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Abstract 

The cyanobacterium Synechococcus elongatus PCC 7942 exhibits global biphasic circadian oscillations in gene 

expression in constant light conditions. Class I genes are maximally expressed in the subjective dusk whereas class 

II genes are maximally expressed in the subjective dawn. Here we identify sequence features that encode the phase 

of circadian gene expression. We find that, for multiple genes, a ~70 nucleotide promoter fragment is sufficient to 

specify class I or II phase. We demonstrate that gene expression phase can be changed by random mutagenesis and 

that a single nucleotide substitution is sufficient to change the phase. Our study provides insight into how gene 

expression phase is encoded in the cyanobacterial genome. 

Introduction 

The cyanobacterium Synechococcus elongatus PCC 7942 (hereafter, S. elongatus) exhibits circadian oscillations in 

gene expression in continuous light conditions (1-3). Microarray analysis has shown that the expression of at least 

30 to 65% of genes oscillate with ~24 hour periodicity (2, 3), with two primary phases of gene expression – genes 

peaking in the subjective dusk (class I) or subjective dawn (class II). The presence of a circadian clock provides 

cyanobacteria with a competitive advantage when grown in light/dark cycles (4), and some of this advantage is 

likely to be a product of clock-controlled dynamics in gene expression. For example, 89% of circadian genes 

involved in photosynthesis peak in the subjective dawn, which may allow photosynthesis related proteins to be 

available during the day (3). 

The core circadian clock in S. elongatus is comprised of three proteins: KaiA, KaiB, and KaiC (5). KaiC 

phosphorylation and ATPase activity oscillate with circadian periodicity and are thought to be the two primary state 

variables of the clock (5). A two-component output pathway consisting of a histidine kinase and DNA binding 

response regulator relays timing from the core clock to control gene expression (5). Deletion of the DNA binding 

response regulator of this output pathway abrogates essentially all circadian gene expression (6). KaiC-dependent 

circadian oscillations in chromosome supercoiling and compaction have also been shown to play a role in generating 

global oscillations in gene expression (3, 7, 8), but the relationship between circadian oscillations in chromosome 

topology and the two-component output pathway is not understood. Class I and class II promoters respond 
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oppositely to changes in chromosome supercoiling, and this differential sensitivity may determine the global 

circadian gene expression profile (3).    

But what are the underlying sequence determinants that dictate whether a particular gene oscillates with class I or II 

phase? Previous studies of the class II purF (synpcc7942_0004) promoter identified an 89 nucleotide fragment that 

specifies class II phasing (9), and analysis of the class I kaiBC (synpcc7942_1217 and synpcc7942_1216) promoter 

identified a 56 nucleotide fragment which specifies class I phasing (10). However, neither study was able to identify 

the sequence within the fragments that specified phase information, nor were they able to identify mutations that 

switched the phase. Here, we investigate the sequence features responsible for circadian phase determination. These 

features may provide insight into the mechanism of circadian gene expression and may aide in understanding 

cyanobacterial promoter design. 

Materials and Methods 

Cell culture 

S. elongatus cells were grown in modified BG-11 medium (hereafter, BG-11M) (11) containing antibiotics at 30° C 

with cool-white fluorescent illumination of ~60 µE s m-2 (Phillips). Antibiotic concentrations were 2.5 µg ml-1 each 

spectinomycin/streptomycin (Sp/Sm) and 5 µg ml-1 chloramphenicol (Cm). Transformations were performed with a 

few modifications to standard protocols (11). To reduce false-positive colonies, transformations were plated onto a 

sterile nitrocellulose membrane placed on top of a BG-11M agar plate and kept in low light (~20 µE s m-2) for two 

days prior to transfer to normal light conditions. On the third and fifth days the nitrocellulose membrane was moved 

to a new BG-11M agar plate with antibiotics to ensure continuous selection. After ten days, individual colonies were 

isolated and patched. 

Bioluminescence measurements and data analysis 

Patched colonies were directly transferred to a transparent 96-well plate with 200 µl of liquid BG-11M containing 

antibiotics. Multiple independent colonies were selected and assayed multiple times. Cells were grown in a clear 96-

well plate at ~60 µE s m-2 illumination for at least two days. Cells were diluted to OD750 ~0.5 and transferred to a 

black opaque 96-well plate covered with punctured TopSeal (Perkin Elmer) to allow air exchange. Cells were grown 

in ~60 µE s m-2 illumination for one day prior to two consecutive entrainments with 12 hour dark-12 hour light. 
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Cells were then released into continuous light (~60 µE s m-2 illumination) and bioluminescence measurements were 

made every two hours on a TopCount (Perkin Elmer). Prior to each individual bioluminescence measurement, cells 

were maintained in the dark for three minutes. Five consecutive bioluminescent measurements were made for each 

well (each integrating incident photons over a one second interval) and subsequently averaged. Independent clones 

were assayed multiple times for each promoter fragment and a representative trace is shown in Fig. 2 or Fig. 4. 

Phase was extracted from the first Fourier component of linearly de-trended data. A period of 24 hours was assumed 

when calculating the Fourier component. Each promoter fragment was assigned a class based on whether the 

calculated phase was closer to a class I control than to a class II control from the same experiment. All calculations 

were verified by visual inspection. Reported means and standard deviations of the phase are calculated from 

independent clones from the same set of experiments. At least 2 independent clones for time-course in Fig. 2, at 

least 4 for mutants in Fig. 4, and 3 for controls (P1 and P3) in Fig. 4.  

Raw bioluminescence data is shown everywhere except in Fig. 3 and Fig. S2. For Fig. 3 and Fig. S2, 

bioluminescence data was linearly de-trended and normalized such that minimum and maximum bioluminescence 

was 0 and 1, respectively. Phase was calculated as described above. All mutant promoter fragments in Fig. 3 and 

Fig. S2 are ordered from phase of 0° (top) to 360° (bottom). Mutants marked as phase changing were determined by 

visual inspection. All library mutants with bioluminescence above background were measured in duplicate and 

showed qualitatively similar time-courses in the replicates. To verify the libraries, two and four phase changing 

clones from the P1 and P2 libraries, respectively, were constructed from scratch and the phase change was 

confirmed. All raw bioluminescence data and calculated phase for mutant libraries P1 and P2 is provided in Data Set 

S1.  

All data processing, analysis and visualization were done with custom scripts MATLAB (MathWorks). 

Cloning and library preparation 

Promoter fragments were synthesized as oligonucleotides (Eurofins MWG Operon) with 5’-GCTCTAGA-3’ 

appended to the 5’ and 5’-AGGCCTTC-3’ appended to the 3’. Sequence of the promoter fragments without 

appended sequences is: P1 (5’-

TCGAACGTCGTTTGGCTAAAGACTAACCGCTAGGGTTAAGTCATTGTTAAATTTGCATTAGCCGCTACA
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-3’), P2 (5’-

TTCCCCGCCTCGCTGACTGAATCTCATTGCCAATCGCTTGCTGCCTCGCCTAGGCTCGGCATAGCACGT

GGAAAGG-3’), P3 (5’-

TCTCGGCTGGCCCCCCTGTTGTTCCGGACGGGCAGCGGGCAAACTGAAAGCGTCCTCTCTACTTTGTTG

CGATGGCGCTGATCT-3’), and P4 (5’-

AGCATCACATGGGGCGGATGATAACGGCCCCGTCACGTTAATGTGGGCACATTAACGCCGAAAGATTA

AGAGAAAATGACAAGG-3’). Oligonucleotides were annealed to a primer (5’-GAAGGCCT-3’), extended with 

Klenow (exonuclease-) (NEB) to generate double-stranded DNA, and subsequently cloned into the XbaI and StuI 

restriction sites of pAM1580 (9, 11). The S. elongatus strain AMC 395 (9), expressing luxCDE, was transformed 

with pAM1580 containing the promoter fragment. Mutagenesis libraries were prepared using mutagenized 

oligonucleotides (Integrated DNA Technologies) with the previously described flanking sequences. Mutagenzied 

oligonucleotides were synthesized with a 15% substitution rate (5% chance that each of three non-endogenous 

nucleotides replaces the endogenous nucleotide at each position) in the promoter region. Mutagenized 

oligonucleotides were primer extended and cloned into pAM1580 as previously described. Over 1000 Escherichia 

coli colonies were combined and plasmid was extracted to generate a plasmid library with sufficient sequence 

diversity. The S. elongatus strain AMC 395 was transformed with the plasmid library. The promoter fragment in 

each resultant S. elongatus colony with bioluminescence above background was subjected to colony PCR (primers 

5’-GACGGATGGCCTTTTTGCGTTTC-3’ and 5’-TGGTGAGTTGTTCAAAATCA-3’) and sequenced 

(sequencing primer 5’-GACGGATGGCCTTTTTGCGTTTC-3’). 

Quantitative PCR 

RNA was extracted every four hours from 800 mL cultures grown in BG-11M supplemented with 10 mM HEPES-

KOH pH 8.0 and no antibiotics. Cultures were entrained with two consecutive 12 hour dark-12 hour light periods 

prior to release into continuous light and manually maintained at an OD750 of ~0.3 during sampling.  Cultures were 

bubbled at ~100 mL min-1 with ~1% CO2 in air and were grown at 30° C under ~100 µE s m-2 cool white fluorescent 

lights. 60 mL of cells were collected every four hours by vacuum filtration onto nitrocellulose membranes and 

subsequently frozen in liquid nitrogen. RNA was extracted and reverse transcribed into cDNA as previously 

described (3). qPCR was performed using SYBR Green qPCR master mix (Invitrogen) on an MX3000p (Stratagene) 
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qPCR machine. The hslO (synpcc7942_0559) transcript was used for loading normalization of time-points since its 

expression is relatively constant over circadian time both by microarray and by RNA polymerase ChIP (3, 12). 

Standards for each individual primer pair were created by qPCR of a dilution series of cDNA from an arbitrary time-

point. As a result, only the relative level of expression of a single primer pair across a time-course can be compared 

and not the relative level of one primer pair versus another. The following primer pairs were used for qPCR 

analysis:  luxAB primers (5’-GTATGAGTCGTACCAATGGC-3’ and 5’-GCTACGATGTGACTAAGATT-3’), 

hslO primers (5’-CAGACCAACTGATTCGAGCG-3’ and 5’-GGAGGCCAGGAGCAGTC-3’), kaiBC primers (5’-

TACATTCTCAAGCTCTACG-3’ and 5’-CGTCGCTAGGATTTTATCC-3’), and purF primers (5’-

CTAAGAACCACGAGCTGAC-3’ and 5’-CGATCGTCAGGCTAAAGG-3’). 

Results and Discussion 

Identification of a promoter region sufficient to encode circadian gene expression phase 

A previous study analyzing the relationship between sequence and phase in S. elongatus identified a long range (~3 

kilobase) statistically significant enrichment in AT content (~1%) in both the promoter and open reading frame of 

genes activated when the chromosome is relaxed versus those that are repressed (3). These AT content differences 

were similar in magnitude and location to those found in genes activated and repressed after induction of 

chromosomal relaxation in Escherichia coli (13).  The concordance in sequence signature, combined with the 

observation of circadian changes in chromosome supercoiling (7, 8), suggested a role for supercoiling in circadian 

gene expression in S. elongatus (3).  

Although a long range (~ 3 kilobase) enrichment in AT content exists between genes activated when the 

chromosome is relaxed versus those that are repressed (3), circadian transcripts (median length 1320 nucleotides 

(12)) of a given phase are randomly distributed along the densely transcribed genome (2, 3). This suggests that the 

relevant sequence information encoding phase is not long range, but more proximal to each transcript. Recent RNA 

sequencing and transcription start site identification in S. elongatus (12) allows analysis based on transcription start 

sites as opposed to translation start sites which were used in both of the previous bioinformatic studies (3, 13). This 

added resolution enables a more detailed analysis of sequence content. In the region between -20 and -100 relative to 

the transcription start site, we find an enrichment of AT content in transcripts that are activated when the 
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chromosome is relaxed (subjective dawn) (Fig. 1A). To identify the location of the most statistically significant 

enrichment in AT content, we computed a p-value across the promoter and the transcript, and find a particularly 

significant p-value – corresponding to a 1 in 14 nucleotide GC to AT substitution – for the sequence between -20 

and -30 often called the ‘spacer’ (Fig. 1B). This spacer region is directly between the -10 and -35 elements at which 

the RNA polymerase complex makes its initial contacts (14, 15).  

Identification of a local difference in AT content in the spacer suggested that a single fragment containing the -10, 

spacer, and -35 elements may be capable of both transcription and encoding circadian phase. To determine if this is 

the case, we asked if a ~70 nucleotide fragment encompassing these elements from four different circadian 

transcripts (Fig. 2A) – two class I and two class II – could drive expression with the same phase as the endogenous 

transcript. Transcription start site and circadian phase for each of these transcripts were obtained from RNA 

sequencing (12) and microarray (3) experiments, respectively. These fragments (P1 through P4) were fused to a 

promoterless luxAB (luciferase) bioluminescence reporter and subsequently inserted into a defined chromosomal 

locus, NS 2.1 (11), in the strain AMC 395 (9) (Materials and Methods). AMC 395 expresses the luxCDE genes, 

which encode enzymes for synthesis of the luciferase substrate, using the highly expressed class I psbAI promoter 

(11, 16-18). We assume that the luciferase substrate is in excess at all time points (11). The promoterless luxAB 

alone does not lead to any detectable bioluminescence, but when fused to a promoter fragment can recapitulate the 

phase of the endogenous transcript (Fig. 2B). To verify that the bioluminescence reporter accurately reports phase, 

we confirmed that the phase of mRNA accumulation is also preserved by measuring the abundance of the luxAB 

transcript in strains with the P1 fragment by quantitative PCR (qPCR) (Fig. S1A). Our results indicate that the 

information required to encode phase is at least partially contained in a short fragment surrounding the spacer region 

of the promoter. Although the tested promoter fragments are able to reproduce the phase of circadian gene 

expression, they do not always preserve the overall level of bioluminescence. Cells with a much larger ~900 

nucleotide version of the P1 fragment (AMC 408 (9, 19)) have much higher overall expression than the P1 fragment, 

even though the phase and amplitude (peak to trough ratio) are identical (Fig. 2B).  

Random mutagenesis of promoter fragments can change the phase of gene expression 

Since we found that the information encoding phase is contained in a ~70 nucleotide fragment, we asked if 

mutagenesis of this fragment could alter the phase of gene expression. Promoter fragments P1 (class II), P2 (class I), 
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and P3 (class I) were synthesized with a 15% per base substitution rate (5% chance that each of three non-

endogenous nucleotides replaces the endogenous nucleotide at each position), fused to the promoterless luxAB 

cassette, and integrated into the NS 2.1 chromosomal locus of AMC 395 (Materials and Methods). A 15% 

substitution rate was chosen so that at least one substitution could be expected in the spacer region of the promoter. 

Approximately 200 individual colonies from each library (P1, P2, and P3), each with a unique mutagenized 

promoter fragment, were assayed for bioluminescence. 

Nearly half of the colonies in each library had bioluminescence above background, and all of these colonies also 

exhibited circadian gene expression oscillations (Fig. 3 and Fig. S2). The observation that mutagenesis of these three 

promoters resulted in no active promoter without circadian oscillations suggests that the transcription of all 

transcribed genes oscillates with 24 hour period, in agreement with a previous bioluminescence promoter trap 

experiment (1). Previous microarray measurements reporting that expression of 30 to 65% of the genes oscillates 

may not have the resolution to detect all oscillations in mRNA abundance (2, 3) or there may be an additional 

translational aspect to the circadian rhythms.  

Over 20% of colonies with bioluminescence above background from P1, P2, and P3 exhibited a change in gene 

expression phase after mutagenesis (Fig. 3 and Fig. S2). In addition to the phase of expression, several other 

characteristics including shape, amplitude, and expression level were affected. To determine which mutations may 

cause the change in phase, the promoter fragment of each clone from the P1 and P2 libraries with bioluminescence 

above background was sequenced (Data Set S1). Mutations in clones with altered phase were very diverse in 

sequence and location. Since on average nearly 1 in every 7 nucleotides is substituted, and a large fraction of 

colonies changed phase, we expect the majority of the substitutions in phase changing clones to be non-causal.  

Single nucleotide substitutions are sufficient to change phase of gene expression 

Since each promoter fragment contained many substitutions, further subcloning was used to identify which 

mutations caused the change in phase. Substitutions from two mutagenized promoters with class I phase, M1-1 and 

M2-1, both from the parent class II P1 library were subcloned to identify the causal substitutions (Fig. 4). M1-1 has 

substitutions in 11 of 69 nucleotides and M2-1 in 9 of 69 nucleotides. For M1-1, all strains which retained 

substitutions at either -2 or-5 or both locations maintained the phase change to class I (see M1-6, M1-7, and M1-8 in 
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Fig. 4A). The T to C substitution at either -2 or -5 is sufficient to change the phase of the P1 parent promoter from 

class II to class I. A strain that does not contain either substitution does not change the phase of the P1 parent 

promoter (see M1-5 in Fig. 4A). A similar result was observed for M2-1. All strains which retained substitutions at 

either -12 or -13 or both locations, maintained the phase change to class I (see M2-4, M2-8, and M2-9 in Fig. 4B). 

The T to G substitution at either -12 or -13 is sufficient to change the phase of the P1 parent promoter. Three other 

substitutions downstream of -12 were also sufficient to change phase of P1 to class II, but this strain exhibited very 

weak rhythmicity (see M2-7 in Fig. 4B). Quantification of mRNA by qPCR shows altered temporal dynamics of 

mRNA abundance in all four strains with single nucleotide substitutions (Fig. S1). 

Albeit a small sample size, all four of the causal substitutions in M1-1 and M2-1 increased GC content, consistent 

with our genome-wide observations (Fig. 1A). The class II P1 promoter is highly expressed when the chromosome 

is relaxed (3), and substitutions increasing the GC content may switch the promoter to be repressed, resulting in a 

change in phase. Although only two of the four identified single nucleotide substitutions fall near or within the 

spacer between the -10 and -35 elements, all substitutions are located proximal to where the RNA polymerase 

holoenzyme makes initial contacts.  

Concluding remarks 

Here we have shown that short promoter fragments centered around the spacer region – the region between the -10 

and -35 elements – are sufficient to encode circadian phase for multiple circadian genes. Furthermore, we show 

using random mutagenesis of these fragments that single nucleotide substitutions are sufficient to change circadian 

gene expression phase.  

Previous studies suggested a role for chromosome supercoiling in controlling circadian gene expression in 

cyanobacteria (3, 7, 8). However, very little is known about the general relationship between sequence and 

supercoiling sensitivity of promoters in any organism. A genome-wide study in Escherichia coli observed a long-

range (several kilobase) AT content enrichment in genes repressed by chromosomal relaxation compared to those 

activated by this perturbation (13). Here we identify a local difference in AT content in the spacer of the promoter 

using transcription start site information, and find that a ~70 nucleotide promoter fragment encompassing this region 

is sufficient to encode circadian gene expression phase. This promoter fragment has the potential to affect the 
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binding, open complex formation, or even promoter clearance of RNA polymerase complex. Several studies on 

individual promoters in other organisms have found that the region between -35 and +1 is critical for a promoter’s 

sensitivity to changes in supercoiling (20-23), but no consensus mechanism has been identified. Our analysis of the 

relationship between sequence and phase in S. elongatus provides an entry point for studying mechanism and 

sequence dependence of supercoiling-mediated gene expression changes. 

Our findings suggest that the phase of circadian gene expression is not firmly encoded in the S. elongatus genome. 

Strikingly, even a single nucleotide substitution can dramatically alter the phase of gene expression. Although this 

lack of sequence structure makes it difficult to design a class I or class II promoter de novo, it may serve a role in the 

fine-tuning of circadian gene expression during the course of evolution. Even though cyanobacteria did not evolve in 

continuous light conditions, the phase in continuous light is indicative of a gene’s expression dynamics in the first 

twelve hours of light under the more natural light/dark conditions (see first 12 hours of Fig. 2B). Random mutations 

in the promoter region have the potential to switch the phase of a gene, and if this phase change is beneficial, it may 

fix in the population. Since the mutations required to change the phase of a gene are minimal, each gene may be able 

to sample a different phase in a relatively short period of time. This may explain why almost all of the circadian 

genes involved in the photosynthesis pathway are more highly expressed in the dawn (3). This strategy of non-

stringent sequence encoding may be applicable to other genome-wide responses where fine-tuning may be 

beneficial.    
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Figure Legends 
 

Fig. 1: A local difference in AT content is observed between transcripts activated or repressed when the 

chromosome is relaxed.  

(A) A comparison of the AT content of transcripts activated or repressed when the chromosome is relaxed. 

Transcripts are aligned by transcription start location (+1) (12) and their AT content is averaged. An 11 nucleotide 

smoothing window is applied to the average AT content. A large difference in AT content exists between -20 and -

100. The relaxation repressed transcripts were defined as those with greater than 0.5 correlation with chromosomal 

supercoiling (n = 211 of 1473 total transcripts) and the relaxation activated transcripts as those with less than -0.5 

correlation (n = 244) (3). (B) p-value for AT content difference calculated in 11 nucleotide bins. For every 11 

nucleotide bin, the probability of having as extreme an AT enrichment as the relaxation activated set is calculated by 

10,000 simulations with randomized sets of relaxation activated and relaxation repressed transcripts. The majority of 

the bins between -20 and -100 nucleotides are significant (p < 0.1), with the most significant bins in the spacer 

region (-20 to -30).   

Fig. 2: A short promoter fragment is sufficient to encode circadian gene expression phase. 

(A) Four promoter fragments P1 through P4 were fused to a promoterless luxAB cassette in the S. elongatus strain 

AMC 395. P2 and P3 are class I genes (synpcc7942__0488 and synpcc7942__2046); P1 and P4 are class II genes 

(synpcc7942__0004 and synpcc7942__0466). The promoter fragment from a control class II strain (AMC 408 (9, 

19)) is shown as a reference. This control strain uses the full length version (~900 nucleotides) of the P1 fragment. 
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(B) Bioluminescence data collected every two hours indicates that each fragment is sufficient to reconstitute the 

phase of the endogenous gene. The bioluminescence from a control class II strain (AMC 408) and a promoterless 

strain are shown as positive and negative controls, respectively. P4 and AMC 408 bioluminescence were scaled by 

1/10th as indicated. Mean and standard deviation of the phase were calculated from at least 2 independent clones. 

Fig. 3: Random mutagenesis of promoter fragments can alter the phase of gene expression from class I to 

class II and vice-versa. 

(A) Random mutagenesis of the promoter fragment P1 from the class II gene, synpcc7942__0004 (purF), yields 

class I mutants. Top panel: bioluminescence from two biological replicates of P1 and P3 are shown as class II and 

class I controls, respectively. Bottom panel: bioluminescence from mutant clones with gene expression ordered by 

phase. Mutants with a phase change are marked with the double lines on the y-axis. All bioluminescence traces have 

been linearly de-trended and normalized such that the minimum and maximum bioluminescence are 0 and 1 units, 

respectively. All bioluminescence time-courses shown were measured in duplicate and replicates were qualitatively 

similar. Raw data and calculated phase are provided in Data Set S1. (B) Random mutagenesis of the promoter 

fragment P2 from the class I gene, synpcc7942__0488, yields class II mutants. Top panel: bioluminescence from 

two biological replicates of P1 and P2 are shown as class II and class I controls, respectively. Bottom panel: same as 

Fig. 3A. 

Fig. 4: Single nucleotide substitutions can change circadian gene expression phase.  

(A) A particular clone (M1-1) from random mutagenesis of P1 was analyzed to determine the causal mutations. Top 

panel: mutations in M1-1 were subcloned in the P1 background (M1-2 through M1-8). All mutations are shown in 

red, bold, underline. All clones with the T to C substitution at either -2 or -5 change phase from class II to class I. 

The +1 position is determined from RNA sequencing data (12).Mean and standard deviation of the phase are 

calculated from at least 4 independent clones for all mutants and from 3 independent clones for P1 and P3 controls. 

Bottom panel: bioluminescence time-course for promoter fragments shown in top panel. M1-2, M1-3, and M1-4 

bioluminescence were scaled as indicated. (B) A particular clone (M2-1) from random mutagenesis of P1 was 

analyzed to determine the causal mutations. Top panel: mutations in M2-1 were subcloned in the P1 background 

(M2-2, M2-4, M2-6, M2-7, M2-8 and M2-9). All mutations are shown in red, bold, underline. All clones with the T 

to G substitution at either -12 or -13 change phase from class II to class I. The +1 position, mean phase, and standard 
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deviation of the phase are determined as in Fig. 4A. Bottom panel: bioluminescence time-course for promoter 

fragments shown in top panel. M2-6 bioluminescence was scaled as indicated. 

 


