Genetics of rheumatoid arthritis contributes to biology and drug discovery

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>doi:10.1038/nature12873</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:12785839</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA</td>
</tr>
</tbody>
</table>

(Article begins on next page)
Genetics of rheumatoid arthritis contributes to biology and drug discovery

A full list of authors and affiliations appears at the end of the article.

Abstract

A major challenge in human genetics is to devise a systematic strategy to integrate disease-associated variants with diverse genomic and biological datasets to provide insight into disease pathogenesis and guide drug discovery for complex traits such as rheumatoid arthritis (RA).
Here, we performed a genome-wide association study (GWAS) meta-analysis in a total of >100,000 subjects of European and Asian ancestries (29,880 RA cases and 73,758 controls), by evaluating ~10 million single nucleotide polymorphisms (SNPs). We discovered 42 novel RA risk loci at a genome-wide level of significance, bringing the total to 101. We devised an in-silico pipeline using established bioinformatics methods based on functional annotation, cis-acting expression quantitative trait loci (cis-eQTL), and pathway analyses – as well as novel methods based on genetic overlap with human primary immunodeficiency (PID), hematological cancer somatic mutations and knock-out mouse phenotypes – to identify 98 biological candidate genes at these 101 risk loci. We demonstrate that these genes are the targets of approved therapies for RA, and further suggest that drugs approved for other indications may be repurposed for the treatment of RA. Together, this comprehensive genetic study sheds light on fundamental genes, pathways and cell types that contribute to RA pathogenesis, and provides empirical evidence that the genetics of RA can provide important information for drug discovery.

We conducted a three-stage trans-ethnic meta-analysis (Extended Data Fig. 1). Based on the polygenic architecture of RA and shared genetic risk among different ancestry, we hypothesized that combining GWAS of European and Asian ancestry would increase power to detect novel risk loci. In Stage I, we combined 22 GWAS for 19,234 cases and 61,565 controls of European and Asian ancestry. We performed trans-ethnic, European-specific, and Asian-specific GWAS meta-analysis by evaluating ~10 million SNPs. Characteristics of the cohorts, genotyping platforms, quality control (QC) criteria are described in Extended Data Table 1 (overall $\lambda_{GC} < 1.075$).

Stage I meta-analysis identified 57 loci that satisfied a genome-wide significance threshold of $P < 5.0 \times 10^{-8}$, including 17 novel loci (Extended Data Fig. 2). We then conducted a two-step replication study (Stage II for in-silico and Stage III for de-novo) in 10,646 RA cases and 12,193 controls for the loci with $P < 5.0 \times 10^{-6}$ in Stage I. In a combined analysis of Stages I–III, we identified 42 novel loci with $P < 5.0 \times 10^{-8}$ in either of the trans-ethnic, European, or Asian meta-analyses. This increases the total number of RA risk loci to 101 (Table 1 and Supplementary Table 1).

Comparison of 101 RA risk loci revealed significant correlations of risk allele frequencies (RAF) and odds ratios (OR) between Europeans and Asians (Extended Data Fig. 3a–c; Spearman’s $\rho = 0.67$ for RAF and 0.76 for OR; $P < 1.0 \times 10^{-13}$), although 5 loci demonstrated population-specific associations ($P < 5.0 \times 10^{-8}$ in one population but $P > 0.05$ in the other population without overlap of 95% confidence intervals [95%CI] of OR). In the population-specific genetic risk model, the 100 RA risk loci outside of the major histocompatibility complex (MHC) region explained 5.5% and 4.7% of heritability in Europeans and Asians, respectively, with 1.6% of the heritability by the novel loci. The trans-ethnic genetic risk model, based on RAF from one population but OR from the other population, could explain the majority (>80%) of the known heritability in each population (4.7% for Europeans and 3.8% for Asians). These observations support our hypothesis that the genetic risk of RA is shared, in general, among Asians and Europeans.

We assessed enrichment of 100 non-MHC RA risk loci in epigenetic chromatin marks (Extended Data Fig. 3d). Of 34 cell types investigated, we observed significant enrichment of RA risk alleles with trimethylation of histone H3 at lysine 4 (H3K4me3) peaks in primary CD4+ regulatory T cells (T_{reg} cells; $P < 1.0 \times 10^{-5}$). For the RA risk loci enriched with T_{reg} H3K4me3 peaks, we incorporated the epigenetic annotations along with trans-ethnic differences in patterns of linkage disequilibrium (LD) to fine-map putative causal risk alleles (Extended Data Fig. 3e–f).
We found that approximately two-thirds of RA risk loci demonstrated pleiotropy with other human phenotypes (Extended Data Fig. 4), including immune-related diseases (e.g., vitiligo, primary biliary cirrhosis), inflammation-related or hematological biomarkers (e.g., fibrinogen, neutrophil counts) and other complex traits (e.g., cardiovascular diseases).

Each of 100 non-MHC RA risk loci contains on average ~4 genes in the region of LD (in total 377 genes). To systematically prioritize the most likely biological candidate gene, we devised an *in silico* bioinformatics pipeline. In addition to the published methods that integrate data across associated loci\(^7,^8\), we evaluated several biological datasets to test for enrichment of RA risk genes, which help to pinpoint a specific gene in each loci (Extended Data Fig. 5–6, Supplementary Tables 2–4).

We firstly conducted functional annotation of RA risk SNPs. Sixteen percent of SNPs were in LD with missense SNPs (\(r^2 > 0.80\); Extended Data Fig. 5a–b). The proportion of missense RA risk SNPs was higher compared to a set of genome-wide common SNPs (8.0%), and relatively much higher in the explained heritability (~26.8%). Using cis-eQTL data obtained from peripheral blood mononuclear cells (5,311 individuals)\(^6\) and from CD4\(^+\) T cells and CD14\(^+\) monocytes (212 individuals), we found that RA risk SNPs in 44 loci showed cis-eQTL effects (FDR-q or permutation \(P < 0.05\); Extended Data Table 2).

Second, we evaluated whether genes from RA risk loci overlapped with PID genes\(^14\), and observed significant overlap (14/194 = 7.2%, \(P = 1.2\times10^{-4}\); Fig. 1a and Extended Data Fig. 5c). Classification categories of PID genes showed different patterns of overlap: highest proportion of overlap in “immune dysregulation” (4/21 = 19.0%, \(P = 0.0033\)) but no overlap in “innate immunity”.

Third, we evaluated overlap with cancer somatic mutation genes\(^15\), under the hypothesis that genes with cell growth advantages may contribute to RA development. Among 444 genes with registered cancer somatic mutations\(^15\), we observed significant overlap with hematological cancers (17/251 = 6.8%, \(P = 1.2\times10^{-4}\); Fig. 1b and Extended Data Fig. 5d), but not from non-hematological cancers (6/221 = 2.7%, \(P = 0.56\)).

Fourth, we evaluated overlap with genes implicated in knockout mouse phenotypes\(^16\). Among the 30 categories of phenotypes\(^16\), we observed 3 categories significantly enriched with RA risk genes (\(P < 0.05/30 = 0.0017\)): “hematopoietic system phenotype”, “immune system phenotype”, and “cellular phenotype” (Extended Data Fig. 5e).

Fifth, we conducted molecular pathway enrichment analysis (Fig. 1c and Extended Data Fig. 5f). We observed enrichment (FDR-q < 0.05) for T cell related pathways, consistent with cell-specific epigenetic marks, as well as enrichment for B cell and cytokine signaling pathways (e.g., IL-10, interferon, GM-CSF). For comparison, our previous RA GWAS meta-analysis\(^3\) did not identify the B cell and cytokine signaling pathways, thereby indicating that as more loci are discovered, further biological pathways are identified.

Based on these new findings, we adopted the following 8 criteria to prioritize each of the 377 genes from the 100 non-MHC RA risk loci (Fig. 2 and Extended Data Fig. 6a–c): (i) genes with RA risk missense variant (\(n = 19\)); (ii) cis-eQTL genes (\(n = 51\)); (iii) genes prioritized by PubMed text-mining\(^7\) (\(n = 90\)); (iv) genes prioritized by protein-protein interaction (PPI)\(^8\) (\(n = 63\)); (v) PID genes (\(n = 15\)); (vi) hematological cancer somatic mutation genes (\(n = 17\)); (vii) genes prioritized by associated knockout mouse phenotypes (\(n = 86\)); and (viii) genes prioritized by molecular pathway analysis\(^9\) (\(n = 35\)).
Ninety-eight genes (26.0%) had a score ≥2, which we defined as “candidate biological RA risk genes”. Nineteen loci included multiple biological RA risk genes (e.g., IL3 and CSF2 at 5q31), while no biological gene was selected from 40 loci (Supplementary Table 5).

To provide empirical evidence of the pipeline, we evaluated relationships of the gene scores to independent genomic or epigenetic information. Genes with higher biological scores were more likely to be the nearest gene to the risk SNP (18.6% for gene score <2 and 49.0% for gene score ≥2; $P = 2.1 \times 10^{-8}$), and also to be included in the region where RA risk SNPs were overlapping with H3K4me3 Treg peaks (41.9% for gene score <2 and 57.1% for gene score ≥2; $P = 0.034$). Further, Treg cells demonstrated the largest increase in overlapping proportions with H3K4me3 peaks for increase of biological gene scores compared to other cell types (Extended Data Fig. 6d).

Finally, we evaluated the potential role of RA genetics in drug discovery. We hypothesized that if human genetics is useful for drug target validation, then it should identify existing approved drugs for RA. To test this “therapeutic hypothesis”1, we obtained 871 drug target genes corresponding to approved, clinical trial, or experimental drugs of human diseases (Supplementary Table 6)17,18. We evaluated whether any of the protein-products from the biological RA risk genes, or any genes from a direct PPI network with them (Fig. 3a), are the pharmacologically active targets of approved RA drugs (Extended Data Fig. 7a).

Twenty-seven drug target genes of approved RA drugs demonstrated significant overlap with 98 biological RA risk genes and 2,332 genes from the expanded PPI network (18 genes overlapped; 3.7-fold enrichment by permutation analysis, $P < 1.0 \times 10^{-5}$; Fig. 3b). For comparison, all drug target genes (regardless of disease indication) overlapped with 247 genes, which is 1.7-fold enrichment more than expected by chance, but less than 2.2-fold enriched compared to overlap of the target genes of RA drugs ($P = 0.0035$). Examples of approved RA therapies identified by this analysis include tocilizumab19,20 (anti-IL6R), tofacitinib21 (JAK3 inhibitor), and abatacept21 (CTLA4-Ig; Fig. 3c and Extended Data Fig. 8).

We also assessed how approved drugs for other diseases might be connected to biological RA risk genes. We highlight CDK6 and CDK4, targets of three approved drugs for different types of cancer22 (Fig. 3d). In support for repurposing, one CDK6/CDK4 inhibitor, flavopiridol, has been shown to ameliorate disease activity in animal models of RA22. Further, the biology is plausible, since several approved RA drugs were initially developed for cancer treatment and then repurposed for RA (e.g., rituximab). While further investigations are necessary, we propose that target genes/drugs selected by this approach could represent promising candidates for novel drug discovery for RA treatment.

We note that a non-random distribution of drug-to-disease indications in the databases could potentially bias our results. Namely, since RA risk genes are enriched for genes with immune function, spurious enrichment with drug targets could occur if the majority of drug indications in databases were for immune-mediated diseases or immune-related target genes. However, such enrichment was not evident in our analysis (~11% for drug indications and ~9% for target genes; Extended Data Fig. 7b).

In summary, through a comprehensive genetic study with >100,000 subjects, we identified 42 novel RA risk loci and provided novel insight into RA pathogenesis. We particularly highlight the role of genetics for drug discovery. While there are anecdotal examples1,23, our study provides a systematic approach by which human genetic data can be efficiently integrated with other biological information to derive biological insights and drug discovery.
Methods

Subjects

Our study included 29,880 RA cases (88.1% seropositive and 9.3% seronegative for anti-citrullinated peptide antibody [ACPA] or rheumatoid factor [RF], and 2.6% for unknown autoantibody status) and 73,758 controls. All RA cases fulfilled the 1987 criteria of the American College of Rheumatology for RA diagnosis\(^2\)\(^4\), or were diagnosed as RA by a professional rheumatologist. The 19,234 RA cases and 61,565 controls enrolled in the Stage I trans-ethnic GWAS meta-analysis were obtained from 22 studies from European and Asian ancestries (14,361 RA cases and 43,923 controls from 18 studies of Europeans and 4,873 RA cases and 17,642 controls from 4 studies of Asians); BRASS\(^2\), CANADA\(^2\), EIRA\(^2\), NARAC1\(^2\), NARAC2\(^2\), WTCCC\(^2\), Rheumatoid Arthritis Consortium International for Immunochip (RACI)-UK\(^4\), RACI-US\(^4\), RACI-SE-E\(^4\), RACI-SE-U\(^4\), RACI-NL\(^4\), RACI-ES\(^4\), RACI-i2b2, ReAct, Dutch (including AMC, BeSt, LUMC, and DREAM), anti-TNF response to therapy collection (ACR-REF: BRAGGSS, BRAGGSS2, ERA, KI, and TEAR), CORRONA, Vanderbilt, 3 studies from the GARNET consortium (BioBank Japan Project\(^3\), Kyoto University\(^3\), and IORRA\(^3\)), and Korea. Of these, GWAS data of 4,309 RA cases and 8,700 controls from 6 studies (RACI-i2b2, ReAct, Dutch, ACR-REF, CORRONA, and Vanderbilt) have not been previously published.

The 3,708 RA cases and 5,535 controls enrolled in the Stage II in silico replication study were obtained from 2 studies from Europeans (2,780 RA cases and 4,700 controls from Genentech and SLEGEN) and Asians (928 RA cases and 835 controls from China) [manuscript submitted]. The 6,938 RA cases and 6,658 controls enrolled in the Stage III de novo replication study were obtained from 2 studies from Europeans (995 RA cases and 1,101 controls from CANADAII\(^2\)) and Asians (5,943 RA cases and 5,557 controls from BioBank Japan Project, Kyoto University, and IORRA\(^3\)).

All subjects in the Stage I, Stage II and Stage III studies were confirmed to be independent through analysis of overlapping SNP markers. Any duplicate subjects were removed from the Stage II and Stage III replication studies, leading to slightly different sample sizes compared to previous studies that used these same collections\(^2,3\).

All participants provided written informed consent for participation in the study as approved by the ethical committees of each of the institutional review boards. Detailed descriptions of the study design, participating cohorts, and the clinical characteristics of the RA cases are provided in detail at Extended Data Fig. 1 and Extended Data Table 1a, as well as the previous reports\(^2–4\).

Genotyping, quality control, and genotype imputation of GWAS data

Genotyping platforms and QC criteria of GWAS, including cutoff values for sample call rate, SNP call rate, MAF, and Hardy-Weinberg equilibrium (HWE) \(P\)-value, covariates in the analysis, and imputation reference panel information are provided for each study in Extended Data Table 1b. All studies were analyzed based on the same analytical protocol, including exclusion of closely-related subjects and outliers in terms of ancestries, as described elsewhere\(^3\). After applying QC criteria, whole-genome genotype imputation was performed using 1000 Genome Project Phase I (\(\alpha\)) European (\(n = 381\)) and Asian (\(n = 286\)) data as references\(^11\). We excluded monomorphic or singleton SNPs or SNPs with deviation of HWE (\(P < 1.0\times10^{-7}\)) from each of the reference panels. GWAS data were split into \(\approx300\) chunks that evenly covered whole-genome regions and additionally included 300 kbp of duplicated regions between neighboring chunks. Immunochip data were split into \(\approx2,000\) chunks which included each of the targeted regions or SNPs on the array. Each chunk was
pre-phased and imputed by using minimac (release stamp 2011-10-27). SNPs in X-chromosome were imputed for males and females separately. We excluded imputed SNPs which were duplicated between chunks, SNPs with minor allele frequency (MAF) < 0.005 in RA cases or controls, or with low imputation score ($R^2 < 0.5$ for genome-wide array and < 0.7 for Immunochip) from each study. We found that imputation of Immunochip effectively increased the number of the available SNPs in by 7.0 fold (from ~129,000 SNPs to ~924,000 SNPs) to cover ~12% of common SNPs (MAF > 0.05) included in the 1000 Genomes Project reference panel for the European ancestry.

Stage I trans-ethnic genome-wide meta-analysis

Associations of the SNPs with RA were evaluated by logistic regression models assuming additive effects of the allele dosages including top 5 or 10 principal components as covariates (if available) using mach2dat v1.0.16 (Extended Data Table 1b). Allele dosages of the SNPs in X chromosome were assigned as 0/1/2 for females and 0/2 for males and analyzed separately. Meta-analysis was performed for the trans-ethnic study (both Europeans and Asians), European study, and Asian study separately. The SNPs available in ≥ 3 studies were evaluated in each GWAS meta-analysis, which yielded ~10 million autosomal and X-chromosomal SNPs. Information about the SNPs, including the coded alleles, was oriented to the forward strand of the NCBI build 37 reference sequence. Meta-analysis was conducted by an inverse-variance method assuming a fixed-effects model on the effect estimates (Beta) and the standard errors (SE) of the allele dosages using the Java™ source code implemented by the authors. Double GC correction was carried out using the inflation factor (λ_{GC}) obtained from the results of each GWAS and the GWAS meta-analysis, after removing the SNPs located ±1 Mbp of known RA loci or in the MHC region (chromosome 6, 25–35 Mbp). While there is not yet uniform consensus on the application of double GC correction, we note that potential effects of double GC correction would not be substantial in our study because of the small values of the inflation factors in the GWAS meta-analysis ($\lambda_{GC} < 1.075$ and $\lambda_{GC, 1000} < 1.005$; Extended Data Table 1b).

As for the definition of known RA risk loci in this study, we included the loci which showed significant associations in one of the previous studies ($P < 5.0 \times 10^{-8}$) or which had been replicated in independent cohorts. We consider the locus including multiple independent signals of associations as a single locus, such as the MHC locus and TNFAIP3. Although 6 of these 59 loci previously identified as known RA risk loci did not reach a suggestive level of association (defined as $P < 5.0 \times 10^{-6}$) in our Stage I meta-analysis, previous studies have gone on to replicate most of these associations in additional samples (Supplementary Table 1). Thus, the number of confirmed RA risk loci is 101 (including the MHC region).

Stage II and Stage III replication studies

In silico (Stage II) and *de novo* (Stage III) replication studies were conducted using independent European and Asian subjects (Extended Data Table 1). The 146 loci that satisfied $P < 5.0 \times 10^{-6}$ in the Stage I trans-ethnic, European, or Asian GWAS meta-analysis were selected for the Stage II *in silico* replication study. The SNPs that demonstrated the most significant associations were selected from each of the loci. When the SNP was not available in replication datasets, a proxy SNP with the highest LD ($r^2 > 0.80$) was alternatively assessed. GWAS QC, genotype imputation, association analysis were assessed in the same manner as in the Stage I GWAS. For the 60 loci that demonstrated suggestive associations in the combined result of Stage I GWAS meta-analysis and the Stage II *in silico* replication study but not included as a known RA risk locus, we calculated statistical power to newly achieve genome-wide significance threshold of $P < 5.0 \times 10^{-8}$ for Europeans and Asians separately, which were estimated based on the allele frequencies, OR, and *de novo* replication sample sizes of the populations. We then selected top 20 SNPs with the highest
statistical power for Europeans and Asians separately (in total 32 SNPs), and conducted the Stage III de novo replication study. Genotyping methods, quality control, and confirmation of subject independence in the Stage III de novo replication study were described in the previous studies\(^2,3\). The combined study of the Stage I GWAS meta-analysis and the Stage II and III replication studies was conducted by an inverse-variance method assuming a fixed-effects model\(^25\).

Trans-ethnic and functional annotations of RA risk SNPs

Trans-ethnic comparisons of RAF (in the reference panels), OR, and explained heritability were conducted using the results of the Stage I GWAS meta-analysis of Europeans and Asians. Correlations of RAF and OR were evaluated using Spearman’s correlation test. OR were defined based on minor alleles in Europeans. Explained heritability was estimated by applying a liability-threshold model assuming disease prevalence of 0.5\(^\%\)^\(^10\) and using RAF and OR of the population(s) according to the genetic model. For population-specific genetic risk model, RAF and OR of the same population was used. For trans-ethnic genetic risk model, RAF of the population but OR of the other population was used.

Details of the overlap enrichment analysis of RA risk SNPs with H3K4me3 peaks have been described elsewhere\(^13\). Briefly, we evaluated whether the RA risk SNPs (outside of the MHC region) and SNPs in LD \((r^2 > 0.80)\) with them were enriched in overlap with H3K4me3 chromatin immunoprecipitation followed by sequencing (ChIP-seq) assay peaks of 34 cell types obtained from NIH Roadmap Epigenomics Mapping Consortium, by a permutation procedure with \(\times 10^5\) iterations.

Fine-mapping of causal risk alleles

For fine-mapping of the causal risk alleles, we selected the 31 RA risk loci where the risk SNPs yielded \(P < 1.0 \times 10^{-3}\) in the Stage I GWAS meta-analysis of both Europeans and Asians with same directional effects of alleles (outside of the MHC region). As for fine-mapping using LD structure differences between the populations, we calculated average numbers of the SNPs in LD \((r^2 > 0.80)\) in Europeans, in Asians, in both Europeans and Asians, separately.

As for fine-mapping using H3K4me3 peaks of \(T_{reg}\) primary cells, we firstly evaluated H3K4me3 peak overlap enrichment of the SNPs in LD (in Europeans and Asians) compared to the neighboring SNPs (±2 Mbp). We fixed the SNP positions but physically slid H3K4me3 peak positions by 1 kbp bins within ±2 Mbp regions of the risk SNPs, and calculated overlap of the SNPs in LD with H3K4me3 peaks for each sliding step, and evaluated the significance of overlap in the original peak positions by one-sided exact test assuming enrichment of overlap. For the 10 loci that demonstrated significant overlap \((P < 0.05)\), we calculated the average number of the SNPs which were in LD in both Europeans and Asians and also included in H3K4me3 peaks.

Pleiotropy analysis

We downloaded phenotype-associated SNPs and phenotype information from NHGRI GWAS catalogue database\(^26\) on January 31, 2013. We selected significantly associated 4,676 SNPs \((P < 5.0 \times 10^{-8})\) corresponding to 311 phenotypes (other than RA). We manually curated the phenotypes by combining the same but differently named phenotypes into the single phenotype (eg. from “Urate levels”, “Uric acid levels”, and “Renal function-related traits (urea)” into “Urate levels”), or splitting the merged phenotypes into the sub-categorical phenotypes (eg. from “White blood cell types” into “Neutrophil counts”, “Lymphocyte counts”, “Monocyte counts”, “Eosinophil counts” or “Basophil counts”). Lists of curated

Nature. Author manuscript; available in PMC 2014 August 20.
phenotypes and SNPs are available at http://plaza.umin.ac.jp/~yokada/datasource/software.htm.

For each of the selected NHGRI SNPs and the RA risk SNPs identified by our study (located outside of the MHC region), we defined the genetic region based on ±25 kbp of the SNP or the neighboring SNP positions in moderate LD with it in Europeans or Asians ($r^2 > 0.50$). If multiple different SNPs with overlapping regions were registered for the same NHGRI phenotype, they were merged into the single region. We defined “region-based pleiotropy” if two phenotype-associated SNPs shared part of their genetic regions or shared any UCSC ref gene(s) (hg19) partly overlapping with each of the regions (Extended Data Fig. 4a). We defined “allele-based pleiotropy” if two phenotype-associated SNPs were in LD in Europeans or Asians ($r^2 > 0.80$). We defined the direction of effect as “concordant” with RA risk if the RA risk allele also leads to increased risk of the NHGRI disease or increased dosage of the quantitative trait; similarly, we defined relationships as “discordant” if the RA risk allele is associated with decreased risk of the NHGRI disease phenotype (or if the RA risk allele leads to decreased dosage of the quantitative trait).

We evaluated statistical significance of region-based pleiotropy of the registered phenotypes with RA by a permutation procedure with 10^7 iterations. When one phenotype had n loci of which m loci were in region-based pleiotropy with RA, we obtained a null distribution of m by randomly selecting n SNPs from obtained NHGRI GWAS catalogue data and calculating number of the observed region-based pleiotropy with RA for each of the iteration steps. For null distribution estimation, we did not include the SNPs associated with several autoimmune diseases which were previously reported to share pleiotropic associations with RA (Crohn's disease, type 1 diabetes, multiple sclerosis, celiac disease, systemic lupus erythematosus, ulcerative colitis, and psoriasis).

Prioritization of biological candidate genes from RA risk loci

For the RA risk SNPs outside of the MHC region, functional annotations were conducted by Annovar (hg19). The RA risk SNPs were classified if any of the SNPs in LD ($r^2 > 0.80$) in Europeans or Asians were annotated in order of priority of missense (or nonsense), synonymous, or non-coding (with or without cis-eQTL) SNPs. We also applied this SNP annotation scheme to randomly selected 10,000 genome-wide common SNPs (MAF > 0.05 in Europeans or Asians).

We then assessed cis-eQTL effects by referring two eQTL datasets; the study for PBMC obtained from 5,311 European subjects and newly-generated cell-specific eQTL analysis for CD4+ T cells and CD14+ monocytes from 212 European subjects (ImmVar project; Raj et al., manuscript submitted). When the RA risk SNP was not available in eQTL data sets, we alternatively used the results of best proxy SNPs in LD with the highest r^2 value (>0.80). We applied the significance thresholds defined in the original studies (FDR-q < 0.05 for PBMC eQTL and gene-based permutation $P < 0.05$ for cell-specific eQTL).

We obtained PID genes and their classification categories defined by the International Union of Immunological Societies (IUIS) Expert Committee, downloaded cancer somatic mutation genes from the Catalogue of Somatic Mutations in Cancer (COSMIC) database, and downloaded knockout mouse phenotype labels and gene information from the Mouse Genome Informatics (MGI) database on January 31, 2013 (Supplementary Table 2–5). We defined 377 RA risk genes included in the 100 RA risk loci (outside of the MHC region) according to the criteria described in the previous section (±25 kbp or $r^2 > 0.50$), and evaluated overlap with PID categories, cancer phenotypes with registered somatic mutations, and phenotype labels of knockout mouse genes with human orthologs. Statistical significance of enrichment in gene overlap was assessed by a permutation procedure with
For each iteration step, we randomly selected 100 genetic loci matched for number of nearby genes with those in non-MHC 100 RA risk loci. When one gene category had \(m \) genes overlapping with RA risk genes, we obtained a null distribution of \(m \) by calculating number of genes in the selected loci overlapping with RA risk genes for each iteration step.

We conducted molecular pathway enrichment analysis using MAGENTA software\(^9\) and adopting Ingenuity and BIOCARTA databases as pathway information resources. We conducted two patterns of analyses by inputting genome-wide SNP P-values of the current trans-ethnic meta-analysis (Stage I) and the previous meta-analysis of RA\(^2\), separately. Since the previous meta-analysis was conducted using imputed data based on HapMap Phase II panels, we re-performed the meta-analysis using the same subjects but newly imputed genotype data based on the 1000 Genome Project reference panel\(^11\), to make SNP coverage conditions identical between the meta-analyses. Significance of the molecular pathway was evaluated by FDR-q values obtained from \(\times 10^5 \) iterations of permutations.

We scored each of the genes included in the RA risk loci (outside of the MHC region) by adopting the following 8 selection criteria and calculating the number of the satisfied criteria: (i) genes of which RA risk SNPs or any of the SNPs in LD (\(r^2 > 0.80 \)) with them were annotated as missense variants; (ii) genes of which significant cis-eQTL of either of PBMC, T cell, and monocyte were observed for RA risk SNPs (FDR-q < 0.05 for PBMC and permutation \(P < 0.05 \) for T cells and monocytes); (iii) genes prioritized by PubMed text-mining using GRAIL\(^7\) with gene-based \(P < 0.05 \); (iv) genes prioritized by PPI network using DAPPLE\(^8\) with gene-based \(P < 0.05 \); (v) PID genes\(^14\); (vi) hematological cancer somatic mutation genes\(^15\); (vii) genes of which \(\geq 2 \) of associated phenotype labels (“hematopoietic system phenotype”, “immune system phenotype”, and “cellular phenotype”; \(P < 1.0 \times 10^{-4} \)) were observed for knockout mouse\(^16\); and (viii) genes prioritized by molecular pathway analysis using MAGENTA\(^9\) which were included in the significantly enriched pathways (FDR-q < 0.05) with gene-based \(P < 0.05 \). Since these criteria showed weak correlations with each other (\(R^2 < 0.26 \); Extended Data Fig. 6c), each gene was given a score based on the number of criteria that were met (scores ranging from 0–8 for each gene). We defined the genes with score \(\geq 2 \) as “biological RA risk genes”.

For each gene in RA risk loci, we evaluated whether the gene was the nearest gene to the RA risk SNP within the risk locus, or whether the RA risk SNP (or SNPs in LD with it) of the gene overlapped with H3K4me3 histone peaks of cell types. Difference of proportions to be the nearest gene between biological RA risk genes (score \(\geq 2 \)) and non-biological genes (score \(< 2 \)) was evaluated by using Fisher’s exact test implemented in \(R \) statistical software (ver 2.15.2). Difference of proportions of the genes overlapping with T\(_{reg}\) primary cell H3K4me3 peaks between biological and non-biological genes was assessed by a permutation procedure by shuffling the overlapping status of RA risk SNPs/loci with \(\times 10^5 \) iterations.

Drug target gene enrichment analysis

We obtained drug target genes and corresponding drug information from DrugBank\(^17\) and Therapeutic Targets Database (TTD)\(^18\) databases on January 31, 2013, as well as additional literature searches. We selected drug target genes which had pharmacological activities (for the genes from DrugBank) and human orthologs, and was annotated to any of the approved, clinical trial, or experimental drugs (Supplementary Table 6). We manually extracted drug target genes annotated to approved RA drugs based on discussions with professional rheumatologists (Extended Data Fig. 7a). We extracted genes in direct PPI with biological RA risk genes by using InWeb database\(^27\). In order to take account of potential dependence between PPI genes and drug target genes, overlap of biological RA risk genes and genes in

\[\text{Nature. Author manuscript; available in PMC 2014 August 20.}\]
direct PPI with them with drug target genes was assessed by a permutation procedure with \(x \times 10^5\) iterations.

Let \(x\) be the set of the biological RA risk genes and genes in direct PPI with them (= \(n_x\) genes), \(y\) be the set of genes with protein products that are the direct target of approved RA drugs (= \(n_y\) genes), \(z\) be the set of genes with protein products that are the direct target of all approved drugs (= \(n_z\) genes). We defined \(n_{x/y}\) and \(n_{x/z}\) as the numbers of the genes overlapping between \(x\) and \(y\), and between \(x\) and \(z\), respectively. For each of 10,000 iteration steps, we randomly selected a gene set of \(x'\) including \(n_x\) genes from the entire PPI network (= 12,735 genes). We defined \(n_{x'/y'}\) and \(n_{x'/z'}\) as the numbers of the genes overlapping between \(x'\) and \(y\), and between \(x'\) and \(z\), respectively. The distributions of \(n_{x'/y'}\) and \(n_{x'/z'}\) obtained from the total iterations were defined as the null distributions of \(n_{x/y}\), \(n_{x/z}\), and \(n_{x'/y'}\), \(n_{x'/z'}\), respectively. Fold enrichment of overlap with approved RA drug target genes was defined as \(n_{x'/y'}/m(n_{x/y})\), where \(m(t)\) represents mean value of the distribution of \(t\). Fold enrichment of overlap with approved drug target genes was defined as \(n_{x'/z'}/m(n_{x'/z'}\cap y)\). Relative fold enrichment of overlap with RA drug target genes and with all drug target genes was defined as \(n_{x'/y'}/n_{x'/z'}\cap y/m(n_{x'/y'}/n_{x'/z'})\). Significance of the enrichment was evaluated by one-sided permutation tests examining \(n_{x'/y'}, n_{x'/z'}, \) and \(n_{x'/y'}/n_{x'/z'}\) in their null distributions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Authors

Yukinori Okada\(^1,2,3,^*\), Di Wu\(^1,2,3,4,5,\) Gosia Tynka\(^1,2,3,\) Towfique Raj\(^2,3,6,\) Chikashi Teraco\(^7,8,\) Katsunori Ikari\(^9,\) Yuta Kochi\(^10,\) Koichiro Ohmura\(^8,\) Akari Suzuki\(^10,\) Shinji Yoshida\(^9,\) Robert R. Graham\(^11,\) Arun Manoharan\(^11,\) Ward Ortmann\(^11,\) Tushar Bhangale\(^11,\) Joshua C. Denny\(^12,13,\) Robert J. Carroll\(^12,\) Anne E. Eyler\(^13,\) Jeffrey D. Greenberg\(^14,\) Joel M. Kremer\(^15,\) Dimitrios A. Pappas\(^16,\) Lei Jiang\(^17,\) Jian Yin\(^17,\) Lingying Ye\(^17,\) Ding-Feng Su\(^18,\) Jian Yang\(^19,20,\) Gang Xie\(^21,22,23,\) Ed Keystone\(^24,\) Harm-Jan Westra\(^25,\) Tônú Esko\(^26,27,3,\) Andres Metspalu\(^26,\) Xuexzhong Zhou\(^28,\) Namrata Gupta\(^3,\) Daniel Mire\(^3,\) Eli A. Stahl\(^29,\) Dorothée Diogo\(^1,2,3,\) Jing Cui\(^1,2,3,\) Katherine Liao\(^1,2,3,\) Michael H. Guo\(^1,2,3,\) Keiko Myouzen\(^10,\) Takahisa Kawaguchi\(^7,\) Marieke J.H. Coenen\(^30,\) Piet L.C.M. van Riel\(^31,\) Mart A.F.J. van de Laar\(^32,\) Henk-Jan Guchelaar\(^33,\) Tom W.J. Huizinga\(^34,\) Philippe Dieude\(^35,36,\) Xavier Mariette\(^37,38,\) S. Louis Bridges Jr.\(^39,\) Alexandra Zhernakova\(^25,34,\) Rene E.M. Toes\(^34,\) Paul P. Tak\(^40,41,42,\) Corinne Miceli-Richard\(^43,44,\) So-Young Bang\(^45,\) Hye-Soon Lee\(^45,\) Javier Martin\(^46,\) Miguel A. Gonzalez-Gay\(^47,\) Luis Rodriguez-Rodriguez\(^48,\) Solbritt Rantanpää-Dahlqvist\(^49,50,\) Lisbeth Årlestad\(^49,50,\) Hyon K. Choi\(^51,52,53,\) Yoichi Kamatani\(^54,\) Pilar Galan\(^55,\) Mark Lathrop\(^56,\) the RACI consortium\(^73,\) the GARNET consortium\(^73,\) Steve Eyre\(^57,58,\) John Bowes\(^57,58,\) Anne Barton\(^57,\) Niek de Vries\(^59,\) Larry W. Moreland\(^60,\) Lindsey A. Criswell\(^61,\) Elizabeth W. Karlson\(^1,\) Atsuo Taniguchi\(^8,\) Ryo Yamada\(^62,\) Michiaki Kubo\(^63,\) Jun S. Liu\(^4,\) Sang-Cheol Bae\(^45,\) Jane Worthington\(^57,58,\) Leonid Padyukov\(^64,\) Lars Klareskog\(^64,\) Peter K. Gregersen\(^55,\) Soumya Raychaudhuri\(^1,2,3,6,6,\) Barbara E. Strange\(^67,68,\) Philip L. De Jager\(^2,3,6,\) Lude Franke\(^25,\) Peter M. Visscher\(^19,20,\) Matthew A. Brown\(^19,\) Hisashi Yamanaka\(^9,\) Tsuneyo Mimori\(^8,\) Atsushi Takahashi\(^69,\) Huji Xu\(^17,\) Timothy W. Behrens\(^11,\) Katherine A. Siminovich\(^21,22,23,\) Shigeki Momohara\(^9,\) Fumihiko Matsuda\(^7,70,71,\) Kazuhiko Yamamoto\(^10,72,\) and Robert M. Plenge\(^1,2,3,^*\).
Affiliations

1Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA. 2Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA. 3Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA. 4Department of Statistics, Harvard University, Cambridge, MA, USA. 5Centre for Cancer Research, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia. 6Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA. 7Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan. 8Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyorin University, Tokyo, Japan. 9Institute of Rheumatology, Tokyo Women’s Medical University, Tokyo, Japan. 10Laboratory for Autoimmune Diseases, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan. 11Immunology Biomarkers Group, Genentech, South San Francisco, CA, USA. 12Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA. 13Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA. 14New York University Hospital for Joint Diseases, New York, NY, USA. 15Department of Medicine, Albany Medical College and The Center for Rheumatology, Albany, NY, USA. 16Division of Rheumatology, Department of Medicine, New York, Presbyterian Hospital, College of Physicians and Surgeons, Columbia University, New York, NY, USA. 17Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai 200003, China. 18Department of Pharmacology, Second Military Medical University, Shanghai, 200433, China. 19University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia. 20Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia. 21Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada. 22Toronto General Research Institute, Toronto, Canada. 23Department of Medicine, University of Toronto, Toronto, Canada. 24Department of Medicine, Mount Sinai Hospital and University of Toronto, Toronto, Canada. 25Department of Genetics, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, the Netherlands. 26Estonian Genome Center, University of Tartu, Riia 23b, 51010, Tartu, Estonia. 27Division of Endocrinology, Children’s Hospital, Boston, MA, USA. 28School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China. 29The Department of Psychiatry at Mount Sinai School of Medicine, New York, USA. 30Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands. 31Department of Rheumatology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands. 32Department of Rheumatology and Clinical Immunology, Arthritis Center Twente, University Twente & Medisch Spectrum Twente, Enschede, The Netherlands. 33Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands. 34Department of Rheumatology, Leiden University Medical Centre, Leiden, The Netherlands. 35Service de Rhumatologie et INSERM U699 Hôpital Bichat Claude Bernard, Assistance Publique des Hôpitaux de Paris, Paris, France. 36Université Paris 7-Diderot, Paris, France. 37Université Paris-Sud, Orsay, France. 38APHP—Hôpital Bicêtre, INSERM U1012, Le Kremlin Bicêtre, Paris, France. 39Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA. 40AMC/University of Amsterdam, Amsterdam, the Netherlands. 41GlaxoSmithKline, Stevenage, U.K. 42University of Cambridge, Cambridge, U.K. 43Institut National de
la Santé et de la Recherche Médicale (INSERM) U1012. 44Université Paris-Sud 11, Rhumatologie, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris (AP-HP), Le Kremlin Bicêtre, France. 45Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, South Korea. 46Instituto de Parasitología y Biomedicina Lopez-Neyra, CSIC, Granada, Spain. 47Department of Rheumatology, Hospital Marqués de Valdecilla, IFIMAV, Santander, Spain. 48Hospital Clínico San Carlos, Madrid, Spain. 49Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden. 50Department of Rheumatology, Umeå University, Umeå, Sweden. 51Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. 52Section of Rheumatology, Boston University School of Medicine, Boston, MA, USA. 53Clinical Epidemiology Research and Training Unit, Boston University School of Medicine, Boston, MA, USA. 54Centre d’Etude du Polymorphisme Humain (CEPH), Paris, France. 55Université Paris 13 Sorbonne Paris Cité, UREN (Nutritional Epidemiology Research Unit), Inserm (U557), Inra (U1125), Cnam, Bobigny, France. 56McGill University and Génome Québec Innovation Centre, Montréal, Canada. 57Arthritis Research UK Epidemiology Unit, Centre for Musculoskeletal Research, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK. 58National Institute for Health Research, Manchester Musculoskeletal Biomedical Research Unit, Central Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK. 59Department of Clinical Immunology and Rheumatology & Department of Genome Analysis, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands. 60Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA. 61Rosalind Russell Medical Research Center for Arthritis, Division of Rheumatology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA. 62Unit of Statistical Genetics, Center for Genomic Medicine Graduate School of Medicine Kyoto University, Kyoto, Japan. 63Laboratory for Genotyping Development, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan. 64Rheumatology Unit, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden. 65The Feinstein Institute for Medical Research, North Shore–Long Island Jewish Health System, Manhasset, NY, USA. 66NIHR Manchester Musculoskeletal Biomedical Research Unit, Central Manchester NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK. 67Section of Genetic Medicine, University of Chicago, Chicago, IL, USA. 68Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA. 69Laboratory for Statistical Analysis, Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan. 70Core Research for Evolutional Science and Technology (CREST) program, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan. 71Institut National de la Sante et de la Recherche Medicale (INSERM) Unite U852, Kyoto University Graduate School of Medicine, Kyoto, Japan. 72Department of Allergy and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.

Acknowledgments

R.M.P. is supported by National Institutes of Health (NIH) grants R01-AR057108, R01-AR056768, U01-GM092691, and R01-AR059648 and holds a Career Award for Medical Scientists from the Burroughs Wellcome Fund. Y.O. is supported by a grant from the Japan Society of the Promotion of Science (JSPS). D.W. is supported by a grant from the Australian National Health and Medical Research Council, 1036541. G.T. is supported by the Rubicon grant from the Netherlands Organization for Scientific Research (NOW). A.Z. is supported by a grant from the Dutch Reumafonds (11-1-101) and from Rosalind Franklin Fellowship, University of Groningen, The Netherlands.
References

19. Smolen JS, et al. Consensus statement on blocking the effects of interleukin-6 and in particular by
interleukin-6 receptor inhibition in rheumatoid arthritis and other inflammatory conditions. Ann
patients with an inadequate response to methotrexate (SATORI): significant reduction in disease
activity and serum vascular endothelial growth factor by IL-6 receptor inhibition therapy. Mod
2219. [PubMed: 22150039]
19474294]
29. Elliott P, et al. Genetic Loci associated with C-reactive protein levels and risk of coronary heart
30. Cortes A, et al. Identification of multiple risk variants for ankylosing spondylitis through high-
Figure 1. Overlap of RA risk loci with PID, hematological cancer somatic mutation, and molecular pathways

a, Overlap of RA risk genes with PID genes, subset by PID categories (I-VIII).

b, Examples of overlap of hematological cancer somatic mutation genes with RA risk genes.

c, Comparisons of molecular pathway analysis results between the current trans-ethnic meta-analysis (y-axis) and the previous meta-analysis for rheumatoid arthritis (x-axis). Each dot represents a molecular pathway. Dotted line represents FDR-q = 0.05 or y = x.
Figure 2. Prioritized biological RA risk genes

Representative biological RA risk genes. We list the summary gene score derived from individual criterion (filled red box indicates criterion satisfied; 98 genes with score ≥2 out of 377 genes included in the RA risk loci were defined as “biological candidate genes”; see details in Extended Data Fig. 6). Filled blue box indicates the nearest gene to the RA risk SNP. Filled green boxes indicate overlap with H3K4me3 peaks in immune-related cells. Filled purple boxes indicate overlap with drug target genes. Full results are in Supplementary Table 5.
Figure 3. Connection of biological RA risk genes to drug targets

a. PPI network of biological RA risk genes and drug target genes. b. Overlap and relative enrichment of 98 biological RA risk genes with targets of approved RA drugs and with all drug target genes. Enrichment was more apparent than that from all 377 RA risk genes (Extended Data Fig. 7c). c. Connections between RA risk SNPs (blue), biological genes (purple), genes from PPI (green), and approved RA drugs (orange). Full results are in Extended Data Fig. 8. d. Connections between RA genes and drugs indicated for other diseases.
Table 1

Novel rheumatoid arthritis risk loci identified by trans-ethnic GWAS meta-analysis in >100,000 subjects.

<table>
<thead>
<tr>
<th>SNP</th>
<th>Chr.</th>
<th>Genes</th>
<th>A1/A2 (+)</th>
<th>Trans-ethnic</th>
<th>European</th>
<th>Asian</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OR (95% CI)</td>
<td>P</td>
<td>OR (95% CI)</td>
</tr>
<tr>
<td>rs271623</td>
<td>1</td>
<td>TNFRSF9</td>
<td>C/T</td>
<td>1.04 (1.02–1.06)</td>
<td>3.9E–04</td>
<td>1.00 (0.97–1.03)</td>
</tr>
<tr>
<td>rs2641352</td>
<td>1</td>
<td>MTFL1-NPP5B</td>
<td>T/C</td>
<td>1.11 (1.08–1.14)</td>
<td>2.8E–12</td>
<td>1.10 (1.07–1.14)</td>
</tr>
<tr>
<td>rs205325</td>
<td>1</td>
<td>LOC100506023</td>
<td>C/A</td>
<td>1.12 (1.08–1.15)</td>
<td>6.9E–13</td>
<td>1.12 (1.08–1.15)</td>
</tr>
<tr>
<td>rs1017598</td>
<td>2</td>
<td>LPL</td>
<td>A/G</td>
<td>1.08 (1.06–1.11)</td>
<td>1.1E–09</td>
<td>1.09 (1.06–1.12)</td>
</tr>
<tr>
<td>rs6732565</td>
<td>2</td>
<td>ACOX1</td>
<td>A/G</td>
<td>1.07 (1.05–1.10)</td>
<td>2.7E–08</td>
<td>1.10 (1.07–1.14)</td>
</tr>
<tr>
<td>rs6715284</td>
<td>2</td>
<td>CFLAR-CASP8</td>
<td>G/C</td>
<td>1.15 (1.10–1.20)</td>
<td>1.8E–09</td>
<td>1.15 (1.10–1.20)</td>
</tr>
<tr>
<td>rs452313</td>
<td>3</td>
<td>PLC12</td>
<td>T/A</td>
<td>1.09 (1.06–1.12)</td>
<td>1.6E–10</td>
<td>1.11 (1.08–1.15)</td>
</tr>
<tr>
<td>rs3806624</td>
<td>3</td>
<td>EOMES</td>
<td>G/A</td>
<td>1.08 (1.05–1.11)</td>
<td>8.6E–09</td>
<td>1.08 (1.05–1.12)</td>
</tr>
<tr>
<td>rs9826828</td>
<td>3</td>
<td>IL20RB</td>
<td>A/G</td>
<td>1.44 (1.28–1.61)</td>
<td>8.6E–10</td>
<td>1.44 (1.28–1.61)</td>
</tr>
<tr>
<td>rs13142500</td>
<td>4</td>
<td>CLNK</td>
<td>C/T</td>
<td>1.10 (1.07–1.13)</td>
<td>3.0E–09</td>
<td>1.10 (1.06–1.15)</td>
</tr>
<tr>
<td>rs2664035</td>
<td>4</td>
<td>TEC</td>
<td>A/G</td>
<td>1.07 (1.04–1.10)</td>
<td>9.5E–08</td>
<td>1.08 (1.05–1.11)</td>
</tr>
<tr>
<td>rs9378815</td>
<td>6</td>
<td>IRR4</td>
<td>C/G</td>
<td>1.09 (1.06–1.12)</td>
<td>1.7E–10</td>
<td>1.09 (1.05–1.12)</td>
</tr>
<tr>
<td>rs2234067</td>
<td>6</td>
<td>ETV7</td>
<td>C/A</td>
<td>1.15 (1.10–1.20)</td>
<td>1.6E–09</td>
<td>1.14 (1.09–1.19)</td>
</tr>
<tr>
<td>rs9373594</td>
<td>6</td>
<td>PPL14</td>
<td>T/C</td>
<td>1.09 (1.06–1.12)</td>
<td>3.0E–09</td>
<td>1.07 (1.02–1.12)</td>
</tr>
<tr>
<td>rs6720450</td>
<td>7</td>
<td>JAZF1</td>
<td>T/C</td>
<td>1.10 (1.07–1.14)</td>
<td>3.7E–09</td>
<td>1.11 (1.07–1.14)</td>
</tr>
<tr>
<td>rs4272</td>
<td>7</td>
<td>CDK6</td>
<td>G/A</td>
<td>1.10 (1.06–1.13)</td>
<td>5.0E–09</td>
<td>1.10 (1.07–1.14)</td>
</tr>
<tr>
<td>rs988731</td>
<td>8</td>
<td>TPD52</td>
<td>T/C</td>
<td>1.08 (1.05–1.11)</td>
<td>1.9E–08</td>
<td>1.09 (1.06–1.12)</td>
</tr>
<tr>
<td>rs678347</td>
<td>8</td>
<td>GRHL2</td>
<td>G/A</td>
<td>1.08 (1.05–1.11)</td>
<td>1.6E–08</td>
<td>1.10 (1.06–1.13)</td>
</tr>
<tr>
<td>rs1516771</td>
<td>8</td>
<td>PVT1</td>
<td>T/C</td>
<td>1.15 (1.10–1.20)</td>
<td>1.3E–10</td>
<td>1.16 (1.11–1.21)</td>
</tr>
<tr>
<td>rs12413578</td>
<td>10</td>
<td>IQP4</td>
<td>C/T</td>
<td>1.20 (1.13–1.29)</td>
<td>4.8E–08</td>
<td>1.20 (1.12–1.29)</td>
</tr>
<tr>
<td>rs793108</td>
<td>10</td>
<td>ZNF438</td>
<td>T/C</td>
<td>1.08 (1.05–1.10)</td>
<td>1.3E–09</td>
<td>1.07 (1.04–1.10)</td>
</tr>
<tr>
<td>rs2671692</td>
<td>10</td>
<td>WDFY4</td>
<td>A/G</td>
<td>1.07 (1.05–1.10)</td>
<td>2.8E–09</td>
<td>1.06 (1.03–1.09)</td>
</tr>
<tr>
<td>rs726288</td>
<td>10</td>
<td>STPD</td>
<td>T/C</td>
<td>1.14 (1.07–1.20)</td>
<td>1.6E–05</td>
<td>0.96 (0.86–1.06)</td>
</tr>
<tr>
<td>rs968567</td>
<td>11</td>
<td>FADS1-FADS2-FADS3</td>
<td>C/T</td>
<td>1.12 (1.07–1.16)</td>
<td>1.8E–08</td>
<td>1.12 (1.07–1.16)</td>
</tr>
<tr>
<td>rs4497855</td>
<td>11</td>
<td>CEP57</td>
<td>C/T</td>
<td>1.12 (1.09–1.16)</td>
<td>1.2E–11</td>
<td>1.12 (1.08–1.16)</td>
</tr>
<tr>
<td>chr11:107967350</td>
<td>11</td>
<td>ATM</td>
<td>G/A</td>
<td>1.21 (1.13–1.29)</td>
<td>1.4E–08</td>
<td>1.21 (1.13–1.29)</td>
</tr>
<tr>
<td>rs73033527</td>
<td>11</td>
<td>ETS1</td>
<td>C/T</td>
<td>1.09 (1.06–1.12)</td>
<td>1.2E–10</td>
<td>1.08 (1.05–1.11)</td>
</tr>
<tr>
<td>rs773125</td>
<td>12</td>
<td>CDK2</td>
<td>A/G</td>
<td>1.09 (1.06–1.12)</td>
<td>1.1E–10</td>
<td>1.09 (1.06–1.12)</td>
</tr>
</tbody>
</table>
SNPs newly associated with $P < 5.0 \times 10^{-8}$ in the combined study of the Stage I GWAS meta-analysis and the Stage II and III replication studies of trans-ethnic (Europeans and Asians), European, or Asian ancestry are indicated. Association results with $P < 5.0 \times 10^{-8}$ are highlighted in bold. SNP IDs, positions, and alleles are based on positive strand of NCBI build 37. A1 represent risk allele of rheumatoid arthritis. Full results of the studies are indicated in Supplementary Table 1.

Chr., chromosome; freq., frequency; EUR, European; ASN, Asian; OR, odds ratio; 95% CI, 95% confidence interval; GWAS, genome-wide association study.