Electron Uptake by Iron-Oxidizing Phototrophic Bacteria

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation

Published Version
doi:10.1038/ncomms4391

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:12872199

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Electron uptake by iron oxidizing phototrophic bacteria

A. Bose,¹ E. J. Gardel,¹,²§ C. Vidoudez,¹§ E. A. Parra,¹ P. R. Girguis¹*

¹Department of Organismic and Evolutionary Biology, Harvard University,
16 Divinity Avenue, Cambridge, MA 02138, USA. ²School of Engineering and
Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA 02138.

§These authors contributed equally

*To whom correspondence should be addressed. Email:

pgirguis@oeb.harvard.edu

Summary: The anoxygenic photoferroautotroph Rhodopseudomonas palustris TIE-1
accepts electrons from a poised electrode, which is uncoupled from photosynthesis, and
the PioABC system plays a role in electron uptake.
Abstract

Oxidation-reduction reactions underlie energy generation in nearly all life forms. While most organisms use soluble oxidants and reductants, some microbes can access solid-phase materials as electron-acceptors or -donors via extracellular electron transfer. Many studies have focused on the reduction of solid-phase oxidants. Far less is known about electron uptake via microbial extracellular electron transfer, and almost nothing is known about the associated mechanisms. Here we show that the iron-oxidizing photoautotroph *Rhodopseudomonas palustris* TIE-1 accepts electrons from a poised electrode, with carbon dioxide as the sole carbon source/electron acceptor. Both electron uptake and *rubisCo* form I expression are stimulated by light. Electron uptake also occurs in the dark, uncoupled from photosynthesis. Notably, the *pioABC* operon, which encodes a protein system essential for photoautotrophic growth by ferrous iron oxidation, influences electron uptake. These data reveal a previously unknown metabolic versatility of photoferrotrophs to use extracellular electron transfer for electron uptake.
Introduction

Microbial metabolic activity substantially influences matter and energy flow through the biosphere, and drives global biogeochemical cycles\(^1\). Microorganisms have broad metabolic capabilities, and can utilize chemically diverse, soluble substrates for energy generation. Some microbes can also use solid-phase electron-acceptors and -donors via a process called extracellular electron transfer (EET)\(^2-5\). Recent years have been a watershed for microbial EET, with many studies focusing on the relevance of EET in bioremediation and biotechnology\(^6,7\). Although studies over the past few decades have examined the role of microbial EET in donating electrons to metal oxides and oxygen\(^6,8-10\), the involvement of microbial EET in facilitating electron uptake has come to fore only recently\(^11\).

Studies show that mixed microbial communities facilitate cathodic reactions in bioelectrochemical systems (BESs), implicating microbes in electron uptake\(^11\). Recent studies using pure cultures have shown that at least three microbes are capable of taking up current from an electrode: *Sporomusa ovata*\(^12\), *Mariprofundus ferrooxydans* PV-1\(^13\), and *Shewanella oneidensis* MR-1\(^14\). Only the study performed on *Shewanella* considered the genetic loci likely involved in electron uptake\(^14\). As such, the mechanisms underlying electron uptake by microbes including *Shewanella* remain poorly understood.

Characterizing how microbes take up electrons from solid-phase electron donors is critical to our understanding of the ecological and evolutionary implications of this process, as well as to any future biotechnology efforts such as electrosynthesis\(^6,15\). The establishment of genetic, genomic and metabolic studies in microbes that naturally take
up electrons via EET will lead to 1) identification of the associated genetic determinants, 2) the underlying molecular mechanisms, and 3) also facilitate experiments that examine the relationship between electron uptake and cellular metabolism.

Here we present data on our studies of *Rhodopseudomonas palustris* TIE-1 (TIE-1), a photoautotrophic microbe capable of accepting electrons from a variety of electron donors, including iron16-18 (Supplementary Fig. 1). We chose TIE-1 as the model organism because it uses ferrous iron, Fe(II), as an electron donor for photosynthesis (photoferrotrophy)16. Moreover, the metabolic versatility and genetic tractability of TIE-1 helps to readily interrogate the fundamental physiological relevance of electron uptake, including the degree and conditions under which TIE-1 takes up electrons, some genetic loci encoding systems involved in electron uptake, and the relationship between electron uptake and other physiological processes such as photosynthesis and carbon fixation. We observe that TIE-1 accepts electrons from a poised electrode, with carbon dioxide as the sole carbon source/electron acceptor. Both electron uptake and *ruBisCo* form I expression are stimulated by light. Electron uptake also occurs in the dark, uncoupled from photosynthesis. The *pioABC* operon, which encodes a protein system essential for photoautotrophic growth by ferrous iron oxidation, influences electron uptake.

Results

TIE-1 accepts electrons from a poised electrode
To characterize electron uptake by TIE-1, bioelectrochemical systems (BESs) were used. BESs are experimental systems where an electrode is submerged in a bioreactor, and is used to mimic the midpoint potential of solid-phase minerals3,6. BESs provide an attractive alternative to using natural redox active minerals, allowing one to study microbial EET without confounding issues such as mineralogical changes during experimentation6,9,13,19,20. The electrodes were poised at +100 mV vs. Standard Hydrogen Electrode (SHE) (Supplementary Fig. 2) as this potential is consistent with forms of Fe(II) utilized by TIE-121.

TIE-1 was subjected to three treatments: 1) illuminated reactors with poised electrodes passing current (illuminated treatment); 2) non-illuminated reactors with poised electrodes passing current (dark treatment); and 3) illuminated reactors with electrodes at open circuit, passing no current (control treatment). The highest rates of current uptake by the TIE-1 wild-type (WT) were observed in illuminated treatments, up to ~1.5 µA cm-2 (Fig. 1a). Cyclic voltammetry of the electrodes in the illuminated treatments revealed two modest but discernable cathodic peaks at +0.27 V and +0.4 V (vs. SHE) in the WT, which were absent in the abiotic control (Fig. 1b), suggesting the presence of redox active components in the illuminated reactors. Cathodic current was also observed in the dark treatments, suggesting that current uptake occurred under these conditions, though ~70% lower than when illuminated (Fig. 1a). We observed that cells attached to electrodes during all biotic treatments, with the highest viable cell densities occurring in the light treatment (Fig. 2a-b, Supplementary Fig. 3, Supplementary Table 1, Supplementary Table 2). Planktonic cells numbers increased during the course of the one-day incubations, though the increase in the WT illuminated
and control treatments were not significantly different at the end of these experiments (Supplementary Table 3 and Supplementary Table 4).

To best capture the changes in gene expression during the onset of EET, these treatments lasted ~24 hours to avoid issues that can arise during prolonged experiments (e.g. differences in growth phase). Nevertheless, the apparent changes in planktonic cell density would suggest that A) current was being used to support planktonic growth; or B) an exogenous electron donor was available for growth. Notably, in separate 5-day illuminated treatments, TIE-1 exhibited ten fold higher densities than dark and control treatments. However, in these shorter-term illuminated treatments, mass balance calculations suggest that the planktonic cell increase in the bioreactors is two orders of magnitude lower that predicted if all current went to biomass (Supplementary Note 1). Moreover, the trace concentrations of Iron present in the medium (to support biosynthesis) could only account for up to 4.0 X 10^4 cells mL^{-1} of the observed cell increase (for calculations see Supplementary Note 2). Thus, there is an electron sink other than biomass, and notably the gene expression data suggests that this could be reductive CO_{2} assimilation (discussed in detail below).

These data provide the first evidence of light-stimulated electron uptake by a photoferrotroph, with some electron uptake also occurring in the dark, independent of photosynthesis. Phototrophic microbes related to TIE-1 use photic energy for ATP synthesis through cyclic electron flow, without the need for an electron donor^{22}. An electron donor is only required to produce reducing equivalents (NADPH) for cellular metabolism most likely by reverse electron transfer^{23}. In the dark, no ATP can be generated via photosynthesis but cellular metabolism continues^{22}, thus requiring an
electron donor, which is likely represented by the observed dark current in our experiments. The dark current also suggests that the electron uptake machinery is independent (or can be uncoupled) of the cyclic photosynthetic apparatus. The increase in electron uptake in the presence of light suggests that the ATP generated using the energy of light is used by cellular processes, necessitating a higher level of electron uptake.

The pioABC operon plays a role in electron uptake

Because these data reveal that TIE-1 accepts electrons from a solid-phase conductor, we reasoned that it might employ conserved strategies to mediate this electron uptake. Previous studies have shown that pioABC is essential for photoferrotrophy, and have speculated that the Pio proteins might be involved in electron transfer from Fe(II) to the electron transport chain17,21. The pioABC operon encodes the putative proteins PioA, a periplasmic decaheme cytochrome, PioB, an outer membrane porin, and PioC, a periplasmic high potential iron-sulfur cluster protein (HiPIP)17,21 (Supplementary Fig. 4). Using mutant studies and expression analysis we directly tested whether the PioABC system plays a role in electron uptake. We observed that ΔpioABC illuminated biofilms accepted 30% less current than the WT (Fig. 3a), and the mutant illuminated biofilms were ~8 to 10 fold less dense than the WT (Supplementary Table 2). Fewer ΔpioABC mutants colonized the electrode in the illuminated treatments, which might result from an attachment defect. However, this was not observed in the control treatments, i.e. in the absence of current, as the mutant cell
densities were comparable to the WT (ΔpioABC – 9.2 X10^6 cells cm^{-2}, WT – 8.1 X10^6 cells cm^{-2}).

If we assume that only attached cells contribute to electron uptake, then the ΔpioABC mutants seem to accept more current per cell than the WT (Supplementary Table 5 and Supplementary Table 6). This would imply that the ΔpioABC mutant cells can take up electrons more actively, perhaps via compensatory changes. We posit, however, that such an assumption is inaccurate as it disregards the potential contribution of planktonic cells to electron uptake (Supplementary Fig. 2). Regardless, these data collectively show that the Pio system influences electron uptake, though other mechanisms of electron uptake clearly exist in TIE-1 as the mutant maintains nearly 70% of the current uptake seen in the WT (Fig. 3a). Future studies should examine the means by which the Pio system influences both phototrophic iron oxidation and EET, and its potential role in governing attachment to poised electrodes.

We hypothesized that electron uptake might influence physiological systems that play a role in EET as well as redox balance. Accordingly, we assessed the expression of the target genes, including those encoding the PioABC proteins, across all treatments. Expression of pioA in the WT illuminated biofilm was upregulated by ~48-fold, while pioB and pioC showed more modest upregulation compared to the control treatment (11- and 3-fold respectively; Fig. 3b). The observed levels of pioA in the WT illuminated biofilm were well above those of the inoculum (grown on H_2:CO_2; Fig. 3b). They were, however, comparable to gene expression observed during photoferrotrophic growth on soluble Fe(II) in conventional culture apparatus. The decreased current uptake of the ΔpioABC mutant, as well as the observed upregulation of the Pio genes in
the BES system, together suggest that the PioABC proteins may be involved in electron uptake by TIE-1 under these conditions.

It should be noted that the PioABC module occurs in a number of anoxygenic phototrophic microbes, which might show light-enhanced electron uptake as observed in TIE-1 (Supplementary Table 7). Moreover, non-phototrophic ferrous iron-oxidizing bacteria (FeOB) also possess the PioAB module, raising the question as to whether these organisms perform light-independent electron uptake similar to the observed dark current in TIE-1. The involvement of the MtrAB (related to PioAB17) system in the electron acceptance by \textit{Shewanella oneidensis} (MR-1) from a poised electrode also suggests that this module might play a direct role in electron uptake14.

Electron uptake stimulates expression of other genes

We used expression analyses and microscopy to further examine TIE-1’s response to electron uptake. Exopolysaccharide (EPS) genes were highly upregulated in the WT illuminated biofilms and, in some cases, in the ΔpioABC illuminated biofilms. Expression analysis further showed that the pioC homolog (another HiPIP located elsewhere on the chromosome) was upregulated (4-fold) in the WT illuminated planktonic cells (cells not attached to the electrode present in the medium) compared to the control treatment (Fig. 4 panel Ib) suggesting that the encoded protein might play a role in planktonic cell increase under these conditions. Microscopy revealed that EPS production was most abundant in illuminated biofilms (Fig. 4 panel Ia and IIa; Supplementary Fig. 5a-b). Protein staining established the presence of extracellular proteins in the cells attached to the electrodes (Supplementary Fig. 5c-d). Future
analysis on biofilm & planktonic cells, and the produced EPS will help determine the role of these elements in electron uptake.

ruBisCo form I expression increases during electron uptake

Previous studies have shown that in organisms related to TIE-1, electron donors are required for generation of reducing equivalents, namely NAD(P)H, which serves as a reductant for cellular processes such as carbon fixation via the Calvin cycle22,24-26. Ribulose-1, 5-bisphosphate carboxylase/oxygenase (RuBisCo), a key enzyme in the Calvin cycle, assimilates CO$_2$ into ribulose 1,5-bisphosphate yielding two molecules of 3-phosphoglycerate, which are eventually reduced by NAD(P)H to glyceraldehyde 3-phosphate in the reductive phase of the cycle24-26. TIE-1 and related microbes harbor genes encoding two forms of ruBisCo: form I and II24-26. We observed that ruBisCO form I was most highly expressed in WT illuminated biofilms (Fig. 4 panel Ic), and was typically higher than ruBisCo form II during conventional, photoautotrophic growth on hydrogen and Fe(II) (Fig. 4 panel Ic). Notably, ruBisCo form I expression was not induced in the dark treatment (Fig. 4, panel Ic). Previous studies on the regulation of ruBisCo form I expression in CGA009/10 (~99% identity to TIE-116) shows that it is under exquisite control and is positively regulated by ATP and NAD(P)H, metabolites that indicate the energy status of the cell27. During electron uptake in the presence of light, TIE-1 likely produces abundant ATP and NAD(P)H, which we posit leads to the increase in ruBisCo form I expression. In contrast, both these metabolites are likely lower in the dark, and thus ruBisCo form I expression decreases. It has also been suggested that RuBisCo form I can indirectly act as an electron sink (because increase
in its expression leads to higher production of 3-phosphoglycerate, which serves as the substrate for the reductive part of the Calvin cycle) to maintain redox balance in photosynthetic bacteria related to TIE-125,26.

Discussion

Our data provide a first glimpse on the ability of the photoautotrophic bacterium *R. palustris* TIE-1 to accept electrons from a solid-phase electron donor. Because photoautotrophs are exposed to diurnal cycles of light and dark conditions, we tested the effect of illumination on the ability of TIE-1 to accept electrons. Our results show that TIE-1 accepts electrons under both light and dark conditions, although light strongly stimulates electron acceptance (Fig. 1a). The massive upregulation in genes that encode for the pioABC system (encoding proteins that are suggested to play a critical role in phototrophic iron oxidation by TIE-117), as well as the decrease in current observed in pioABC mutants, imply that the Pio proteins are engaged in electron uptake. In contrast, the pioABC mutants appear to have an attachment defect to poised electrodes thus exhibiting higher cell-specific electron uptake rates compared to the WT (Fig. 3a, Supplementary Table 2 and Supplementary Table 6). This apparent pleiotropy makes it difficult to ascribe a simple role to the pioABC system in electron uptake.

It should be noted that our experimental design does not allow us to exclude the possibility that both the biofilm and the planktonic cells were engaged in electron uptake, and the free living and biofilm lifestyles might be dynamic (Supplementary Fig. 2). The planktonic cells may have contributed to current uptake through direct encounters with the electrode (these reactors were well stirred), or via soluble
compounds (we were unable, however, to detect any redox active compounds in the spent medium; Supplementary Fig. 2 and Supplementary Fig. 6).

Transcriptomic analysis showed that RuBisCo form I expression was highest in the poised illuminated electrodes (Fig. 4 panel Ic), suggesting that this enzyme could be an indirect electron sink as has been observed in other related organisms25,26. Because RuBisCo is part of the Calvin Cycle, the carbon fixation pathway in TIE-1, it is plausible that some of these electrons would go to biomass. Although we did see an increase in the total cell density, there was no significant difference among these short-term treatments, and the mass balance analyses suggest that biomass only accounts for a modest amount of the total current passed (Supplementary Table 1, Supplementary Table 2, Supplementary Table 3 and Supplementary Table 4). As mentioned, these experiments were designed to be short in duration to avoid confounding factors associated with growth and changes in growth phase. In light of TIE-1’s typically modest growth rates, it is likely that increases in biomass attributable to electron uptake during these short-term treatments are below our limits of resolution.

In nature, electron uptake via EET could ameliorate metabolic dilemmas that neutrophilic FeOBs, such as TIE-1, are known to face. FeOBs often contend with the precipitation of insoluble iron oxides outside the cell, which are a byproduct of their metabolic activity and potentially limit Fe(II) availability21,28. TIE-1 produces poorly crystalline Fe(III) hydroxides, which over time are abiotically transformed to the (semi)conductive minerals goethite and magnetite16,29. Conduction of electrons through this matrix would allow TIE-1 (and potentially other FeOBs) access to electrons from remote electron donors, including Fe(II) (Supplementary Fig. 7), via processes such as
electron conduction and iron atom exchange$^{30-32}$. Indeed, recent studies have shown that conductive minerals can facilitate electron transfer to microbes from remote electron donors (including other microbes)33. These data extend this phenomenon to photoautotrophs, which is highly relevant because their restriction to the photic zone might hinder access to reductants in deeper, anaerobic layers22,34. In addition to the ecological advantages of electron uptake via EET, there is substantial interest in exploiting photoautotrophs for both energy & biofuel generation11, and identifying a genetically tractable photoautotroph that can use electric current as an electron donor holds promise in future electrosynthesis applications11. While the ecological significance of EET is just coming to fore, our data illustrate the potential value of EET to microorganisms in nature, in particular photoautotrophs.

Methods

Bacterial strains, media, and growth conditions

Rhodopseudomonas palustris TIE-1 was grown as described previously18. For experiments, cells were pre-grown autotrophically on 80% hydrogen:20% carbon dioxide (H$_2$:CO$_2$) at 200 kPa, in fresh-water medium (FW) with 20 mM bicarbonate. The ΔpioABC strain used herein was constructed as previously described17. Phototrophic pre-growth was at 30°C using a 60W incandescent light source providing total irradiance of ~40 W m$^{-2}$. Bioelectrochemical reactor studies were conducted with FW medium (minimal salts medium lacking any added electron donors$^{16-18}$) with 20 mM bicarbonate (sole carbon source$^{16-18}$), buffered to pH 6.8 and with no exogenous electron-donor. All bacterial strains were routinely tested for purity by standard PCR
using primers indicated in Supplementary Table 8. Due to biological variation in the
cultivation effort, which resulted in different cell densities in the inoculum and prohibits
comparison across treatments, we ran a wild-type (WT) control in parallel with every
individual treatment to account for these differences. All comparisons between WT and
treatments are made using these paired runs.

Bioelectrochemical system and conditions
The bioelectrochemical systems (BES) consisted of new, acid-washed, combusted 350
mL borosilicate glass H-cell reactors equipped with two butyl rubber sampling ports in
the cathodic chamber (Adams and Chittenden Scientific Glass, Berkeley, CA, USA). A
vacuum clamp held the anodic and cathodic chambers together, and electrolytes were
separated using a cation-exchange membrane (Nafion® 117) with an active cross-
section of 20 cm² (Fuel Cell Store, Boulder, CO, USA). The working electrodes
consisted of spectroscopically pure 1/8” diameter graphite evaporation rods (SPI 01685-
FA, Structure Probe Inc, West Chester, PA, USA) that were mechanically polished with
1200 grit sandpaper, soaked in 5% HCl for 12 hours and stored in ultrapure deionized
water. The graphite rods were thoroughly dried prior to use by allowing the water to
evaporate. Each reactor was fitted with three graphite rods to provide a total immersed
projected electrode surface area of 18 cm². The rods were sealed with fittings and
ferrules on the reactor cap (Upchurch Scientific, Oak Harbor, WA, USA). Outside the
reactor, rods were electrically connected to one potentiostat using alligator clips
(described below). The counter electrode consisted of carbon cloth (Fuel Cell Store,
Boulder, CO, USA), which was mechanically attached to a titanium wire pierced through a rubber stopper (VWR) and suspended in the counter chamber.

Electrical conditions and cyclic voltammograms

The reactors were poised using custom-built potentiostats engineered for microbial chronoamperometry (Karma Electronics Inc., Somerville, MA, USA). Data was collected through a National Instruments DAQ (NI-6225) every 10 seconds using Labview SignalExpress software (National Instruments, Austin, TX, USA). Based on preliminary analyses of electroactivity in WT *R. palustris* TIE-1, the reactors were poised at +100 mV vs. Standard Hydrogen Electrode (SHE, -100 mV of the biological E_{pc} roughly at +200 mV vs. SHE) to assure cathodic conditions during the experiment. Importantly, this potential also ensures that a reductive Fe(III)/Fe(II) cycle is not established during these experiments (the redox potential at pH 7.0 of the Fe(III)/Fe(II) couple is +14 mV and electron transfer from an electrode poised at +100 mV will be an endergonic process). Cyclic voltammetry (CV) was conducted using a Gamry R600 potentiostat (Gamry, Warminster, PA, USA). Biofilm CVs were obtained with a scan range of -100 mV to +900 mV vs. SHE at a rate of 20 mV per second. Supernatant voltammograms were obtained using a 3 mm diameter glassy carbon electrode (Part no. A-002012, BioLogic, Claix, France), under a N₂ atmosphere, scanned between 0 to +500 mV vs. SHE at 20 mV per second. We were unable to detect any electro-active soluble species in the 0.2 mM filtered spent medium (Supplementary Fig. 7). To assess the active surface area variability between electrodes, CVs were collected abiotically in fresh water medium. Potential is referenced to the SHE unless otherwise specified.
Description of bioelectrochemical set-ups

The distance between the working and counter electrodes was approximately 11 cm. Assembled BES reactors were sterilized by autoclaving in sterilization pouches and placed inside an anaerobic chamber (Coy, 2% hydrogen and palladium catalysts). Ag/AgCl reference electrodes were custom-made using glass tubing (4 mm KIMAX®), silver wire (0.5 mm diameter) and porous vycor tips (1/8” diameter, MF-2064, BASi). Reference electrodes were calibrated prior to each experiment, placed in the anaerobic chamber, sterilized with 70% ethanol, and placed in the counter chamber for the duration of the experiments. While inside the anaerobic chamber, media and counter buffer were added to the cathode and anode chambers, respectively. Inoculation of the BESs occurred inside the anaerobic chamber prior to transferring them outside the anaerobic chamber to establish electrical connections. The reactor system was purged continuously with a 1 cm³ min⁻¹ stream of 0.2 µm filter-sterilized, deoxygenated gas stream of 80%:20% N₂:CO₂ and 100% N₂ on the cathodic and anodic side, respectively, using a hypodermic needle immersed 1 cm below the media surface. The gases were deoxygenated using a high capacity oxygen trap lowering the oxygen levels to <0.01 ppm (Restek, Bellefonte, PA, USA). Each BES was individually housed with a fresh incandescent 60 W bulb providing a total irradiance of ~ 40 W m⁻². Dark BESs lacked a bulb and were covered thoroughly with black paper to prevent light exposure. All working chambers were stirred gently with a magnetic bar and incubated at 30°C. All incubations, across all treatments, lasted 24 hours.
Sampling

The reactors were inoculated with 10 mL of cells in the mid-exponential phase of photoautotrophic growth on 80% H$_2$: 20% CO$_2$. One mL of media was withdrawn from the reactors immediately following inoculation and used for optical density (OD$_{660}$) determination with a 4802 spectrophotometer (Cole Parmer, Vernon Hills, IL, USA), and for pH measurements (Inlab® Expert Pro pH meter and probe, Mettler Toledo, Schwerzback, Switzerland). Four mL of culture was also withdrawn from the reactors for cell counts. Cells were fixed in 4% paraformaldehyde for cell counting (Electron Microscopy Sciences, Hatfield, PA, USA). At the end of each experiment, one of the electrodes was immediately dipped into RNAlater™ (Qiagen, Valencia, CA, USA) for RNA extraction. Also, 5 mL of planktonic cells were immediately preserved in RNAlater™ and filtered on a polyethersulfone (PES) membrane for RNA extraction (Corning, Tewksbury, MA, USA). All RNA samples were stored at -80°C. A second electrode was cut into ~5 mm pieces and transferred into fixatives or staining solutions for microscopic analyses (described below). Post experimentation, 1 mL of planktonic cells was sampled for OD$_{660}$ determination, and 2 to 4 mL for pH measurements. The remaining culture volume was then filtered on a 0.2 μm cellulose acetate filter (Corning, Tewksbury, MA, USA). After resuspension in 8 mL of media, these planktonic cells were pelleted in two 2 mL microcentrifuge tubes (18000 g for 10 min) and kept at -80°C along with the filtered spent medium.

Protein analysis
Subsamples for total protein analysis were processed in Prot loBind™ 1.5 mL or 2 mL microcentrifuge tubes (Eppendorf, Hauppauge, NY, USA). Trichloroacetic acid (TCA) precipitation was used as previously described\(^{18}\). The pellets were dried under vacuum for 1 hour to remove residual acetone, and then resuspended in 650 µL of 3 M Urea (ACS grade, Alfa-Aesar, Ward Hill, MA, USA). To ensure complete resuspension, the samples were incubated at 80°C for 3 days with frequent sonication in a sonic bath (FS30H, Thermo Fisher Scientific, Waltham, MA, USA). The Pierce BCA (bichinchoninic acid) Protein Assay Kit (Thermo Scientific, Rockford, IL, USA) was employed using the microtiter plate method for protein estimation as specified by the manufacturer with the provided bovine serum albumin as the standard protein. Each sample was quantified in triplicate. Absorbance at 562 nm was measured after 30 s shaking at 37°C using a Spectramax Plus 384 plate reader (Molecular Devices, Sunnyvale, CA, USA).

Fluorescence microscopy sample preparation and imaging

Sections of the electrode were placed into one of three solutions containing 1 µM 4',6-diamidino-2-phenylindole (DAPI, Life Technologies, Grand Island, NY, USA) as well as 1) LIVE/DEAD® stain (0.5 µM SYTO 9 and 3 µM propidium iodide, L7012, Life Technologies, Grand Island, NY, USA), 2) Exopolysaccharide (EPS) stain (200 mg L\(^{-1}\) Concanavalin A and Alexa 488, Life Technologies, Grand Island, NY, USA), and 3) Protein stain (undiluted FilmTracer SYPRO Ruby Biofilm Matrix Stain, Life Technologies, Grand Island, NY, USA). Tubes were wrapped in aluminum foil and kept at room temperature for at least 30 minutes. Samples were then placed in 1X phosphate-buffered saline (PBS) in a glass-bottom dish, and imaged with a Zeiss 700
inverted confocal microscope with the following imaging lasers and Zeiss filters: 1) Live/Dead = 555 nm and 488 nm, SP490; 405 nm, SP555, 2) EPS = 488 nm and 405 nm, SP490 and LP490, 3) Protein = 555 nm, SP 490; 405 nm, SP555. This work was performed at the Harvard Center for Biological Imaging.

Scanning electron microscopy (SEM)

Sections of the electrode were cut using sterile techniques and immediately placed into a sterile microcentrifuge tube containing one of three solutions: 1) 5% glutaraldehyde (Electron Microscopy Sciences, Hatfield, PA, USA) in 1X PBS, 2) 2% paraformaldehyde (Electron Microscopy Sciences, Hatfield, PA, USA) in 1X PBS, and 3) 2% glutaraldehyde in 1X PBS with 0.15% Safranin O (Sigma-Aldrich, St. Louis, MO, USA), which has previously been shown to aid in EPS preservation. Samples were held at 4°C for 24 hours before being subjected to ethanol dehydration by placing them in 35%, 50%, 70%, 95%, 100% ethanol (200 proof) in PBS or 0.1 M PBS solutions for ten minutes each. The 100% ethanol solution was changed five times, and the sample was left in ethanol for critical point drying (Autosamdri 815 A; Tousimis, Inc.) with a 15-minute purge time. The samples were adhered to SEM posts with carbon film tape and then imaged with a SEM at 5 kV (JEOL, Inc.). Cell counts for electrode samples were performed by analyzing microscopy fields taken at the same working distance (4.5 mm) to image, counting at least 500 cells or examining 12 fields of view if cell density was low and normalized to total area. This work was performed at the Harvard Center for Nanoscale Systems (CNS).
RNA isolation

For planktonic assessments, preserved cells were dislodged from the PES membrane before RNA extraction by vortexing for three minutes in a TRIS-EDTA (TE) buffer. For biofilm assessment, the cells were dislodged from the graphite by scraping with a sterile razor, then vortexing vigorously in TE buffer. RNA was extracted as described previously\(^5\). The RNA concentration was quantified using a NanoDrop ND1000 (Thermo Scientific, Wilmington, DE, USA).

RNA amplification

The RNA obtained from the biofilm on the graphite was cleaned with the MEGAclear\(^\text{TM}\) Kit (Life Technologies, Grand Island, NY, USA) as per the manufacturer’s guidelines. The purified RNA was precipitated using ammonium acetate. The reconstituted RNA was used as template for the MessageAmp\(^\text{TM}\) II-Bacteria Kit as per the manufacturer’s guidelines (Life Technologies, Grand Island, NY, USA).

Quantitative reverse transcription PCR (qRT-PCR)

Gene expression analysis was performed using qRT-PCR. The comparative Ct method was used as described previously to assess expression of the \textit{pioABC} operon and other relevant genes\(^5\). Primer efficiencies were determined using the manufacturer’s method (Applied Biosystems Inc. User Bulletin #2). \textit{clpX} and \textit{recA} were used as the two internal standards, which have been previously used and validated as internal standards\(^18\). The primers used for the assays are indicated in Suppl. Table S5. The iScript cDNA synthesis kit was used for reverse transcription (Biorad, Hercules, CA, USA). The iTaq
FAST SYBR Green Supermix with ROX (Biorad, Hercules, CA, USA) and the Stratagene Mx3005P QPCR System (Agilent, Santa Clara, CA, USA) were used for all quantitative assays.

Cell counting

The paraformaldehyde fixed samples were transferred into Amicon centrifuge filters (Amicon Ultrael 100k, regenerated cellulose membrane, Millipore, Carrigtwohill, CO, Ireland) and centrifuged for 10 min at 1000 g. The pellet was resuspended in PBS and washed twice. The cells were recovered by centrifugation of the Amicon in reverse position for 15 min at 3000 g. The resulting samples had less than 0.04% paraformaldehyde. Picogreen was added to the cells (Quant-iT PicoGreen® dsDNA, Life Technologies, Grand Island, NY, USA), and the cells were counted in 96 well plates along with 50 µL of Sphero™ AccuCount blank beads (Spheroteck, Lake Forest, IL, USA). Cell-density was estimated with a LSRII flow cytometer (BD, Sparks, MD, USA) using a 488 nm laser. A calibration curve relating the ratio of cell events to beads events with cell-density was constructed by analyzing a dilution series of a cell sample, the density of which has been determined by microscopy (with a Helber Bacteria Cell counting chamber with Thoma ruling, Hawksley, Lancing, Sussex, UK).

ICP-MS

To measure the concentration of iron present in FW medium ICP-MS was performed using an Agilent 7700x ICP-MS with an octopole MS (Agilent, Santa Clara, CA, USA). Internal standards used were Germanium and Manganese, which were within
the detection limit of our system. The amount of iron in the basal medium was 4 \(\mu \text{M} \) and ranged from 2-4 \(\mu \text{M} \) in the spent medium.

In silico methods

For identifying homologs of the PioABC proteins, delta-\text{blast}^{36}, \text{FASTA}^{37} (http://www.ebi.ac.uk/Tools/sss/fasta/), and the IMG ortholog neighborhood search was used^{38} (http://img.jgi.doe.gov/cgi-bin/w/main.cgi). Sequence similarity was calculated using \text{EMBOSS matcher}^{39,40} (http://www.ebi.ac.uk/Tools/psa/emboss_matcher/). The data reported is accurate as of October 2\(^{nd}\), 2012.

References:

Acknowledgements: This effort was supported by grants from NASA (NNX09AB78G), NSF (OCE-1061934) and the Advanced Research Projects Agency – Energy (ARPA-E), U.S. Department of Energy (DoE) (DE-AR 0000079) to PRG. AB was a Howard Hughes Medical Institute fellow of the Life Sciences Research Foundation and is currently a L'Oreal USA For Women in Science Fellow. EJG is a DoE fellow (DoE SCGF, DE-AC05-06OR23100). The Harvard Center for Nanoscale Systems (CNS) is supported by the National Science Foundation (ECS-0335765). We thank Dianne Newman for providing TIE-1 strains, as well as Daniel Rogers, Colleen Hansel & Emily Fleming for constructive comments, We also thank William Daley Bonificio for collecting the ICP-MS data.
Author contributions: AB, EJG, CV, EAP and PRG designed the research. AB, CV, EAP, EJG and PRG analyzed the data. EJG and CV contributed equally to this work. AB and PRG wrote the manuscript with input from all co-authors.
Conflict of interest: The authors declare no conflict of interest.
Figure Legends:

Figure 1. Current uptake by wild-type *Rhodopseudomonas palustris* TIE-1

Panel a) Average current densities of *Rhodopseudomonas palustris* TIE-1 wild-type (WT) under illuminated and dark conditions. These values were obtained by averaging regions of >8 hours of stable current in each reactor and are reported as microamperes per centimeter squared (μA cm$^{-2}$). Error bars indicate standard deviations of these averages ($n=3$). Data reported are consistent with 10 independent runs. Panel b) Cyclic voltammograms of WT and ΔpioABC mutant after 96 hours of treatment in bioelectrochemical reactors with electrodes poised at +100 millivolts (mV) vs. Standard Hydrogen Electrode (SHE). Two sets of anodic-cathodic peak pairs were identified at 0.27 and 0.40 volts (V), respectively. The red trace depicts the difference in magnitude between the WT and the ΔpioABC mutant strain.

Figure 2. *Rhodopseudomonas palustris* TIE-1 cells attached to cathodes

Panel a) Fluorescence micrographs of a *Rhodopseudomonas palustris* TIE-1 wild-type (WT) illuminated biofilm (4',6-diamidino-2-phenylindole; DAPI stain). Scale bar = 10 μm. Panel b) Scanning electron micrograph (SEM) of a WT illuminated biofilm. Scale bar = 3 μm.

Figure 3. Current uptake and mRNA abundance of the pioABC operon by wild-type *Rhodopseudomonas palustris* TIE-1 and ΔpioABC mutant under various conditions

Panel a) Average current densities of *Rhodopseudomonas palustris* TIE-1 wild-type (WT) and ΔpioABC mutant under illuminated conditions. These values were obtained by averaging regions of > 8 hours of stable current in each reactor and are reported as
microamperes per centimeter squared (μA cm$^{-2}$). Error bars indicate standard deviations of these averages (n=3). Data reported are consistent with 10 independent runs. Panel b) mRNA abundance determined in the wild-type (WT) using qRT-PCR for the $pioABC$ genes. Cells were grown photoautotrophically with 5 mM FeCl$_2$ for photoferrotrophy. Photoautotrophic growth on hydrogen as an electron donor was the inoculum. qRT-PCR data are the averages ± standard error for three biological replicates assayed in triplicate. Illuminated = current with illumination. Control = no current with illumination. Dark = current without illumination. Planktonic = cells not attached to the electrode present in the medium. Biofilm = cells attached to the electrode.

Figure 4. mRNA abundance determined in the *Rhodopseudomonas palustris* TIE-1 wild-type (WT, panel I) and $\Delta pioABC$ (panel II) using qRT-PCR

Panel a) Exopolysaccharide (eps) genes; panel b) $pioC$ homolog; and panel c) $rubisco$ form I and II mRNA abundance. Cells were grown photoautotrophically with 5 mM FeCl$_2$ for photoferrotrophy. Photoautotrophic growth on hydrogen as an electron donor was the inoculum. qRT-PCR data are the averages ± standard error for three biological replicates assayed in triplicate. Illuminated = current with illumination. Control = no current with illumination. Dark = current without illumination. Planktonic = cells not attached to the electrode present in the medium. Biofilm = cells attached to the electrode. $eps \, I = Rpal_{3203}$, $eps \, II = Rpal_{3763}$, $eps \, IV = Rpal_{3771}$, $eps \, VI = Rpal_{3777}$, $pioC$ homolog = $Rpal_{4085}$.