are as follows:

Player 2
x2 ⊥

Player 1 x1 C(x1, x2) 1
⊥ 1 0

Payoffs of player 1

If both players play an input to C, then player 1 gets paid the results of C on these inputs. If both
play ⊥, the payoff to the first player is 0. If one player plays an input to C, and the other plays ⊥,
then the first player receives 1.

For every pure strategy profile, we define the payoff of the second player to be ν2(s) = 1−ν1(s).
Since the sum of the payoffs is constant, this is a game constant-sum game8.

Now we show that the above construction indeed gives a reduction from QCircuitSat2 to
2-player Circuit Game ExistsPureNash. Suppose that (C, k1, k2) ∈QCircuitSat2. Then there
is an x1 ∈ {0, 1}k1 such that ∀x2 ∈ {0, 1}k2 , C(x1, x2) = 1, and we claim (x1, 0

k2) is a pure-strategy
Nash equilibrium. Player 1 receives a payoff of 1 and so cannot do better. Player 2 will get payoff
0 no matter what s2 ∈ s2 he plays, and so is indifferent.

8Recall that constant-sum games are computationally equivalent to zero-sum games.
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Now suppose that (C, k1, k2) ̸∈QCircuitSat2, i.e. ∀x1,∃x2 C(x1, x2) = 0. Then we want to
show there does not exist a pure-strategy ϵ-Nash equilibrium. We show that for any strategy profile
(s1, s2) either player 1 or player 2 can do better by changing strategies.

Fix some pure-strategy profile s = (s1, s2). Either ν1(s) = 0 or ν2(s) = 0. We first examine
the case that ν1(s) = 0. If s2 ∈ {0, 1}k2 , then player 1 can increase his payoff by playing s′1 = ⊥.
Alternatively if s2 = ⊥, then player 1 can increase his payoff by playing s′1 ∈ {0, 1}k1 .

Now say that ν2(s) = 0. If s1 ∈ {0, 1}k2 , then player 2 can increase his payoff by playing
s′2 ∈ {0, 1}k2 such that C(s1, s

′
2) = 0; such an s′2 must exist by assumption. Alternatively if s1 = ⊥,

then player 2 can increase his payoff by playing s′2 = ⊥ such that y2 = ¬y1 and receive payoff 1.
Because the payoffs are only 0 and 1, the increase is always 1 and so the hardness results holds

for any ϵ < 1.

For graph games, it was recently shown by Gottlob, Greco, and Scarcello [GGS03] that Ex-
istsPureNash is NP-complete, even restricted to graphs of degree 4. Below we strengthen their
result by showing this also holds for boolean graph games, for graphs of degree 3, and for any
approximation error ϵ < 1.

Theorem 6.2 For boolean circuit games, graph games, and boolean graph games using any of the
defined notions of approximation ExistsPureNash is NP-complete. Moreover, the hardness result
holds even for degree-d boolean graph games for any d ≥ 3 and for any approximation error ϵ < 1.

Proof: We first show that boolean circuit game Exact ExistsPureNash is in NP. Then, by
Theorem 4.1, Exact ExistsPureNash is in NP for graph games as well. Adding approximation
only makes the problem easier. Given an instance (G, ϵ) we can guess a pure-strategy profile θ.
Let s ∈ s such that Pr[θ = s] = 1. Then, for each agent i, in polynomial time we can check that
νi(s) ≥ νi(Ri(s, s

′
i))− ϵ for all s′i ∈ {0, 1}. There are only polynomially many agents, so this takes

at most polynomial time.

Now we show that ExistsPureNash is also NP-hard, even in degree-3 boolean graph games
with Const-Approx for every ϵ < 1. We reduce from CircuitSat which is NP-complete. Given
a circuit C (without loss of generality every gate in C has total degree ≤ 3; we allow unary gates),
we design the following game: For each input of C and for each gate in C, we create a player with
the strategy space {true, false}. We call these the input agents and gate agents respectively, and
call the agent associated with the output gate the judge. We also create two additional agents P1

and P2 with strategy space {0, 1}.
We now define the payoffs. Each input agent is rewarded 1 regardless. Each gate agent is

rewarded 1 for correctly computing the value of his gate and is rewarded 0 otherwise.
If the judge plays true then the payoffs to P1 and P2 are always 1. If the judge plays false

then the payoffs to P1 and P2 are the same as the game pennies–P1 acting as the first player, P2

as the second.
We claim that pure strategy Nash equilibria only exist when C is satisfiable. Say C is satisfiable

and let the input agents play a satisfying assignment, and let all the gate agents play the correct
value of their gate, given the input agents’ strategies. Because it is a satisfying assignment, the
judge plays true, and so every agent–the input agents, the gate agents, P1, and P2–receive a payoff
of 1, and are thus in a Nash equilibrium.

Say C is not satisfiable. The judge cannot play true in any Nash equilibrium. For, to all
be in equilibrium, the gate agents must play the correct valuation of their gate. Because C is
unsatisfiable, no matter what pure-strategies the input agents play, the circuit will evaluate to
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false, and so in no equilibrium will the judge will play true. But if the judge plays false, then P1

and P2 are playing pennies against each other, and so there is no pure-strategy Nash equilibrium.
Because the only payoffs possible are 0 and 1, if any agent is not in equilibrium, he can do at

least 1 better by changing his strategy. So there does not exists a pure-strategy ϵ-Nash equilibrium
for any ϵ < 1.

Note that the in-degree of each agent is at most 3 (recall that we count the agent himself if he
influences his own payoff), and that the total degree of each agent is at most 4.

Like IsPureNash, ExistsPureNash does not become easier with approximation, even if
we approximate as much as possible without the problem becoming trivial. Also, similarly to
IsPureNash, any reasonable definition of approximation would yield the same results.

7 Finding Nash equilibria

Perhaps the most well-studied of these problems is the complexity of finding a Nash equilibria in a
game. In the bimatrix case, FindNash is known to be P-hard but unlikely to be NP-hard. There
is something elusive in categorizing the complexity of finding something we know is there. Such
problems, including finding Nash equilibrium, are studied by [MP91]. Recently, [LMM03] showed
that if we allow constant error, the bimatrix case FindNash can be computeded in quasipolynomial
time (i.e. TFP̃). Our results are summarized in Figure 5. In all types of games, there remains a
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Figure 5: Summary of FindNash Results

gap of knowledge of less than one alternation. This comes about because to find a Nash equilibrium
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we can simply guess a strategy profile and then check whether it is a Nash equilibrium. It turns out
that in all the types of games, the hardness of FindNash is at least as hard as IsNash (although
we do not have a generic reduction between the two). Circuit game and 2-player circuit game
Poly-Approx and Const-Approx FindNash are the only cases where the gap in knowledge is
less than one alternation.

Subsequent Work Exciting recent results have exactly characterized the complexity of Find-
Nash in graph games and bimatrix games. Specifically, it was shown by Daskalakis, Goldberg, and
Papadimitriou [DGP06] that, in graph games and boolean graph games, Exact and Exp-Approx
FindNash are complete for the class PPAD introduced in [MP91]. Later, it was shown by Chen
and Deng [CD06] that the same is true for bimatrix games. Chen, Deng, and Teng [CDT06] showed
that even Poly-Approx FindNash is complete for the class PPAD. We note that these results
leave open the complexity of FindNash in circuit games with any approximation, and in graphical
and bimatrix games with constant approximation.

In a circuit game, there may be exponentially many strategies in the support of a Nash equilib-
rium or the bit length of the probability that a particular strategy is played may be exponentially
large. In either case, it would take exponentially long just to write down a Nash equilibrium. In
order to avoid this problem, when we are not assured the existence of a polynomially sized Nash
equilibrium (or ϵ-Nash equilibrium), we will prove hardness results not with FindNash, but with
FindNashSimple. FindNashSimple is an easier promise language version of FindNash that
always has a short answer.

Definition 7.1 For a fixed representation of games, FindNashSimple is the promise language
defined as follows:

Positive instances: (G, i, si, k, ϵ) such that G is a game given in the specified representation,
and in every ϵ-Nash equilibrium θ of G, Pr[θi = si] ≥ k.

Negative instances: (G, i, si, k, ϵ) such that G is a game given in the specified representation,
and in every ϵ-Nash equilibrium θ of G, Pr[θi = si] < k.

FindNashSimple is easier than FindNash in that a FindNash algorithm can be used to
obtain FindNashSimple algorithm of similar complexity, but the converse is not clear.

Theorem 7.2 2-player circuit game Exact FindNashSimple is EXP-hard, but is in NEXP ∩
coNEXP. Moreover, 2-player circuit game Exact FindNash is in TFNEXP

In the proof we will reduce from a problem called GameValue. A 2-player game is a zero-
sum game if ν1(s) = −ν2(s) for all s ∈ s. By the von Neumann min-max theorem, for every
2-player zero-sum game there exists a value ν(G), such that in any Nash equilibrium θ of G,
ν1(θ) = −ν2(θ) = ν(G). Moreover, it is know that, given a 2-player circuit game G, it is EXP-hard
to decide if ν(G) ≥ 0 [FKS95].

Proof Theorem 7.2: We reduce from 2-player circuit game GameValue. Say we are given
such a zero-sum game G = (s, ν) and we want to decide if ν(G) ≥ 0. Without loss of generality,
assume the payoffs are between ±1/2. We construct a game G′ = (s′, ν ′) as follows: s′1 = s1 ∪ {∅},
s′2 = s2 ∪ {∅}, and the payoffs are:
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Player 2
s2 ∅

Player 1 s1 1 + ν1(s1, s2) 0
∅ 0 1

Payoffs of player 1 in G′

Player 2
s2 ∅

Player 1 s1 ν2(s1, s2) 1
∅ 1 0

Payoffs of player 2 in G′

We claim that if ν(G) ≥ 0 then (G′, 2, ∅, 1/2) is a positive instance of FindNashSimple, and if
ν(G) < 0 then (G′, 2, ∅, 1/2) is a negative instance of FindNashSimple. Fix θ′, a Nash equilibrium
for G′. Let pi = Pr[θ′i ∈ si]. It is straightforward to check that p1, p2 ̸= 0, 1. Let θ be the strategy
profile where θi is distributed as θ′i given that θ′i ∈ si. This is well defined because p1, p2 ̸= 0. Also,
θ is a Nash equilibrium of G because if either player could increase there payoff in G by deviating
from θ, they could also increase their payoff in G′.

We will now relate 1− p2, the probability that agent 2 plays ∅, to ν(G). The expected payoff to
player 1 is p1p2(1 + ν(G)) + (1− p1)(1− p2), which we can view as a function of p1. Because agent
1 is in an equilibrium, he must play p1 to maximize this function. This can only happen at the
end points (p1 = 0 or 1) or when the derivative with respect to p1 is 0. We have already observed
that no Nash equilibrium occurs when p1 = 0 or 1, so one must occur when the derivative is 0.
The derivative with respect to p1 is p2(1 + ν(G)) − (1 − p2). And so p2(1 + ν(G)) − (1 − p2) =
0 ⇒ p2 = 1

2+ν(G) ⇒ 1 − p2 = 1 − 1
2+ν(G) . Therefore, if ν(G) ≥ 0 then in any Nash equilibrium θ′,

Pr[θ′2 = ∅] ≥ 1
2 ; but if ν(G) < 0 then in any Nash equilibrium θ′, Pr[θ′2 = ∅] < 1

2 .

Now we show that 2-player circuit game Exact FindNashSimple is in NEXP ∩ coNEXP.
Given input (G, i, si, k, ϵ) the nondeterminism guesses a strategy profile θ that is at most exponen-
tially long, and then checks whether it is a Nash equilibrium in EXP. The machine will output
“positive” if θ is a Nash Equilibrium of G and Pr[θi = si] ≥ k. The machine will output “negative”
if θ is a Nash Equilibrium of G and Pr[θi = si] < k. The machine will fail if θ is not an exact Nash
Equilibrium of G. (The machine ignores the parameter ϵ.)

If the input is a positive instance of FindNashSimple, then the machine will always output
“positive” or fail. Similarly, if the input is a negative instance of FindNashSimple, then the
machine will always output “negative” or fail. By Proposition 3.3, an exact Nash equilibrium that
can be encoded in exponential space always exists in a 2-player circuit game. If the nondeterminism
guesses this strategy profile, then the machine will not fail.

2-player circuit game Exact FindNash is in TFNEXP because given input (G, ϵ) the nonde-
terminism guesses a strategy profile θ that is at most exponentially long, and then checks whether
it is a Nash equilibrium in EXP. By Proposition 3.3, a Nash equilibrium that can be encoded in
exponential space always exists in a 2-player circuit game.

Because the description of the strategy-profile that was guessed may be exponential in length,
we cannot simply use our result from IsNash (Proposition 5.2) to show that we can determine if θ
is a Nash equilibrium. However, it is not hard to see that we can verify this in a straight-forward
manner by computing, for each agent i ∈ {1, 2}, νi(θ) and νi(Ri(θ, si)) for all si ∈ si.

28



This result is analogous to the bimatrix case [MP91]; everything scales up by an exponential
factor.

The problem becomes more tedious when we add exponentially small error. The difficulty is
that we only know GameValue is hard to solve exactly. Because we introduce an element of
approximation, we cannot use the same reduction in a straightforward manner. The reductions
from EXP to GameValue used in [FIKU08] and [FKS95] require an error bound that is at least
doubly exponentially small.

Theorem 7.3 Circuit game Exp-Approx FindNashSimple is EXP-hard, but is in NEXP ∩
coNEXP. The EXP-hardness holds even for circuit games with 6 players. Moreover, Circuit
game Exp-Approx FindNash is TFNEXP.

Definition 7.4 Let C ′ be a circuit where every gate is numbered, has at most 2 inputs, and is of
the type ZERO, ONE, AND, OR, or NOT. Furthermore let the output gate of C ′ be labeled 0. We
say that a circuit C encodes a circuit C ′ if C(i) outputs input1(i), input2(i), type(i) where input1(i)
is the label of the first gate input to gate i, input2(i) is the label of the second gate input to gate i,
and type(i) is the type of gate i. C will output the special character ⊥ if i is not the label of a gate
of C ′, or in place of input1(i) and/or input2(i) if gate i does not have 2 input gates.

SuccinctCircuitValue is the language consists of circuits C, such circuit C encodes circuit
C ′ and circuit C ′ evaluates to true.

It will not be important to us how exactly C encodes C ′ the encodings work, but only that
SuccinctCircuitValue is an EXP-complete language.

Proof: We first prove that circuit game Exp-Approx FindNashSimple is EXP-hard. We
reduce from SuccinctCircuitValue. Given a succinctly represented circuit C, we construct an
instance of FindNashSimple based upon a 6-player game G = (s, ν).

Let G be the set of gates in C and let N = |G|. We create 3 computing agents: c1, c2, and
c3; and we create 3 enforcing agents: e1, e2, and e3. Each computing agent has the strategy set
sci = {g, ḡ : g ∈ G}. Each enforcing agent has the strategy set sei = {g : g ∈ G}. The payoff of
the enforcing agents and the computing agents are designed so that in any ϵ-Nash equilibrium each
computing agent must play g or ḡ with probability at least 1/N − ϵ. The payoffs of the computing
agents are also designed so that each computing agent must play a strategy that corresponds with
a correct computation of C. That is, if g evaluates to true, each computing agent must play g with
probability close to 1

N and ḡ with probability close to 0; and if g evaluates to false, vice versa.

Let B = 2ϵ+N2

ϵ
N−1
N−2 . We define the payoffs of the enforcer agents as follows:

sei sci νei
g g, ḡ −B

g ̸= g, ḡ B
N−1

We define the payoffs of the computing agents as follows (t will be defined momentarily):

νc1(s) = t(sc1 , sc2 , sc3)− νe1(s)

νc2(s) = t(sc2 , sc3 , sc1)− νe2(s)

νc3(s) = t(sc3 , sc1 , sc2)− νe3(s)
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We now define t(sci , scj , sck) which will always be either −N2 or 0. Define g to be the gate
such that sci ∈ {g, ḡ}. Let gates g1 and g2 be the two inputs of g. If g1 is a constant, then for this
definition ignore scj and instead use the value of the constant. Do likewise for g2 and sck .

Then t(sci , scj , sck) =

• −N2 if scj ∈ {g1, ḡ1} (or g1 is a constant) and sck ∈ {g2, ḡ2} (or g2 is a constant) and
g(scj , sck) ̸= sci where g(scj , sck) is the output of circuit g using scj and sck (or the respective
constants) as the inputs.

• 0 Otherwise

Let ϵ = 1
100·N2 .

Claim 7.5 In any ϵ-Nash equilibrium θ, for any i ∈ {1, 2, 3} and any g ∈ G, Pr[θci = g, ḡ] ≥
1/N − ϵ.

Proof of claim: Say not, then for some agent ci and gate g, Pr[θci = g, ḡ] <
1/N − ϵ. We show that in such a case, agent ci can do ϵ better by changing his strategy.

Let g = argming∈G Pr[θci = g, ḡ], and let p = 1/N − Pr[θci = g, ḡ]. By playing g, ei
will make

−(1/N − p)B +

(
N − 1

N
+ p

)
B

N − 1
= pB − p

B

N − 1
= p

N − 2

N − 1
B

So ei has a strategy to make at least pN−2
N−1B. But θ is a Nash equilibrium, so νei(θ) ≥

pN−2
N−1B − ϵ. But this means that

νci(θ) = t(θci , θcj , θck)− νei(θ) ≤ −νei(θ) ≤ −p
N − 2

N − 1
B + ϵ

because it is always the case that t(θc1 , θc3 , θc4) ≤ 0. If θ′ci is the mixed strategy where
agent ci randomizes uniformly over all 2N strategies, νci(Rci(θ, θ

′
ci)) ≥ −N2. This

is because here νei(Rci(θ, θ
′
ci)) = 0 no matter what θei is and t(sci , scj , sck) ≥ −N2

regardless of the inputs.
Because this is an ϵ-Nash equilibrium,

νci(Rci(θ, θ
′
ci))− νci(θ) ≤ ϵ ⇒ −N2 − [−p

N − 2

N − 1
B + ϵ] ≤ ϵ ⇒ p ≤ 2ϵ+N2

N−2
N−1B

⇒ p ≤ ϵ

The last step follows because B = 2ϵ+N2

ϵ
N−1
N−2 . �

When C is correctly evaluated, each gate g ∈ G evaluates to either true of false. If gate g
evaluates to true, we call the strategy g correct. If gate g evaluates to false, we call the strategy ḡ
correct. If a strategy is not correct, we say it is incorrect. For any gate g, define g∗ to be the the
correct strategy for g and define ḡ∗ to be the incorrect strategy for g. In sci there are N correct
strategies, and N incorrect strategies.

Claim 7.6 In any ϵ-Nash equilibrium θ, no agent ci plays an incorrect strategy with probability
≥ 2ϵ.
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Proof of claim: The proof follows by induction. We defer the base case. Fix a
gate g ∈ G with input gates g1, g2. Now fix a computing agent ci. By induction, assume
that g1 and g2 are played incorrectly by each computing agent with probability less
than 2ϵ. (By Claim 7.5 this requires that each computing agent plays correctly with
probability greater than 1/N − 3ϵ).

We now show that the claim is true by showing that the expected payoff of ci for
playing the correct strategy of gate g is always more than 1

2 better than his payoff for
playing the incorrect strategy for gate g. Therefore, if agent ci is playing an incorrect
strategy for gate g with probability ≥ 2ϵ, agent ci could do more than ϵ better by playing
the correct strategy for gate g whenever he had previously played the incorrect strategy.
Note that strategies played for g, g1, and g2 which are used in computing payoffs are
always independent because t takes its three inputs from three different agents.

We first compute νci(Rci(θ, g
∗)). First note that t(g∗, scj , sck) = −N2 only if scj = ḡ∗1

or sck = ḡ∗2, and each of these events happens with probability less then 2ϵ by induction.
So

νci(Rci(θ, g
∗)) = t(g∗, θcj , θck)− νei(Rci(θ, g

∗))

≥ −N2 · Pr[θcj = ḡ∗1]−N2 · Pr[θck = ḡ∗2]− νei(Rci(θ, g
∗))

> −4N2ϵ− νei(Rci(θ, g
∗))

We next compute νci(Rci(θ, ḡ
∗)). First note that t(ḡ∗, scj , sck) = −N2 whenever

scj = g∗1 and sck = g∗2 and each of these events is independent and happens with
probability greater than 1/N − 3ϵ, by induction. So

νci(Rci(θ, ḡ
∗)) = t(g∗, θcj , θck)− νei(Rci(θ, ḡ

∗))

≤ −N2 · Pr[θcj = g∗1 and θck = g∗2]− νei(Rci(θ, ḡ
∗))

≤ −N2(1/N − 3ϵ)2 − νei(Rci(θ, g
∗))

Finally we show that νci(Rci(θ, g
∗))− νci(Rci(θ, ḡ

∗)) > 1/2.

νci(Rci(θ, g
∗))− νci(Rci(θ, ḡ

∗)) > −4N2ϵ− νei(Rci(θ, g
∗))

−[−N2(1/N − 3ϵ)2 − νei(Rci(θ, ḡ
∗))]

(because νei(Rci(θ, g
∗)) = νei(Rci(θ, ḡ

∗))) ≥ −4N2ϵ+ 1− 6ϵN + 9ϵ2N2

(because ϵ =
1

100 ·N2
) ≥ 1/2

It remains to show the case where g1, g2, or both are actually constants in the
circuit. The analysis above remains the same. Before we claimed, by induction, that the
probability that θcj equals the correct solution (gi or ḡi) is > 1− 3ϵ and the probability
that θcj equals the incorrect solution (gi or ḡi) is < 2ϵ. If g1 is a constant input, the
way that we have defined t, θcj will always equal the correct input, and will never equal
the incorrect, so the aforementioned assumptions remain valid. �

Now we can solve an instance of SuccinctCircuitValue on an instance C by querying Find-
NashSimple on the instance (G, c1, o, 2ϵ, ϵ), where o is the output gate, and returning the same
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answer. By Claim 7.6, if C evaluates to true, in any ϵ-Nash equilibrium c1 will play ō with prob-
ability less than 2ϵ and thus by Claim 7.5 will play o with probability at least 1/N − 3ϵ. If C
evaluates to false, by Claim 7.6, in any ϵ-Nash equilibrium c1 will play o with probability less than
2ϵ.

Now we show that circuit game Exp-Approx Exact FindNashSimple is inNEXP∩coNEXP.
Given input (G, i, si, k, ϵ) the nondeterminism guesses a strategy profile θ that is at most exponen-
tially long, and then checks whether θ is an ϵ Nash equilibrium in EXP. The machine will output
“positive” if θ is an ϵ Nash Equilibrium of G and Pr[θi = si] ≥ k. The machine will output “nega-
tive” if θ is an ϵ Nash Equilibrium of G and Pr[θi = si] < k. The machine will fail if θ is not an ϵ
Nash Equilibrium of G.

If the input is a positive instance of FindNashSimple, then the machine will always output
“positive” or fail. Similarly, if the input is a negative instance of FindNashSimple, then the
machine will always output “negative” or fail. By Theorem 3.4 there always exists an ϵ-equilibrium
that uses at most exponential space. If the nondeterminism guesses this strategy profile, then the
machine is guaranteed to output either “positive” or “negative.”

Circuit game Exp-Approx Exact FindNash is in TFNEXP because given input (G, ϵ) the
nondeterminism guesses a strategy profile θ that is at most exponentially long, and then checks
whether it is a Nash equilibrium in EXP. By Theorem 3.4, there always exists an ϵ-equilibrium
that uses at most exponential space.

Because the description of the strategy-profile that was guessed may be exponential in length,
we cannot simply use our result from IsNash (Proposition 5.2) to show that we can determine if θ
is a Nash equilibrium. However, it is not hard to see that we can verify this in a straight-forward
manner by computing, for each agent i, νi(θ) and νi(Ri(θ, si)) for all si ∈ si.

In subsequent work, a technique similar to this proof was used in [GP06] to show a reduction
from degree-d graph games to d2 player normal form games. The basic idea is as follows, given a
degree-d graph game G, color the vertices of the graph corresponding to G so that no vertex has two
neighbors of the same color (this requires at most d2 colors). Now create a computing agent and
an enforcing agent for each color. Similar to the above construction, each enforcing agent forces
the corresponding computing agent to nearly uniformly randomize between the strategies spaces of
each player associated with his color in the graph game.

Things become easier when we approximate. The main reason is that now we know there exists
a Nash equilibrium with a polynomially sized support by Theorem 3.4. Thus we can guess an ϵ-Nash
equilibrium and using a result like IsNash test that it is such. So here, like in the exponential case,
the complexity is at most one alternation more than the complexity of the corresponding IsNash
problem.

Definition 7.7 A promise language L is in S2P if there exists polynomial-time computable and
polynomially bounded relation R ⊂ Σ∗ × Σ∗ × Σ∗ such that:

1. If x ∈ L+ then ∃ y such that ∀ z, R(x, y, z) = 1.

2. If x ∈ L− then ∃ z such that ∀ y, R(x, y, z) = 0.

Theorem 7.8 Circuit game and 2-player circuit game Poly-Approx and Const-Approx Find-
Nash are S2P-hard but are in TFΣ2P.

We first prove a technical lemma that will later free us from messy computations.
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Lemma 7.9 Let G = (s, ν) be a two-player, zero-sum game, and create a new game G′ = (s′, ν ′)
where s′1 = s1 ∪ {∅}, s′2 = s2, and

ν ′i(s
′
1, s
′
2) = νi(s1, s2) if s′1 ∈ s1

ν ′i(s
′
1, s
′
2) = α if s′1 = ∅

If ν(G) < α− 4ϵ, then in any ϵ-Nash equilibrium θ′ of G′, Pr[θ′i ∈ si] < 1/2. Also, if α+4ϵ < ν(G),
then in any ϵ-Nash equilibrium θ′ of G′, Pr[θ′i ∈ si] > 1/2.

Proof: For the sake of contradiction suppose that ν(G) < α− 4ϵ and θ′ is an ϵ-Nash equilibrium
of G such that p = Pr[θ′i ∈ si] ≥ 1

2 . Let θ1 denote the probability distribution over s′1 of θ′1 given
that θ′1 ∈ s1. θ1 is well defined because p > 0.

Player 2’s payoff is
p(ν2(R1(θ

′, θ1))) + (1− p)(α)

However, player 2 can attain a payoff of

p(−ν(G)) + (1− p)(α)

by playing an optimal strategy in G. Because θ′ is an ϵ-Nash equilibrium, the difference of these
two values is at most ϵ:

p(−ν(G)) + (1− p)(α)

−
[
p(ν2(R1(θ

′, θ1))) + (1− p)(α)
]

≤ ϵ

⇒ −ν2(R1(θ
′, θ1)) ≤ ϵ/p+ ν(G)

⇒ ν1(R1(θ
′, θ1)) ≤ ϵ/p+ ν(G)

In the last step −ν2(R1(θ
′, θ1)) = ν1(R1(θ

′, θ1)) because G is a zero-sum game.
Because player 1 can always receive α by playing ∅, he receives at least α − ϵ in any ϵ-Nash

equilibrium. This implies that:

α− ϵ ≤ ν1(θ
′)

= p(ν1(R1(θ
′, θ1))) + (1− p)(α)

≤ p [ϵ/p+ ν(G)] + (1− p)(α) because ν1(R1(θ
′, θ1)) ≤ ϵ/p+ ν(G)

< p [ϵ/p+ (α− 4ϵ)] + (1− p)(α) because ν(G) < α− 4ϵ

≤ α− ϵ

So we have found our contradiction. The other implication follows in a very similar manner.

Proof Theorem 7.8: We first show that circuit game Poly-Approx FindNash can be com-
puted in TFΣ2P.

Our machine will first guess an ϵ/2 Nash equilibrium and then verify the correctness of its guess
by checking if the guessed strategy profile is an ϵ/2-Nash equilibrium or is not even an ϵ-Nash
equilibrium.

By Theorem 3.4 in every n-player game G, there exists a k-uniform ϵ/2-Nash equilibrium, where
k = 3n2 ln(n2maxi{|si|})/(ϵ/2)2. This is polynomially bounded with respect to the encoding of G
as a circuit game and |ϵ| where ϵ is represented as in Poly-Approx.

By Theorem 5.12 and Remark 5.15 we can check with a co-non-deterministic polynomial-time
machine with oracle access to BPP (using the alternate definition 2 of IsNash in Definition 3.5) if
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the guessed equilibrium is an ϵ/2-Nash equilibrium or is not even an ϵ-Nash equilibrium. However,
coNPBPP = coMA ⊆ Σ2P by [BM88]. Thus an ∃ coNPBPP-predicate can be replaced by an
∃Σ2P-predicate = Σ2P-predicate.

We now show that 2-player circuit game Const-Approx FindNash is S2P-hard. We first
follow the proof of [FIKU08] which shows that approximating GameValue in 2-player circuit
games is S2P-hard in order to make a game with value either 1 or -1. Then we employ Lemma 7.9.

Recall that if a language is in S2P then there exists a polynomially balanced and polynomially
decidable predicate φ such that x ∈ L+ ⇒ ∃y, ∀z φ(x, y, z) = 1 and x ∈ L− ⇒ ∃z,∀y φ(x, y, z) = 0.
Let p(|x|) be a polynomial that bounds the lengths of y and z.

Let L be a promise language in S2P, now construct a game G′ so that, given an ϵ-Nash
equilibrium to G′, we can determine if a given x is in L+ or L−. Given an x, construct an instance
of FindNash (G′, ϵ) as follows.

First, let G be the 2-player circuit game G = (s, ν) where si = { strings of length ≤ p(|x|)} and

ν1(s1, s2) = −ν2(s1, s2) = φ(x, s1, s2)

Let ϵ < 1
4 .

If x ∈ L+ the first player has a strategy s1 such that whatever strategy s2 ∈ s2 player 2 plays,
φ(x, s1, s2) evaluates to true. So player 1 has a strategy that guarantees him a payoff of 1. On the
other hand, if x ∈ L− the second player has a strategy that guarantees him a payoff of 1.

We create a new game G′ as in Lemma 7.9. G′ = (s′, ν ′) where s′1 = s1 ∪ {∅}, s′2 = s2, and

• ν ′i(s1, s2) = νi(s1, s2) if s1 ∈ si

• ν ′1(∅, s2) = ν2(∅, s2) = 0

Then if x ∈ L+, ν(G) = 1 and so because 0+4ϵ < ν(G) by Lemma 7.9 in any ϵ-Nash equilibrium θ′

of G′, Pr[θ′ = ∅] < 1/2. However, if x ∈ L−, ν(G) = −1 and so because ν(G) < 0−4ϵ by Lemma 7.9
in any ϵ-Nash equilibrium θ′ of G′, Pr[θ′ = ∅] ≥ 1/2.

This hardness result, as well as that of Theorem 7.2, is based on a reduction to GameValue,
which is known to be EXP-complete [FKS95] to compute exactly and S2P-complete to approx-
imate. The next two hardness results use a different general approach. The hardness of these
problems is derived from the hardness of IsNash.

We could have obtained the result that Circuit Game FindNash is coMA-hard by using a
proof similar to that of Theorem 7.10 below that is based on the hardness of IsNash. However it
is known that coMA ⊆ S2P, so the above is a stronger result.

Unlike ExistsPureNash, FindNash is a lot harder in boolean circuit games than in graph
games. This is because of the hardness of IsNash in boolean circuit games.

Theorem 7.10 Boolean circuit game Exp-Approx FindNash is P#P-hard under Cook reduc-
tions but is in FNP#P.

Proof: We first show that boolean circuit game Exp-Approx FindNash can be computed by
a non-deterministic polynomial time machine with oracle access to #P. Such a machine will first
guess an ϵ/2 Nash equilibrium and then verify the correctness of its guess by checking if the guessed
strategy profile is an ϵ/2-Nash equilibrium or is not even an ϵ-Nash equilibrium.

By Theorem 3.4 in every n-player game G, there exists an ϵ/2-Nash equilibrium that can be
encoded in polynomial space.
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By Theorem 5.3 and Remark 5.4 we can check in polynomial time with oracle access to #P
(using the alternate definition 2 of IsNash in Definition 3.5) if the guessed equilibrium is an ϵ/2-
Nash equilibrium or is not even an ϵ-Nash equilibrium.

The proof of the hardness result is very similar to that of Theorem 5.3. Again, we reduce from
MajoritySat which is P#P-complete under Cook reductions. A circuit C belongs to Majori-
tySat if it evaluates to 1 on at least half of its inputs.

Given a circuit C with n inputs , we construct an n+1-player boolean circuit game. The payoffs
to agent 1 are as follows:

• 1
2 −

(
1
2

)n+1
for playing 0

• the output of the circuit C(s2, . . . , sn+1), where si is the strategy of agent i, for playing 1

The payoff of the other agents is determined by a game of pennies (for details see Section 2) in

which agent i plays against agent i+ 1 where i is even. Let ϵ = 1
2n ·

(
1
2

)n+2
.

Now we claim it is possible to determine whether a majority of the inputs satisfy C by checking
player 1’s strategy in any ϵ-Nash equilibrium. If C belongs toMajoritySat, then Pr[θ1 = 0] < 1/2;
If C does not belong to MajoritySat then Pr[θ1 = 0] ≥ 1/2.

Say that a majority of the inputs are accepted and let θ be an ϵ-Nash equilibrium for G. By
Theorem A.1, in pennies to obtain an ϵ-Nash equilibria, it is necessary that each player plays
each strategy with probability ∈ [1/2 − 2ϵ, 1/2 + 2ϵ]. That is, for each i = 2, . . . , n + 1, the
random variable θi has statistical distance at most 2ϵ from a uniform random bit. This implies
that the joint distribution (θ2, . . . , θn+1) has statistical distance at most 2ϵ · n from Un. Thus,
|E[C(θ2, . . . , θn+1)]− E[C(Un)]| ≤ 2ϵn = (1/2)n+2.

So the payoff to agent 1 for playing 0 is 1
2 −

(
1
2

)n+1
and for playing 1 is E[C(s2, . . . , sn+1)] ≥

1/2−
(
1
2

)n+2
. So by playing s1 = 1, agent 1 expects to do better by at least 1/2−

(
1
2

)n+2 − [1/2−(
1
2

)n+1
] =

(
1
2

)n+2
> 2ϵ. And so the following claim shows that Pr[θ1 = 0] < 1/2.

Claim 7.11 Let θ be an ϵ-Nash equilibrium. If there exists a strategy si ∈ si such that νi(Ri(θ, si)) ≥
νi(Ri(θ, s

′
i)) + 2ϵ for all s′i ∈ si, s′i ̸= si, then Pr[θi = si] ≥ 1/2.

Proof of claim: For the sake of contradiction, assume that θ is an ϵ-Nash
equilibrium where Pr[θi = si] < 1/2. Let v = maxs′i∈si,s′i ̸=si νi(Ri(θ, s

′
i)). νi(θ) <

1
2νi(Ri(θ, si)) +

1
2v ≤ 1

2νi(Ri(θ, si)) +
1
2(νi(Ri(θ, si)) − 2ϵ) = νi(Ri(θ, si)) − ϵ. So by

changing his strategy to si, agent i could do ϵ better. Therefore θ is not an actual
ϵ-Nash equilibrium. �

Now say that C is not a member of MajoritySat and θ is a Nash equilibrium for G. We
will show that Pr[θ1 = 0] ≥ 1/2. By the same reasoning as above, in any ϵ-Nash equilibrium

|E[C(s2, . . . , sn+1)]− E[C(Un)]| ≤
(
1
2

)n+2
.

So the payoff to agent 1 for playing 0 is 1
2 −

(
1
2

)n+1
and for playing 1 is E[C(s2, . . . , sn+1)] ≤

1/2−
(
1
2

)n
+
(
1
2

)n+2
. So by playing s1 = 0, agent 1 expects to do better by at least 1/2−

(
1
2

)n+1−
[1/2−

(
1
2

)n
+

(
1
2

)n+2
] =

(
1
2

)n+2
> 2ϵ. And so by Claim 7.11, Pr[θ1 = 0] ≥ 1/2.

In the previous result, the hardness comes from the hardness of IsNash, so it is not surprising
that boolean circuit game FindNash becomes easier when we introduce approximation.
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Theorem 7.12 Boolean circuit game Poly-Approx and Const-Approx FindNash are BPP-
hard, but can be computed in TFNPBPP = TFMA

Proof: We show that boolean circuit game Poly-Approx FindNash can be computed in
non-deterministic polynomial time with an oracle to BPP.

Such a machine will first guess an ϵ/2 Nash equilibrium and then verify the correctness of its
guess by checking if the guessed strategy profile is an ϵ/2-Nash equilibrium or is not even an ϵ-Nash
equilibrium.

By Theorem 3.4 in every Boolean circuit game G, there exists an ϵ/2-Nash equilibrium that can
be encoded in polynomial space.

By Theorem 5.9 and Remark 5.11 we can check in BPP (using the alternate definition 2 of
IsNash in Definition 3.5) if the guessed equilibrium is an ϵ/2-Nash equilibrium or is not even an
ϵ-Nash equilibrium.

We now show that boolean circuit game Const-Approx IsNash is BPP-hard. Given a BPP
language L and an instance x, we create a game so that we can tell whether x ∈ L by looking at
the first agent’s strategy in any 1

100 -Nash equilibrium.
We create a reduction as follows: given a language L in BPP there exists an algorithm A(x, r)

that decides if x ∈ L using coin tosses r with two-sided error of at most 1
100 . Let n = |r| and let

k = ⌈log25 100n⌉.
Now create G with n·k+1 agents. Each player has a strategy space of {0, 1}. Let w = w1w2 . . . wn

where wi = XOR(s(i−1)k+2, s(i−1)k+3, . . . , si·k+1). The first player gets paid:

• 1/2 if he plays 0

• the output of A(x,w) if he plays 1.

All the other players play pennies against each other. So agent i plays pennies with agent i + 1
where i is even. Let ϵ = 1/100

We claim that if x ∈ L, then Pr[θ1 = 0] < 1/2 in any ϵ-Nash equilibrium, and that if x ̸∈ L,
then Pr[θ1 = 0] ≥ 1/2 in any ϵ-Nash equilibrium.

Say that x ∈ L and that θ is an ϵ-Nash equilibrium for G. By Theorem A.1, in order to be in
an ϵ-equilibrium, all player but the first, must randomize between their two strategies, playing 0
with probability ∈ [1/2 − 2ϵ, 1/2 + 2ϵ]. The bits from the strategies of agents 2 through n · k + 1
are fully independent, and so by the next claim, if we XOR k of them together, the resulting bit is
within (4ϵ)k = 1/(100n) of being uniform.

Claim 7.13 Let X1, . . . , Xn be independent random variables where, Xi ∈ {0, 1} and Pr[Xi = 0] ∈
[1/2− ϵ, 1/2 + ϵ]. Let X = XOR(X1, . . . , Xn), then Pr[X = 0] ∈ [1/2− (2ϵ)n, 1/2 + (2ϵ)n].

Proof of claim: First create variables Yi = 2Xi − 1 (so that Yi ∈ {−1, 1} and
if Xi = 0 then Yi = −1 and if Xi = 1 then Yi = 1). E[Yi] = 2E[Xi] − 1 and so
−2ϵ ≤ E[Yi] ≤ 2ϵ. Let Y =

∏n
i=1 Yi. It is straightforward to check that Y = 2X − 1.

And so (E[Y ]+1)
2 = E[X].

But

|E[Y ]| =
n∏

i=1

|E[Yi]| ≤
n∏

i=1

|2ϵ| = (2ϵ)n

And so Pr[X = 1] = E[X] ∈ [1/2− (2ϵ)n

2 , 1/2 + (2ϵ)n

2 ]. �
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Because each input wi to the circuit is within 1/(100n) of uniform, their joint distribution is
within 1/100 of uniform. So

|E[A(x,w)]− E[A(x,Un)]| ≤
1

100

where Un is the uniform distribution over strings of length n. So if player 1 plays 0, his payoff is
1/2. But if player 1 plays 1, his payoff is

E[A(x,w)] ≥ E[A(x,Un)]−
1

100
≥ 98

100

Therefore, because agent 1 expects to do better by 98
100 − 1

2 ≥ 2ϵ by playing 1, by Claim 7.11,
Pr[θ1 = 0] < 1/2.

Say x ̸∈ L and θ is an ϵ-Nash equilibrium of G. Then by the same reasoning as above

|E[A(x,w)]− E[A(x,Un)]| ≤
1

100

And so the payoff to agent 1 for playing 0 is 1
2 , but the payoff to player 1 for playing 1 is

E[A(x,w)] ≤ E[A(x,Un)] +
1

100
≤ 2

100

Therefore, because agent 1 expects to do better by 1
2 − 2

100 > 2ϵ by playing 0, by Claim 7.11,
Pr[θ1 = 0] ≥ 1/2.

Finally, we show the complexity for graph games.

Theorem 7.14 With any type of approximation, graph game and boolean graph game FindNash
is in FNP, but neither is NP-hard under Cook reductions unless NP = coNP. Furthermore,
graph game and boolean graph game FindNash are P-hard, even when restricted to boolean graphs
of degree ≥ 3.

Proof: We show that graph game Exp-Approx FindNash can be computed in non-deterministic
polynomial time. Such a machine will first guess an ϵ/2 Nash equilibrium and then verify the
correctness of its guess by checking if the guessed strategy profile is an ϵ/2-Nash equilibrium or is
not even an ϵ-Nash equilibrium .

By Theorem 3.4 in every graph game G, there exists an ϵ/2-Nash equilibrium that can be
encoded in polynomial space.

By Proposition 5.1 we can check in polynomial time (using the alternate definition 2 of IsNash
in Definition 3.5) if the guessed equilibrium is an ϵ/2-Nash equilibrium or is not even an ϵ-Nash
equilibrium.

To show the hardness result, we reduce from CircuitValue. Given a circuit C, we construct
a game G with an agent for each gate in C. Each agent has possible strategies {0, 1} and is paid
1 for correctly computing the output of his gate (with respect to the strategies of the agents that
correspond to the inputs to his gate), and is paid 0 otherwise. Let ϵ = 1/100.

We call the strategy of the agent associated with gate g correct if it corresponds with the output
of the gate in an evaluation of C. The unique Nash equilibrium of G is where each player plays the
correct strategy.
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Claim 7.15 In any ϵ-Nash equilibrium, each player must play the correct strategy with probability
≥ 1− 2ϵ.

Proof of claim: We proceed by induction, but we defer the base case. Assume that
the two agents associated with the inputs gates to a particular gate g play the correct
pure strategy with probability ≥ 1− 2ϵ. Let v be the payoff the agent associated with
the gate g when he plays his correct strategy. We know that v ≥ (1−2ϵ)2 because if both
of the input agents play their correct strategies then the agent associated with g will
receive a payoff of 1 when he plays his correct strategy. If g plays the opposite strategy
his payoff will be 1− v. Now say that g plays the opposite strategy with probability p.
Because he is in an ϵ-equilibrium, we know that (1− p)v + p(1− v) + ϵ ≥ v because he
can get paid v if he just plays the correct strategy all the time. By simple arithmetic,
this implies that

p ≤ ϵ

2v − 1
≤ ϵ

2(1− 2ϵ)2 − 1
(by what we know of v) ≤ 2ϵ (by inspection when ϵ ≤ 1

100
)

The base case consists of those agents connected directly to the constant gates. However,
if we view the constant gates as agents who always tell the truth, then the previous
argument applies.

Therefore, in any ϵ-Nash equilibrium, each player must play the strategy correspond-
ing with the correct valuation of the circuit with probability ≥ 1− 2ϵ. �

So by looking at the strategy in an ϵ-Nash equilibrium of the agent at the output gate, we can
correctly deduce the value of the circuit.

If graph game FindNash were NP-hard under cook reductions, it would also be coNP-hard
under cook reductions. However, this would imply coNP ⊆ NP, because in NP we could simulate
the polynomial-time algorithm with oracle access to FindNash, guessing and verifying FindNash
oracle query results. Indeed, this is true for any problem in TFNP [MP91].

8 Existence of Nash equilibria with guaranteed properties

Because FindNash is a search problem where a solution is guaranteed to exist, it is hard to define a
nontrivial language from it. It is possible to create languages from FindNash by adding additional
constraints on the equilibrium. For example: does there exists a Nash equilibrium where each
player is paid at least x amount? does there exists a Nash equilibrium with social welfare x? or
does there exists a Nash equilibrium in which player 1 does not play some strategy s1? It turns
out that in the bimatrix case, for almost any constraint the language ends up being NP-complete
[CS08, GZ89].9 GuaranteeNash is one such a problem. In our results, each GuaranteeNash
problem is complete for the class that was the upper bound for the same instance of FindNash.
Figure 6 shows a summary of the results.

Theorem 8.1 Circuit game Exp-Approx GuaranteeNash and 2-player circuit game Exact
GuaranteeNash are NEXP-complete.

9Note that our results show that ExistsPureNash was an exception to this rule. It was trivial in bimatrix games,
but at least NP-hard in every other setting.
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Figure 6: Summary of GuaranteeNash Results

Proof: We first show that 2-player circuit game Exact GuaranteeNash is in NEXP. Given
instance (G, ϵ, (g1, . . . , gn)), guess a strategy profile θ, of at most exponential length, and then check
whether θ is a Nash equilibrium that meets the guarantees.

The correctness of this algorithm follows from Proposition 3.3 which tells us that if a Nash
equilibrium that meets the guarantees exists, then one exists which is at most exponentially large.

To check that θ is a Nash equilibrium, we need only check that νi(θ) ≥ νi(Ri(θ
′
i, si)) for all

agents i and for all si ∈ si. Because there are only 2 agents, and only an exponential number
of strategies, there are only exponentially many of these inequalities. To check that θ meets the
guarantees, we need only check that νi(θ) ≥ gi for both agents. Therefore, it is enough to show
that we can compute νi in EXP. But

νi(θ) =
∑
s1∈s1

∑
s2∈s2

[
Pr[θ′1 = s1] · Pr[θ′2 = s2] · vi(s1, s2)

]
All values that are multiplied or summed have at most exponential bit size, thus ν(θ) can be
computed in EXP.

We next show that circuit game Exp-Approx GuaranteeNash is in NEXP. Given instance

(G, ϵ, (g1, . . . , gn)) we guess a n2 log(n2 maxi |si|)
ϵ2

-uniform strategy profile θ. We then check whether θ
is an ϵ-Nash equilibrium that is within ϵ of meeting the guarantees. If it is, we accept, otherwise
we reject.

The correctness of this algorithm follows from Theorem 3.4 which states that if there exists

a Nash equilibrium that meets the guarantees, then there will exists a n2 log(n2 maxi |si|)
ϵ2

-uniform
ϵ-Nash equilibrium gets within ϵ/2 of the guarantees.

To check that θ is an ϵ-Nash equilibrium, we need only check that νi(θ) ≥ νi(Ri(θ
′
i, si)) + ϵ for

all agents i and for all si ∈ si. Because there are only a polynomial number of agents, and only an
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exponential number of strategies, there are only exponentially many of these inequalities. To check
that θ meets the guarantees, we need only check that νi(θ) ≥ gi− ϵ for at most polynomially many
agents. Therefore, it is enough to show that we can compute νi in EXP. But

νi(θ) =
∑
s1∈si

· · ·
∑

sn∈sn

[
n∏

i=1

(
Pr[θ′i = s1]

)
vi(s1, . . . , sn)

]

All values that are multiplied or summed have polynomial bit size (because it is a k-uniform strategy
profile), so the product of n of them is still polynomial. And the sum of exponentially many, is
exponential. Thus ν(θ) can be computed in EXP.

We now show that 2-player circuit game GuaranteeNash with exponentially small error is
NEXP-hard. We use a reduction and analysis very similar to the one of Conitzer and Sand-
holm [CS08] except that instead of reducing from 3SAT, we reduce from the NEXP-complete
problem Succinct 3SAT, and we keep track of approximation errors in the analysis. (Conitzer
and Sandholm consider a different notion of inapproximation. They show it is NP-complete to ap-
proximate the optimum social welfare obtained by any exact Nash Equilibrium to within a constant
factor. This results is incomparable with ours.)

Given a succinct representation of a boolean formula φ in conjunctive normal form with the
set of variables V and the set of clauses C, let N = |V | be the number of variables, and let the
set L = {x, x̄ : x ∈ V } be the set of literals. We treat L, the set of literals, as formally distinct
from V , the set of variables 10, and define a function v : L → V such that v(x) = v(x̄) = x. We
construct the 2-player circuit game G = (s, ν) where s1 = s2 = V ∪C ∪L so that if φ is satisfiable
and l1, . . . , lN are literals that satisfy the formula (exactly one for each variable), then the strategy
where each player randomizes uniformly between those N literals is a Nash equilibrium where the
expected payoff to each player is N − 1; however, if φ is not satisfiable, then no ϵ-Nash equilibrium
with payoffs to each player of at least N − 1− ϵ exists.

Define ν1(s1, s2) = ν2(s2, s1) as follows:

1. ν1(l1, l2) = N − 1 where l1 ̸= l̄2 for all l1, l2 ∈ L
This will ensure each player gets a high payoff for playing the aforementioned strategy.

2. ν1(l, l̄) = N − 4 for all l ∈ L
This will ensure that each player does not play a literal and its negation.

3. ν1(v, l) = 0 where v(l) = v, for all v ∈ V , l ∈ L
This, along with rule 4, ensures that for each variable v, each agent plays either l or l̄ with
probability at least 1/N where v(l) = v(l̄) = v.

4. ν1(v, l) = N where v(l) ̸= v, for all v ∈ V , l ∈ L

5. ν1(l, x) = N − 4 where l ∈ L, x ∈ V ∪ C
This, along with rules 6 and 7, ensures that if both players do not play literals, then the
payoffs cannot meet the guarantees.

6. ν1(v, x) = N − 4 for all v ∈ V , x ∈ V ∪ C

7. ν1(c, x) = N − 4 for all c ∈ C, x ∈ V ∪ C

10So that |V ∪ L| = 3N .
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8. ν1(c, l) = 0 where l ∈ c for all c ∈ C, l ∈ L
This, along with rule 9, ensures that for each clause c, each agent plays a literal in the clause
c with probability least 1/N .

9. ν1(c, l) = N where l ̸∈ c for all c ∈ C, l ∈ L

Let ϵ = 1/2N3 and let the guarantee to each player be N − 1.

First we show that if φ is satisfiable, then there exists a Nash equilibrium with the guarantees.
Say that l1, . . . , lN are literals that satisfy the formula (exactly one for each variable). Then the
strategy where each player randomizes uniformly between those N literals is a Nash equilibrium
where the expected payoff to each player is N − 1. The expected payoff to each player is N − 1
because they will always be playing l1 and l2 where l1 ̸= l̄2 and l1, l2 ∈ L. Secondly, there are
only two rules that pay out more than N − 1: ν1(c, l) = N where l ̸∈ C for all c ∈ C, l ∈ L
and ν1(v, l) = N where v(l) ̸= v, for all v ∈ V , l ∈ L. However, if agent i deviates and plays
any clause c, the other player will play a literal in that clause c with probability 1/N because he
randomizes between literals in a satisfying assignment. So in this case, agent i’s payoff is at most
1/N · 0 + (N − 1)/N ·N = N − 1, and so agent i is no better off than before. Similarly no matter
what variable an agent deviates to, his opponent plays a corresponding literal with probability 1/N .

Now we show that if φ is not satisfiable, in any ϵ-Nash equilibrium at least one player fails to
receive an expected payoff of N − 1 − ϵ. Unless both players are playing a literal, the maximum
sum of the outcomes is 2N − 4. We cannot be in this case with probability greater than ϵ because
otherwise the payoffs will sum to less than 2N − 2 − 2ϵ. So both players play elements of L with
probability > 1− ϵ.

Now assume that the probability that agent i plays l or l̄ for some specific l is less than
1/N − ϵ − 2ϵ

N (≥ 1/N − 2ϵ). Then the expected value for the other player, agent j, to play v(l) is
at least (1/N − ϵ− 2ϵ

N ) · 0 + ϵ · 0 + (1− ϵ− (1/N − ϵ− 2ϵ
N ))N = N − 1 + 2ϵ (the first term is when

agent i plays l or l̄, the second is when agent i does not play a literal, and the third term is when
agent i plays a literal ̸= l, l̄). So either agent j can do ϵ better by changing his strategy or he is
already receiving N − 1 + ϵ and so the other player does not meet his guarantee (recall the sum of
payoffs is at most 2N − 2).

Now we show that for each pair of literals, there is one that is played with probability ≥
1/N − 2ϵ− 1/N2 while the other is played with probability less than 1/N2.

If one player plays l and the other one −l, then the sum of payoffs is 2N − 8 and so this must
happen also with probability ≤ ϵ/3, otherwise at least one player will fail to meet his guarantee.
Without loss of generality, assume that player 1 plays l more than l̄. For the sake of contradiction,
assume player 1 plays l with probability less than 1/N− (1/N2+2ϵ) and so plays l̄ with probability
more than 1/N2. (Recall that each player plays either l or l̄ with probability at least 1/N−ϵ− 2ϵ

N ≥
1/N−2ϵ.) Either the other agent plays l with probability less than 1/N2 or plays l̄ with probability
greater than 1/N − (1/N2 + 2ϵ). In either case, the two players play both l and l̄ with probability
[1/N − (1/N2 + 2ϵ)][1/N2] = 1/N3 − 1/N4 − 2/N6 ≥ 1

2N3 = ϵ. Which cannot happen. So player
1 must play l with probability greater than 1/N − (1/N2 + 2ϵ) and by a symmetric argument so
must player 2. By the same argument, each must play l̄ with probability less than 1/N2.

So in any ϵ-Nash equilibrium that meets the guarantees, we can create a correspondence between
literals and truth assignments. We say that a literal is true if it is played more often than its
negation. However, if φ is not satisfiable, it means that for the corresponding assignment, there
exists at least one clause with no satisfying literal. Now by changing his strategy to that clause,
agent i will expect to receive a payoff of N whenever the other player, agent j, plays a literal that
is not in that clause. Agent j plays a literal with probability > 1 − ϵ, and there only 3 literals in
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the clause, each of which agent j plays with probability ≤ 1/N2. By changing his strategy, agent i
will receive at least (1− ϵ−3/N2)N > N −1+2ϵ. So either agent i can do ϵ better by changing his
strategy or he is already receiving N − 1 + ϵ and so the other player does not meet his guarantee
(recall the sum of payoffs is at most 2N − 2).

Theorem 8.2 Circuit game and 2-player circuit game Poly-Approx and Const-Approx Guar-
anteeNash are Σ2P-complete.

Proof: We first show that circuit game Poly-Approx GuaranteeNash is in Σ2P
BPP. Given

an instance (G, ϵ, (g1, . . . , gn)), we nondeterministically guess a polynomially small strategy profile
θ. Then we test whether θ is an ϵ/2-Nash equilibrium that is within ϵ/2 of meeting the guarantees
or whether θ is either not an ϵ-Nash equilibrium or fails to be within ϵ of the guarantees. In the
former case, we accept, in the latter case we reject.

We now argue the correctness of the algorithm. If (G, ϵ, (g1, . . . , gn)) is a positive instance of
GuaranteeNash, then there exists a Nash equilibrium with the guaranteed properties in G. By
Theorem 3.4 there exists an ϵ/2-Nash equilibrium θ that can be represented in polynomial space
where the payoffs of each player are within ϵ/2 of the guarantees. So the algorithm will accept
upon guessing θ.

If (G, ϵ, (g1, . . . , gn)) is a negative instance of GuaranteeNash, then there does not exist any
ϵ-Nash equilibrium within ϵ of meeting the guaranteed properties. So whatever strategy profile θ
the algorithm guesses, either θ will fail to be an ϵ-Nash equilibrium or θ will fail to be within ϵ of
the guarantees. Therefore the algorithm will always reject θ.

It is now left to show that in coNPBPP we can tell whether θ is an ϵ/2-Nash equilibrium that
is within ϵ/2 of meeting the guarantees or whether θ is either not an ϵ-Nash equilibrium or fails to
be within ϵ of the guarantees. Note that by Remark 5.15 we can verify whether θ is an ϵ/2-Nash
equilibrium or not even an ϵ-Nash equilibrium in coNPBPP. Also, in BPP we can test whether
νi(θ) ≥ gi−ϵ/2 or νi(θ) < gi−ϵ by Remark 5.10. Therefore we can test whether all these properties
hold or at least one fails to hold in coNPBPP.

Finally, recall from the proof of Theorem 7.8 that Σ2P = Σ2P
BPP.

We now show that 2-player circuit game Const-Approx GuaranteeNash is Σ2P-hard. We
reduce from QCircuitSat2, which is Σ2P-complete.

QCircuitSat2 = {(C, k1, k2) : ∃x ∈ {0, 1}k1 ,∀y ∈ {0, 1}k2 C(x, y) = 1}

where C is a circuit that takes k1 + k2 boolean variables. Given such an instance (C, k1, k2) create
2-player circuit game G = (s, ν), where si =

(
{0, 1}k1 × {0, 1}k2

)
∪ {∅}. The payoffs to G will be

designed so that if there exists an x0 ∈ {0, 1}k1 such that C(x0, y) = 1 for all y ∈ {0, 1}k2 , then a
Nash equilibrium is for each player to play strategies of the form (x0, y) (for any y ∈ {0, 1}k2) with
probability 1. However, if no such x0 exists, the only ϵ-Nash equilibrium will be to play ∅ most of
the time.

We will only define the payoffs for the first player because the payoffs are symmetric, that is
ν1(s1, s2) = ν2(s2, s1).

1. x1 ̸= x2, ν1((x1, y1), (x2, y2)) = 0

2. ν1((x, y1), (x, y2)) =

• 1− γ if C(x, y1) = C(x, y2) = 1
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• 0 if C(x, y1) = 1 and C(x, y2) = 0,

• 1 if C(x, y1) = 0 and C(x, y2) = 1,

• 1
2 if C(x, y1) = C(x, y2) = 0

3. ν1(∅, ∅) = γ

4. ν1((x1, y1), ∅) = 0

5. ν1(∅, (x2, y2)) = 1− γ

Let ϵ = 1
100 , γ = 1

10 , and gi = 1− γ.
We now show that if (C, k1, k2) ∈ QCircuitSat then there exists a Nash equilibrium that

meets the guarantees and if (C, k1, k2) ̸∈ QCircuitSat then no ϵ-Nash equilibrium in which each
player is paid within ϵ of his guarantees exists. Let (C, k1, k2) ∈QCircuitSat, then there exist
some x0 such that for all y, C(x0, y) = 1. Let θ be the strategy profile where both agents play
(x0, 0

k2) with probability 1. Now the payoff to each agent is 1− γ and it is easy to see that this is
a Nash equilibrium.

Now suppose that (C, k1, k2) ̸∈QCircuitSat. We must show that no ϵ-Nash equilibrium gets
within ϵ of the guarantees. For the sake of contradiction, assume that such a strategy profile θ
exists. We first note that for both players to get within ϵ of their guarantees, the sum of the payoffs
to the agents must be greater than 2− 2γ − 2ϵ ≥ 2− 4γ.

We claim that Pr[θ1 = (x, y1) ∧ θ2 = (x, y2) such that C(x, y1) = C(x, y2) = 1] > 1 − 4γ. The
maximum sum of payoffs for any strategy profile is 2 − 2γ. If both agents do not agree on the x
component of the strategy and do not both play a pairs (x, y) which satisfy C, then the maximum
sum of their payoffs will be 1. If this happens with probability more than 4γ, the sum of the payoffs
will be at most (1 − 4γ) · (2 − 2γ) + 4γ · 1 = 2 − 6γ + 4γ2 < 2− 4γ. So this cannot happen in an
ϵ-Nash equilibrium that meets the guarantees.

However, because (C, k1, k2) ̸∈QCircuitSat, for any x ∈ {0, 1}k1 there exists some y such that
C(x, y) = 0. We claim that if agent 1 unilaterally changes his strategy to θ′1 so that every time he had
played a strategy (x, y) where C(x, y) = 1 in θ1 he now plays a strategy (x, y′) where C(x, y′) = 0
in θ′1, then ν1(R1(θ, θ

′
1)) > ν1(θ) + ϵ. Agent 1 will always be paid at least as much, and whenever

in θ the strategies were such that s1 = (x, y1) and s2 = (x, y2) where C(x, y1) = C(x, y2) = 1 the
strategies in θ2 will instead be s1 = (x, y′1) and s2 = (x, y2) where C(x, y1) = 0 and C(x, y2) = 1.
And in this case agent 1 will receive γ more than before. However, this happens with probability
> 1−4γ. Therefore his payoff will increase by γ−4γ2 > ϵ. So there is no ϵ-Nash equilibrium where
each agent comes within ϵ of his guarantees.

Theorem 8.3 Boolean circuit game Exp-Approx GuaranteeNash is NP#P-complete.

Proof: We first show that boolean circuit game Exp-Approx GuaranteeNash is in NP#P.
Given an instance (G, ϵ, (g1, . . . , gn)), we nondeterministically guess a polynomially small strategy
profile θ. Then we test whether θ is an ϵ/2-Nash equilibrium that is within ϵ/2 of meeting the
guarantees or whether θ is either not an ϵ-Nash equilibrium or fails to be within ϵ of the guarantees.
In the former case, we accept, in the latter case we reject.

We now argue the correctness of the algorithm. If (G, ϵ, (g1, . . . , gn)) is a positive instance of
GuaranteeNash, then there exists a Nash equilibrium with the guaranteed properties in G. By
Theorem 3.4 there exists an ϵ/2-Nash equilibrium θ that can be represented in polynomial space
where the payoffs of each player are within ϵ/2 of the guarantees. So the algorithm will accept
upon guessing θ.
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If (G, ϵ, (g1, . . . , gn)) is a negative instance of GuaranteeNash, then there does not exist any
ϵ-Nash equilibrium with the guaranteed properties. So whatever strategy profile θ the algorithm
guesses, either θ will fail to be an ϵ-Nash equilibrium or θ will fail to be within ϵ of the guarantees.
Therefore the algorithm will always reject θ.

It is now left to show that in NP#P we can tell whether θ is an ϵ/2-Nash equilibrium that is
within ϵ/2 of meeting the guarantees or whether θ is either not an ϵ-Nash equilibrium or fails to be
within ϵ of the guarantees. We can do this by using a #P oracle to compute ν as in Equation 1 (in
proof of Theorem 5.3) to within a polynomial number of bits of accuracy. Therefore in P#Pwe can
test whether νi(θ) + ϵ/2 ≥ νi(Ri(θ, si)) or νi(θ) + ϵ < νi(Ri(θ, si)) for every agent i and si ∈ {0, 1}
and can test whether νi(θ) ≥ gi + ϵ/2 or νi(θ) < gi − ϵ for every agent i.

We now show that boolean circuit game Exp-Approx GuaranteeNash is NP#P-hard. Say
that we have a language L ∈ NP#P. By Corollary 5.7 there exists a nondeterministic TM M that
computes L which makes only one query calls to a #CircuitSat oracle, has all its nondeterminism
at the beginning, and only accepts computations where the correct oracle query result is encoded
in the nondeterminism. Let f(|x|) be a polynomial that bounds the length of a string needed to
encode the nondeterminism of M , let g(|x|) (without loss of generality even) be a polynomial that
bounds the number of inputs to the circuit queried by M , and let y be a string of bits that encodes
the nondeterminism used in M on a particular run.

Given an input x we construct a boolean game G with the following agents: f(|x|) agents
y1, . . . , yf(|x|) called y agents, f(|x|) agents y′1, . . . , y′f(|x|) called y′ agents, g(|x|) agents z1, . . . , zg(|x|)
called z agents, and agents J1, J2, and J3 called the judges.

Let the string y = sy1sy2 . . . syf(|x|) encode the nondeterminism of M , and let C be the circuit
sent to the oracle query using the nondeterminism encoded in y, let k be the oracle query guess
encoded by y, let m be the actual number of satisfying assignments of C, and let n be the number
of inputs to C.

The payoffs are as follows:

y agents: agent yi is paid 1 regardless.

y′ agents: agent y′i receives payoff 1 if his strategy is the same as yi’s and 0 otherwise.

z agents: The z agents are paid according to a game of pennies (see Section 2). Agent zi plays
pennies against agent zi+1 where i is odd.

agent J1: J1 receives payoff
k+ 1

2
2n if he plays 0 and C(sz1sz2 . . . szk) otherwise.

agent J2: J2 receives payoff
k− 1

2
2n if he plays 0 and C(sz1sz2 . . . szk) otherwise.

agent J3: J3 receives payoff 1 if J1 plays 0, J2 plays 1, and M run on input x with the nondeter-
ministic choices encoded by y accepts assuming that the query result encoded by y is correct.
Otherwise, J3 receives 0.

We guarantee that J3 and all the y′i be paid 1. We make no guarantees to the other players.
Let ϵ = 1/(200 · f(|x|) · g(|x|) · 2n).

Now we show that if x ∈ L then there exists a Nash equilibrium in G with these guarantees,
and if x ̸∈ L then there exists no ϵ-Nash equilibrium in G within ϵ of these guarantees.

Say x ∈ L. Then there exists a nondeterministic guess y = y1y2 · · · yf(|x|) such that M accepts x
run with the nondeterminism encoded by y, and the query result encoded by y is correct. We claim
that the strategy profile θ is a Nash equilibrium that meets the guarantees where θ is the strategy
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profile where: syi = sy′i = yi; sJ1 = 0, sJ2 = 1, sJ3 = 0, and the z agents randomize uniformly
between their two strategies. We first show that each agent is in equilibrium playing θ. The y
agents and the y′ agents are in equilibrium because they all receive payoff 1. The z agents are
because they are playing the unique equilibrium strategy of pennies. J1 is in equilibrium because

he now receives
k+ 1

2
2n and playing 1 yields a payoff of C(sz1sz2 . . . szk) which has expectation m

2n .
However, because y encodes a valid query guess, k = m. Similarly, J2 currently receives payoff

C(sz1sz2 . . . szk) which is expected to be m
2n = k

2n and would receive only
k− 1

2
2n by changing his

strategy. Finally, J3’s payoff is independent of his strategy and so he is also in equilibrium.
The y′ agents all receive their guarantees of 1. J3 also receives his guarantee of 1 because

sJ1 = 0, sJ2 = 1, and running M on x with the nondeterminism encoded by y results in an
accepting computation.

Say x ̸∈ L, then there exists no ϵ-Nash equilibrium within ϵ of the guarantees. For the sake
of contradiction, assume that an ϵ-Nash equilibrium θ exists in which each agent is within ϵ of
his guarantees. We note that each y agent must play some particular strategy with probability
greater than 1 − ϵ (if yi does not, then y′i cannot attain a payoff of at least 1 − ϵ). Let s̄yi be the
strategy agent yi plays with probability ≥ 1− ϵ in θ, and let ȳ = s̄y1 s̄y2 . . . s̄yf(|x|) . By union bound,

Pr[θy1θy2 . . . θyf(|x|) = ȳ] ≥ 1− f(|x|) · ϵ. Because ϵ < 1
100f(|x|) , ȳ is played with probability at least

99/100.
Also, by Theorem A.1, Pr[θzi = 0] ∈ [1/2− 2ϵ, 1/2 + 2ϵ]. E[C(θz1θz2 . . . θzn)] is within 2ϵ · n ≤

1/(100 · 2n) of m/2n.
Now because x ̸∈ L either ȳ encodes a rejecting computation on M , or the query result of ȳ is

incorrect. In the former case, J3 receives payoff 0 whenever ȳ is played, and so cannot receive more
than 1/100. In the latter case, k ̸= m. If k < m then agent J1 will receive k+1/2

2n for playing 0, but

will receive at least m
2n − 1

100·2n for playing 1. Because [m2n − 1
100·2n ] − [k+1/2

2n ] > 2ϵ by Claim 7.11
Pr[θJ1 = 1] ≥ 1

2 and so J3’s payoff will be at most 1/2 < 1 − ϵ = gJ3 − ϵ. A symmetric argument
handles the case where k > m.

Theorem 8.4 Boolean circuit game Poly-Approx and Const-Approx GuaranteeNash are
NPBPP = MA-complete.

Proof: We first show that boolean circuit game Poly-Approx GuaranteeNash is in NPBPP.
Given an instance (G, ϵ, (g1, . . . , gn)), we nondeterministically guess a polynomially small strategy
profile θ. Then we test whether θ is an ϵ/2-Nash equilibrium that is within ϵ/2 of meeting the
guarantees or whether θ is either not an ϵ-Nash equilibrium or fails to be within ϵ of the guarantees.
In the former case, we accept, in the latter case we reject.

We now argue the correctness of the algorithm. If (G, ϵ, (g1, . . . , gn)) is a positive instance of
GuaranteeNash, then there exists a Nash equilibrium with the guaranteed properties in G. By
Theorem 3.4 there exists an ϵ/2-Nash equilibrium θ that can be represented in polynomial space
where the payoffs of each player are within ϵ/2 of the guarantees. So the algorithm will accept
upon guessing θ.

If (G, ϵ, (g1, . . . , gn)) is a negative instance of GuaranteeNash, then there does not exist any
ϵ-Nash equilibrium within ϵ of meeting the guaranteed properties. So whatever strategy profile θ
the algorithm guesses, either θ will fail to be an ϵ-Nash equilibrium or θ will fail to be within ϵ of
the guarantees. Therefore the algorithm will always reject θ.

It is now left to show that in BPP we can tell whether θ is an ϵ/2-Nash equilibrium that is
within ϵ/2 of meeting the guarantees or whether θ is either not an ϵ-Nash equilibrium or fails to
be within ϵ of the guarantees. Note that by Remark 5.11 we can verify whether θ is an ϵ/2-Nash
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equilibrium or not even an ϵ-Nash equilibrium in BPP. By Remark 5.10 in BPP we can determine
if νi(θ) ≥ gi − ϵ

2 or νi(θ) ≥ gi − ϵ. Therefore we can test whether all these properties hold or at
least one fails to hold using calls to a BPP oracle.

We now show that boolean circuit game Const-Approx GuaranteeNash is NPBPP-hard.
Say that we have a language L ∈ NPBPP. By Lemma 5.13 there exists a nondeterministic TM M
that computes L which makes only one query calls to a BPP oracle for the problem ACAPP, has
all its nondeterminism at the beginning, and only accepts computations where the correct oracle
query is encoded in the nondeterminism. Let f(|x|) be a polynomial that bounds the length of a
string needed to encode the nondeterminism of M , let g(|x|) (without loss of generality even) be a
polynomial that bounds the number of inputs to the circuit queried by M , let y be a string of bits
that encodes the nondeterminism used in M on a particular run, and let r = ⌈log1/(4ϵ) 100g(|x|)⌉.

Given an input x we construct a boolean game G = (s, ν) with the following agents: f(|x|)
agents y1, . . . , yf(|x|) called y agents, f(|x|) agents y′1, . . . , y

′
f(|x|) called y′ agents, r · g(|x|) agents

z1, . . . , zr·g(|x|) called z agents, and agents J1 and J2 called the judges.
Let the string y = sy1sy2 . . . syf(|x|) encode the nondeterminism of M , and let C be the circuit

sent to the oracle query using the nondeterminism encoded in y, let k ∈ {0, 1} be the oracle query
guess encoded by y, let m ∈ {0, 1} be the correct query response when C is queried, let n be the
number of inputs to C, and let w = w1w2 . . . wn where wi = XOR(sz(i−1)r+1

, sz(i−1)r+2
, . . . , szi·r).

The payoffs are as follows:

y agents: agent yi is paid 1 regardless.

y′ agents: agent y′i receives payoff 1 if his strategy is the same as yi’s and 0 otherwise.

z agents: The z agents are paid according to a game of pennies (see Section 2). Agent zi plays
pennies against agent zi+1 where i is odd.

agent J1: J1 receives payoff 1
2 if he plays 0 and C(w) if he plays 1.

agent J2: J2 receives payoff 1 if J1 plays k and M run on input x with the nondeterministic choices
encoded by y accepts assuming that the query result encoded by y is correct. Otherwise, J2
receives 0.

We guarantee that J2 and all the y′i be paid 1. We make no guarantees to the other players.
Let ϵ = 1

800·f(|x|)·g(|x|) .

Now we show that if x ∈ L then there exists a Nash equilibrium in G with these guarantees,
and if x ̸∈ L then there exists no ϵ-Nash equilibrium in G within ϵ of these guarantees.

Say x ∈ L. Then there exists a nondeterministic guess y = y1y2 · · · yf(|x|) such that M accepts
x run with the nondeterminism encoded by y and the query result encoded by y is correct. We
claim that the strategy profile θ is a Nash equilibrium that meets the guarantees where θ is the
strategy profile where: syi = sy′i = yi; sJ1 = m, sJ2 = 1, and the z agents randomize uniformly
between their two strategies. We first show that in θ each agent is in equilibrium. The y agents
and the y′ agents are in equilibrium because they all receive payoff 1. The z agents are because
they are playing the unique equilibrium strategy of pennies. J1 is in equilibrium because if m = 0,
then C accepts at most 1

3 of its inputs. The XOR of uniformly random bits is uniformly random
so E[C(w)] = E[C(Un)] ≤ 1

3 (where Un is the uniform distribution over n-bit strings). And so J1
does better by playing sJ1 = 0 = m. If m = 1 a similar argument works. Finally, J2’s payoff is
independent of his strategy and so he is also in equilibrium.
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The y′ agents all receive their guarantees of 1. J2 also receives his guarantee of 1 because
sJ1 = m = k (because the oracle query result encoded by y is correct) and running M on x with
the nondeterminism encoded by y results in an accepting computation.

Say x ̸∈ L, then there exists no ϵ-Nash equilibrium within ϵ of the guarantees. For the sake
of contradiction, assume that an ϵ-Nash equilibrium θ exists in which each agent is within ϵ of his
guarantees. We note that each y agent must play some particular strategy with probability greater
than 1− ϵ (if yi does not, then y′i cannot attain a payoff of at least 1− ϵ). Let s̄yi be the strategy
agent yi plays with probability ≥ 1 − ϵ in θ, and let ȳ = s̄y1 s̄y2 . . . s̄yf(|x|) . By a union bound,

Pr[θy1θy2 . . . θyf(|x|) = ȳ] ≥ 1− f(|x|) · ϵ. Because ϵ < 1
100f(|x|) , ȳ is played with probability at least

99/100.
Also Pr[θzi = 0] ∈ [1/2− 2ϵ, 1/2 + 2ϵ] by Theorem A.1. So by Claim 7.13 each bit wi, which is

the XOR of r such bits, is within (4ϵ)r ≤ 1/100n of being uniform, and their joint distribution is
within 1/100 of uniform. So E[C(w)] is within 1/100 of E[C(Un)].

Now because x ̸∈ L either y encodes a rejecting computation on M , or the query result of ȳ is
incorrect. In the former case, J3 receives payoff 0 whenever ȳ is played, and so cannot receive more
than 1/100. In the latter case, k ̸= m. If k = 0 and m = 1 then agent J1 will receive 1

2 for playing
0, but will receive E[C(w)] ≥ E[C(Un)]− 1

100 ≥ 2
3 −

1
100 for playing 1. Because [23 −

1
100 ]− [12 ] > 2ϵ by

Claim 7.11 Pr[θJ1 = 1] ≥ 1
2 and so J3’s payoff will be at most 1/2 < 1− ϵ. A symmetric argument

handles the case where k = 1 and m = 0.

Theorem 8.5 Graph game and boolean graph game GuaranteeNash is NP-complete for all
levels of approximation. The results hold even when restricted to degree d graphs, d ≥ 3.

Proof: Graph game GuaranteeNash is in NP because we can guess a strategy profile
n2 log(n2 maxi |si|)

ϵ2
-uniform strategy profile θ and test in polynomial time whether θ is an ϵ-Nash

equilibrium where each player is payed within ϵ of his guarantees. If it is, accept; if not, reject.
This algorithm works because by Theorem 3.4, if there exits a Nash equilibrium that meets the

guarantees, then there exists a n2 log(n2 maxi |si|)
ϵ2

-uniform ϵ-Nash equilibrium that gets within ϵ/2 of
the guarantees.

To show that it is NP-hard, we reduce from CircuitSat. Given a circuit C we create an
instance of boolean graph gameGuaranteeNash, (G, ϵ, (1, . . . , 1)). We create G with the following
agents: 2 input agents x and x′ for each input x to C and a gate agent g for each gate g in the
circuit. Each agent has a strategy space of {0, 1}.

Each input agent x is paid 1 regardless. Each input agent, x′ is paid 1 only if it plays the
same strategy as x, the other input agent that represents the same circuit input. Except for the
gate agent associated with the output gate, each gate agent g is paid 1 for correctly computing the
output of his gate (with respect to the strategies of the agents that correspond to the inputs of his
gate), and is paid 0 otherwise. If an input x to the circuit is an input to a gate g, then the agent
associated with the gate g receives his payoff according to x’s strategy (not x′’s strategy). The
output agent gets paid 1 only if both he correctly computes the output of his gate and that value
is 1. Let ϵ = 1/100.

We now show that if C ∈SAT, then there exists a Nash equilibrium that meets the guaran-
tees, but if C ̸∈SAT, then there exist no ϵ-Nash equilibrium that comes within ϵ of meeting the
guarantees.

Say C has a satisfying assignment. Then the strategy profile where all input agents play a
strategy which corresponds to some satisfying assignment, and the gate agents correctly evaluate

47



their gates is a Nash equilibrium that meets the guarantees. It is a Nash equilibrium because each
agent receives a payoff of 1, and so cannot do better. The input agents receive 1 because x and
x′ always play the same strategy. Each gate agent besides the output agent is paid 1 because he
correctly computes the output of his gate with respect to the strategies of the two inputs. The
output gate agent correctly computes the output of his gate with respect to the strategies of the
two inputs; moreover, because this is a satisfying assignment, the output he computes is 1, and so
he also receives a payoff of 1.

If C has no satisfying assignment, then there exists no ϵ-Nash equilibrium that comes within ϵ
of the guarantees. Every ϵ-Nash equilibrium of G which is within ϵ of the guarantees corresponds
to some evaluation of the circuit. By induction we show that every player in the game (with the
exception of the gate agent associated with the output gate) plays a pure strategy that corresponds
with some evaluation of the circuit with probability > 1− 2ϵ.

The base case is the input gates. Every input agent x must play some strategy with probability
≥ 1− ϵ, otherwise, his strategy will not agree with x′’s strategy with probability ≥ 1− ϵ no matter
what x′ plays, and so x′’s payoff will be less than 1− ϵ.

Given that the input agents each play some strategy the majority of the time, we can define a
correct strategy for gate agent g. We call the strategy of the gate agent g correct if it corresponds
with the output of the gate g in an evaluation of C using the strategy that agent x plays the
majority of the time as the input to gate x.

We claim that in any ϵ-Nash equilibrium, each gate agent besides the output agent must play
the correct strategy with probability ≥ 1−2ϵ. We proceed by induction. The base case has already
been proven. The inductive step is exactly as in the proof of Claim 7.15.

Therefore, in any qualifying Nash equilibrium, each player (beside the output gate player) must
play a strategy corresponding with the correct valuation of the circuit. But because there is no
satisfying assignment, the agent assigned to the output node, will not get a payoff close to 1. For
in the correct valuation, his gate evaluates to 0, but if he plays 0, he is paid nothing. So the best
he can do is play 1. Because each of the agents corresponding to the input gates play the correct
strategy with probability ≥ 1− 2ϵ, and the output gate receives nothing when they both play the
correct strategy, the most that the output agent can be paid is 4ϵ < 1− ϵ.

Conitzer and Sandholm [CS08] showed that Exact GuaranteeNash is NP-complete in bi-
matrix games. We observe that the same holds even for Poly-Approx:

Theorem 8.6 [CS08] Bimatrix Exact and Poly-Approx GuaranteeNash are NP-complete.

Proof: The hardness proof is exactly the same as the proof of Theorem 8.1 except now N is
polynomial in the size of the input instead of exponential.

It is inNP because we can guess a polynomially-sized strategy profile, θ, and then in polynomial
time check that it is a Nash equilibrium that satisfies the guarantees. By Proposition 3.3 If such a
Nash equilibrium exits, then there exists one of at most polynomial size.

Theorem 8.7 Bimatrix Const-Approx GuaranteeNash is in P̃.

Proof: Given an instance (G, ϵ, (g1, . . . , gn)) simply look through all the k-uniform strategies,

where k = 4 log(4maxi |si|)
(ϵ)2

for a strategy profile that is an ϵ-Nash equilibrium where the payoffs to

players are within ϵ/2 of their guarantees. There are only a quasipolynomial number of k-uniform
strategies and checking each strategy takes only polynomial time. If such a strategy is found,
accept, otherwise reject.
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If there is no ϵ-Nash equilibrium within ϵ of the guarantees, surely the algorithm will not find
one. However, if there exists some Nash equilibrium θ that pays off each player his guaranteed
amount, then by Theorem 3.4 there will exist a k-uniform ϵ-Nash equilibrium θ′ that is within ϵ/2
of the guarantees, and so the algorithm will find it.
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A Analysis of Pennies

The game of pennies G = (s, ν) involves 2 players. s1 = s2 = {0, 1} and the payoffs are as follows:

Player 2
Heads Tails

Player 1 Heads (1, 0) (0, 1)
Tails (0, 1) (1, 0)

Pennies has a unique Nash equilibrium where both agents randomize uniformly between their
two strategies. If the second player does not randomize equally between his strategies, player 1’s
best strategy is to play, with probability 1, the strategy that player 2 plays more often. And
similarly if player 1 does not randomize equally, player 2 does the opposite of what player 1 plays
most often. So the only Nash equilibrium is when both players randomized equally between their
two options.

The following theorem gives us an idea of what constitutes an ϵ-Nash equilibrium in the game
of pennies.

Theorem A.1 In any ϵ-Nash equilibrium of pennies, each player randomizes between each strategy
with probability 1

2 ± 2ϵ.

Proof: Say that player 1 plays 1 with probability p and player 2 plays 1 with probability q.
Then the payoff to player 1 is pq + (1 − p)(1 − q). Now let p = 1

2 + δ and q = 1
2 + δ′. If agent 1

plays a pure strategy his payoff will be either q or 1− q. In any ϵ-Nash equilibrium it must be that
pq + (1− p)(1− q) + ϵ ≥ max{q, 1− q} ⇒ max{q, 1− q} − [pq + (1− p)(1− q)] ≤ ϵ.
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Say that δ′ ≥ 0. Then we get

1

2
+ δ′ −

[(
1

2
+ δ

)(
1

2
+ δ′

)
+

(
1

2
− δ

)(
1

2
− δ′

)]
≤ ϵ ⇒ δ′ − 2δδ′ ≤ ϵ ⇒ δ′ ≤ ϵ

1− 2δ

Similarly, if δ′ ≤ 0. Then we get
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)(
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)
+

(
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2
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)(
1
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)]
≤ ϵ ⇒ −δ′ − 2δδ′ ≤ ϵ ⇒ −δ′ ≤ ϵ

1 + 2δ

Doing the same thing for agent 2 with δ > 0:
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≤ ϵ ⇒ δ + 2δδ′ ≤ ϵ ⇒ δ ≤ ϵ
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And now with δ < 0:
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1− 2δ′

Now by substitution and algebraic manipulation, we can see that these conditions require that
|δ|, |δ′| < 2ϵ.
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