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Angular fluctuations of a multi-component order

describe the pseudogap regime of the cuprate superconductors

Lauren E. Hayward,1 David G. Hawthorn,1 Roger G. Melko,1, 2 and Subir Sachdev3

1Department of Physics and Astronomy,

University of Waterloo, Ontario, N2L 3G1, Canada

2Perimeter Institute for Theoretical Physics,

Waterloo, Ontario N2L 2Y5, Canada

3Department of Physics, Harvard University, Cambridge MA 02138

The hole-doped cuprate high temperature superconductors enter the pseudogap

regime as their superconducting critical temperature, T

c

, falls with decreasing hole

density. Experiments have probed this regime for over two decades, but we argue

that decisive new information has emerged from recent X-ray scattering experiments

[1–3]. The experiments observe incommensurate charge density wave fluctuations

whose strength rises gradually over a wide temperature range above T

c

, but then

decreases as the temperature is lowered below T

c

. We propose a theory in which

the superconducting and charge-density wave orders exhibit angular fluctuations in

a 6-dimensional space. The theory provides a natural quantitative fit to the X-ray

data, and is consistent with other observed characteristics of the pseudogap.

The X-ray scattering intensity [4] of YBa2Cu3O6.67 at the incommensurate wavevectors

Q
x

⇡ (0.31, 0) or Q
y

⇡ (0, 0.31), shown in Fig. 1, increases gradually below T ⇡ 200K in a

concave-upward shape until just above T

c

= 60K. One possibility is that this represents an

order parameter of a broken symmetry, and the correlation length is arrested at a finite value

by disorder; however, such order parameters invariably have a concave-downward shape.

The temperature range is also too wide to represent the precursor critical fluctuations of an

ordering transition. Indeed, there is no ordering transition below T

c

, and, remarkably, the

scattering intensity decreases below T

c

at a rate similar to that of the rate of increase above

T

c

.

Instead, the increase in intensity between 200K and 60K is reminiscent of the classic mea-

surement by Keimer et al. [5], who observed a gradual increase in the neutron scattering
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FIG. 1: The temperature dependence of the CDW scattering intensity at Q = [-0.31 0 1.48] in

YBa2Cu3O6.67 measured by resonant x-ray scattering in Ref. [4]. This sample has T

c

⇡ 65.5K.

intensity at the antiferromagnetic wavevector in the insulating antiferromagnet La2CuO4

between 550K and 350K [6]. This increase was explained by the classical thermal, angular

fluctuations of the 3-component antiferromagnetic order parameter in d = 2 spatial di-

mensions [7]. Indeed, this is a special case of a general result of Polyakov [8] who showed

that order parameters with N � 3 components are dominated by angular fluctuations in

d = 2; here, we will exploit the N = 6 case to describe X-ray scattering in the pseudogap of

YBa2Cu3O6.67.

The observed decrease in charge order with decreasing T in YBa2Cu3O6.67 at low T was

predicted in Ref. [9], using a Landau theory framework [10] to describe competition between

superconductivity and charge density wave order [11, 12]. Here we will extend the theory to

a much wider regime of temperatures. The Landau theory introduces a complex field  (r)

to represent the superconductivity, and two complex fields �
x,y

(r) to represent the charge

order. The latter can represent modulations at the wavevectors Q
x,y

in not only the site
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charge density, but also modulations in bond variables associated with a pair of sites [12, 13];

nevertheless, we will refer to it simply as “charge” order. The free energy is restricted by 3

distinct U(1) symmetries: charge conservation, translations in x, and translations in y, which

rotate the phases of  , �
x

, and �
y

respectively. There are also the discrete symmetries of

time-reversal and the square lattice point group, and these lead to the following form of the

Landau free energy density (we ignore possible anisotropies in the spatial derivative terms):

F = |r |2 + s1| |2 + u1| |4 + |r�
x

|2 + |r�
y

|2 + s2

�
|�

x

|2 + |�
y

|2
�

+u2

�
|�

x

|2 + |�
y

|2
�2

+ w

�
|�

x

|4 + |�
y

|4
�

+ v| |2
�
|�

x

|2 + |�
y

|2
�

(1)

The competing order e↵ect arises from the v > 0 term, which demands that |�
x,y

| increase

when | | decreases, and vice-versa. The earlier analysis [9] was perturbative in v, and

consequently applies only in a narrow window around T

c

.

We develop a theory which is non-perturbative in v by assuming that the origin of the

6-dimensional space defined by ( ,�
x

,�
y

) only has high energy states, and so should be

excluded; see Fig. 2. In other words, we assume it is always preferable for the electronic

Fermi surface to locally acquire some type of order. For each radial direction in this 6-

dimensional space, we can label the optimal state by a unit vector n

↵

(↵ = 1 . . . 6) with

 / n1 + in2, �x

/ n3 + in4, and �
y

/ n5 + in6. Our primary physical assumption is that

amplitude fluctuations along the radial direction can be neglected, and that we can focus

solely on the angular fluctuations; no assumptions of an approximate O(6) symmetry are

made a priori. So we introduce a partition function for angular fluctuations of n

↵

, with all

terms allowed by the symmetries noted earlier:

Z =

Z
Dn

↵

(r) �

 
6X

↵=1

n

2
↵

(r) � 1

!
exp

 
� ⇢

s

2T

Z
d

2
r

"
2X

↵=1

(rn

↵

)2 + �

6X

↵=3

(rn

↵

)2

+ g

6X

↵=3

n

2
↵

+ w

h�
n

2
3 + n

2
4

�2
+
�
n

2
5 + n

2
6

�2i
#!

. (2)

The couplings ⇢

s

and ⇢

s

� are the helicity moduli for spatial variations of the superconducting

and charge orders respectively. The coupling g measure the relative energetic cost of ordering

between the superconducting and charge order directions; this is most relevant term which

breaks the O(6) symmetry present for � = 1, g = 0, w = 0 to O(4)⇥O(2) symmetry. Finally

w imposes the square lattice point group symmetry on the charge order: for w < 0 the

charge is uni-directional with only one of �
x

or �
y

non-zero, while for w > 0 the charge
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FIG. 2: Schematic of the structure of fluctuations of Z in a 6-dimensional space representing the

complex superconducting order,  , and the complex charge orders �
x,y

. At high T , all angles are

explored, while at low T below T

c

, for g > 0, the order lies mainly along the equator in the plane

representing  .

ordering is bi-directional. The final symmetry of Z is O(2)⇥O(2)⇥O(2)oZ2, where the

3 O(2)’s are enlarged by discrete symmetries from the 3 U(1)’s noted earlier, and the Z2

represents the 90� spatial rotation symmetry, whose spontaneous breaking is measured by

the Ising-nematic order [14] m = |�
x

|2 � |�
y

|2.

The enhanced symmetries of Z at � = 1, g = 0, w = 0 include two SO(4) rotation

symmetries between d-wave superconductivity and incommensurate d-wave bond order (but

the latter with Q’s along the (1, ±1) directions) that emerge at low energies in the vicinity

of a generic quantum critical point for the onset of antiferromagnetism in a metal [15]; a

non-linear sigma model of this theory was developed by Efetov et al. [16] and applied to the

phase diagram in a magnetic field [17]. It was also argued [13] that these symmetries can be

viewed as remnants of the SU(2) pseudospin gauge invariances of Mott insulators [18–20],

when extended to metals with a strong local antiferromagnetic exchange coupling. And we

also note the similarity to the SO(5) non-linear sigma model of competing orders [21], which

has antiferromagnetism, rather than charge order, competing with superconductivity.

A crucial feature of our analysis of Z is that the couplings ⇢

s

, g, �, and w are assumed to
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be T -independent. The dependence on absolute temperature arises only from the Boltzmann

1/T factor in Z, and this strongly constrains our fits to the experimental data. This feature

ensures our restriction to angular and classical fluctuations in the order parameter space.

We computed the properties of Z using a classical Monte Carlo simulation. This was

performed using the Wol↵ cluster algorithm, after the continuum theory was discretized on

a square lattice of spacing a. This lattice is not related to the underlying square lattice

of Cu atoms in the cuprates; instead, it is just a convenient ultraviolet regularization of

the continuum theory, and we don’t expect our results to be sensitive to the particular

regularization chosen. All length scales in our results will be proportional to the value of a,

and the value of a has to be ultimately determined by matching one of them to experiments.

We performed simulations on lattice sizes up to 72⇥72, and were able to control all finite

size e↵ects.

We also performed a 1/N expansion on a generalized model with N components of n

↵

,

as described in the Appendix. It was found to be quite accurate for the charge order

correlations, but does not properly describe the superconducting correlations near T

c

and

below.

Our Monte Carlo results for the charge order correlations are shown in Fig. 3. We

computed the structure factor

S�
x

(p) =

Z
d

2
r

4X

↵=3

hn
↵

(r)n
↵

(0)i e

ip·r (3)

and show the values of S�
x

⌘ S�
x

(p = 0) for a variety of parameters. At high T , we

have regime of increasing S�
x

with decreasing T , as the correlation length of both the

superconductivity and charge order increases, and the order parameter fluctuates over all 6

directions (see Fig. 2). At low T , there is onset of superconducting order, and S�
x

decreases

with decreasing T , as the order parameter becomes confined to the  plane. In Fig. 3, we fit

the position of the peak in S�
x

by choosing the value of ⇢

s

, and adjusted the vertical scale

so that the peak height also coincides. Note that we are not allowed to shift the horizontal

axis, as T is predetermined. The peak width and shape is not adjustable and is determined

by the theory; so it can be used to fix the values of the dimensionless parameters ga

2, wa

2,

and �. It is evident that the theory naturally reproduces the experimental curve, including

the rate of decrease of charge order on both sides of the peak, for a range of parameter

values. Another view of S�
x

is in Fig. 4, where we present results of the 1/N expansion.
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FIG. 3: Comparison of the X-ray data to Monte Carlo simulations of Z. For each set of values of

ga

2, wa

2 and �, there were 2 fitting parameters. The value of ⇢

s

was determined for each data set

so that the peak positions match: this is equivalent to a rescaling (but not shifting) of the T -axis.

The peak width or shape is not adjustable. For ga

2 = 0.30 and wa

2 = 0.0 we have ⇢

s

= 160K. The

height was also rescaled to make the peak heights match.
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FIG. 4: Density plot of S�
x

as a function of ga

2 and T/⇢

s

, for � = 1 and wa

2 = 0.1 at order 1/N

in the large N expansion.

Note that there are di↵erences between the experiment and theory in Fig. 3, both at very

low and very high T . However, the deviations are in the expected directions. At low T ,

in the present classical theory, S�
x

vanishes as T ! 0; however, quantum fluctuations will

increase S�
x

, possibly accounting for the deviation. At high T , we expect the bare value of

the sti↵ness ⇢

s

to decrease, in contrast to the T -independent ⇢

s

in our theory: this should

decrease S�
x

as needed.

Next, we examined the superconducting correlations by measuring the associated helicity

modulus. As shown in Fig. 5, this allows us to determine T

c

by comparing against the

expected universal jump [22]. We find a T

c

below the peak in S�
x

. This is consistent with

the arguments in Ref. [9], which predicted a monotonic decrease in charge order through

T

c

: evidently their computations only apply in a narrow window about T

c

. We note that

we have not accounted to inter-layer couplings in our two-dimensional theory, and this can

raise T

c

to a position nearer the peak, as in Fig. 1.

One of the fundamental aspects of our theory is that the same set of parameters used

above to describe X-ray scattering experiments, also predict the strength of superconduct-

ing fluctuations above T

c

. The latter are detectable in diamagnetism measurements, and
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FIG. 5: Top: Monte Carlo results for the helicity modulus, measured in the x-direction. Note that

⇢

s

is the helicity modulus at T = 0. We also plot �
x

= (2/⇡)T/⇢

s

, and use the relation helicity

modulus = (2/⇡)T
c

[22] to determine the Kosterlitz-Thouless temperature for each system size L.

A finite-size scaling analysis estimates T

c

/⇢

s

⇡ 0.345 for these parameters. Bottom: The structure

factor, showing a peak at around T/⇢

s

= 0.39. The Kosterlitz-Thouless temperature, T

c

, is marked

with a vertical dashed line. The prediction of Ref. [9] of increasing charge order with increasing

temperature applies in the immediate vicinity of T

c

, to the left of the peak.
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indeed YBa2Cu3O6+x

shows significant fluctuation diamagnetism [23, 24] over the range of

temperatures that X-ray experiments measure charge order fluctuations. We compute the

diamagnetic susceptibility in the N = 1 theory in the Appendix; such a theory has e↵ec-

tively Gaussian superconducting fluctuations and is expected to apply only at T significantly

above T

c

. The observations [24] were found to be consistent with a Gaussian theory [25],

with a T dependence of the superconducting coherence length, ⇠

ab

(T ), similar to that found

in the Appendix. For a sharper comparison, we need to study the crossover into a vortex

dominated regime [26–28]; its description requires Monte Carlo study in our theory, which

is in progress. Making an absolute comparison of ⇠

ab

(T ) with our theory requires the value

of a, which also determines the charge order correlation length. Eventually, with such a

complete study, and more detailed measurements of charge order and superconducting cor-

relations on the same sample, we expect to be able to more tightly constrain the values of

ga

2, wa

2, �, and a.

Other aspects of the charge order and superconducting fluctuations in the pseudogap

regime are similar to those in previous discussions [13, 16, 29]. Charge order was originally

observed around vortex cores [30, 31], indicating its competition with superconductivity.

Bond order was observed [32] in tunneling microscopy at low T , in a disordered configuration

frozen in by disorder. The charge order becomes long-ranged in high magnetic fields [33], and

this is very likely connected to the observed quantum oscillations [34, 35]. The combination

of fluctuating charge and superconducting order is expected to describe the photoemission

observations [13, 29, 35]. The Kerr e↵ect observations have also been linked to charge order

[36].

Our discussion of the pseudogap here has been restricted to the regime of doping over

which only charge order is observed at high fields [33]. At lower doping, there is a quantum

critical point to the onset of magnetic order [37], and this indicates that our theory of the

pseudogap will have to be extended to explicitly include magnetic fluctuations [38] at lower

doping.

Acknowledgments . We thank A. Chubukov, A. Georges and A. Yacoby for useful discus-

sions. This research was supported by the NSF under Grant DMR-1103860 and the Natural

Sciences and Engineering Research Council of Canada. This research was also supported

in part by Perimeter Institute for Theoretical Physics; research at Perimeter Institute is

supported by the Government of Canada through Industry Canada and by the Province of
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Appendix A: Large N expansion

We carried out the large N expansion of the partition function Z in Eq. (2) by generalizing

it to a model with a N -component unit vector n

↵

in which the O(N) symmetry breaks down

to O(N/3)⇥O(N/3)⇥O(N/3)oZ2. The action for such a model is

S =
⇢

s

2T

Z
d

2
r

8
<

:

N/3X

↵=1

(rn

↵

)2 + �

NX

↵=N/3+1

(rn

↵

)2 + g

NX

↵=N/3+1

n

2
↵

+w

2

4

0

@
2N/3X

↵=N/3+1

n

2
↵

1

A
2

+

0

@
NX

↵=2N/3+1

n

2
↵

1

A
23

5

9
=

; . (A1)

The large N expansion proceeds by a standard method [39], and requires that

T = t/N, (A2)

with t of order unity. We introduce an auxilliary field � to impose the unit length constraint,

and two fields �

x,y

which decouple the quartic terms. In this manner we obtain

S =
N⇢

s

2t

Z
d

2
r

8
<

:

N/3X

↵=1

(rn

↵

)2 + �

NX

↵=N/3+1

(rn

↵

)2 + g

NX

↵=N/3+1

n

2
↵

+i�

 
NX

↵=1

n

2
↵

� 1

!
+

�

2
x

+ �

2
y

4w
+ i�

x

2N/3X

↵=N/3+1

n

2
↵

+ i�

y

NX

↵=2N/3+1

n

2
↵

9
=

; . (A3)

In the N = 1 limit, we can integrate out the n

↵

, and the auxilliary fields are all fixed

at their saddle-point values i� = �, i�

x,y

= �

x,y

which are determined by the saddle point

equations

⇢

s

t

=
1

3

Z

p

"
1

p

2 + �

+
1

�p

2 + � + g + �

x

+
1

�p

2 + � + g + �

y

#

�

x

=
2wt

3⇢
s

Z

p

1

�p

2 + � + g + �

x

�

y

=
2wt

3⇢
s

Z

p

1

�p

2 + � + g + �

y

(A4)

where
R
p ⌘

R
d

2
p/(4⇡2). The optimum solution minimizes the free energy density, which is

given by

F =
t

6

Z

p

ln
⇥
(p2 + �)(�p

2 + � + g + �

x

)(�p

2 + � + g + �

y

)
⇤
� ⇢

s

�

2
�

⇢

s

(�
2
x

+ �

2
y

)

8w
(A5)
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A solution with �

x

6= �

y

breaks Ising-nematic symmetry, and this happens at su�ciently low

temperatures for w < �g and g > 0, or for w < 0 and g < 0. The momentum-dependent

structure factors of the  , �
x

, and �
y

correlators are

S (p) =
t/(3⇢

s

)

p

2 + �

S�
x

(p) =
t/(3⇢

s

)

�p

2 + � + g + �

x

S�
y

(p) =
t/(3⇢

s

)

�p

2 + � + g + �

y

. (A6)

For the 1/N corrections, we need to include fluctuations of �, �

x,y

about their saddle

point values. See Ref. [40] for details on a similar computation in a di↵erent context. The

propagators of these fields are expressed in terms of ‘polarization functions’ which are given

by

⇧(p, �) =
1

3

Z

q


1

(q2 + �)((p + q)2 + �)
+

1

(�q

2 + � + g + �

x

)(�(p + q)2 + � + g + �

x

)

+
1

(�q

2 + � + g + �

y

)(�(p + q)2 + � + g + �

y

)

�

⇧
x

(p, �) =
⇢

s

2wt

+
1

3

Z

q

1

(�q

2 + � + g + �

x

)(�(p + q)2 + � + g + �

x

)

⇧
y

(p, �) =
⇢

s

2wt

+
1

3

Z

q

1

(�q

2 + � + g + �

y

)(�(p + q)2 + � + g + �

y

)
(A7)

Then after including self-energy corrections in the n

↵

propagators, we obtain the 1/N cor-
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rections to Eq. (A6):

t

3⇢
s

S

�1
 (p) = p

2 + � +
1

N

1

⇧(0, �)

Z

q

1

⇧(q, �)


d⇧(q, �)

d�

+
2⇧(0, �)

((p + q)2 + �)

�

+
1

N

1

⇧(0, �)

Z

q

1

⇧
x

(q, �)

d⇧
x

(q, �)

d�

+
1

N

1

⇧(0, �)

Z

q

1

⇧
y

(q, �)

d⇧
y

(q, �)

d�

t

3⇢
s

S

�1
�

x

(p) = �p

2 + � + g + �

x

+
1

N

1

⇧(0, �)

Z

q

1
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We evaluated these expressions numerically after regulating the theory on a square lattice

with lattice spacing a. Operationally, this means that we perform the replacement p

2 !

(4�2 cos(p
x

a)�2 cos(p
y

a))/a2 in all propagators, and the p

x,y

integrals extend from �⇡/a to

⇡/a. We show our results for the equal-time structure factor of the charge order correlations

S�
x

⌘ S�
x

(p = 0) in Fig. 6. For the parameters for which results are shown, we found good

convergence upon replacing each integral by a discrete sum over 200 points. It is evident

that the 1/N expansion is quite accurate, except near the peaks.

1. Ising-nematic correlations

We also computed the structure factor of the Ising-nematic order in the phase where Ising-

nematic order is preserved. The Ising-nematic order is m =
P2N/3

↵=N/3+1 n

2
↵

�
P

N

↵=2N/3+1 n

2
↵

and S

m

is its two-point correlator. We compute this by including a source J in the action

S ! S +
R

d

2
r J m. Then, after shifting the auxiliary fields and integrating out the n

↵

, we
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FIG. 6: Comparison of the charge order structure factor as obtained from the large N expansion

at order 1/N , with the computations of the Monte Carlo for the same parameters, and size L = 32.

Large N calculations are solid lines, and Monte Carlo data is plotted as circles with statistical

error bars.

find that the e↵ective action for the auxiliary fields maps via

S[�, �

x

, �

y

] ! S[�, �

x

, �

y

] +
i

2w
J (�

x

� �

y

) � t

N⇢

s

w

J

2 (A9)

By taking functional derivatives with respect to J , and then setting J = 0, we can now

relate the Ising structure factor to the 2-point correlation of the auxiliary fields:

S

m

(p) =
2t

N⇢

s

w

� 1

4w2

Z
d

2
r e

ip·r h(�
x

(r) � �

y

(r)) (�
x

(0) � �

y

(0))i (A10)

At leading order in the 1/N expansion we can evaluate the correlator using the polarization

functions in Eq. (A7); because we are in the Ising-symmetric phase, ⇧
x

= ⇧
y

, and

NS

m

(p) =
2t

w⇢

s

� 1

w

2⇧
x

(p, �)
=

4(t/⇢
s

)2P (p)

3 + 2w(t/⇢
s

)P (p)
(A11)

where

P (p) =

Z

q

1

(�q

2 + � + g + �

x

)(�(p + q)2 + � + g + �

x

)
(A12)

We show the T dependence of S

m

⌘ S

m

(p = 0) in Fig. 7 for a particular set of couplings.
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FIG. 7: Ising-nematic structure factor, as computed in the N = 1 theory for ga

2 = 0.3, � = 1 and

wa

2 = �0.2. The corresponding charge ordering structure factor for these parameters is shown in

Fig. 6.

2. Diamagnetic susceptibility

We now compute the linear response to a magnetic field applied perpendicular to the

layer in the N = 1 theory. We assume that the field only has an orbital coupling to

the superconducting order. Here, we will carry out the computation explicitly with lattice

regularization, on a square lattice of spacing a, because we want to keep all expressions

properly gauge-invariant.

At N = 1 we can set i� = �, and just treat the ↵ = 1, 2 components of n

↵

as Gaussian

fields. So we define the complex superconducting order by  = (n1+in2)/
p

2t/(N⇢

s

). Then

the part of the action that detects the presence of the magnetic field is

S = �
X

hiji

�
 ⇤

i

 
j

e

iA

ij + c.c
�

+
X

i

(4 + �a

2)| 
i

|2 (A13)

where A

ij

is the Peierls phase from the applied field. The paramagnetic current is

J

i

(q) =
2

a

Z
d

2
k

4⇡2
 ⇤(k + q/2) (k � q/2) sin(k

i

a) (A14)
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FIG. 8: Diamagnetic susceptibility for the same set of parameters as in Fig. 7.

So the 2-point current correlator, including the diamagnetic contribution, is

K

ij

(q) = hJ
i

(q)J
j

(�q)i

=
1

a

2

Z
d

2
k

4⇡2

4 sin(k
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a) sin(k
j
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((4 � 2 cos((k
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+ q

x

/2)a) � 2 cos((k
y

+ q

y

/2)a))/a2 + �)

⇥ 1

((4 � 2 cos((k
x

� q

x

/2)a) � 2 cos((k
y

� q

y
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� �

ij

Z
d

2
k

4⇡2

2 cos(k
x
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((4 � 2 cos(k
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a) � 2 cos(k
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(A15)

This vanishes at q = 0 as expected by gauge invariance. For small q we obtain

K

ij

(q) = �(q2�
ij

� q

i

q

j

)
1

a

4

Z
d

2
k

4⇡2

8 sin2(k
x

a) sin2(k
y

a)

((4 � 2 cos(k
x

a) � 2 cos(k
y

a))/a2 + �)4
(A16)

For small �, the integral can be evaluated near k = 0, and we obtain

K

ij

(q) = �(q2�
ij

� q

i

q

j

)

12⇡�

(A17)

Restoring physical units, this implies that the magnetic susceptibility is

� = �1

s

✓
2e

~

◆2
k

B

T

12⇡�

(A18)

where s is the interlayer spacing. This agrees precisely with the standard result [25] in

Eq. (1) of Ref. [24], after we observe from Eq. (A13) that � is equal to ⇠

�2
ab

(T ), where ⇠

ab

(T )

is the superconducting coherence length.

We plot the T dependence of � in Fig. 8 for the same set of parameters used in Fig. 7. We

have only shown higher T values because the large N theory, which is e↵ectively a Gaussian
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theory, is not reliable close to the superconducting T

c

. Note that the T dependence of �,

and hence also that of ⇠

ab

(T ), is similar to that in the observations [24].
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