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An effective theory on the light shell

Abstract

We describe work on the construction of an effective field theory on a spherical light

shell. The motivation arises from classical electromagnetism: If a collision produces

charged particles with zero net charge emerging simultaneously from a point and

instantaneously accelerating to the speed of light, then the electromagnetic fields due

to these charges lie entirely on a spherical shell expanding at the speed of light. We

show that this also applies to classical color radiation from high-energy collisions that

produce colored particles. Specifically, the color fields produced in such a process are

associated with a non-linear σ-model on the 2D light shell with specific symmetry-

breaking terms. The quantum version of such a picture exhibits asymptotic freedom

and should therefore be a useful starting point for a light-shell effective theory for

QCD.

We start in the simplified context of zero-flavor scalar quantum electrodynamics.

Our effective theory has 3 major ingredients: breaking down the fields into soft and

hard sectors with the large energy of the hard fields in the radial direction scaled

out, a special gauge called light-shell gauge in which the picture simplifies, and a

gauge-invariant source defined on a spherical light shell having infinitesimal radius.

We match the fields between the effective theory and the full theory, meaning

zero-flavor scalar QED. This allows us to compute the amplitude for the production

of any number of scalars from the gauge-invariant source. We then find the tree-level
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amplitude for the emission of a photon using our effective theory and show that our

result agrees with the full theory.

To calculate loop effects in our effective theory, we need the photon propagator

in light-shell gauge. We derive this propagator and use it to calculate the 1-loop

correction to the amplitude for the production of a scalar and anti-scalar pair arising

from virtual photon effects. This reduces to a pair of purely angular integrals in the

effective theory and reproduces the familiar double logs of the full theory subject to

an appropriate interpretation of an angular cutoff.
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1 Introduction

This thesis is based on our work on Light Shell Effective Theory described in [1], [2], [3]

and [4] co-authored with Howard Georgi and Gregory Kestin. In this introduction, I will

briefly summarize the basic concept behind this work and give an outline of the important

results presented in later chapters.

The basic motivation for our work comes from a picture in chapter 5 of Ed Purcell’classic

textbook on electromagnetism [5] illustrating how a pulse of electromagnetic radiation

emerges from a kink in the field of a charge that instantaneously accelerates from rest to

a constant velocity. We believe that a similar picture may yield a useful starting point for

an effective field theory description of very high energy collisions between hadrons.

In a collider experiment, colourless incoming particles come in and interact in a very

small region of space-time, spewing away coloured particles going off at high energies in

various directions. This is similar to the situation in classical electromagnetism where a

collision can result in charged particles suddenly emerging from a single point from an

initially neutral charge distribution. In the limit where the collision takes place instanta-

neously and the charged particles move out at the speed of light, a pulse of radiation is

produced which moves outward along a spherical surface whose radius expands at the speed

of light. The electromagnetic fields are then sharply peaked on this spherical surface, and

zero both inside and outside it. We call this surface the light shell (as it is the equal t slice

of the lightcone of the initial space-time event at t = r = 0).

We believe that this picture where all the physics resides on a spherical light shell

expanding at the speed of light should also apply to the case of hadronic collisions. In

this case, the initial collision involves hard QCD processes taking place at energies large

compared to the QCD scale. This produces very high energy colored particles that fly

apart at the speed of light and these particles, along with the color electric and magnetic

fields they produce will be confined to an expanding light shell, just as in the case of
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electromagnetism. We hope this picture may be useful to describe the physics for the range

of times between the very short time scale of the initial collision and the “long” time scale

of 1/ΛQCD at which point confinement comes into play.

In chapter 2, this idea is fleshed out in detail by first giving the calculation of electro-

magnetic fields produced by a collection of charged particles with zero net charge instan-

taneously accelerating to the speed of light as mentioned above. One important finding in

this regard is that not only the electromagnetic fields reside entirely on the light shell, but

the potentials too can be expressed in a similar form where they are zero everywhere except

on the t = r sphere if we choose the gauge condition vµA
µ = 0, where vµ is a light-like

vector pointing away from the origin. This gauge, which we call the light-shell gauge (or

LSG), will also be an important part of the construction of our effective theory.

The analysis is then extended to the non-abelian case by looking at classical color fields

in the appropriate limit. Our analysis shows that the classical color electric fields on the

light shell can be related to a non-linear σ-model on a static two dimensional sphere with

the Goldstone bosons playing the role of the potential fields and with specific symmetry

breaking related to the color charges of the high energy particles producing the fields.

Before going on to construct LSET, it is possible to have some fun connecting the

classical electromagnetic fields in our physical set up with the tree-level quantum mechanical

amplitude for the emission of a photon in QED/SQED (the amplitude is the same in both

QED and SQED). This is done in detail in chapter 3. The argument can be made in two

directions. In classical electromagnetism, the intensity is given as the sum of the squares

of the E and B fields. This can be interpreted as a probability of photon emission and

therefore connected with the tree-level quantum amplitude for photon emission in QED.

Conversely, the quantum mechanical probability amplitude is the expectation value of the

gauge field in momentum space. It is possible to show that its square, after some simple

manipulation, can be expressed as the intensity of electromagnetic fields.

The remaining chapters present our work on developing the quantum effective theory
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based on our classical picture. Our focus has thus far been in the simplified case of 0-flavor

scalar quantum electrodynamics. In simple words, this is a limit in which we can ignore

matter loops. This allows us to focus on the basic construction of the effective theory

without being distracted by complicated loop effects. The ultimate goal is to extend this

work beyond the zero-flavor case and all the way to QCD, but this should serve as a good

starting point.

Chapter 2 describes the construction of our quantum effective theory for zero flavour

scalar QED (also referred to as the full theory in this thesis). Translating the above-

mentioned classical picture of charged particles emerging from a single point and accel-

erating instantaneously to the speed of light into quantum field theory suggests a gauge

invariant source at t = r = 0. In our effective theory, however, we work in light-shell gauge

which is not defined at the origin. We therefore define a source that is “spread out” around

the origin on a light shell having infinitesimal radius. This is consistent with our classical

picture where all the physics goes on the light shell in the high-energy limit. We therefore

spread out our source onto a surface r = s surrounding the origin, near the light shell, with

t− r → 0 as E →∞.

Moreover, the effective theory framework requires that we set an energy scale E to define

what we mean by “high energy”. In the spirit of HQET [6] (for a recent and comprehensive

review see [7]) we scale out the large momenta associated with the energetic outgoing

particles. We call the associated decomposition into fields above and below E the large

radial energy (LRE) expansion, and refer to the fields with high energies as LRE fields.

Specifically, the LRE fields correspond to high-energy particles produced by the source

carrying large energy E > E outwards from t = r = 0 into the bulk space. We will see that

to leading order in 1/E, the direction r̂ of propagation away from the origin is a classical

variable and we can label the LRE fields by r̂. But in the presence of interactions, the

directions of the LRE fields cannot be specified precisely. So to each charged LRE field we

assign an “angular size”.
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The LSET Lagrangian is obtained by applying the LRE expansion to sQED, and ex-

panding in orders of 1/E. An important result that emerges from this is that the gauge

interactions at leading order (in 1/E) are proportional to vµAµ and therefore vanish in

light-shell gauge. With these interactions eliminated as gauge artifacts, all the physics at

high energies is described in terms of a gauge invariant source at the origin of space-time.

Because different configurations of LRE fields (different energies and directions) do not

interfere, each such configuration is associated with its own sector, and the source in the

EFT is a sum over all such sectors, separated by superselection rules.

Since the point of any effective theory is to reproduce the physics of a more fundamental

theory in a certain limit, our theory must be able to do the same. This is the subject of

chapter 5. The standard canonical quantization recipe is applied to the LRE theory, and

the connection between LRE scalars and full theory fields is established by comparing

the commutation relations of the creation/annihilation operators in both theories. This

understanding of creation/annihilation operators for LRE fields is then also employed in

the calculation of the tree-level amplitude for the emission of a hard photon. The photon

production amplitude calculated from our effective theory is found to match the familiar

result from the full theory.

In order to go beyond tree-level effects, we need the photon propagator in light-shell

gauge. Calculating this turns out to be a non-trivial task because LSG is a non-covariant

gauge, making it impossible for us to follow the well-known methods for covariant gauges

[8]. Chapter 6 explains the calculation of the LSG photon propagator. We hope that

the technique we have introduced for this purpose may also have some relevance for other

non-covariant gauges, though this is not a question we have yet explored.

The ultimate goal of our effective theory is to get another handle on the IR and collinear

divergences that afflict QED and QCD. While this is ongoing work, some of our initial results

are very encouraging and are described in chapter 7. Specifically, in our calculation of the

leading order virtual photon exchange process in our effective theory setting, we are able
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to obtain a result that looks very similar to the corresponding full theory result with the

familiar double logs. The only difference is that our result includes the log of an angular

cutoff for which we do not yet have an obvious physical connection with the ratio of energies

appearing in the corresponding result in the full theory. One very interesting feature of our

theory, which is especially evident in this particular calculation, is that all our calculations

can be described in terms of purely angular integrals.

The results summarized above (and described in subsequent chapters in detail) show

that our theory certainly has some potential as a viable description for QED and QCD

processes. Beyond the obvious (and broad) question of eventually extending this beyond

zero flavor QED all the way to QCD, there are also several more specific questions that

come up in the course of our analysis and require further research. Some of these are

discussed in chapter 8.

In short, while we already have the well-developed Soft Collinear Effective Theory

(SCET) [9, 10] which is already being successfully applied to QCD processes at high ener-

gies [11], the idea of an effective theory on the sphere is so appealing and different that we

believe there is a real possibility that it could provide some new insights.
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2 Classical motivation

2.1 The retarded potential calculation

We start by considering two oppositely charged particles with charges ±q created instan-

taneously at t = 0 at the origin and then moving apart in opposite directions at the speed

of light with velocities ±n̂, respectively. The charge density can be written as

ρ(~r, t) = qe
[
δ
(
~r − ~R(t)

)
− δ

(
~r + ~R(t)

)]
(1)

and the current density is

~J (~r, t) = qe n̂
[
δ
(
~r − ~R(t)

)
+ δ

(
~r + ~R(t)

)]
(2)

where

~R(t) = n̂tθ(t) (3)

The scalar potential (in Lorentz-Heaviside units) is given by

φ (~r, t) =
1

4π

∫ ρ
(
~r′, t−

∣∣∣~r − ~r′∣∣∣)∣∣∣~r − ~r′∣∣∣ d3r′ (4)

and the vector potential is

~A (~r, t) =
1

4π

∫ ~J
(
~r′, t−

∣∣∣~r − ~r′∣∣∣)∣∣∣~r − ~r′∣∣∣ d3r′ (5)

Now, focusing on the contribution of the positive charge, for every point ~r on or inside

the sphere of radius t, we have a unique retarded position

~r′ = n̂ r′ (6)
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that contributes to the retarded potential and satisfies the condition

~r′ = ~R
(
t−
∣∣∣~r − ~r′∣∣∣) (7)

Since both sides are in the n̂ direction, this can be written as

r′ = t− |~r − n̂ r′| ≥ 0 (8)

or equivalently,

t− r′ = |~r − n̂ r′| (9)

We will actually be able to do the d3r′ integral easily because of the delta functions in

the charge and current distributions. Define the argument of the delta function

~r′′ ≡ ~r′ − ~R
(
t−
∣∣∣~r − ~r′∣∣∣) (10)

The Jacobian is then easily obtained by using (3) along with the chain rule:

∂r′′j
∂r′k

= δjk − Vj
(
t−
∣∣∣~r − ~r′∣∣∣) rk − r′k∣∣∣~r − ~r′∣∣∣ (11)

where ~V is the velocity, and is given by ∂R/∂t = n̂ θ(t). For the d3r′ integral, we need

the inverse of the determinant of this Jacobian evaluated where r′′ = 0. Calculating this is

a straightforward exercise, and we get

∣∣∣∣ ∂r′∂r′′

∣∣∣∣
~r′′=0

=
1

1− ~V
(
t−
∣∣∣~r − ~r′∣∣∣) · (~r − ~r′)/ ∣∣∣~r − ~r′∣∣∣ =

1

1− n̂ ·
(
~r − ~r′

)/ ∣∣∣~r − ~r′∣∣∣ (12)

7



Using (12) in (4) then gives the retarded potential

φ+ (~r, t) = q
e

4π
θ(t− r)

 1∣∣∣~r − ~r′∣∣∣
  1

1− n̂ ·
(
~r − ~r′

)/ ∣∣∣~r − ~r′∣∣∣


= q
e

4π
θ(t− r) 1∣∣∣~r − ~r′∣∣∣− n̂ · (~r − ~r′)

= q
e

4π
θ(t− r) 1

t− n̂ · ~r

(13)

where in the last step, we have used (9). We can repeat the calculation for the negative

charge by appropriately changing the sign of the velocity. So the total potential (due to

both charges) is

φ (t, ~r ) = q
e

4π
θ(t− r)

(
1

t− n̂ · ~r
− 1

t+ n̂ · ~r

)
(14)

Similarly, the vector potential is obtained by using (12) and (9) in (5):

~A (t, ~r ) = q
e

4π
n̂ θ(t− r)

(
1

t− n̂ · ~r
+

1

t+ n̂ · ~r

)
(15)

This looks rather nice, but we can simplify it even further by completely eliminating

the potential inside the sphere by making a gauge transformation. We take

φ→ φ+
∂Λ

∂t
~A→ ~A− ~∇Λ (16)

and choose

Λ (t, ~r) = q
e

4π
θ(t− r) log

(
t+ n̂ · ~r
t− n̂ · ~r

)
(17)

The gauge transformed potentials are then

A0 (t, ~r ) = φ (t, ~r ) = q
e

4π
δ(t− r) log

(
t+ n̂ · ~r
t− n̂ · ~r

)
= q

e

4π
δ(t− r) log

(
1 + n̂ · r̂
1− n̂ · r̂

)
(18)

8



and

~A (t, ~r ) = q
e

4π
r̂ δ(t− r) log

(
1 + n̂ · r̂
1− n̂ · r̂

)
= r̂ φ (t, ~r ) (19)

which are determined by the single function φ. Note that these potentials satisfy the light-

shell gauge condition mentioned in the introduction

vµA
µ = 0 (20)

where

v0 = 1 and ~v = r̂ (21)

This gauge will be an important part of the construction of our effective theory as we shall

see later. We call this the light-shell gauge (LSG).

It is straightforward to calculate the electric and magnetic fields from these potentials.

We find that they are both parallel to the surface of the sphere and are given by

~E (t, ~r ) = −q e
4π

r̂ × (r̂ × n̂) δ(t− r)
(

1

r − n̂ · ~r
+

1

r + n̂ · ~r

)
(22)

~B (t, ~r ) = q
e

4π
r̂ × n̂ δ(t− r)

(
1

r − n̂ · ~r
+

1

r + n̂ · ~r

)
(23)

We have thus found that the electric and magnetic fields lie entirely on the surface of

the sphere as we claimed in the introduction. It is also straightforward to see that this, as

well as the finding that we can eliminate the fields inside the sphere by going to light-shell

gauge, also holds for the case of more than 2 charges. Specifically, the potentials for the

general charge case (with the total sum of the charges being 0) are given by

A0 (t, ~r ) = φ (t, ~r ) = −
∑
j

qj
e

4π
δ(t− r) log (1− n̂j · r̂) (24)

9



and

~A (t, ~r ) = r̂ φ (t, ~r ) (25)

The E and B fields for the general charge case are then

~E (t, ~r ) = −
∑
j

qj
e

4π
r̂ × (r̂ × n̂j) δ(t− r)

1

r − n̂j · ~r
(26)

~B (t, ~r ) =
∑
j

qj
e

4π
r̂ × n̂j δ(t− r)

1

r − n̂j · ~r
(27)

This result forms the basis of our pursuit of finding a 2-dimensional effective theory for

QED on the t = r sphere. For non-abelian theories, the situation is a bit more complicated

as we are not able to do a similar retarded potential calculation, but we will soon show

that the electric and magnetic fields corresponding to a non-abelian gauge theory also lie

entirely on the light shell.

2.2 The non-abelian case

The non-Abelian case is more complicated, and it is not obvious how to write down and

solve the relevant equations directly. Here we will adopt a less direct route by assuming a

simple form for the gauge fields and imposing the physics of the collision. Specifically, we

will start by assuming that the gauge fields are zero outside the t = r sphere. We will then

go on to construct the field strengths Fµνa , and impose the following two conditions:

1. In the extreme relativistic limit, we expect no energy/momentum density inside the

light shell. Thus the field strengths must vanish for r < t, and lie entirely on the

sphere.

2. The fields satisfy the non-abelian version of Maxwell’s equations, which tell us how

10



the charges on the light shell produce the fields:

DνFµν = 4πJ µ (28)

where J µ is a color current density.

For implementing this plan, we are ultimately interested in color gauge fields of the form

Aµa(t, ~r ) = ξµa (t, ~r ) θ(t− r) (29)

which drop to zero discontinuously at the light shell. When we differentiate these gauge

fields, we will find field strengths proportional to δ(t− r) — that is to say confined to the

light shell. The basic idea is then to use (29) to construct the field strengths and see what

the dynamics of classical QCD tells us about the field strengths on the light shell.

The form (29) is simple and appealing, and in the Abelian case, it is actually good

enough to reproduce the results of a direct calculation using retarded potentials. However,

as we will see, to understand the non-Abelian equations of motion, it is important to

think about getting to this singular situation as a limit of smoother gauge fields. We

want to understand when and how our results depend on the details of how we go to the

discontinuous limit. So we will think about obtaining (29) as a limit of smooth gauge fields,

Aµa(ε, t, ~r ), such that

lim
ε→0
Aµa(ε, t, ~r ) = ξµa (t, ~r ) θ(t− r) (30)

To construct the field strengths, we will need derivatives of this as well as products of

more than one such field with different non-abelian group indices. For the derivatives, we

will use

∂µθ(t− r) = vµδ(t− r) (31)
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where vµ = (1, r̂)µ, as we defined in (21). This gives the relation

lim
ε→0

∂νAµa(ε, t, ~r ) = θ(t− r) ∂νξµa (t, ~r ) + δ(t− r) vν ξµa (t, ~r ) (32)

For a product of two such fields without derivatives, we can write

lim
ε→0
Aµa(ε, t, ~r )Aνb (ε, t, ~r ) = ξµa (t, ~r ) ξνb (t, ~r ) θ(t− r) (33)

In the field strength, the relations (32) and (33) are all we need, and we find for ε→ 0

Fµνa = ∂µAνa − ∂νAµa + fabcAµbA
ν
c (34)

→ δ(t− r) (vµξνa − vνξµa ) + θ(t− r) (∂µξνa − ∂νξµa + fabcξ
µ
b ξ

ν
c ) (35)

Note that we have normalized the gauge fields to behave simply under the non-Abelian

gauge invariance, so that under a gauge transformation (Ta = λa/2 where the λa are the

Gell-Mann matrices)

Aµ = AµaTa → UAµU † − iU∂µU † (36)

We now apply the 1st of the two conditions we listed above (namely that the field

strengths vanish inside the sphere). This means that in equation (35), the coefficient of the

theta functions must be zero:

∂µξνa − ∂νξµa + fabcξ
µ
b ξ

ν
c = 0 (37)

We then have field strengths only on the light shell

Fµνa → F µν
a = δ(t− r) (vµξνa − vνξµa ) (38)

12



We now apply to this field strength the second condition, namely, that the fields satisfy

the non-abelian Maxwell’s equations) (28). While doing so, we will also get some terms

containing derivatives of delta functions, and will assume that these must vanish.

On the left hand side of (28), we encounter two interesting things. In color components,

it can be divided into four terms as follows.

∂ν (∂µAνa − ∂νAµa) + ∂ν (fabcAµbA
ν
c ) + fadeAdν (∂µAνe − ∂νAµe ) + fadeAdν (febcAµbA

ν
c ) (39)

The ε→ 0 limits of the second and fourth terms in (39) are straightforward, respectively

∂ν (θ(t− r) fabcξµb ξ
ν
c ) (40)

θ(t− r) fadeξdν (febcξ
µ
b ξ

ν
c ) (41)

The first term can be written as a sum of three terms:

∂0 (δ(t− r) vν (vµξνa − vνξµa )) (42)

+δ(t− r) (v0∂ν − ∂0vν) (vµξνa − vνξµa ) (43)

+∂ν (θ(t− r) (∂µξνa − ∂νξµa )) (44)

The last of these, (44), combines with (40) to give zero by virtue of (37). The first must

vanish if we are to avoid derivatives of δ-functions, which implies (because vµv
µ = 0)

δ(t− r) vµξµ = 0 (45)

Comparing with (38), you can see that this is the condition that the color electric field on

the light shell is tangent to the light shell, perpendicular to the direction of motion of the

light shell, r̂. We expected this on physical grounds, and we now see that it is necessary for

13



the consistency of the picture. Comparing (45) with (30) also tells us that the gauge field

in the limit limε→0Aµa(ε, t, ~r ) satisfies the light-shell gauge condition at least on the sphere.

Finally, we consider the third term in (39). This term is problematic because it is

not determined by the limiting value of Aµ. The total derivative of a product of Aµs is

determined,

(
Aνb (ε, t, ~r ) ∂λAµa(ε, t, ~r ) +Aµa(ε, t, ~r ) ∂λAνb (ε, t, ~r )

)
→ ∂λ (θ(t− r) ξµa (t, ~r )ξνb (t, ~r )) (46)

However, for the product of one A with the derivative of another, the limit depends on the

details of their shapes. In general we can write

Aµa(ε, t, ~r ) ∂λAνb (ε, t, ~r )→

θ(t− r) ξµa (t, ~r ) ∂λξνb (t, ~r ) + δ(t− r)
(

1

2
vλ ξµa (t, ~r ) ξνb (t, ~r ) + κµλνab (t, ~r )

) (47)

where

κµλνab (t, ~r ) = −κνλµba (t, ~r ) (48)

The κ term is the most general thing we can write down consistent with (46).1 Using (47),

we get for the third term in (39)

θ(t− r) fabc ξbν (∂µξνc − ∂νξµc ) + δ(t− r)κµa (49)

where

κµa = fabc gλν

(
κλµνbc − κ

λνµ
bc

)
(50)

and we have used (45) and the antisymmetry of fabc to set

δ(t− r) 1

2
fabc ξbν (vµξνc − vνξµc ) = 0 (51)

1Note that this ambiguity only appears in the non-Abelian theory because of the non-linearity of the
equations of motion. There is no κ in E&M.
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We will see later that something crucial happened in (49). The explicit non-linear depen-

dence on ξ in (51) goes away, but the κ term remembers the non-linear form of the field

equations. We will argue later that this extra κ term is necessary for the consistency of the

picture. Putting all this together, again using (37), Maxwell’s equations become

δ(t− r)

[
(v0∂ν − vν∂0) (vµξν − vνξµ) + κµa − 4πσa v

µ

]
= 0 (52)

We are interested in what these equations tell us about the fields on the light shell, so

we will eliminate t and evaluate (whenever we can) the fields for t = r. Look for example

at µ = 0 in (52).

δ(t− r)

[(
~∇+ r̂∂0

)
·
(
~ξa(t, ~r )− r̂ξ0

a(t, ~r )
)

+ κ0
a − 4πσa

]
= 0 (53)

Define “light-shell fields” which are functions only of ~r by setting t = r to go onto the light

shell:

~ea(~r ) ≡
(
~ξa(t, ~r )− r̂ ξ0

a(t, ~r )
)∣∣∣

t=r
(54)

Then because of (45), these fields are transverse,

r̂ · ~ea(~r ) = 0 (55)

In terms of ~e, (53) becomes

δ(t− r)
(
~∇ · ~ea(~r )− 4πσa(~r ) + κ0

a(~r )
)

= 0 (56)

Notice that the derivatives of ξ with respect to ~r and t have conspired to give derivatives

of the light-shell fields just with respect to ~r. Because (56) is true for all t, we must have

~∇ · ~ea(~r ) = 4πσa(~r )− κ0
a(~r ) (57)
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Thus ~ea is a kind of electric field on the light shell, but (57) is true in a static 3D space.2

For the space components of (52), a similar manipulation gives

~∇× (r̂ × ~ea ) = 4πσa r̂ − ~κa (58)

This is very reasonable. It says that the curl of the magnetic field on the light shell is

related to the current and ~κ. We can combine (58) and (57), to obtain

r̂ ×
(
~∇× ~ea

)
=
(
r̂ κ0

a − ~κa
)

(59)

We will see shortly that this gives a constraint on ~κ.

In E&M, in spite of the singularity of (38), we can give a direct physical meaning to the

light-shell fields. ~e is the impulse per unit charge produced by the light shell as it passes by

a stationary infinitesimal test charge. This is finite and independent of the detailed shape

of the field as the shell width goes to zero. It is not so obvious that this concept makes

sense in the non-Abelian case, because we cannot make an arbitrarily small test charge. It

appears that to construct gauge invariant quantities that are finite in the ε → 0 limit, we

have to take ratios. For example the surface energy density on the light shell goes to ∞ as

ε→ 0, but ratios of energy densities at different points should be finite.

Now let’s look in more detail at the vanishing of the field in the interior and see what

part of this we can write in terms of light-shell fields. We know from the vanishing of the

field for r < t that

∇jξka −∇kξja = fabcξ
j
bξ
k
c and ∂0ξja +∇jξ0

a = −fabcξ0
b ξ
j
c (60)

2You might wonder what becomes of the color gauge invariance, since it looks like the gauge field ξ is
simply turning into the gauge invariant field strength, ~ea. The answer is that gauge transformations that
preserve the form (29) of Aµ change the ξs inside but do not change the light-shell fields, ~ea except for
global color rotations, which of course remain.
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We can combine these into light-shell fields as follows:

(∇j + r̂j∂0)
(
ξka − r̂k ξ0

a

)
− (∇k + r̂k∂0)

(
ξja − r̂j ξ0

a

)
= fabc

(
ξjb − r̂

j ξ0
b

)
×
(
ξkc − r̂k ξ0

c

)
(61)

so we can use (54) and set t = r and conclude that the 3D theory of ~ea satisfies

∇jeka −∇keja = fabce
j
be
k
c or ~∇× ~ea =

1

2
fabc ~eb × ~ec (62)

(62), all by itself, has a number of consequences. Because the ~eas are perpendicular to

r̂, their cross product must be in the r̂ direction. Thus

r̂ ×
(
~∇× ~ea

)
= 0 (63)

But if we take the gradient of (55) and simplify, we get

r̂ ×
(
~∇× ~ea

)
= −1

r

(
1 + ~r · ~∇

)
~ea (64)

And on comparing this with (63), we see that ~ea scales trivially,

(
~r · ~∇

)
~ea = −~ea (65)

Thus ~ea is just 1/r times a vector function of r̂. Again, this follows directly from (62) which

in turn follows from the vanishing of the fields inside the light shell. (63) together with (59)

also implies

κµa = vµκa (66)

for some scalar function κa, so that like the current, κµa ∝ vµ. Thus in the limit, all

the information from the non-Abelian Maxwell’s equations is contained in (66) and the
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following relations:

~∇× ~ea =
1

2
fabc ~eb × ~ec r̂ · ~ea = 0

(
~r · ~∇

)
~ea = −~ea (67)

~∇ · ~ea = 4πσa − κa ≡ 4πσ̃a (68)

Notice that the effective charge density 4πσ̃a must scale like 1/r2 (consistent with charge

conservation).

We can solve (67) for the ~ea fields as follows:

~eaTa = −i U(r̂)†~∇U(r̂) (69)

where U †U = I is a special unitary matrix. Now trivial scaling and transversality are

automatic because U depends only on r̂.

It is worth mentioning that some of these results have a striking resemblance with the

findings in [12], in which the classical equation for the gluon field is solved for the case

in which the source is a delta function along the light-cone in the z direction as opposed

to our set up with a distribution of charges moving spherically outward from the origin.

Specifically, (68) and (69) closely resemble equations 11 and 16, respectively, in [12].

Because of (65), our picture is classically scale invariant and we could write the classical

theory as a purely two dimensional theory on the light shell, and simply choose r = 1.

Physically, however, it is sometimes convenient to think about the theory as we actually

use it, in the full three dimensional space, but with the fields living on an expanding light

shell of radius r = t.

Having dealt with (67), we now want to find a Lagrangian that gives (68) as the equation

of motion so that we can eventually do quantum mechanics. We have now eliminated time

and are in purely Euclidean space, so this is just the energy. We would expect a contribution

proportional to Tr(~e 2), which in terms of U can be written as (where B is some geometrical
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constant that we do not know how to calculate at this point, and g is the dimensionless

coupling constant)

B

g2
Tr
(
~∇U(r̂)† · ~∇U(r̂)

)
(70)

This is the Lagrangian for a non-linear σ-model on the light shell and the U fields (which in

some sense are the potentials associated with the electric fields) are Goldstone boson fields

associated with the breaking of an SU(3)L × SU(3)R, U → LUR† down to the diagonal

SU(3), U → V UV †. The electric fields ~ea are Noether currents associated with the SU(3)R

symmetry, so if (70) were the whole story, ~ea would be conserved, in agreement with (68)

without sources, for σ̃ = 0. This is a renormalizable theory in 2D, and Polyakov showed

long ago that the coupling g exhibits asymptotic freedom [13].

In fact, field theorists have long studied the analogies between non-Abelian gauge the-

ories in 3 + 1 dimensions and non-linear σ-models in 2 dimension, making use of some the

powerful tools available in the smaller number of dimensions (see for example,[14]). Our

analysis however suggests this is not just an analogy and that the non-linear σ-model IS

QCD in an appropriate limit. A similar claim was also made in [15] where a simplified

effective theory for QCD is derived in the high-energy limit. While this effective theory

is still (3+1)-dimensional, its interactions are described, to leading order, in terms of a

2-dimensional σ-model on the transverse plane.

Returning to our own analysis, what happens in the situation we have found is simple

and interesting. Because the fields live on the light shell of radius r, the momenta in the

theory are actually angular momenta divided by r. The ` = 0 mode is absent because it

gives no contribution to ~e when the total net charge on the light shell is zero. The momenta

are bounded away from zero and quantized in units of 1/r. The infrared divergence that

one would expect in a flat 2D theory is cut off at r. Because all the momenta scale with

1/r, it is appropriate to choose the renormalization scale to scale with 1/r, so the coupling

depends on the radius.
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Up to this point, we believe that our analysis is quite robust. In the appropriate limit,

we can describe the physics in terms of light-shell fields, and the condition that the field

strengths vanish inside the light shell implies quite directly that these fields are described

by a non-linear σ-model. We are on shakier ground from here on, where we discuss the

dependence on the charges and currents of the high energy particles that are producing

the fields. Here κ gets involved, and in our indirect approach to the limit, we do not know

exactly what κ is. But we believe that a non-zero κ is necessary and have a guess for its

form, and we will now discuss the reasons for the belief and the guess. Suppose first that

κ = 0. Then the equation of motion for U would be (from (68)),

~∇ ·
(
−i U †~∇U

)
= 4πσ (71)

where the right hand side is independent of U . However, it is not possible to add to the

Lagrangian (70) a term F (U) that gives this equation of motion, because Noether’s theorem

requires that to get (71) from an infinitesimal symmetry transformation,

δU = U iδζ (72)

we need

δF = 4πTr(σδζ) (73)

To see why this is a problem, write U in terms of unconstrained octet components, U =

eiΠaTa so (72) is

δζ = OaδΠa where Oa ≡ −iU †
δU

δΠa

(74)

Thus we want

δF

δΠa

=
B

g2
4πσ Oa (75)
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But

δOa

δΠb

− δOb

δΠa

= −i
[
Oa , Ob

]
6= 0 (76)

which means that (75) is not consistent. In the presence of κ, there are additional terms in

δF coming from the dependence of κ (and thus σ̃) on the Πs. One simple possibility is

4πσ̃ = 4πσ − κ = 2π(σU + U †σ) (77)

which would emerge in the equation of motion from the Lagrangian

B

g2
Tr
(
~∇U † · ~∇U − 2πi(σU − U †σ)

)
(78)

This our guess for the structure of the effective theory on the light shell.

We believe that this analysis makes a very plausible case that very high energy collisions

involving colored particles can be described by a light-shell effective field theory in which

the dynamical fields are the Goldstone bosons of a non-linear σ-model on the light shell at

t = r. To go further, we must go beyond our indirect arguments and see how to construct

the light-shell effective theory directly from the underlying QCD theory. Then we should

be able to do the perturbative matching onto the light-shell effective theory from the QCD

physics of the original high-energy collision and better understand the physical meaning of

our light-shell fields. However, before getting to QCD, we have first been focusing on the

simpler case of QED, and the remaining chapters in this thesis describe some of our efforts

in that direction.
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3 An amusing calculation

(This chapter is not necessary for understanding the ideas developed in later chapters and

can therefore be skipped by a disinterested reader.)

Before constructing our quantum effective theory, it is an amusing exercise to connect

our classical picture for electromagnetism derived in section 2.1 with quantum electrody-

namics by interpretting the intensity of the electric and magnetic fields on the sphere in as a

quantum mechanical amplitude squared for photon emission. We can make this connection

in two ways:

1. Understanding the square of the amplitude for photon emission in QED as the inten-

sity of the electromagnetic fields.

2. Working in the opposite direction and interpretting the electromagnetic field intensi-

ties as a probability of photon production.

3.1 The amplitude squared in the quantum theory as an intensity

It is common knowledge that the amplitude for a process in which a photon is emited by

a scalar/anti-scalar (or for that matter a fermion/anti-fermion pair) coming out of some

collision can be expressed as a product of the amplitude for the process in which no photon

is emited and an extra piece corresponding to the production of the photon. The latter

factor is thus the probability amplitude for the emission of a photon and is also the tree-

level expectation value of the gauge field in momentum space. In our physical set up, we

want to focus on the limit where the charged particles have very large energy compared to

the emited photon. In the specific case of a particle/anti-particle pair3 the amplitude of a

3This argument does not depend on the spin of the particles
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photon being emited is given by

Aν = −ie
(
pν

(pq)
− p̄ν

(p̄q)

)
(79)

where p, p̄ and q are the momenta of the particle, anti-particle and photon, respectively.

This is related to the sphere in the simple way. The fields on the sphere in momentum

space are

F µν = (qµAν − qνAµ) δ(t− r) (80)

where

q = (q0, q0 r̂) and Aµ ∝ ξµ (81)

where we are using some of the notation defined in chapter 2.

Now, consider the intensity

E ∝ ~E2 + ~B2 = (q0 ~A− ~qA0)2 + (~q × ~A)2 (82)

which is (using qµA
µ = 0)

|~q|2
(

2| ~A |2 + A02 − (q̂ · ~A )2 − 2A0q̂ · ~A
)

= 2|~q|2
(
| ~A |2 − A02

)
(83)

This is proportional to −AµAµ, which in is also what we get when we square the amplitude

and sum over photon polarizations. From (79) it is

−AµAµ = e2 2(pp̄)

(pq)(p̄q)
(84)

So the energy on the sphere is proportional to the squared amplitude in QFT.
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3.2 The classical fields as probability amplitudes

This can be formulated in terms of a fourier analysis of our classical electromagnetic fields

on the sphere. To understand this, we first make a simple argument in terms of the energy

carried by a plane wave and connect it with the probability of the number of photons.

Starting with a plane wave argument allows us to focus on the concept without worrying

about the features of spherical coordinates. We then restate the idea in terms of spherical

waves. Lastly, we use our spherical wave formulae to perform the needed calculations to

obtain the probability of the number of photons obtained from our classical electromagnetic

field and compare it with the probability given by the quantum mechanical amplitude.

3.2.1 Energy in a plane wave

To get a sense of what is going on, first look at the energy per unit area in a plane wave in

the x direction

~E(~r, t) = ~ε f(x− t) (85)

Nothing depends on y and z, so the energy per unit area is just

∝
∫
| ~E(x)|2 dx ∝

∫
| ~̃E(k)|2 dk ∝

∫
|f̃(k)|2 dk (86)

where ~̃E(k) is the field Fourier transformed only in x (Fourier transforming in y and z would

give momentum δ-functions that tell us that the photons are going in the right direction

— we don’t need this because we are looking at energy per unit area). So the energy per

unit area per unit wave-length is proportional to |f̃(k)|2. For small k (which is the limit we

need to consider because in our physical set up, the charged particles have large energy),

f̃(k) goes to a constant proportional to

∫
f(x) dx (87)
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This is great because it just depends on the total impulse that the wave imparts to a

charged particle as the wave moves past - a finite and physically measurable quantity even

when f goes to a δ function. So while the energy per unit area goes to infinity as the wave

shrinks to a δ-function in x− t, the energy per unit area per unit k for k much smaller than

one over the length of the pulse goes to a finite constant proportional to |f̃(0)|2, which is

independent of the shape of the pulse. Since each photon carries energy k, the number of

photons is proportional to |f̃(0)|2/k. Having explained the concept, we now translate this

to the case of spherical waves.

3.2.2 Fourier transform for a spherical wave

A spherical wave has the form

1

r
exp(ikr) (88)

To see why this makes sense, note that the square of this, which corresponds to the intensity,

falls off as 1/r2. Now, if we have a function of the form

f(r) =
1

r
g(r), (89)

Then we have

f̃(k) =

∫ ∞
0

dr r2 f(r)
1

r
exp(ikr) (90)

=

∫ ∞
0

dr g(r) exp(ikr) (91)

So what’s happening is that the 1/r in 1
r

exp(ikr) combines with the 1/r in f(r) to give 1/r2,

which is then cancelled out by the r2 in the integration measure in spherical coordinates.

With the 1/r factors out of the way, we are left to fourier transform g(r).

We thus have

f(r) =
1

2πr

∫ ∞
−∞

dk f̃(k) exp(ikr) (92)
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The energy per solid angle is thus:

dE/dΩ =

∫ ∞
0

‖f(r)‖2 r2 dr (93)

This is the energy/solid angle and not the energy per unit area because of the r2 in the

radial integral. Plugging (92) into this gives

dE/dΩ =
1

(2π)2

∫ ∞
0

dr

∫ ∫
dk dk′ f̃(k)f̃ ∗(k′) exp(i(k − k′)r), (94)

where the factors of 1/r have been canceled by the r2 in the spherical coordinates measure.

This has the delta function δ(k−k′) in the somewhat unfamiliar (and naively suspicious

looking) form ∫ ∞
0

dr

2π
exp(i(k − k′)r) = δ(k − k′) (95)

The familiar form of this fourier representation of the delta function is to have the integral

over r from −∞ to ∞ instead of 0 to ∞. However, (95) is correct in the context of our

calculation, and the proof is given in appendix A.

We thus have

dE/dΩ =
1

4π

∫ ∫
dk dk′ f̃(k)f̃(k′) δ(k − k′) (96)

=
1

2π

∫
dk ‖f̃(k)‖2 (97)

The energy per solid angle per unit k is then given by omitting dk from this:

1

2π
‖f̃(k)‖2 (98)

For small k, however, f̃(k) goes to a constant:

f̃(0) =

∫ ∞
0

g(r)dr. (99)
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Using this along with the fact that the energy of a photon is k, we can write the number

of photons per solid angle per unit k as

1

2πk
‖f̃(0)‖2 (100)

=
1

2πk
‖
∫ ∞

0

dr g(r)‖2 (101)

3.3 Applying to our classical theory

The energy density per unit volume is given by

Ev =
1

2

[
( ~E)2 + ( ~B)2

]
(102)

And recalling (22 and (23), the E and B fields (in Heaviside-Lorentz units) for the case of

two oppositely charged particles going in opposite directions are given by

~E(t, ~r) = −eδ(t− r) r̂ × (r̂ × n̂)

4πr

(
1

1 + r̂ · n̂
+

1

1− r̂ · n̂

)
(103)

= −2eδ(t− r) r̂ × (r̂ × n̂)

4πr sin(θ)
(104)

and

~B(t, ~r) = 2eδ(t− r) r̂ × n̂
4πr sin(θ)

(105)

Here we have used r̂ · n̂ = cos(θ) to make the simplifications.

Thus for both E and B, the r-dependent part is

f(r) = δ(t− r)1

r
, (106)

That is,

g(r) = δ(t− r) (107)
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and the square of the angular part for both ~E and ~B is

e2

4π2 sin(θ)
(108)

Putting it all together by using (101) gives the no of photons per solid angle per unit k:

e2

8π3k sin2(θ)
‖
∫ ∞

0

δ(t− r)dr‖2 (109)

=
e2

8π3k sin2(θ)
(110)

3.4 The QED calculation for comparison

In the quantum mechanical picture, the probability is given by the magnitude squared of

the photon emission amplitude, which was given in (84). For the particular case when the

scalar and anti-scalar are back to back, this can be written as

‖Mphoton‖2 = −AµAµ =
2e2

E2
q sin(θ)

(111)

To convert this into a probability of photons per solid angle per unit q, we simply need to

multiply this by the factor

d3q

(2π)32Eq
(112)

With Eq = q, and d3q = q2 dq dΩ, this becomes

d3q

(2π)32Eq
=
qdqdΩ

16π3
(113)

We then get the differential probability:

‖Mphoton‖2 d3q

(2π)32Eq
=

e2

8π3q sin(θ)
(114)
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And this matches the classical result in (110).
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4 Constructing Our Effective Theory

We now begin the explicit construction of the effective field theory, incorporating the in-

tuition gained from the classical picture by studying the quantum mechanics of particle

production from a gauge invariant source at the origin of space-time. We will see how a

gauge invariant product of scalar fields at the origin of space-time gives rise to an effective

field theory of the high energy physics that depends only on the angles of the momenta of

the high energy particles and fields. This 2-dimensional effective theory is our light-shell

effective theory (LSET). Here we present it in the simplified venue of 0-flavor scalar quan-

tum electrodynamics in which we can ignore matter loops (see C). This strips away most

of the physics so that we can focus on the basic ingredients of our effective theory.

As with any effective theory, the soft physics is left unchanged, so we focus on the

physics associated with hard particles, and we distinguish the part of the LSET Lagrangian

involving hard particles by referring to it as LLRE.

For this, we introduce a field decomposition we will refer to as a large radial energy

(LRE) expansion. We will shortly see that this expansion naturally suggests to light-shell

gauge as a convenient gauge in which the leading order matter-photon interactions vanish.

These two ingredients make up the LSET Lagrangian which we will construct in section

4.1. The physics associated with such interactions is then described entirely by a gauge

invariant source around the origin, which we will discuss in section 4.2.

4.1 Constructing the light-shell effective theory Lagrangian

We start with the large radial energy expansion, which is reminiscent of the field decom-

position of HQET [6] and LEET (the precursor of SCET [16] that sums soft logs but not

collinear logs). We scale out the uninteresting large momenta associated with the energetic

particles, but as its name suggests the LRE expansion involves scaling out by a spherical

wave. In order to do this, we set an energy scale E , that determines which fields are large
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radial energy fields Φ
(∗)
E , and which fields are soft φs. The decomposition is

φ = φs +
∑
E>E

(
e−iE(t−r)
√

2E
ΦE,+q +

eiE(t−r)
√

2E
Φ∗E,−q

)

φ∗ = φ∗s +
∑
E>E

(
e−iE(t−r)
√

2E
ΦE,−q +

eiE(t−r)
√

2E
Φ∗E,+q

) (115)

where ΦE,±q ( Φ∗E,±q) annihilates (creates) high energy outgoing scalars with charge ±q.

In the following, we will focus on the particles with charge +q and drop the ±q subscripts

to simplify the notation. As usual in such an effective field theory decomposition, the x

dependence of the EFT field is assumed to be slow compared to the t and r dependence of

the exponential factor eiE(t−r), and derivatives of ΦE are assumed to be small compared to

E in the effective theory.4 The 1/
√

2E is a normalization, the reason for which will soon

be apparent.

Applying this expansion, the LSET Lagrangian can be written as an expansion in the

small parameter (1/E), where E is the energy scaled out of the energetic field at hand.

Let’s begin to look at LLRE by examining Lφ, the kinetic energy of our matter field, to

leading order in 1/E. Using our expansion (115), focusing on the LRE terms, and using

∂(t− r)
∂xµ

= vµ (116)

we get

(Dµφ)∗Dµφ→
1

2E

(
(Dµ + iEvµ)Φ∗E

)(
(Dµ − iEvµ)ΦE

)
(117)

The cross terms are leading in the 1/E expansion, and have a factor of E from the derivatives

4This is a bit trickier than it sounds. See [17].
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acting on the spherical wave, which cancels the normalization from (115), giving

= iΦ∗E

(
∂t + (r̂ · ~∇+ ~∇ · r̂)/2

)
ΦE +

1

2Er2
Φ∗E L̃

2 ΦE (118)

where the L̃2 = −r2 (~∇T
⊥ − iq ~A⊥) · (~∇⊥ − iq ~A⊥) and we omit terms that vanish by the

zeroth-order equations of motion. While the L̃2 term is of order 1/E, it also has rapid r

dependence as r → 0, which we do not want. We can make the following field redefinition

to eliminate it:

Φ̃E(x) ≡ exp

[
i
L̃2

2Er

]
ΦE(x) (119)

Note that since the derivatives in L̃2 are all covariant, Φ̃E(x) transforms just like ΦE(x)

under gauge transformations. In terms of Φ̃E(x), and ignoring interaction terms, the kinetic

energy becomes

Lφ = i Φ̃∗E

(
(∂µv

µ + vµ∂µ)/2
)

Φ̃E = i Φ̃∗E

(
∂t + (r̂ · ~∇+ ~∇ · r̂)/2

)
Φ̃E (120)

The kinetic energy term (120) looks very much like the corresponding terms in HQET [6]

and LEET [16], but there the analog of the vector vµ is a constant, time-like in HQET and

light-like in LEET. The fact that vµ varies with r̂ is responsible for unique properties of the

LRE expansion. For example, the LRE decomposition (115) is invariant under rotations

about the origin, not just covariant like HQET or LEET.

The Φ̃E propagator associated with the kinetic energy term (120) is directional and has

the form5

〈
0
∣∣∣T Φ̃E(x) Φ̃∗E(x′)

∣∣∣ 0〉 =
1

rr′
θ(t− t′) δ(t− r − t′ + r′) δ(r̂ − r̂′) (121)

One can check (121) easily and it can be formally derived using canonical quantization, as

5When r̂ appears as an argument, it refers to dependence on angles θ and φ. Likewise r̂j refers to the
angles θj and φj . So, here δ(r̂ − r̂′) is equal to δ(z − z′)δ(φ− φ′), with z = cos(θ).
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we show in appendix D. The propagator (121) describes radially outgoing particles and this

form establishes the connection between the spatial direction of the coordinate x and the

direction of propagation of the particle, which determines the direction of the momentum

of the LRE particle far away from the source. This connection between position space

and momentum space for the high-energy particles is one of the crucial components of our

construction. We will return to this and see the connection very explicitly in section 5.1. But

while the connection is exact in the free theory, we would expect that quantum effects make

it impossible to specify the momentum direction precisely. This expectation is reified in the

calculation of quantum loops where specifying the directions precisely leads to divergences

[4]. We assume that this is associated with the physical impossibility of measuring a jet

direction exactly. Thus we associate an angular size with each LRE particle quantifying

the uncertainty in direction.

We now return to equation (117) to explore the consequences of the LRE expansion for

Lint. It can be written in the suggestive form

i

2

[
(−∂µΦ†E)vµΦE + vµΦ†E∂µΦE

]
+ vµA

µΦ†EΦE +
1

2E
(DµΦE)†DµΦE (122)

In this form, it is clear that in LSG our interactions vanish at leading order. The removal

of the gauge interactions with LRE scalars simplifies calculations, and it makes it clear that

the essential physics of the high-energy particles is associated with the source at the origin.

This is consistent with the expectation of a purely angular theory on the light shell.

Lastly, there is the kinetic energy term for the gauge field. We will show in section 6.2

that in LSG, it can be written in a matrix form as

LA = −1

4
F 2
µν = −1

2

(
Ar, ~A

T
⊥

) (∂t + ~∇ · r̂)(∂t + r̂ · ~∇) (∂t + ~∇ · r̂)~∇T

~∇(∂t + r̂ · ~∇) ~∇~∇T + 2 I


Ar
~A⊥

 (123)
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where

Ar ≡ r̂ · ~A (124)

is the radial component of ~A (and is not to be confused with Ar in the covariant tensor

form). In terms of this, the LSG condition is therefore A0 = Ar. ~A⊥ is the transverse

component of ~A, and is treated here as a column vector. It is given by

~A⊥ = ~A− r̂ r̂T ~A = ~A−
(
r̂ · ~A

)
r̂ (125)

The temporal component of Aµ does not appear in (123) because in LSG, it is equal to Ar.

An LRE expansion, similar to that of the scalars, holds for the gauge field. This ex-

pansion is in terms of longitudinal and perpendicular components of the gauge field, which

is appropriate in light-shell gauge. Again, the rescaling of each field is determined by the

canonical form of the kinetic energy term.

~A = ~As+
∑
E>E

(
1√
2E

eiE(t−r) ~A∗E⊥ +
1√
2E

e−iE(t−r) ~AE⊥ + eiE(t−r)A∗Err̂ + e−iE(t−r)AErr̂ + · · ·
)

(126)

After applying this expansion to (123) and considering the LRE terms, we can redefine the

gauge field as AEr

~AE⊥

 =

1 (∂t + R̂ · ~∇)−1 ~∇T/
√

2E

0 1


AEr
~AE⊥

 (127)

Where (∂t + ~∇ · R̂)−1 is the inverse of a differential operator that is non-local in space and

time and given explicitly by (see appendix F.2 for derivation)

(∂t + ~∇ · R̂)−1(x, x′) =
1

r2
θ(t− t′) δ(t− r − t′ + r′) δ(r̂ − r̂′) (128)

Operators of this type appear frequently in our LSET analysis, especially when we get to

the computation of the LSG photon propagator and radiative corrections in chapters 6 and
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7. These operators are treated on the same footing as linear operators, so for example, the

first row of (127) could be written more explicitly as

AEr(x) = AEr(x) +

∫ (
(∂t + R̂ · ~∇)−1(x, x′) ~∇′T/

√
2E ~AE⊥(x′) d4x′

)
(129)

In section (5) we will see that the quanta of the ~A⊥ field can be directly related to those of

the full theory. Also, this allows us to write the LRE photon kinetic energy in the following

diagonal form.

LA,LRE =

(
A
∗
Er

~A∗E⊥

)− (∂t + ~∇ · r̂)(∂t + r̂ · ~∇) 0

0 (∂t + r̂ · ~∇/2 + ~∇ · r̂/2)


AEr

~AE⊥


(130)

The final piece of the LSET Lagrangian is the source. This is where the interesting physics

of our theory lies, and we describe it in the following section.

4.2 The LSET source

So far we have constructed the LSET Lagrangian by bringing the large radial energy ex-

pansion and light-shell gauge to the full theory. In doing so we have removed all of the

interactions of the LRE particles except for those directly associated with the point source

at the origin in the full theory. The full-theory source is proportional to a gauge invariant

product of local fields at the origin. Thus we also expect the corresponding source in the

EFT to be gauge invariant. The conventions for the gauge transformations of our fields are

listed in appendix B.

While the full-theory source is at the origin, light-shell gauge is ill-defined there, so we

begin by considering a source in the EFT that is “spread out” about the origin. We also

expect from our classical picture that as the energy in the event goes to infinity, all of the

physics goes onto the light shell, at t = r. Thus in our quantum version, we spread out our
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source onto a surface r = s surrounding the origin, near the light shell, with t − r → 0 as

E → ∞. To understand the symmetry of the spread-out source, it is convenient to write

ϕ(x) = ϕ(t, r, r̂) and to let

ϕ(r, r, r̂) ≡ ϕ(x)|t=r (131)

represent either an LRE field or a soft field on the light shell. When we eventually write

down the full source, the LRE fields will be evaluated at particular values of r̂, while the soft

fields will be integrated over r̂. But this notation will allow us to focus on the symmetries

for both types of fields simultaneously. In this notation, a term in the source spread out

over S appears as

O ∝
∏
j

ϕ†j(s, s, r̂j) (132)

This is not gauge invariant, but transforms as

O → O
∏
j

exp
[
−i qj Λ(xj)|tj=rj=s

]
(133)

To maintain gauge invariance we construct a compensating exponential on the light shell

exp

(
i
e

2π

∫ (∑
j

`(r̂, r̂j)

)
∂µA

µ(x) dS

)
(134)

where dS is our Lorentz covariant surface element on the small sphere.

dS = θ(t) r δ(r − s) δ(r2 − t2) d4x (135)

and assuming zero net charge

`(r̂, rj) = qj log(1− r̂j · r̂) (136)

Putting all the pieces together, our gauge invariant source on the light shell, call it S, is of
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the form

C lim
s→0

∫
exp

(
i
e

2π

∫ (
m+n∑
j=1

`(r̂, r̂j)

)
∂µA

µ(x) dS

)

(
m∏
j=1

r−1
j Φ†j,Ej

(xj)

)(
m+n∏
j=m+1

r−2
j φ

(†)
j (xj)

)(
m+n∏
j=1

dSj

)
(137)

where there are n soft scalars φ(†), m LRE scalars Φ, and dSj refers to dS with xµ → xµj .

Also, each LRE scalar Φ will have an energy associated with it Ei, this is the energy scaled

out by the LRE expansion. Notice that there is a constant C, which must be determined

by matching.

Assuming gauge transformations on the light shell, our compensating exponential is

unique. Also, one cannot help but notice the resemblance with the classical potentials (24)

and (25). The measure dS fixes t and r, leaving us with purely angular dependence. This

dependence solely on angles will persist for any process to any order in LSET.
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5 Tree-level matching

5.1 Matching LRE scalars

The simplest non-trivial matching to consider is that of LRE scalars. For this, we will

match the amplitude of a source creating a one-particle state in the full theory to the

corresponding amplitude in the effective theory. Of course, for this source to be gauge

invariant, the particle must be neutral. This allows us to focus on the LRE matching all by

itself. In the process, we will define creation/annihilation operators in the EFT by relating

them to the familiar creation/annihilation operators in the full theory. This construction

can then be carried over trivially to interesting sources involving charged particles.

Let the matching condition be

〈~k|Full Source|0〉 match
= 〈~k|EFT Source|0〉 (138)

〈~k| is a one particle state for a scalar with momentum kµ = (k,~k) as defined in the full

theory. This matching will connect the position space of the effective theory to the mo-

mentum space of the full theory, as well as fix the coefficient of the effective theory source.

The full theory source is just φ(0). The EFT source for a high-energy particle, to leading

order, has the form

c1

∫
dΩ1 s(r̂1)Φ†1,E1

(s(r̂1), s(r̂1), z1, φ1) (139)

where c1 is the coefficient we will determine herein. The matching condition is then

〈~k|φ(0)|0〉 match
=

〈
~k

∣∣∣∣c1

∫
dΩ1 s(r̂1)Φ†1,E1

(s(r̂1), s(r̂1), z1, φ1)

∣∣∣∣ 0〉 (140)
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The LHS is 1, and the RHS of (140) is

〈
0

∣∣∣∣√2k ak

∫
dΩ1 c1 s(r̂1)Φ†1,E1

(s(r̂1), s(r̂1), z1, φ1)

∣∣∣∣ 0〉 (141)

Making the commutation of operators involved above well defined requires a few steps.

First, define a full theory annihilation (as) operator in spherical coordinates by relating it

to a standard full theory operator. The familiar commutation relation is

[
ap, a

†
p′

]
= (2π)3 δ(3)(~p− ~p′) (142)

which can be expressed in spherical coordinates as

[
ap, a

†
p′

]
=

(2π)3

p2
δ(p− p′) δ(z − z′) δ(φ− φ′) (143)

The spherical creation (as) and annihilation (a†s) operators we define by

[
ap, a

†
p′

]
≡ (2π)2

pp′

[
as(p, z, φ), a†s(p

′, z′, φ′)
]

(144)

Notice that we have

( p
2π
ap

)( p′

2π
a†p′

)
−
(
p′

2π
a†p′

)( p
2π
ap

)
= as(p, z, φ)a†s(p

′, z′, φ′)− a†s(p′, z′, φ′)as(p, z, φ)

(145)

so the relations between conventional and spherical creation and annihilation operators are

as(p, z, φ) =
p

2π
ap (146)

a†s(p, z, φ) =
p

2π
a†p (147)
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In the EFT we can write our fields in terms of creation/annihilation operators as

Φ†(t, r, r̂) =

∫
eik(t−r) 1

r
a†LRE(k, r̂)

dk

2π
(148)

which is described in detail in appendix D. Using the above two relations, (141) becomes

=

∫
dΩ1

〈
0

∣∣∣∣√2k
2π

k
as(k, k̂) c1

∫
a†LRE(k1, r̂1)

dk1

2π

∣∣∣∣ 0〉 (149)

The final and crucial step is to notice that the commutation relations of as and aLRE

(in appendix D) look the same, but have two important differences: as involves angles in

momentum space and the energy involved is the full energy k, whereas aLRE involves angles

in position space and the residual momentum k. So we identify the angles in momentum

space and position space and set

a†s(k1 + k, k̂) = a†LRE(k1, r̂) (150)

This allows us to turn our a†LRE into a†s. We find that the RHS of (140) becomes

= 2π

√
2

k
c1 (151)

So, we have c1 =
1

2π

√
k

2
and our full theory scalars relate to our LRE scalars as

φ(0) =
1

2π

√
k

2

∫
dΩ1 s(r̂1) Φ†1,E1

(s(r̂1), s(r̂1), r̂1) (152)

c1 is the contribution from one LRE scalar to C in our general source (137), but we will have

contributions from matching the other LRE fields involved in the process as well. While this

matching procedure is fairly simple, it is essential for connecting the objects in LSET, which

are formulated in position space, to the momentum-space amplitudes one is accustomed
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to calculating in the full theory. Relations for LRE photons operators, analogous to those

introduced here, will be described in the following section.

5.2 Photon emission

We are now prepared to compare amplitudes in the full theory and effective theory. A

relevant process to compare is one with the final state of an energetic photon, scalar (labelled

by ‘-’), and anti-scalar (labelled by ‘+’). For this comparison we will focus on the transverse

component. In the full-theory, we have

〈~k ~p− ~p+|φ∗(0)φ(0)|0〉 =
e

|k|

(
p̂− − k̂(p̂− · k̂)

1− k̂ · p̂−
− p̂+ − k̂(p̂+ · k̂)

1− k̂ · p̂+

)
(153)

On the LHS above, ~k refers to a transverse final photon state with momentum ~k. In the

effective theory we want to do the calculation with the same final state, but we now use our

EFT source 〈~k ~p− ~p+|S|0〉. The dependence on scalar factors disappears. After integrating

by parts and making use of the rescaling for LRE photons, we get

〈
~k

∣∣∣∣∣ −ie2π

∫ (
A∗Er(x) (∂t + r̂ · ~∇) +

1√
2E

~A∗E⊥(x) · ~∇
)( ∑

j=+,−

`(r̂, r̂j)

)
dS

∣∣∣∣∣ 0
〉

(154)

Note that the exponential associated with the LRE expansion has gone away because of

the δ(r2 − t2) in dS. Using the transformation that diagonalizes the kinetic energy (127)
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gives

=

〈
~k

∣∣∣∣∣−ie2π

∫ ((
δ(x− x′)A∗Er(x′)− ~A∗E⊥(x′) · ~∇′ (∂t + ~∇ · R̂)−1(x′, x)/

√
2E
)

(∂t + r̂ · ~∇)

+δ(x− x′) 1√
2E

~A∗E⊥(x′) · ~∇′
)( ∑

j=+,−

`(r̂, r̂j)

)
dx′dS

∣∣∣∣∣ 0
〉

(155)

Where (∂t + ~∇· R̂)−1 is given in (128) and ~∇′ involves derivatives with respect to x′. Since

the final physical photon state is transverse, and the relevant propagator is diagonal, we

can remove the term involving A∗Er. Then simplifying and manipulating our differential

operator gives

=

〈
~k

∣∣∣∣∣ −ie2π

∫ ((
−~A∗E⊥(x′) · ~∇′ (∂t + ~∇ · R̂)−1(x′, x)/

√
2E
)((

∂t + ~∇ · r̂
)
− 2

r

)

+δ(x− x′) 1√
2E

~A∗E⊥(x′) · ~∇′
)( ∑

j=+,−

`(r̂, {r̂j})

)
dx′dS

∣∣∣∣∣ 0
〉

(156)

=

〈
~k

∣∣∣∣∣ −ieπ
∫ (

~A∗E⊥(x′) · ~∇′ (∂t + ~∇ · R̂)−1(x′, x)
1√

2E r

)( ∑
j=+,−

`(r̂, {r̂j})

)
dx′dS

∣∣∣∣∣ 0
〉

(157)

Now, just as in (148) for scalars, we can write our transverse photon field as

~A∗E⊥(t′, r′, r̂′) =

∫
eik(t′−r′) 1

r′
~a†E⊥(k, r̂′)

dk

2π
(158)
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Using this in (157) gives

=

〈
0

∣∣∣∣√2|k|~ak⊥
−ie
π
√

2E

∫ (
eik(t′−r′) 1

r′
~a†E⊥ · ~∇

′ (∂t + ~∇ · R̂)−1(x′, x)
1

r

)
×

( ∑
j=+,−

`(r̂, {r̂j})

)
dk

2π
dx′dS

∣∣∣∣∣ 0
〉 (159)

Again, for the gauge fields’ creation/annihilation operators, we can use relations analogous

to those introduced in the previous section for scalars,

~as(p, z, φ) =
p

2π
~ap (160)

Identifying

~a†s(k + E, k̂) = ~a†E(k, r̂) (161)

allows us to have creation/annihilation operators with well-defined commutation relations.

Also, note that E = |~k|, and (159) becomes

=

〈
0

∣∣∣∣~as⊥(E, r̂k)
−2ie

E

∫ (
eik(t′−r′) 1

r′
~a†s⊥(k + E, r̂′) · ~∇′ (∂t + ~∇ · R̂)−1(x′, x)

1

r

)
(162)

×

( ∑
j=+,−

`(r̂, {r̂j})

)
dk

2π
dx′dS

∣∣∣∣∣ 0
〉

(163)

The relevant commutation relation is

[
~as⊥(p, z, φ) , ~a†s⊥(p′, z′, φ′)

]
= 2π P⊥ δ(p− p′) δ(z − z′) δ(φ− φ′) (164)

where P⊥ is a projection operator for the perpendicular components. Using this we obtain

=
−2ie

E

∫ (
δ(r̂k − r̂′)eik(t′−r′) 1

r′
~∇′⊥ (∂t + ~∇ · R̂)−1(x′, x)

1

r

)( ∑
j=+,−

`(r̂, {r̂j})

)
dx′dS

(165)
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which involves

r~∇⊥

( ∑
j=+,−

`(r̂, {r̂j})

)
=
∑
j=+,−

qj

(
r̂j − r̂(r̂ · r̂j)

1− r̂ · r̂j

)
(166)

Using this along with integrating over dx′ and dS in (165) gives

− ie
E

∑
j=+,−

qj

(
r̂j − r̂k(r̂k · r̂j)

1− r̂k · r̂j

)
(167)

(167) has the same absolute magnitude as (153), confirming the structure of the effective

theory.
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6 The Light-shell gauge propagator

In order to go beyond the tree-level matching calculations discussed in section 5, we need

the photon propagator in LSG. Typically, we perform calculations in gauge theories while

working in covariant gauges, for which the procedure has been well established [8]. But

LSG is a non-covariant gauge and therefore the usual technique does not work.

One non-covariant gauge that shares some characteristics with LSG is radial (Fock-

Schwinger) gauge [18] which is defined by the condition

xµA
µ = 0, (168)

and has found widespread use in QCD sum-rules [19]. Shared characteristics between

LSG and radial gauge include breaking translational invariance by choosing an origin and

coordinate dependent gauge condition. As a result, it is often convenient to use a

position space formulation rather than momentum space formulation. While these gauges

share some characteristics, only LSG guarantees zero field strength off of the light shell [1]

and allows for simplification of calculations in LSET [3]. Another important difference is

that the radial gauge condition is invariant under homogeneous Lorentz transformations,

while LSG is only invariant under rotations about the origin.

Since we are at such an early stage (the first, as far as we know) in exploring LSG, we

restrict our analysis to QED where we can avoid complications that come with non-abelian

theories.6 Even in QED, we cannot use standard techniques for calculating propagators in

non-covariant gauges, such as LSG. We therefore, along the road to the LSG propagator,

present a different derivation which we hope may prove useful in other gauges as well.

The basic outline of our derivation is as follows. We begin by writing the photon

lagrangian in LSG in the matrix form stated in (123) in chapter 4.1. In particular, this

6We hope to eventually extend this work to QCD and in the process describe attributes avoided herein
(e.g. ghosts).
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form was

L = −1

2

(
Ar ~AT⊥

)
M

Ar
~A⊥

 (169)

In chapter 4.1, we wrote out the matrix explicitly without proof, but we will calculate it

in 6.2. After that, we will show how from M we are able to construct the LSG propagator.

This is not simply a matter of inverting M because ~A⊥ does not have a radial component.

What we therefore need to compute is the inverse of M restricted to the subspace from

which we have projected out this (non-existent) radial component. We will see that doing

so turns out to be non-trivial since M does not commute with the projection operator in

the radial direction. As a result, we cannot express M in a diagonal basis and simply take

the inverse on the relevant subspace to obtain the propagator. We therefore need to follow

a slightly more involved procedure. Our technique, we hope, may also be applicable to

some other non-covariant gauges.

The first step is to calculate the matrix M in equation (169). This will involve some

vector derivatives, and it will be convenient to use a bit of special notation to separate the

radial and transverse components of the ∇ operator. Let us therefore start by defining this

notation.

6.1 Notation for vector derivatives

We will consider the radial derivatives and the transverse part of ~∇ separately. For the

radial part, we will have two forms of derivatives:

r̂ · ~∇ = ∂r (170)

and

~∇ · r̂ =
1

r2
∂rr

2 (171)

Coming to the transverse part, we will define ~∇⊥ as the angular part of the del operator.
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That is, when acting as the angular part of the gradient of some scalar f , it will be given

by

~∇⊥f =
(
~∇− r̂(r̂ · ∇)

)
f (172)

On the other hand, as the angular part of the divergence of a vector ~V , ~∇⊥ will be given

by

~∇⊥~V =
(
~∇− (∇ · r̂)r̂

)
· ~V f (173)

Lastly, the angular part of the Laplacian is the angular divergence of the angular gradient.

Just as the full Laplacian is written as ∇2f = ~∇ · (~∇f), we can write the angular part of

the Laplacian as

∇2
⊥f = ~∇⊥ · (~∇⊥f) =

(
∇2 − (~∇ · r̂)(r̂ · ~∇)

)
f (174)

That is,

∇2
⊥ =

(
∇2 − (~∇ · r̂)(r̂ · ~∇)

)
= −L

2

r2
(175)

6.2 The Kinetic Energy Matrix in LSG

(The disinterested reader can skip the derivation and jump to equation (206) near the end

of this section.)

We start with the photon Lagrangian

L = −1

4
FµνF

µν =
1

2
(~∇A0 + ∂t ~A)2 − 1

2
(~∇× ~A)2 (176)

We then plug in the LSG condition A0 = Ar, giving

L =
1

2

(
∇Ar + ∂t ~A

)2

− 1

2

(
∇× ~A

)2

(177)

Focusing on the first piece, we get
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(∂t ~A+ ~∇Ar)2 = (r̂(∂t + r̂ · ~∇)Ar + ~∇⊥Ar + ∂t ~A⊥)2 (178)

= ((∂t + r̂ · ~∇)Ar)
2 + (~∇⊥Ar)2 + (∂t ~A⊥)2 + 2(~∇⊥Ar∂tA⊥) (179)

Integrating this by parts gives

= −Ar(∂t + ~∇ · r̂)(∂t + r̂ · ~∇)Ar − Ar ~∇2Ar + Ar

(
~∇ · r̂

)(
r̂ · ~∇

)
Ar

− ~A⊥ · ∂2
t
~A⊥ − Ar∂t~∇⊥ · A⊥ − ~A⊥ · ~∇⊥∂tAr

(180)

For the (~∇× ~A)2 term, we can write

(~∇× ~A)2 = (~∇× Arr̂ + ~∇× ~A⊥)2 (181)

We can now work out the rr, r ⊥ and ⊥⊥ terms in this separately by writing all the

cross products explicitly in terms of cartesian indices. Using the identity

(~a×~b) · (~c× ~d) = ajbkcjdk − ajbkckdj (182)

we get

(~∇× r̂Ar)2 = (r̂ × ~∇Ar)2 = (r̂j∇kAr)(r̂j∇kAr)− (r̂j∇kAr)(r̂k∇jAr) (183)

= (~∇Ar)2 − (r̂k∇kAr)(r̂j∇jAr) (184)

= (~∇Ar)2 − (r̂ · ~∇Ar)2 (185)
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On integrating this by parts, we get

→ −Ar∇2Ar + Ar(~∇ · r̂)(r̂ · ~∇)Ar (186)

Similarly, the r ⊥ term is given by

(r̂ × ~∇Ar)(~∇× ~A⊥) = (r̂j∇kAr)(∇j ~Ak⊥)− (r̂j∇kAr)(∇k ~Aj⊥) (187)

= (∇kAr)(r̂j∇j ~Ak⊥)− (r̂j∇kAr)(∇k ~Aj⊥) (188)

Integrating this by parts gives

→ −Ar∇k(r̂j∇j ~Ak⊥) + (∇kr̂j∇kAr) ~A
j
⊥ (189)

= −Arr̂j∇j∇k
~Ak⊥ − Ar(∇kr̂j)∇j ~Ak⊥ + (∇kr̂j)(∇kAr) ~A

j
⊥ + r̂j(∇k∇kAr) ~A

j
⊥ (190)

The last line is zero as r̂ · ~A⊥ = 0.

= −Arr̂j∇j∇k
~Ak⊥ − Ar(∇kr̂j)∇j ~Ak⊥ + (∇kr̂j)(∇kAr) ~A

j
⊥ (191)

Integrate the second term by parts:

= −Arr̂j∇j∇k
~Ak⊥ + ~Ak⊥∇j(Ar(∇kr̂j)) + (∇kr̂j)(∇kAr) ~A

j
⊥ (192)

= −Arr̂j∇j∇k
~Ak⊥ + ~Ak⊥(∇jAr)(∇kr̂

j) + ~Ak⊥Ar(∇j∇kr̂
j) + (∇kr̂j)(∇kAr) ~A

j
⊥ (193)

In the third term, use (∇j∇kr̂j) = 2
r2
r̂k. We then get zero as r̂ · ~A⊥ = 0. The second

and fourth terms are equal since ∇j r̂k = ∇kr̂j. We then have
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= −Arr̂j∇j∇k
~Ak⊥ + 2(∇jAr)(∇kr̂

j) ~Ak⊥ (194)

In the second term, use ∇kr̂
j = 1

r
(δjk − r̂j r̂k).

We then have

= −Arr̂j∇j∇k
~Ak⊥ + 2(∇jAr)

1

r
(δjk − r̂j r̂k) ~A

k
⊥ (195)

= −Arr̂j∇j∇k
~Ak⊥ + 2(∇jAr)

1

r
~Aj⊥ (196)

Integrate the second term by parts:

= −Arr̂j∇j∇k
~Ak⊥ − 2Ar

1

r
∇j

~Aj⊥ − 2Ar(∇j
1

r
) ~Aj⊥ (197)

The last term is zero since ∇j
1
r

= − 1
r2
r̂j and its dot product with ~A⊥ is zero.

= −Arr̂j∇j∇k
~Ak⊥ − 2Ar

1

r
∇j

~Aj⊥ (198)

Lastly, noting that r̂ · ~∇+ 2/r = ~∇ · r̂, we get

= −Ar ~∇ · r̂ ~∇ · ~A⊥ (199)

It is also possible to show through two integrations by parts that this is equal to

= −( ~A⊥ · ~∇)(r̂ · ~∇)Ar (200)

We have thus derived the result that

(r̂ × ~∇Ar)(~∇× ~A⊥) = −Ar ~∇j · r̂ ~∇ · ~A⊥ = −( ~A⊥ · ~∇)(r̂ · ~∇)Ar (201)

50



But in the Lagrangian we have 2(r̂ × ~∇Ar)(~∇× ~A⊥), so we can write

2(r̂ × ~∇Ar)(~∇× ~A⊥) = −Ar ~∇j · r̂ ~∇ · ~A⊥ − ( ~A⊥ · ~∇)(r̂ · ~∇)Ar (202)

Lastly, the ⊥⊥ term is

(~∇× ~A⊥) · (~∇× ~A⊥) = (∇jAk⊥)(∇j ~Ak⊥)− (∇j ~Ak⊥)(∇k ~Aj⊥) (203)

= − ~A⊥∇2 ~A⊥ + ( ~A⊥ · ~∇)(~∇ · ~A⊥) (204)

We have got all the pieces now. So, combining (180), (186), (202) and (204) gives our

matrix. That is,

L = −1

2

(
Ar ~AT⊥

)
M

Ar
~A⊥

 (205)

where we now know the matrix M is given by

M =

(∂t + ~∇ · r̂)

~∇

((∂t + r̂ · ~∇) ~∇T

)
+

0 0

0 I 2

 (206)

Now things get a little complicated. The 4× 4 matrix differential operator M is invert-

ible, but its inverse is not the propagator we want. The LSG propagator is the inverse of

M restricted to the subspace from which we have projected out the (non-existent) radial

component of ~A⊥. Let P be the projection operator onto the radial direction of ~A. Then

the inverse we are looking for is the operator D satisfying

P D = DP = 0

(I − P ) M (I − P ) D = D (I − P ) M (I − P ) = (I − P )
(207)
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Because P does not commute with M , we cannot simply invert M and then project onto

the relevant subspace. Instead, we will use a 2-step procedure. We will first show how

the linear algebra of this 2-step procedure works in general, and then apply it to the LSG

propagator in particular.

6.3 Inversion on a subspace

Our aim is to take an invertible matrix M , and find its inverse restricted to the subspace

projected onto by (I − P ), where P is a projection operator onto a subspace and I is the

identity matrix. That is, we wish to find the matrix D satisfying (207). There are two

steps. Step one (which, for LSG, we will put off until later and relegate to an appendix) is

to find the inverse of M−1 on the space projected onto by P . That is, we find an operator

ν satisfying

ν P = P ν = ν ν P M−1 P = P M−1 P ν = P (208)

Then in step two we consider the following operator:

D = M−1 −M−1 ν M−1 = M−1 −M−1 P ν P M−1, (209)

It is straightforward to apply (208) to see that D satisfies (207), and thus it is the desired

inversion of M on the subspace projected by (I − P ).

6.4 Returning to the LS gauge propagator

We now show how we can apply (209) to find the LSG propagator. In this and the following

sections we will use an operator notation (discussed in more detail in appendix E) in which

differential operators, their inverses, and ordinary functions of coordinates are all treated

as linear operators acting on the tensor product space of our 4-component index space and

the space of functions of the coordinates.
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In this language, the projection operator P is

P =

0 0

0 R̂R̂T

 (210)

Since the formula (209) for the inverse on a subspace involves the inverse of M on the full

space, we must begin by finding M−1. For this purpose, it is convenient to note that M

can be written in terms of a diagonal matrix Md and a triangular matrix T as (where In is

the n× n identity operator)

M = TMdT
†, (211)

where

Md =


(
∂t + ~∇T R̂

)(
∂t + R̂T ~∇

)
0

0 2

 , (212)

T =

 1 0

~∇
(
∂t + ~∇T R̂

)−1

I3

 (213)

and

T † =

1
(
∂t + R̂T ~∇

)−1
~∇T

0 I3

 (214)

This makes inverting M straightforward, and we get for M−1


(
∂t + R̂T ~∇

)−1 (
1 + ~∇T 2 −1 ~∇

)(
∂t + ~∇T R̂

)−1

−
(
∂t + R̂T ~∇

)−1
~∇T 2 −1

−2 −1 ~∇
(
∂t + ~∇T R̂

)−1

2 −1

 (215)

The next ingredient we need is the inverse of M−1 restricted to the subspace. Here it is
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useful to avoid the matrix structure and define a linear operator µ, as

µ =

(
0 R̂T

)
M−1

0

R̂

 (216)

whence ν in (208) is given by

ν =

0 0

0 R̂ µ−1 R̂T

 (217)

Now we can just use (209) and put the pieces together to formally compute the LSG

propagator. Doing so and simplifying gives the following results:

Drr =
(
∂t + R̂T ~∇

)−1 (
1 + ~∇ T C ~∇

) (
∂t + ~∇T R̂

)−1

(218)

In this, the first term only involves inverses of derivatives of t and r, and is therefore

directional (i.e. it has a trivial angular dependence given by angular delta functions). The

second term is not directional.

Dr⊥ = −
(
∂t + R̂T ~∇

)−1
~∇ T C (219)

D⊥r = −C ~∇
(
∂t + ~∇T R̂

)−1

(220)

D⊥⊥ = C (221)

where C is given by

C = 2 −1−2 −1 R̂ µ−1 R̂T 2 −1 (222)

Note that from this form we can see that C is transverse; that is, if we act with the projection

operator for the transverse subspace on either side of C, we get C. What remains to be

done is to derive an explicit form for C, which is done in detail in appendix G, with the
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result

C = −R ~∇⊥ 2 −1 L−2R ~∇T
⊥ + ~L 2 −1 L−2 ~LT (223)

where

R ≡ |~R|. (224)

Since this involves L−2, we must show that this is well defined. We show in appendix H

that because of the operators that appear on either side of L−2 in (223), the L−2 operator

never acts on an L = 0 state, and the expression (223) makes sense.

Putting (223) into (218-221) gives (for details, see appendix I)

)Drr =
(
∂t + R̂T ~∇

)−1 (
1−R−1 L2 2 −1 R−1

) (
∂t + ~∇T R̂

)−1

(225)

Dr⊥ =
(
∂t + R̂T ~∇

)−1

R−1 2 −1 ~∇T
⊥R (226)

D⊥r = R ~∇⊥ 2 −1 R−1
(
∂t + ~∇T R̂

)−1

(227)

D⊥⊥ = −R ~∇⊥ 2 −1 L−2R ~∇T
⊥ + ~L 2 −1 L−2 ~LT (228)

We can also combine these into a 3× 3 matrix form, call it D3, appropriate for uncon-

strained ~A fields:

R̂
(
∂t + R̂T ~∇

)−1 (
∂t + ~∇T R̂

)−1

R̂T + ~L 2 −1 L−2 ~LT

−
(
R ~∇⊥ L−2 − R̂

(
∂t + R̂T ~∇

)−1

R−1
)
L2 2 −1

(
L−2R ~∇T

⊥ −R−1
(
∂t + ~∇T R̂

)−1

R̂T
)

(229)
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7 Radiative corrections

The simplest loop order effect arises in the exclusive production of a hard scalar/anti-scalar

pair with no photons. The amplitude for this process is described in our effective theory in

terms of the source acting on the vacuum to produce the relevant final state:

〈 ~p− ~p+ |S| 0〉 (230)

where the final scalar and anti-scalar have momenta ~p+ and ~p−, respectively. Recall that

our effective theory source (137) consists of a product of LRE fields, soft scalars and an an

exponential containing the photon field. For the process under consideration, however, we

will not have any soft fields since the scalar and anti-scalar are both hard. The tree-level

contribution to the amplitude is therefore given in terms of a pair of LRE fields in the source

acting on the vacuum as discussed in section 5. This amplitude is however renormalized

by effects arising from the exponential (in the source) involving the gauge fields. The full

amplitude thus nicely factorizes into the scalar part which is equal to unity as in the full

theory by matching, and the part corresponding to the exponential sandwiched between

photon vacuum states:

〈
0

∣∣∣∣∣exp

(
i
e

2π

∫ (
m+n∑
j=1

`(r̂, r̂j)

)
∂µA

µ(x) dS

)∣∣∣∣∣ 0
〉

(231)

As we noted in section (4.2), the measure dS in the exponential fixes t and r so that we

are on the sphere, leaving us with purely angular integrals. The one-loop term in this is

the order e2 contribution and is given by

1

2

(
ie

2π

)2∑
j,k

qjqk 〈0| ∂µAµ(x1) ∂νA
ν(x2) |0〉 ln(1− r̂j · r̂1) ln(1− r̂2 · r̂k) dS1dS2 (232)

In order to proceed further, we need the 2-point function of ∂µA
µ on the sphere which
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we will discuss next.

7.1 The relevant LSG Green’s function on the sphere

We showed how to calculate the LSG photon propagator in section 6. We now use our

results in that section to compute the 2-point function of ∂µA
µ on the sphere, which we

need to calculate the loop contribution given in (232).

It will be more convenient to use the results for the LSG propagator given in terms of

the operator C in equations (218-221). The reason for this is that when we put together all

the pieces, we will actually not need the explicit form for C. Instead, C will only appear

in the form ~∇ T C ~∇, which has the simpler form (see appendix I for derivation)

~∇ T C ~∇ = −L2R−1 2 −1R−1 (233)

Now, start by recalling that in LSG, ∂µA
µ = (∂t+ ~∇· r̂)Ar + ~∇· ~A⊥. We therefore have

r2
1r

2
2 〈0|∂µAµ(x1) ∂νA

ν(x2)|0〉

= iR2
(

(∂t + ~∇ · R̂)Drr (∂t + R̂ · ~∇) + (∂t + ~∇ · R̂)Dr⊥~∇

+~∇TD⊥r(∂t + R̂ · ~∇) + ~∇TD⊥⊥~∇
)
R2

(234)

We now look at each of the pieces explicitly. For the Drr term, we get

iR2(∂t+~∇·R̂)Drr(∂t+R̂·~∇)R2 = iR2(∂t+~∇·R̂)(∂t+R̂·~∇)−1(∂t+~∇·R̂)−1(∂t+R̂·~∇)R2 (235)

+iR2 (∂t + ~∇ · R̂)(∂t + R̂ · ~∇)−1~∇ T C ~∇ (∂t + ~∇ · R̂)−1(∂t + R̂ · ~∇)R2 (236)

It turns out that the contribution of the first term (i.e. the part not involving C) goes

to zero when we take the r → 0 limit at both points. This is clear from a simple power
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counting analysis of the operators and factors of r.

This leaves us with the contribution given in (236). To simplify this, we rewrite the

derivative operators by noting that ~∇ · r̂ = r̂ · ~∇+ 2/r and get

iR2(∂t + ~∇ · R̂)Drr(∂t + R̂ · ~∇)R2

→ iR2

(
1 +

2

R
(∂t + R̂ · ∇)−1

) (
1 + ~∇ T C ~∇

) (
1− (∂t + ~∇ · R̂)−1 2

R

)
R2

(237)

Continuing in the same manner, we see that the off-diagonal entries of the propagator give

the following contributions

iR2(∂t + ~∇ · R̂)Dr⊥~∇R2 = −iR2

(
1 +

2

R
(∂t + R̂ · ~∇)−1

)
~∇ T C~∇R2 (238)

and

iR2~∇ TD⊥r(∂t + R̂ · ~∇)R2 = −iR2~∇ T C~∇
(

1− (∂t + ~∇ · R̂)−1
)
R2 (239)

Lastly, the D⊥⊥ term simply gives

iR2~∇ TD⊥⊥~∇R2 = iR2~∇ T C~∇R2 (240)

Adding (237),(238), (239) and (240) together and simplifying, we see that everything

cancels except

r2
1r

2
2 〈0| ∂µAµ(x1) ∂νA

ν(x2) |0〉 = −4iR (∂t + R̂ · ~∇)−1 ~∇ T C ~∇ (∂t + ~∇ · R̂)−1R (241)

= 4iR (∂t + R̂ · ~∇)−1 L2R−1 2 −1R−1 (∂t + ~∇ · R̂)−1R (242)

where in the last step, we have used (233). Since everything in this except 2 −1 is direc-

tional, we can pull the L2 to the left

= 4i L2R (∂t + R̂ · ~∇)−1R−1 2 −1R−1 (∂t + ~∇ · R̂)−1R (243)
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To proceed further, we use the explicit expressions for the various inverse operators in this

equation which are given in appendices E and F.2. The general expression gets rather

complicated, but in our limit where both r1 and r2 go on the light shell, the result turns

out to be miraculously simple (see appendix J for details)

=
1

2π2
L2 1

1− r̂1 · r̂2 + iε
(244)

Plugging this into (232) and simplifying the coefficients, we get the 1-loop correction

− 1

64π4

∑
j,k

qjqk

∫
ln(1− r̂j · r̂1) ln(1− r̂2 · r̂k) L2 1

1− r̂1 · r̂2 + iε
dΩ1dΩ2 (245)

7.2 Computing the integral

It is convenient to move the angular derivatives in L2 around by integrating by parts so

that each of the L operators in L2 acts on one of the logs. Using L ln(1− r̂1 · r̂j) =
r̂1×r̂j

1−r̂1·r̂j ,

and introducing a notation in which z12 ≡ r̂1 · r̂2 etc, we get

− 1

64π4

∑
j,k

qjqk

∫
(r̂1 × r̂j) · (r̂2 × r̂k)

(1− z1j)(1− z12 + iε)(1− z2k)
dΩ1dΩ2 (246)

Looking at the form of this integral, we can see that it has infinities where the dot products

in the denominators approach 1. We therefore need to introduce a regularization method.

One obvious way to do so is to insert an angular cutoff by taking 1− z → 1− z + λ.

7.2.1 Computing the off-diagonal (j 6= k) integral

We first focus on the j 6= k integral. For this case, we will find that we need to introduce

an angular cutoff only for 1− z12 as the other infinities are integrable. The iε on the other

hand can be dropped since we will not be doing any contour integrals, and we can take

59



λ� |ε|. The j 6= k integral is thus

− 1

64π4

∑
j,k,j 6=k

qjqk

∫
(r̂1 × r̂j) · (r̂2 × r̂k)

(1− z1j)(1− z12 + λ)(1− z2k)
dΩ1dΩ2 (247)

To do the integral, we will now rewrite the numerator in a way that separates the

finite and infinite pieces and focus on the terms that contribute to the double logs. It is

convenient to first focus on one of the integrals, say the dΩ1 one:

∫
r̂1 × r̂j

(1− z1j)(1− z12 + λ)
= c(z2j) r̂2 × r̂j (248)

where we have written the RHS based on the symmetry structure of the integral on the

LHS. To find c(z2j, we can dot both sides by r̂2× r̂j. Since (r̂2× r̂j) · (r̂1× r̂j) = z12− z1jz2j,

this gives ∫
z12 − z1jz2j

(1− z1j) (1− z12 + λ)
dΩ1 = (1− z2

2j) c(z2j) (249)

=

∫
(1− z2

1j)− (1− z12 + z1j (z2j − z1j))

(1− z1j) (1− z12 + λ)
dΩ1 (250)

The second term is completely finite and therefore does not contribute to the double logs.

We therefore drop it and focus on the second one:

∫
(1− z2

1j)

(1− z1j) (1− z12 + λ)
dΩ1 =

∫
1 + z1j

1− z12 + λ
dΩ1 =

∫
(1 + z2j) + (z1j − z2j)

1− z12 + λ
dΩ1

(251)

Again the second term is finite, so we drop it, and the interesting term is

=

∫
(1 + z2j)

1− z12 + λ
dΩ1 = 2π (1 + z2j) log

2

λ
(252)

Thus the part of the function c that is relevant for the double logs is

c(z2j) =
2π

1− z2j

log
2

λ
(253)
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Now, taking this along with (248) and (247) gives

− 1

32π3

∑
j,k,j 6=k

qjqk log
2

λ

∫
(r̂2 × r̂j) · (r̂2 × r̂k)
(1− z2j)(1− z2k)

dΩ2 (254)

or

− 1

32π3

∑
j,k,j 6=k

qjqk log
2

λ

∫
zjk − z2jz2k

(1− z2j)(1− z2k)
dΩ2 (255)

We show how to do the remaining integral in appendix K. The result for the term that

gives the double logs is

− 1

8π2

∑
j,k,j 6=k

qjqk log
2

λ
log

1

1− zjk
(256)

This is our result for the j 6= k integral.

7.2.2 The j = k integral

The calculation for the j = k integrals is much more delicate and depends on the details of

the angular cut-off around the r̂+ and r̂− directions. For this reason, we cannot just take

r̂j = r̂k and zjk = 1 in (246). Instead, we need to work out the j = k integral just like

the j 6= k case (i.e. explicitly treat r̂j and r̂k as separate directions), and then take the

directions in the result to be nearly the same up to an angular cutoff. That is, we take the

result for j 6= k in (256) and replace 1− zjk → 1− zjj by angular cutoffs λj = θ2
j/2 (around

the r̂j and r̂k directions) instead of taking 1− zjk → 1.

This not only makes sense from the point of view of matching the results onto the

full theory as we will shortly see, but can also be motivated based on grounds of physical

consistency and symmetry. Specifically, we can make the following 3 arguments in this

regard:

1. The λ and λj dependence must disappear as the hard emission becomes neutral. For

example, if we have two oppositely charged hard particles in the same direction with

θ+ ≈ θ− ≈ θ � 1, the λ dependence should cancel as θ+−→ θ, because in this limit,
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we have two small, oppositely charged and equal-sized jets sitting right on top of one

another to the level of accuracy to which we know their directions.

2. We expect that the j = k contributions should depend on θj or θk etc, but not both,

and should be symmetrical in the two.

3. Lastly, log squared θ dependence is not possible, because it cannot be simultaneously

dependent on θj and θj separately, symmetrical in θj ↔ θk and also cancel when there

are two oppositely charged particles in the same directions with θj ≈ θk ≈ θ.

Based on these arguments, we conclude that the result for the diagonal integral is

− 1

8π2
q2
j log

2

λ
log

2

θ2
j

(257)

7.3 Combining the results and comparing with the full theory

Having obtained the integrals for both diagonal and off-diagonal cases, we are now ready to

put the results together and compare with the corresponding calculation in the full theory.

We will focus on the case of two equal and opposite charges q = ±1.

For the total contribution of the off-diagonal integrals to the amplitude, we take (256)

along with a factor of 2 arising from
∑

j,k qjqk. From the diagonal integrals we get (257)

summed over both charges. We can combine the diagonal terms from the two charges in a

single piece as ln(θ2
+/2) + ln(θ2

−/2) = 2 ln(θ+θ−/2).

Lastly, since this is a part of the amplitude for the process without any real photons,

the probability requires taking the magnitude squared. This gives another factor of 27. The

final result for the double log part of the probability amplitude is therefore

− e2

2π2
ln (λ) ln

(
θ−θ+/2

1− z+−

)
(258)

7Specifically, the amplitude has the form 1− e2A+O(e4), so the magnitude squared is 1−2e2A+O(e4)
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Since our effective theory automatically disallows soft and collinear emission, this is the only

double-log contribution that one should expect for the process at hand. This is different

from the full theory where we must combine the 1-loop calculation with real soft and

collinear emission to achieve the same result. The familiar result of the corresponding full

theory calculation is

e2

2π2
log

(
E√
E1E2

)
log

(
θ−θ+

1− z+−

)
(259)

Comparing (258) and (259), we see that our EFT gives the same result as the full theory

if we make the identification

λ =
E√
E1E2

(260)

While we do not yet have an obvious justification for this connection, the similarity between

the results in the two theories is clearly striking and suggests that our effective theory has

some promise. It goes without saying that we wish to have a better understanding that

allows us to make a physical connection between our angular cutoff λ and E along with the

jet energies.
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8 Some open questions

The above calculations and results show that LSET certainly has some potential as an

effective theory for QED in the ultra-relativistic regime. It is not only able to reproduce

the full theory result for the probability amplitude for the emission of a real photon, but

also gives double logs with a striking resemblance with the corresponding calculation in

standard QED. All this suggests that our effective theory is on to something. That said,

there are several issues that we would like to understand better in future research. Given

below is a brief summary of such questions.

8.1 Finding an exact 2-dimensional theory

Our original motivation was to find an exactly 2-dimensional theory on the light shell. The

theory we have constructed here (recall chapter 4) is not exactly a 2-dimensional theory. The

LRE Lagrangian and the photon kinetic energy terms are still in (3+1) dimensions. Only

the source (recall section 4.2) lies entirely on the sphere. Due to the form of the exponential

in the source involving the photon field, the integrals in the radiative corrections 7 were

purely angular. But the photon propagator on the sphere had to be obtained by taking the

LSG photon propagator in the full (3+1) dimensions and taking both points to be on the

sphere. This is different from defining a purely 2-dimensional theory in which a field lies

completely on the sphere and contributes to some physical effects.

The σ-model obtained in chapter 2 may potentially be a part of such a purely 2-

dimensional theory. However, while the classical physics arguments in that section seem

appealing, more work needs to be done in order to connect the σ-model with the quantum

theory in regular QED and QCD.
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8.2 Understanding the σ-model on the sphere

There are several interesting puzzles involving the σ-model on the sphere. First, before

even going to the non-abelian theory and sticking to the simpler case of QED, we need to

understand what it physically means to have a theory on the sphere. Specifically, recall

that in regular quantum field theory, we carry out canonical quantization by using the equal

time commutation relations between the fields and their conjugate momentum fields. That

is, if we have a field Φ with the Lagrangian L, then the momentum is given by

Π =
∆L

∆∂tΦ
(261)

But if our theory is purely 2-dimensional in which the only coordinates are θ and φ, we

cannot have a derivative with respect to t. This means that we cannot do usual quantum

field mechanics with the σ-model unless perhaps if we are somehow able to extract the

conjugate momentum fields on the sphere from the full theory just as we were able to

derive the σ-model from the original QCD theory in (3+1) dimensions. Without figuring

out how to do this, we cannot express the fields in terms of creation and annihilation

operators and discuss how they create/annihilate particle states. Alternatively, we need to

drop the idea of canonical quantization altogether and find a completely different way to

interpret the 2-dimensional theory on the sphere in terms of the underlying physics.

8.3 Multiple photon emissions with large energies

In section 5.2 we showed that LSET reproduces the tree-level amplitude for the emission

of a single photon. The full amplitude for a process involving some hard scalars and the

emission of a real photon factorizes nicely into the amplitude for the process in which

only the scalars are produced, and a factor corresponding to the probability of emitting

the photon. This is a well-known feature of the full theory, and it is promissing that our
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effective theory reproduces it.

For the production of more than one real photon along with some hard scalars, our

effective theory recipe is to expand the exponential (involving the gauge field) to the re-

quired order in e. This means that the multiple photon emission amplitude (calculated in

LSET) also factorizes just as was the case for the single photon process. However, in the

full theory, this works only if the photon momenta are much smaller than the momenta of

the scalar lines from which they are emitted, suggesting that we are missing something in

our effective theory.

As a specific example, the two photon emission amplitude in the full theory gets con-

tributions from diagrams in which both photons are emitted from the same scalar. These

contributions are proportional to terms like

1

(p+ k + k′)2 + iε

1

(p+ k′)2 + iε
(262)

where p is the scalar’s momentum, and k and k′ are the momenta of the two photons. If

k′ is much larger than p and p + k, then this clearly does not factorize into a piece being

equal to the amplitude of the process in which the k′ photon is not emitted and the other

factor associated with the emission of this additional photon.

Our effective theory in its current form is unable to reproduce such contributions to

multiple photon processes in which the photons have large momenta. This suggests that

we need some additional terms in our source on the sphere.

8.4 The meaning of angular cutoffs and jets

One big question is how to relate the angular cutoffs which we encountered in the LSET

loop calculation in section 7 with energies. Ultimately, we want to have a picture in which

we can understand running of the scale. This is a rather tricky issue since our effective

theory is in position space and the connection with energies and momenta is not clear. At
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the same time, the manner in which the loop calculation produces double logs that very

closely resemble the corresponding result in the full theory suggests that the theory is most

probably capturing the right physics if only we can find a way to make the connection

suggested in (260).

Another thing we would like to understand better is the diagonal integral in the loop

calculation. We gave some fairly appealing physical arguments in section 7.2.2 on this.

However, we would still like to understand this better.

Since both these questions ultimately relate to jets, it is possible that we might not be

able to answer them unless we start thinking in terms of jet algorithms. In either case,

more work is needed on this front.

8.5 Understanding LSET in terms of holography

One tempting idea (and certainly a strongly held wish) is that perhaps we could derive the

effective theory on the sphere as a realization of the holographic principle. Unfortunately, as

far as we know, there is no work in the existing literature that makes headway in exploring

this, and it is not obvious to us how to proceed in this direction. A simple idea is to start by

trying to express the theory on the 2-dimensional sphere in terms of a KK mode expansion

of the fields in the full, 4-d theory, but this proves to be exceedingly difficult even for the

simple case of a scalar field.
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9 Conclusion

We have constructed light-shell effective theory in the simplified example of zero flavor scalar

QED in which matter loops are ignored. The ingredients of the theory include the large

radial energy expansion, light-shell gauge and the LSET source. The large radial energy

expansion involves breaking apart the scalar and photon fields into soft and hard fields, and

scaling out the large radial energy-momenta of the latter by a spherical wave. The light-shell

gauge emerges from this expansion as a special gauge in which the interactions of the large

radial energy scalars with the photon fields vanish. The leading order physics associated

with the source is then described entirely by a gauge invariant source on a spherical light

shell having infinitesimal radius.

Our effective theory successfully reproduces the tree-level amplitude for the emission of

a photon and the familiar double logs that arise at one-loop order in the full theory, subject

to an appropriate choice of angular cutoffs which we would like to understand better. These

results are very encouraging and suggest that our effective theory indeed contains some of

the important physics of the full theory.

Thus far our analysis has been in the somewhat unrealistic context of zero flavor SQED,

but we hope to eventually relax this restriction and incorporate effects arising from matter

loops as well as fermionic matter. We also hope to extend this to non-abelian gauge theories,

thus having an QCD on the light shell.

The ultimate goal of an effective theory is to provide a simplified description of physics

from a more fundamental theory in a particular limit by omitting the unimportant degrees

of freedom. The hope is that once all the symmetries and relevant degrees of freedom are

identified, the effective theory automatically falls into place. No theory for general high-

energy collisions achieves this so simply. SCET’s derivation, for example, takes place in a

particular subset of gauges [20]. We are also not there yet with LSET since, for example,

we are still using the LSG gauge propagator off the light shell as well as on. However, our
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results, which are described in this thesis, are very encouraging, and we hope that LSET

can eventually provide new insights into the physics of the infrared and collinear effects

that plague gauge theories.
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A The strange looking fourier transform in spherical

coordinates

In section 3.2.2, we used a somewhat unusual looking fourier representation of the delta

function without proving that it is valid for our calculation. This was given in (263) and is

reproduced here ∫ ∞
0

dr

2π
exp(i(k − k′)r) = δ(k − k′) (263)

We now proove that this is the correct form in the context of our calculation.

First recall the standard form of a complex fourier series for a function defined on the

interval 0 ≤ x ≤ L:

f(x) =
∞∑

n=−∞

fn exp(2nπix/L) (264)

where

fn =
1

L

∫ L

0

dx f(x) exp(−2nπIx/L) (265)

Taking the L → ∞ limit and converting the sum over n into an integral then gives the

fourier transform representation for a function f(x) defined on the domain 0 ≤ x ≤ ∞. To

see how this works, note that

k = 2nπ/L (266)

and therefore,

∆k = 2π∆n/L (267)

or

∆n/L =
∆k

2π
(268)
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For L→∞, ∆k → dk, and since ∆n = 1, the sum changes into an integral as

∑
n

1

L
→
∫

dk

2π
(269)

Thus for a function f(x) defined on the domain 0 ≤ x ≤ ∞, we get

f(x) =
1

2π

∫ ∞
−∞

dk f̃(k) exp(ikx) (270)

where

f̃(k) =

∫ ∞
0

dx f(x) exp(−ikx) (271)

To derive the fourier representation of the delta function when x goes only from 0 to ∞,

we can start with the following equation for the 0 ≤ x ≤ L case:

∫ L

0

dx
∞∑

n=−∞

1

L
exp(2nπix/L) = 1 (272)

This works because for all n 6= 0, exp(2nπx/L) gives 0 when integrated over the whole

period. This leaves the n = 0 term, for which exp(2nπix/L) = 1, and the integral over x

from 0 to L gives L, which cancels out the 1/L to give unity.

Taking L→∞ and using (269) to convert the sum into an integral, we get

1

2π
×
∫ ∞

0

dx

∫ ∞
−∞

exp(ikx) = 1 (273)

and therefore ∫ ∞
0

dx

2π
exp(i(k − k′)x) = δ(k − k′) (274)

We have thus derived (263).
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B Conventions

We use the metric

gµν =


1 0

0 −I


(275)

Our conventions for gauge transformations are as follows:

Dµ = ∂µ − ieAµ (276)

Aµ → Aµ +
1

e
∂µΛ (277)

φ(x)→ eiΛ(x) φ(x) (278)

The classical electromagnetism calculations have been done in Heaviside-Lorentz units.
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C 0-Flavor Scalar Quantum Electrodynamics

We consider sQED with a gauge invariant source of scalars with various charges and flavor

quantum numbers at the origin of space and time with a coefficient that goes to infinity

as the number of flavors goes to zero so that there is a well-defined limit in which we can

ignore matter loops. The details do not matter very much, but for example we could have

k scalar fields φj,αj
for j = 1 to k with charges qj and with the flavor label αj running from

1 to nj describing nj (identical) flavors. Our source could then look like

λ lim
{n→0}

1

K({n})
∑
{α}

κα1···αk
φ∗1,α1

· · ·φ∗k,αk
(279)

where ∑
{α}

|κα1···αk
|2 = K({n}) (280)

and K({n}) → 0 if any of the njs vanish. This describes the production of k “0-flavor”

scalars. A trivial example is to have two fields with opposite charges and the same flavor

and take κ = δα1α2 and K = n. We go through this song and dance to assure the reader

that we can ignore matter loops in a mathematically consistent limit without otherwise

putting important restrictions on the physics. The important thing about such a source

is that it produces the charged particles with charges qj, and henceforth we will drop the

flavor indices and just ignore the matter loops.
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D LRE Canonical Quantization

The leading order Lagrangian for LRE scalars is

L = iΦ†E

(
∂t + (r̂ · ~∇+ ~∇ · r̂)/2

)
ΦE (281)

If we take ΦE as the canonical field,

ΠE = iΦ†E (282)

and we can write

ΦE(t, r, r̂) =

∫
e−ik(t−r) 1

r
aLRE(k, r̂)

dk

2π
(283)

with [
aLRE(k, z, φ), a†LRE(k′, z′, φ′)

]
= 2π δ(k − k′) δ(z − z′) δ(φ− φ′) (284)

so that the aLREs are annihilation operators and the a†LREs are creation operators. We can

use the properties of the creation and annihilation operators to compute the propagator,

(121).

Here ΦE is a linear combination of annihilation operators. The positive sign of the i in

(281) is required to give the right sign of the commutation relation (284). This, in turn is

related to having pulled out a factor of e−iE(t−r) from φ and a factor of eiE(t−r) from φ∗, so

we have built in the fact that Φ annihilates the vacuum.

For the LRE analysis, it is crucial to note that k is not a positive energy. It is a

residual energy that can have either sign (of course it satisfies |k| � E). Because of this,

we only need the single term in (283) to give the canonical commutation relations. It is not

possible to interpret (284) with only positive energies (at least, not without introducing

negative-norm states).
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E Operator Notation

Throughout this work, we have used a notation that involves local and non-local operators.

For example, when a local operator, such as R−1 appears, it is

R−1 (x1, x2) =
1

r1

δ (x1 − x2) (285)

and when not written, the delta function and integrations over the arguments are implicit.

We also come across the operators 2 −1,
(
∂t + R̂ · ~∇

)−1

and
(
∂t + ~∇ · R̂

)−1

and their

products. We know that 2 −1 is the position space propagator for a massless scalar and is

given by

2 −1(x− y) = − i

4π2

1

(x− y)2 − iε
(286)

As for the other operators, we find their functional forms in the next appendix.
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F Functional forms for inverse operators

Here we will derive the functional forms for the inverse operators
(
∂t + R̂ · ~∇

)−1

,
(
∂t + ~∇ ·

R̂
)−1

. This is somewhat subtle because the inverses are not uniquely defined and depend

on boundary conditions.

We are first tempted to try canonical quantization just as we did for the LRE scalar.

However, it turns out that this does not work well. We will therefore switch to the method

of trying an ansatz. Nevertheless, it is somewhat amusing to see why canonical quantization

does not work the way it nicely did for the LRE case. We therefore describe this problem

in section F.1 (which the disinterested reader can skip) and return to deriving the inverses

via the ansatz method in section F.2.

F.1 Trying canonical quantization

(The disinterested reader may skip to section F.2 as this approach does not succeed.)

Consider the theory with the Lagrangian

L = iΦ∗
(
∂t + r̂ · ~∇

)
Φ (287)

The general solution for Φ is

Φ(t, r, r̂) =

∫
dk

2π
ak(r̂) exp(−ik(t− r)) (288)

The conjugate momentum is

Π = ∂L/∂(∂tΦ) = iΦ∗ = i

∫
dk

2π
a†k(r̂) exp(ik(t− r)) (289)

76



These need to satisfy the commutation relation

[Φ(t, ~r),Π(t, ~r′)] = iδ3(~x− ~x′) (290)

This requires that

1

r2
δ(r−r′) δ(z−z′) δ(φ−φ′) =

∫
dk

2π

dk′

2π
exp(−ik(t−r)) exp(ik′(t−r′)) [ak(r̂), ak′(r̂

′)] (291)

There is clearly a mismatch between the powers of r on the two sides of this equation,

rendering this approach for finding the inverse of
(
∂t + r̂ · ~∇

)
problematic.

We run into the same difficulty if we try to find the inverse of
(
∂t + ~∇ · r̂

)
by considering

the theory with the Lagrangian

L = iΦ∗
(
∂t + ~∇ · r̂

)
Φ (292)

The general solution for Φ for the theory with this Lagrangian is

Φ(t, r, r̂) =

∫
dk

2πr2
ak(r̂) exp(−ik(t− r)) (293)

and with Π = iΦ∗ again, requiring that Φ and Π satisfy the desired commutation relations,

we get the condition

1

r2
δ(r− r′) δ(z− z′) δ(φ− φ′) =

∫
dk

2πr2

dk′

2πr′2
exp(−ik(t− r)) exp(ik′(t− r′)) [ak(r̂), ak′(r̂

′)]

(294)

where there is again a mismatch between the powers of r and r′ on the two sides.

This means that the LRE Lagrangian is a special case for which we get the powers of r

to match on both sides, allowing us to use canonical quantization. We therefore need to try

a different approach for obtaining the functional forms for
(
∂t+R̂· ~∇

)−1

and
(
∂t+ ~∇·R̂

)−1

.
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F.2 Using a different approach

First, for
(
∂t + ~∇ · R̂

)−1

, recall that ~∇ · r̂ = 1
r2
∂rr

2. We can therefore write an equation of

the form (
∂t + ~∇ · r̂

)1

r
θ(t− t′) δ(t− r − t′ + r′) δ(z − z′) δ(φ− φ′) (295)

=
1

r2
δ(t− t′) δ(t− r − t′ + r′) δ(z − z′) δ(φ− φ′) = δ4(x− x′) (296)

We therefore conclude that our inverse is

(
∂t + ~∇ · R̂

)−1

=
1

r2
θ(t− t′) δ(t− r − t′ + r′) δ(z − z′) δ(φ− φ′) (297)

Since
(
∂t + R̂~∇

)−1

is the adjoint of
(
∂t + ~∇ · R̂

)−1

, we get the former’s explicit form by

writing the adjoint version of (295). The result is

(∂t + R̂ · ~∇)−1 = − 1

r′2
θ(t′ − t) δ(t− r − t′ + r′)δ(z − z′)δ(φ− φ′) (298)

We use (298) and (297) as the functional forms for these inverse operators.

As an aside, these are not uniquely defined, and we can also write other forms for these

inverses by taking different boundary conditions. However, we use (298) and (297) on

grounds of consistency. If we instead take

(
∂t + ~∇ · R̂

)−1

= − 1

r2
θ(t′ − t) δ(t− r − t′ + r′) δ(z − z′) δ(φ− φ′) (299)

and

(∂t + R̂ · ~∇)−1 =
1

r′2
θ(t− t′) δ(t− r − t′ + r′)δ(z − z′)δ(φ− φ′), (300)

we are not able to obtain a well-defined product of these operators. Doing so is important

because the product is the directional term in the LSG propagator. Specifically, when we

multiply (300) and (299) in terms of the required convolution, we get an integral of the
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form dr/r2 which blows up at r = 0. In contrast, if we take the product of (298) and (297),

we find that there are no such problems since the region near r = 0 is excluded by the

boundary conditions. We therefore drop (300) and (299) and use (298) and (297) as our

inverses.
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G Derivation of C

We can find C by brute force, but here we will instead use a slicker approach, which will

take advantage of (207). Using the formula (206) for M and our result for the propagator

(218)-(221), it is straightforward to see that (I4 − P )M (I4 − P )D is


1 0

~∇⊥
(
∂t + ~∇T R̂

)−1

− (I3 − P3) 2 C ~∇
(
∂t + ~∇T R̂

)−1

(I3 − P3) 2 C


(301)

where P3 = R̂ R̂T , and we have used (I3 − P3)C = C. For D to be the LSG propagator,

we want the 2nd row entries of (I − P )M (I − P )D to be 0 and I3 − P3. Both these

requirements are satisfied if

(I3 − P3) 2 C = I3 − P3 (302)

We will now use this condition to find an explicit expression for C. Our approach will

involve first finding a basis for the space perpendicular to R̂, and then acting on (302) with

various operators to find the components of C in this basis. We begin by identifying the

proper basis. Notice that

R ~∇T
⊥ = i

(
~L× R̂

)T
(303)

So ~L and R ~∇⊥ are both orthogonal to R̂ and orthogonal to one another, therefore forming

our basis. We can express (I3 − P3) in terms of them. First note that from (303) it follows

that

R ~∇T
⊥
~∇⊥R = −L2 (304)
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so with proper normalization we have

(I3 − P3) = ~LL−2 ~LT − ~∇⊥RL−2R ~∇T
⊥ (305)

Now we want to find the components of C. The first, and easiest component to find is

computed by acting on (302) with ~L on both sides to give

~LT (I3 − P3) 2 C~L = ~LT (I3 − P3) ~L (306)

This is easy because ~L commutes with 2 , so we get

~LT C ~L = 2 −1 L2 (307)

Acting on the left of (302) with ~LT and on the right with ~∇⊥R as follows

~LT (I3 − P3) 2 C ~∇⊥R = ~LT (I3 − P3) ~∇⊥R (308)

works similarly once we observe ~LT ~∇⊥R = 0, giving

~LT C ~∇⊥R = 0 (309)

The final two matrix elements require the commutator

[
R ~∇T

⊥ , 2
]

= 2R−2 L2 R̂T (310)

We now take a detour to demonstrate this commutator relation. We can write

2 = ∂2
t −

(
~∇T R̂

) (
R̂T ~∇

)
+ L2R−2 (311)
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The middle term in (311) can be written

(
~∇T R̂

) (
R̂T ~∇

)
=
(
~∇T ~R

)
R−2

(
~RT ~∇

)

=
(
~RT ~∇

)
R−2

(
~RT ~∇

)
+ 3R−2

(
~RT ~∇

)
= R−2

((
~RT ~∇

)2

+
(
~RT ~∇

)) (312)

We chose this particular form because
(
~RT ~∇

)
is a scaling operator that counts the total

powers R or 1/~∇.8 So this term commutes with R ~∇T
⊥ and the only term in 2 that fails to

commute is L2R−2.

The factors of R commute with both ~∇T
⊥ and L2, so we just need to consider

[
R ~∇T

⊥ , L
2
]

(313)

Using (303), we can write this in components, as

[
i εabcLbR̂c , LdLd

]
(314)

= i εabcLb

(
Ld

[
R̂c , Ld

]
+
[
R̂c , Ld

]
Ld

)
(315)

= −εabcεcdeLb
(
LdR̂e + R̂eLd

)
(316)

= −Lb
([
La, R̂b

]
+ 2R̂bLa − 2LbR̂a −

[
R̂a, Lb

])
(317)

The first and fourth terms in (317) cancel each another. The second term vanishes because

~L · R̂ = 0. The third term gives

[
R ~∇T

⊥ , L
2
]

= 2L2 R̂T (318)

8Note also that the last form is trivial to remember because it vanishes for ra with a = 0 or −1 as it
should.
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or [
R ~∇T

⊥ , 2
]

= 2R−2 L2 R̂T (319)

which is (310).

We now return to the derivation of C, but note that (319) vanishes when acting on C.

So, acting with R~∇T
⊥ on the left and ∇⊥R on the right gives

R ~∇T
⊥ 2 C ~∇⊥R = 2 R ~∇T

⊥C
~∇⊥R = −L2 (320)

implying

R ~∇T
⊥C ~∇⊥R = −2 −1 L2 (321)

In the same way we can see that the last component is zero

R ~∇T
⊥ 2 C ~L = 2 R ~∇T

⊥C ~L = 0 (322)

Combining (307), (309), (321) and (322) with (305) gives

C = −R ~∇⊥ 2 −1 L−2R ~∇T
⊥ + ~L 2 −1 L−2 ~LT (323)
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H Does L−2 make sense?

The derivation of C (in appendix G) formally involves the inverse of L2, and of course this

makes no sense on L = 0 states. But all we actually need is for (305) to make sense acting

on arbitrary functions, so that

(I3 − P3) ~f(~r) = ~LL−2 ~LT ~f(~r)− ~∇RL−2R ~∇T
⊥
~f(~r) (324)

This is perfectly well-defined, because if either the ~LT ~f(~r) or R ~∇T
⊥
~f(~r) component has

zero angular momentum, then that component itself is zero. This can been seen by first

noting that if L2 acting on either of these components is zero, then the component must be

a function of the radius only, call it g(r). If we integrate g(r) over dΩ, we get 4πg(r), but

at the same time we see that integrating either component over dΩ must be zero because

in both cases we are integrating a total derivative over a closed surface. Therefore g(r),

which denotes either component, is necessarily zero.
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I Useful results involving C

Here we compute ~∇ T C ~∇, ~∇ T C and C ~∇, which we need to get our final results for the

propagator. Recall that C was given in (223), which we reproduce here for convenience

C = −R ~∇⊥ 2 −1 L−2R ~∇T
⊥ + ~L 2 −1 L−2 ~LT (325)

We first take

~∇ T C ~∇ = − ~∇ T R~∇⊥ 2 −1 L−2R ~∇T
⊥
~∇+ ~∇ T ~L 2 −1 L−2 ~LT ~∇ (326)

For the first term, it is a straightforward exercise to see that

~∇ T R~∇⊥ = ~∇ · r~∇⊥ = r~∇2
⊥ = −L

2

r
(327)

and

~∇ T ~∇ = ∇2
⊥ = −L

2

r2
(328)

For the second term, we note that

~∇ T ~L = ~∇ · ~L = ~∇ · (~r · ~∇) = 0 (329)

And likewise,

~LT ~∇ = (~r × ~∇) · ~∇) = 0 (330)

Plugging (327), (328), (329) and (330) into (326) then gives

We then have

~∇ T C ~∇ = − 1

R
L2 2 −1 L−2R

L2

R2
(331)

= −L2R−1 2 −1 R−1 (332)
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Likewise, inserting (327) and (329) into (325) gives

~∇ T C = R−1 2 −1 ~∇T
⊥R (333)

and similarly, inserting (328) and (330) into (325) gives

C ~∇ = R ~∇⊥ 2 −1 R−1 (334)
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J Last step for the LSG propagator on the sphere

Here we derive the result (244) from (243). Using (298), we get

R
(
∂t + R̂ · ~∇

)−1

R−1 = −θ(t2 − t1) δ(t1 − r1 − t2 + r2) δ(z1 − z2) δ(φ1 − φ2)
r1

r3
2

(335)

Now, if the point on the left goes on the t1 = r1 = s sphere, this becomes

→ − θ(t2 − s) δ(r2 − t2) δ(z1 − z2) δ(φ1 − φ2)
s

r3
2

(336)

Likewise, using (297), we get

R−1
(
∂t + ~∇ · R̂

)−1

R =
r4

r3
3

θ(t3 − t4) δ(t3 − r3 − t4 + r4) δ(z3 − z4) δ(φ3 − φ4) (337)

and if the point on the right goes on the t4 = r4 = s sphere, this goes to

→ s

r3
3

θ(t3 − s) δ(t3 − r3) δ(z3 − z4) δ(φ3 − φ4) (338)

The last piece in (243) is 2 −1, which is given by

2 −1(x2 − x3) = − i

4π2

1

(x2 − x3)2 − iε
= − i

4π2

1

x2
2 − x2

3 − iε
(339)

Now, putting (336), (338) and (339) together, we get

4i L2R (∂t + R̂ · ~∇)−1R−1 2 −1R−1 (∂t + ~∇ · R̂)−1R (340)

→ − 1

π2
L2

∫
d4x2 d

4x3 δ(r2 − t2) δ(t3 − r3) θ(t2 − s) θ(t3 − s) (341)

× s

r3
2

1

(x2 − x3)2 − iε
s

r3
3

(342)
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Due to the delta functions, we get (x2−x3)2 = x2
2+x2

3−2x2·x3 → −2x2·x3 → −2r2r3(1−z23).

We therefore get

=
1

2π2
L2

∫
dr2 dr3 θ(r2 − s) θ(r3 − s) ×

s2

r2
2r

2
3

1

1− z23

(343)

Lastly, integrating over r2 and r3 gives

=
1

2π2
L2 1

1− z23

(344)
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K The last integral in the loop calculation

This integral was ∫
zjk − z2jz2k

(1− z2j)(1− z2k)
dΩ2 (345)

This can be computed using a number of methods. For example, we can rewrite the

numerator as

zjk − z2jz2k = −(1− z2j)(1− z2k) + (1− z2j) + (1− z2k) + (zjk − 1) (346)

In the denominator, we can take 1 − z + λjk. This is only as a computational device and

not as a cutoff insertion since we will see that the final result does not depend on λjk.

The first term in the numerator completely cancels the denominator, so its integral gives

a constant and therefore it does not contribute to the double logs. The second and third

terms involve cancellation of one of the denominators and we therefore get a trivial integral

∫
1

1− z2k + λjk
dΩ2 = −2π ln(λjk/2) (347)

So the 2nd and 3rd terms together give a total of −4π ln(λjk).

For the 4th term, we can combine denominators:

(zjk − 1)

∫
1

(1− z2j + λjk)(1− z2k + λjk)
dΩ2

= (zjk − 1)

∫
dΩ2 dα

1

[α(1− z2j + λjk) + (1− α)(1− z2k + λjk)]2

(348)

= (zjk − 1)

∫
dα dΩ2

1

[1− r̂2 · (αr̂j + (1− α)r̂k) + λjk]2
(349)
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Doing the angular integral gives

= 4π(zjk − 1)

∫
dα

1

(1 + λjk)2 − (αr̂j + (1− α)r̂k)2
(350)

which is equal to

= 2π(zjk − 1)

∫
dα

1

(α− α2)(1− zjk) + λjk + λ2
jk/2

(351)

Next, integrating over α and extracting the log term gives

= 4π ln
λjk

1− zjk
(352)

The ln(λjk) part in this cancels the result from the second and third terms in the numerator,

and the logarithmic part of our integral’s result is

∫
zjk − z2jz2k

(1− z2j)(1− z2k)
dΩ2 = 4π ln

1

1− zjk
+ non-logarithmic (353)

90



References

[1] Georgi, H., Kestin, G. & Sajjad, A. Color Fields on the Light-Shell (2010). 1004.1404.

[2] Georgi, H., Kestin, G. & Sajjad, A. The Photon Propagator in Light-Shell Gauge

(2013). 1312.1741.

[3] Georgi, H., Kestin, G. & Sajjad, A. Towards an Effective Field Theory on the Light-

Shell Effective (2014). 1401.7667.

[4] Georgi, H., Kestin, G. & Sajjad, A. Radiative Corrections in Light-Shell Effective

Theory. in preparation (2014).

[5] Purcell, E. Electricity and Magnetism, 2nd Edition, McGraw Hill: New York, 1985

(1985).

[6] Georgi, H. AN EFFECTIVE FIELD THEORY FOR HEAVY QUARKS AT LOW-

ENERGIES. Phys. Lett. B240, 447–450 (1990).

[7] Mannel, T. Effective Field Theories in Flavor Physics. Springer Tracts Mod.Phys.

203, 1–175 (2004).

[8] Pascual, P. & Tarrach, R. QCD: Renormalization for the Practitioner. Springer 194

(1984).

[9] Bauer, C. W., Fleming, S. & Luke, M. E. Summing Sudakov logarithms in

B → (X s+gamma) in effective field theory. Phys.Rev. D63, 014006 (2000).

hep-ph/0005275.

[10] Bauer, C. W., Fleming, S., Pirjol, D. & Stewart, I. W. An Effective field theory

for collinear and soft gluons: Heavy to light decays. Phys.Rev. D63, 114020 (2001).

hep-ph/0011336.

91



[11] Schwartz, M. D. Resummation and NLO matching of event shapes with effective field

theory. Phys.Rev. D77, 014026 (2008). 0709.2709.

[12] McLerran, L. D. & Venugopalan, R. Computing quark and gluon distribution functions

for very large nuclei. Phys. Rev. D49, 2233–2241 (1994). hep-ph/9309289.

[13] Polyakov, A. M. Interaction of Goldstone Particles in Two-Dimensions. Applications

to Ferromagnets and Massive Yang-Mills Fields. Phys. Lett. B59, 79–81 (1975).

[14] Wiegmann, P. B. ON THE THEORY OF NONABELIAN GOLDSTONE BOSONS

IN TWO- DIMENSIONS: EXACT SOLUTION OF THE O(3) NONLINEAR sigma

MODEL. Phys. Lett. B141, 217 (1984).

[15] Verlinde, H. L. & Verlinde, E. P. QCD at high-energies and two-dimensional field

theory (1993). hep-th/9302104.

[16] Dugan, M. J. & Grinstein, B. QCD basis for factorization in decays of heavy mesons.

Phys.Lett. B255, 583–588 (1991).

[17] Luke, M. E. & Manohar, A. V. Reparametrization invariance constraints on heavy

particle effective field theories. Phys. Lett. B286, 348–354 (1992). hep-ph/9205228.

[18] Leupold, S. Feynman rules in radial gauge hep-th/9609222.

[19] Shifman, M. A. Wilson loop in vacuum fields. Nucl. Phys. B173 (1980).

[20] Feige, I. & Schwartz, M. An on-shell approach to factorization (2013). 1306.6341.

92


