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Abstract

Plasmonic waves in solid-state are caused by collective oscillation of mobile charges inside or at the

surface of conductors. In particular, surface plasmonic waves propagating at the skin of metals have

recently attracted interest, as they reduce the wavelength of electromagnetic waves coupled to them by

up to ∼10 times, allowing one to create miniaturized wave devices at optical frequencies. In contrast,

plasmonic waves on two-dimensional (2D) conductors appear at much lower infrared and THz-GHz

frequencies, near or in the electronics regime, and can achieve far stronger wavelength reduction factor

reaching well above 100. In this thesis, we study the unique machinery of 2D plasmonic waves behind

this ultra-subwavelength confinement and explore how it can be used to create various interesting devices.

To this end, we first develop a physically intuitive theoretical formulation of 2D plasmonic waves,

whose two main components—the Coulomb restoration force and inertia of the collectively oscillating

charges—are combined into a transmission-line-like model. We then use this formulation to create var-

ious ultra-subwavelength 2D plasmonic devices. For the 2D conductor, we first choose GaAs/AlGaAs

heterostructure—a 2D electron gas consisting of massive (m∗ > 0) electrons—demonstrating plasmonic

bandgap crystals, interferometers, and negatively refracting metamaterials. We then examine a 2D plas-

monic device based on graphene, a 2D electron gas consisting of effectively massless (m∗ = 0) electrons.

We theoretically show and experimentally demonstrate that the massless electrons in graphene can sur-

prisingly exhibit a collective mass when subjected to a collective excitation, providing the inertia that is

essential for the propagation of 2D plasmonic waves.

Lastly, we theoretically investigate the thermal current fluctuation behaviors in massive and massless

electron gases. While seemingly unrelated on first sight, we show that the thermal current fluctuation is

iii



actually intimately linked to the collective mass of the massive or massless electron gas. Thus, we show

that the thermal current fluctuation behaviors can also be described by the same theoretical framework

introduced earlier, suggesting a possibility to design new concept devices and experiments based on this

linkage.
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Chapter 1

Introduction

In this thesis, we will examine the unique characteristics of two-dimensional (2D) plasmonic waves

and explore the various device applications enabled by them. Before going into the details, we will

first provide an introduction of the 2D electronic systems to be discussed in this thesis, and then briefly

discuss and compare the plasmonic waves that appear in various dimensions to motivate the main theme

of this thesis.

1.1 2D Electronic Systems

A 2D electronic system is defined as a collection of electrons (or holes) that can move freely in two

dimensions, which we denote x and y, while their movement is restricted in the third dimension, which

we denote z. These 2D electronic systems are found in a number of different structures such as the

inversion layer of MOSFET, specifically engineered semiconductor heterojunctions, surface of liquid

helium, and graphene. In this thesis, we are interested in two of these systems, namely, semiconductor

heterojunction based 2D electron gas (2DEG) and graphene, as model 2D electronic systems consisting

of massive and effectively massless electrons.

A semiconductor heterojunction 2DEG is formed by utilizing the sudden change in the conduc-

tion band energy level in the vicinity of a junction between two different semiconductor materials due

to the mismatch of bandgaps of these materials. The layer structure and band diagram of a typical

GaAs/AlGaAs 2DEG, which is the 2DEG to be used in this thesis, is shown in Figs. 1.1a,b [1]. By
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Figure 1.1: a, Typical vertical structure of GaAs/AlGaAs 2DEG. b, Band diagram of the structure in a [1]. Only
the conduction band is shown. c, Band structure of GaAs (inset: Brillouin zone in the momentum space) [2].
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carefully designing the structure and tuning the doping of the top layer, the bands can be engineered

so that only the lowest energy level in z direction is occupied in the 2D well at the junction (shaded

gray in Fig. 1.1b), thereby forming a 2D electronic system in x and y directions. This well, typically

of ∼ 10 nm thickness, resides in the GaAs side. Within the well, the conduction in x and y directions

is described by an approximate form of the lowest part of the conduction band of GaAs near Γ point

(Fig. 1.1c, arrow [2]), given by

E(~k) =
~2k2

2m∗
, (1.1)

where k ≡ |~k| = k2
x + k2

y and m∗ ≈ 0.067me for GaAs (me: electron mass) [1]. Here, ~k is relative to Γ

point, and E(~k) is relative to the energy at Γ point. This description then becomes identical to that of a

collection of electrons in 2D with an effective mass m∗.

Graphene is a single1 layer of carbon atoms connected to each other in a honeycomb lattice (Fig. 1.2a).

Unlike the semiconductor heterojunction 2DEG, which is a 2D well formed in a three-dimensional (3D)

structure by carefully engineering the band in z direction, graphene is naturally a 2D electronic system

because of its physical structure being a single-atom-thick 2D conductor. The band structure calculated

in the tight-binding approach for the structure in Fig. 1.2a [3] reveals that the conduction band exhibits

minimum at two inequivalent points in the Brillouin zone, K and K ′ (also known as Dirac points), and

the valence band shares the same shape with an inverted sign (Figs. 1.2b,c). More interestingly, the con-

duction and valence bands approach Dirac points with a linear slope, leading to an approximate form of

the bands near Dirac points given by

E(~k) = ±~vFk, (1.2)

where vF ≈ 106 m/s is a constant proportional to the slope of the band structure near Dirac points. Here,

~k is relative to a Dirac point (K or K ′), and E(~k) is relative to the energy at Dirac points. At low enough

energies, the bands nearK andK ′ points become degenerate, which can be accounted for in calculations

as a valley degeneracy of 2.

The behaviors of the low energy expressions for the band structures of GaAs/AlGaAs 2DEG and

graphene, which we refer to as E-k dispersion relation, are compared in Fig. 1.3. We can see that,

as opposed to the picture of electrons behaving as massive particles with a quadratic E-k relation in
1We only consider monolayer graphene that exhibits zero effective electron mass in this thesis.
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Figure 1.3: a, Simplified 2D band structure of GaAs/AlGaAs 2DEG near Γ point. b, Simplified 2D band structure
of monolayer graphene near a Dirac point (K or K ′).

Table 1.1: EF, kF, vF, and D(E) for 2DEG, graphene, and 3D metal (free electron model) at T = 0 K. g is the
spin and valley degeneracy (g = 2 for GaAs/AlGaAs 2DEG; g = 4 for graphene; g = 2 for 3D metal).

EF kF vF D(E)

2DEG ~2k2F
2m∗

(
4πn0
g

)1/2 ~kF
m∗

gm∗

2π~2

Graphene ~vFkF

(
4πn0
g

)1/2
vF

gE
2π(~vF)2

3D metal ~2k2F
2m∗

(
6π2n3D

g

)1/3 ~kF
m∗

gm∗

2π2~2

√
2m∗E
~2

GaAs/AlGaAs 2DEG, the graphene electrons behave effectively as massless particles with a linear E-

k relation. In addition, while the Γ point of GaAs exhibits a large bandgap of ∼1.42 eV that is only

accessible in the optical regime, graphene behaves as a zero bandgap semiconductor, which means that

both electron and hole carriers in this band structure are readily accessible with low energy excitations.

Interesting physical phenomena and device applications based on these properties have been the subject

of a large number of works in the recent literature.

Before moving on, we list some of the commonly used physical quantities that can be readily calcu-

lated from theE-k relation for reference in later chapters (Table 1.1). In the following, we will denote the

density of electrons in 2D as n0, while that in 3D will be denoted as n3D, which we will occasionally use

when a comparison to 3D metallic system is needed. All calculations will be presented at T = 0 K un-

less noted otherwise (see Sec. 2.3.2 for temperature dependent calculations). From n0 or n3D, the Fermi

wavenumber kF can be obtained via n =
∫∫
|~k|≤kF

dd~k
(2π)d

g, where d is the dimensionality and g is the spin

and valley degeneracy2. Fermi energy EF is the value of E(~k) when k = kF. Fermi velocity vF is calcu-

2Unless magnetic effects are considered, spin degeneracy is 2. Valley degeneracy depends on the band structure and sym-
metries of the specific material. For instance, GaAs/AlGaAs 2DEG has a valley degeneracy of 1, while Si inversion layer on
(100) surface would have [3] a valley degeneracy of 2. 3D metals have a valley degeneracy of 1. g is the product of spin and
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Figure 1.4: Comparison of 3D and 2D plasmonic waves. a, Illustration of the charge density distributions as-
sociated with 3D plasmonic oscillation, surface plasmonic wave on 3D metal, and 2D plasmonic wave on 2D
conductor. b, Hypothetical dispersion curves for light wave, 3D plasmonic oscillation, surface plasmonic wave,
and 2D plasmonic wave, capturing the essence of the difference between these entities.

lated as vF = 1
~
∂E
∂k

∣∣
k=kF

. Density of statesD(E), representing the number of states per unit area/volume

with energy between E and E + dE, is obtained by D(E) = ∂ñ
∂E , where ñ(E) =

∫∫
E(~k)≤E

dd~k
(2π)d

g.

1.2 Plasmonic Waves in 3D and 2D

Plasmonic oscillation in bulk 3D metal is a well known phenomenon characterized by the collective

oscillation of electrons originating from the inertia of electrons and the Coulomb restoring force from

the background positive charge (Fig. 1.4a, top). This can be easily explained in a classical picture as

follows. When the electron gas in the metal is collectively shifted from the equilibrium position by a

displacement ~x, an electric field ~E = (en3D/ε0)~x is created inside the metal. This leads to an equation

of motion for a unit volume of electrons inside the metal, (m∗n3D)~̈x = (−en3D) ~E, which can be

rewritten as

~̈x = −ω2
p~x, (1.3)

valley degeneracies.
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where ω2
p = n3De

2/m∗ε0 is known as the plasma frequency. This describes a collective oscillation of

the whole electron gas at angular frequency ωp, which is typically in the optical frequency regime for 3D

metals.

Assuming that the cross-sectional area of the metal is large enough, the electric field inside the metal

is given by ~E = (en3D/ε0)~x regardless of the size in the x̂ direction. Hence, if we plot the dispersion

relation for this plasmonic oscillation, it appears as a flat curve at frequency ωp (Fig. 1.4b) unless higher

order thermal [4] or quantum mechanical [5] effects are considered, which only happen at very large

wavenumbers well above the regime of interest in this thesis. Note that we here only consider the purely

longitudinal mode in the plasma that satisfies ~k× ~E = ω ~B = 0 in Maxwell’s equations. This mode is to

be distinguished from the transverse electromagnetic mode in 3D metal above ωp that has a dispersion

relation of the form ω2 = ω2
p +k2c2, corresponding to a dielectric constant of 1− (ω2

p/ω
2) for the metal.

At the surface of a 3D metal, a hybrid mode of electromagnetic wave and 3D plasmonic oscillation

can propagate along the direction of the surface, because an oblique transverse-magnetic electromag-

netic wave has a longitudinal electric field component along the direction of the surface, coupling the

electromagnetic wave and 3D plasmonic oscillation in the vicinity of the surface (Fig. 1.4a, middle).

Because the transverse electromagnetic wave cannot propagate inside the 3D metal below ωp (it decays

exponentially), this mode is contained at the skin of the metal in a frequency-dependent thickness δ

known as the penetration depth. The dispersion of this wave (Fig. 1.4b) is similar to the light dispersion

at low frequencies where most of the energy is propagated in electromagnetic form, while it deviates sig-

nificantly away from the light dispersion when it approaches a specific frequency known as the surface

plasmon resonance frequency, which is intimately related to ωp (this dispersion relation will be discussed

in greater detail in following chapters). The behavior near this frequency is particularly interesting as

the wave propagates at a speed much slower than the speed of light, and thus can exhibit subwavelength

confinement with proportionally reduced wavelength [6–9]. This has nucleated a great deal of research

in photonics to create miniaturized optical structures.

Because the electrons in 2D conductors also possess inertia and the background positive charge

in 2D still exerts Coulomb restoring force, 2D conductors can also support plasmonic waves (Fig. 1.4a,

bottom). However, the plasmonic waves in 2D can no longer be explained in relation to the 3D plasmonic

oscillation and requires a different formulation, which we set out to unfold in the coming chapters. The
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dispersion of 2D plasmonic waves, shown in Fig. 1.4b, shows that these 2D plasmonic waves appear

at much lower frequencies compared to surface plasmonic waves, typically at infrared and THz-GHz

frequencies which is near or in the electronics regime. Furthermore, the 2D plasmons can achieve much

greater subwavelength confinement [10–12] with their velocity being able to reach well below c/100

[11, 13].

By shaping the 2D conductor geometry with the standard fabrication technology and manipulating

2D plasmonic waves via reflection, interference, and coupling according to the geometry, a variety of

ultra-subwavelength 2D plasmonic circuits and metamaterials, such as bandgap crystals, interferome-

ters, resonant cavities, and negative refractive index structures, can be created [11, 13, 14] for GHz-THz

and infrared integrated electronics with potential applications in imaging, large molecule spectroscopy,

and sub-millimeter wave astronomy. The ultra-subwavelength confinement of these 2D plasmonic struc-

tures suggests exciting possibilities for sub-diffraction-limit imaging, near-field operation, and drastic

miniaturization.

In the following chapters, we will first elucidate the unique behavioral characteristics of plasmonic

waves in 2D conducting media and their physical origin (Chapter 2). Then we will delineate how 2D

plasmonic waves can be engineered to build functional circuits and metamaterials, implemented using

semiconductor heterojunction 2DEG (Chapter 3) and graphene (Chapter 4) as the 2D conducting media.
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Chapter 2

Characteristics of 2D Plasmonic Waves

Perturbation of the equilibrium electron density distribution in a solid-state conductor, whether 3D or

2D, results in Coulomb restoring force, which drives local electrons back and forth collectively to propel

a plasmonic wave1. The defining energetic component of a plasmonic wave is the kinetic energy of the

collectively oscillating electrons, which largely accounts for the plasmons’ behavioral difference from

light waves, in particular, the reduced plasmonic velocity and subwavelength confinement. The kinetic

energy is far more strongly pronounced in 2D plasmonic waves than in 3D bulk metal surface plasmonic

waves [11, 14]. Consequently, the behavior of 2D plasmons diverges even more significantly from light

waves than that of 3D surface plasmons does; for example, and notably, 2D plasmons can achieve a

significantly lower velocity thus a much greater subwavelength confinement than 3D surface plasmons.

This chapter explicates the origin of the unique behaviors of 2D plasmonic waves in comparison to 3D

bulk metal surface plasmonic waves.

2.1 Transmission Line Model for 2D Plasmonic Medium

As will be discussed shortly, the kinetic energy of the collectively oscillating electrons in a 2D plasmonic

wave can be modeled using kinetic inductance of non-magnetic origin [11, 14]. On the other hand, the

electric potential energy associated with the Coulomb restoring force that drives local electrons into the

plasmonic oscillation can be modeled using electrical capacitance. Besides the Coulomb restoring force,
1Large portions of this chapter are derived from a number of papers in publication written by the author [14–17].
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C dxq

C dxc

Figure 2.1: Lossless transmission line model of a 2D plasmonic medium [16]. If the medium is gated, the gate
serves as the ground. For an ungated medium, the ground is the potential of the free space far away from the 2D
medium. dx: infinitesimal segment length of the 2D plasmonic medium.

electron degeneracy pressure serves as another restoring mechanism upon the disturbance of the equilib-

rium electron density distribution, and this effect can be modeled using quantum capacitance [10,18,19].

Then the 2D plasmonic medium can be modeled as a transmission line consisting of distributed kinetic in-

ductance Lk per unit length and distributed capacitanceC per unit length (Fig. 2.1) [11,14,20], where the

effects of the two capacitances have been combined into one effective capacitance C =
(
C−1

c + C−1
q

)−1

with Cc and Cq being classical (geometric, electric) and quantum capacitances, respectively. The effect

of magnetic self-inductance, which is usually orders of magnitude smaller than that of kinetic inductance

in 2D conductors as will be discussed in greater detail in Chapter 3 and 4, is omitted in this model. We

first consider the lossless case for simplicity. This plasmonic transmission line differs from the standard

electromagnetic transmission line in that the latter employs magnetic inductance instead of kinetic in-

ductance. The plasmonic velocity is then vp = 1/
√
LkC, which corresponds to the plasmonic dispersion

relation.

2.1.1 Calculation of Lk

The kinetic inductance Lk modeling the kinetic energy of the collectively oscillating electrons can be

calculated for each 2D plasmonic medium. In this section, we first calculate Lk for a 2D plasmonic

medium consisting of massive electrons as would be appropriate for a semiconductor heterojunction

2DEG, then calculate Lk for a medium consisting of massless electrons as would be appropriate for

graphene, and then provide a generic calculation insensitive to the individual electron dispersion.
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2.1.1.1 Massive Individual Electrons

Lk in a 2D conductor where individual electrons have finite effective mass m∗, such as in GaAs/AlGaAs

2DEG, can be calculated in a classical picture [14]. Let a time-dependent electric potential V (t) be

applied along a strip of the 2D conductor (width W and length l) to induce an electric field V (t)/l. Here

the length l is chosen so short that the electric field does not exhibit a spatial variation; this is not a

limiting assumption, as the goal is to derive the kinetic inductance per unit length. Inertial accelerations

occur, for which Newton’s equation of motion for an electron is

−eV
l

= m∗
dv

dt
(2.1)

(v: electron velocity). This translates to −eVl = iωm∗v in the frequency domain. From this and by

noting that the current due to the electrons’ motion is I = −n0evW (n0: conduction electron density

per unit area), the 2D conductor’s impedance is obtained:

V

I
= iω

m∗

n0e2

l

W
. (2.2)

This is an inductive impedance of kinetic origin, with the inductance value per unit length given by

Lk =
m∗

n0e2

1

W
. (2.3)

The total kinetic energy of the accelerating electrons is intimately linked to the kinetic inductance. With

the velocity v of an electron at a given time, the total kinetic energy Etotal of the electrons in the 2D

conductor strip is expressed as Etotal = 1
2m
∗v2n0Wl. Since the total current is I = −n0evW , we can

write

Etotal =
1

2
(Lkl) I

2, (2.4)

where Lkl is the total kinetic inductance of the 2D conductor strip. Eq. (2.4) is analogous to the energy

of a magnetic inductor with current I given by 1
2(inductance)I2.

The intuitive derivation above, however, does not provide the correct picture of the electrons follow-

ing Fermi-Dirac statistics, even though the correct expression Eq. (2.3) was obtained. Alternatively, we
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Figure 2.2: Shift of the Fermi disk in k-space in response to an electric field [14].

can instead calculate Lk by first evaluating the total kinetic energy Etotal and current I in the k-space (k:

electron wavenumber) and then relating them through the energy-current relation [14]. With the electric

field applied along the length of the 2D conductor strip to which direction we assign a negative x-axis,

the 2D Fermi disk with radius kF whose center originally lies at the k-space origin (Fig. 2.2, A) shifts

towards the positive kx-axis, increasing the total kinetic energy and producing a current I . Fig. 2.2, B

shows the Fermi disk shift by ∆k � kF. The total kinetic energy increase per unit area is

Etotal

Wl
=

∫∫
B

d2~k

(2π)2
gE(~k)−

∫∫
A

d2~k

(2π)2
gE(~k), (2.5)

where g accounts for spin and valley degeneracy (e.g., g = 2 for GaAs/AlGaAs 2DEG) andE(~k) = ~2k2
2m∗

is the energy of a single electron whose wavevector is~k. The first integration is computed as below, where

~k′ = ~k −∆kêkx (êkx : unit vector along the kx direction) is with reference to Fig. 2.2:

∫∫
B

d2~k

(2π)2
gE(~k) =

g~2

8π2m∗

∫∫
B

d2~k′
∣∣~k′ + ∆kêkx

∣∣2 =
g~2

8π2m∗

∫∫
B

d2~k′
[
k′2 + 2k′x∆k + (∆k)2

]
.

(2.6)

This contains three terms. By inspection of Fig. 2.2, the first term is simply the second integration of

Eq. (2.5), the total kinetic energy per unit area corresponding to the Fermi disk A. The second term

vanishes due to the odd symmetry of k′x within the disk B. Therefore Eq. (2.5) reduces to (the integration
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is performed at T = 0 K for simplicity)

Etotal

Wl
=

g~2

8π2m∗
(∆k)2

∫∫
B

d2~k′ =
g~2k2

F

8πm∗
(∆k)2. (2.7)

The total current I is calculated as

I = W

∫∫
B

d2~k

(2π)2
gevx(~k), (2.8)

where vx(~k) = ~kx/m∗ is the x-component of the velocity of an electron with wavevector ~k. Thus,

I =
Wge~
4π2m∗

∫∫
B

d2~kkx =
Wge~
4π2m∗

∫ 2π

0
dθ cos θ

∫ kF+∆k cos θ

0
k2dk, (2.9)

where the distance between the origin and the edge of the disk B at angle θ is approximated as kF +

∆k cos θ, given ∆k � kF. By performing the integration up to the first order of ∆k (the lowest surviving

order), we obtain

I =
Wge~k2

F

4πm∗
∆k. (2.10)

By eliminating ∆k using Eqs. (2.7) and (2.10), and noting k2
F = 4πn0/g, we get

Etotal =
1

2

[
m∗

n0e2

l

W

]
I2, (2.11)

which is identical to Eq. (2.4) with Lk given by Eq. (2.3).

We note that this energy-current relation links the voltage V , which produces the electric field and

moves the electrons, and the current I in exactly the same mathematical manner as magnetic inductance

links voltage across it and current through it, viz., V = (Lkl)
dI
dt . To demonstrate, one can note that

Etotal =
∫ t
t0
V Idt = 1

2(Lkl)I
2 (t0 is when the electron gas is at rest) and differentiate this equation

with respect to time t. In fact, just as magnetic inductance represents the reluctance of magnetic flux to

change, the kinetic inductance represents the ‘inertial’ reluctance of the collective momentum to change.
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2.1.1.2 Massless Individual Electrons

For a medium consisting of massless electrons, the classical picture of individual electrons moving ac-

cording to the Newton’s equation of motion cannot be applied. Nonetheless, the derivation of Eqs. (2.5)

- (2.11) can still be used to show that the medium consisting of massless electrons also exhibits an in-

ductive impedance. This implies that the collection of massless electrons behaves as if it collectively

possesses an inertial mass, which will be seen in greater detail in Chapter 4. In this section, we focus on

deriving the kinetic inductance of such a medium.

The situation assumed to calculate the kinetic inductance is identical to what was seen in Fig. 2.2.

The total kinetic energy increase per unit area is calculated as Eq. (2.5), but with E(~k) = ~vFk as would

be appropriate for a 2D medium consisting of massless electrons, such as graphene (g = 4 for graphene

due to the two degenerate valleys). The integration of Eq. (2.6) then becomes

∫∫
B

d2~k

(2π)2
gE(~k) =

g~vF

4π2

∫∫
B

d2~k′
∣∣~k′ + ∆kêkx

∣∣ =
g~vF

4π2

∫∫
B

d2~k′
[
k′2 + 2k′x∆k + (∆k)2

]1/2
.

(2.12)

By expanding the integrand to the second order of ∆k, which is the lowest surviving order as will be

seen shortly, we obtain

∫∫
B

d2~k

(2π)2
gE(~k) =

g~vF

4π2

∫∫
B

d2~k′

[
k′ +

k′x
k′

∆k +
k′2y
2k′3

(∆k)2

]
. (2.13)

Since the first term on the right hand side is identical to the second integration of Eq. (2.5) and the second

term vanishes due to the odd symmetry of k′x within the disk B, Eq. (2.5) is simplified to

Etotal

Wl
=
g~vF

4π2

∫∫
B

d2~k′
k′2y
2k′3

(∆k)2 =
g~vFkF

8π
(∆k)2. (2.14)

This quadratic dependency of Etotal on small enough ∆k arises because Etotal as a function of ∆k must

assume a smooth extremum (minimum) when ∆k = 0, i.e., at the collective ground state.
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The total current I is calculated as Eq. (2.8), but with vx(~k) = vF cos θ. Thus,

I =
WgevF

4π2

∫∫
B

d2~k cos θ =
WgevF

4π2

∫ 2π

0
dθ cos θ

∫ kF+∆k cos θ

0
kdk, (2.15)

where the distance between the origin and the edge of the disk B at angle θ is approximated as kF +

∆k cos θ, given ∆k � kF. By performing the integration up to the first order of ∆k (the lowest surviving

order), we obtain

I =
WgevFkF

4π
∆k. (2.16)

By eliminating ∆k using Eqs. (2.14) and (2.16), we obtain

Etotal =
1

2

[
4π~

ge2vFkF

l

W

]
I2, (2.17)

from which we identify the kinetic inductance per unit length as [16, 21]

Lk =
4π~

ge2vFkF

1

W
. (2.18)

We note that if Eq. (2.3) is expressed in terms of kF and vF by substituting m∗ = ~kF/vF, Eq. (2.3) is

identical to Eq. (2.18).

2.1.1.3 Arbitrary Isotropic Electron Dispersion

The previous derivations assumed a quadratic (massive) or linear (massless) individual electron disper-

sion. However, it can be shown thatEtotal is proportional to (∆k)2 for any arbitrary isotropic dispersion,

and hence the electron gas collectively exhibits kinetic inductance regardless of the individual electron’s

character in the medium.

This can be seen by focusing on the behavior of the electron gas near the Fermi surface. As seen

in Fig. 2.3, the shift of the Fermi disk results in electrons added in the shaded region C and removed

in region D. Because ∆k � kF, the arbitrary isotropic dispersion within the shaded regions can be

approximated as

E(~k) = E(kF) + ~vF(k − kF), (2.19)
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Figure 2.3: Shift of the Fermi disk, focusing on the behavior near the Fermi surface.

where (k−kF) remains at or smaller than the first order of ∆k. With reference to Fig. 2.3, we can rewrite

the total kinetic energy increase per unit area in Eq. (2.5) as

Etotal

Wl
=

∫∫
C

d2~k

(2π)2
gE(~k)−

∫∫
D

d2~k

(2π)2
gE(~k), (2.20)

where

∫∫
C

d2~k =

∫ π

0
dθ

∫ kF+∆k sin θ

kF

dk
(
k − ∆k

2
sin θ

)
,

∫∫
D

d2~k =

∫ π

0
dθ

∫ kF

kF−∆k sin θ
dk
(
k +

∆k

2
sin θ

)
,

(2.21)

given ∆k � kF (for convenience in notations, θ has been rotated by −π
2 for C and π

2 for D). The

∓∆k
2 sin θ part is necessary to ensure that the total number of electrons is conserved during the Fermi

disk shift, i.e., ∫∫
C

d2~k =

∫∫
D

d2~k = 2kF∆k. (2.22)
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The k-integrations in Eq. (2.20) can now be readily performed:

∫ kF+∆k sin θ

kF

dk
(
k−∆k

2
sin θ

)
E(k) =

1

3
~vF

(
3k2

F∆k sin θ + 3kF(∆k)2 sin2 θ + (∆k)3 sin3 θ
)

+
1

2

(
E(kF)− ~vFkF −

1

2
~vF∆k sin θ

)(
2kF∆k sin θ + (∆k)2 sin2 θ

)
− 1

2
(E(kF)− ~vFkF)(∆k)2 sin2 θ,

(2.23)

∫ kF

kF−∆k sin θ
dk
(
k+

∆k

2
sin θ

)
E(k) =

1

3
~vF

(
3k2

F∆k sin θ − 3kF(∆k)2 sin2 θ + (∆k)3 sin3 θ
)

+
1

2

(
E(kF)− ~vFkF +

1

2
~vF∆k sin θ

)(
2kF∆k sin θ − (∆k)2 sin2 θ

)
+

1

2
(E(kF)− ~vFkF)(∆k)2 sin2 θ.

(2.24)

Combining the two integrations, Eq. (2.20) is greatly simplified to yield

Etotal

Wl
=

g

4π2

∫ π

0
dθ~vFkF(∆k)2 sin2 θ =

g~vFkF

8π
(∆k)2. (2.25)

We note that this result is identical to Eq. (2.14).

The total current I is calculated in a manner similar to Eq. (2.15), where we can use the approximation

vx(~k) = vF cos θ as ∆k � kF and we limit ourselves to regions C and D near the Fermi surface. Thus,

(again, θ has been rotated by −π
2 for C and π

2 for D)

I =
Wge

4π2

(∫∫
C

d2~kvx(~k)−
∫∫
D

d2~kvx(~k)
)

=
WgevF

4π2

∫ π

0
dθ

[∫ kF∆k sin θ

kF

dk
(
k − ∆k

2
sin θ

)
sin θ +

∫ kF

kF−∆k sin θ
dk
(
k +

∆k

2
sin θ

)
sin θ

]
,

(2.26)

which can be readily computed to obtain

I =
WgevF

4π2

∫ π

0
dθ2kF∆k sin2 θ =

WgevFkF

4π
∆k. (2.27)

We note that this result is identical to Eq. (2.16). Since both Eq. (2.25) and Eq. (2.27) are identical to
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Eq. (2.14) and Eq. (2.16), we arrive at the same expression for the kinetic inductance per unit length,

Lk =
4π~

ge2vFkF

1

W
. (2.28)

As stated earlier, the quadratic dependency of Etotal on small enough ∆k, and the kinetic inductance

Lk that follows, arise because Etotal as a function of ∆k must assume a smooth extremum (minimum)

when ∆k = 0, i.e., at the collective ground state. The expression for Lk is insensitive to the shape of the

single electron dispersion as the collective behavior effectively happens only in the vicinity of the Fermi

surface, within which only the slope of the dispersion, i.e., ~vF, is relevant (Eq. (2.19)).

2.1.2 Calculation of C

The per-unit-length distributed capacitance C in the 2D plasmonic transmission line (Fig. 2.1) contains

two components, namely, the geometric capacitance Cc and the quantum capacitance Cq. In terms of

energy, these two components can be seen as the amount of energy added to the system by adding a

unit charge to the 2D conductor, with the energy originating from the electric fields surrounding the 2D

conductor or from the kinetic energy of the electrons being added, respectively. Here we discuss how

these capacitances can be obtained for a 2D conductor.

2.1.2.1 Geometric Capacitance Cc

The per-unit-length geometric capacitance Cc, which models the Coulomb restoring force in the plas-

monic wave, depends on the surroundings of the plasmonic medium. For example, if a 2D conductor

strip with width W has no other conductors nearby, Cc for a given plasmonic wavenumber kp is given

by [22, 23]

Cc = 2κε0kpW, (2.29)

where κ is the effective dielectric constant of the surrounding medium. This is obtained by integrating

the energy density stored in electric fields around the 2D conductor assuming a sinusoidal charge density

distribution at a plasmonic wavenumber kp.

If an external conductor is proximate to the 2D conductor, Cc is altered. A case of particular interest

is a gated 2D conductor. If the separation d between the gate and the 2D conductor is much smaller than
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the plasmonic wavelength (i.e., kpd� 1), Cc becomes the parallel plate capacitance per unit length,

Cc = κε0
W

d
. (2.30)

2.1.2.2 Quantum Capacitance Cq

The per-unit-length quantum capacitanceCq represents the increase in total kinetic energy of the electron

gas by adding a unit charge to the system (in contrast, Lk represented the total kinetic energy increase due

to the movement of charges while the total number of electrons was fixed). Therefore, this capacitance is

directly proportional to the density of statesD(E) at the Fermi surface and is given byCq = e2D(EF)W

[24]. In principle, this capacitance arises from Pauli’s exclusion principle as any electron added into the

system needs to occupy energy levels above the Fermi level.

The quantum capacitance for a 2D electron gas consisting of massive electrons is given by [3, 18]

(calculated at T = 0 K)

Cq =
gm∗e2

2π~2
W, (2.31)

where g accounts for spin and valley degeneracy as in Eq. (2.5). The quantum capacitance for a 2D

electron gas consisting of massless electrons is given by [3, 19, 24] (calculated at T = 0 K)

Cq =
ge2EF

2π(~vF)2
W, (2.32)

where EF = ~vFkF. We note that Eqs. (2.31) and (2.32) can both be written by the same expression as

Cq =
ge2kF

2π~vF
W. (2.33)

2.2 Dispersion Relation of 2D Plasmonic Waves

In the previous section, we have obtained the constituent components of the 2D plasmonic transmission

line model (Fig. 2.1), namely, the kinetic inductance Lk, the geometric capacitance Cc, and the quan-

tum capacitance Cq. Using these quantities, transmission line theory [25] can be applied to show the

interesting properties of 2D plasmonic waves.
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The potential energy V (x) and current I(x) in the transmission line model of Fig. 2.1 obey wave

equations

d2V (x)

dx2
− γ2V (x) = 0,

d2I(x)

dx2
− γ2I(x) = 0,

(2.34)

where

γ ≡ α+ ikp = iω
√
LkC (2.35)

is known as the complex propagation constant, with α representing the attenuation (α=0 for the lossless

transmission line model of Fig. 2.1) and kp representing the plasmonic wavenumber (α and kp are real

by definition). The wave equations allow general solutions of the form

V (x) = V +
0 e−γx + V −0 eγx,

I(x) = I+
0 e
−γx + I−0 e

γx,

(2.36)

where the e−γx term represents wave propagation in the +x direction and the eγx term represents wave

propagation in the −x direction. The wave amplitudes V ±0 and I±0 satisfy

Z0 ≡
√
L

C
=
V +

0

I+
0

= −V
−

0

I−0
, (2.37)

where Z0 is known as the characteristic impedance of the transmission line.

In particular, Eq. (2.35) reveals the dispersion relation of 2D plasmonic waves, the relationship be-

tween the wavenumber kp and frequency ω. It is worthwhile to consider 2D plasmonic waves in two no-

table and practically useful cases, namely, stand-alone (‘ungated’) 2D conductor and proximately gated

2D conductor, which we will compare to surface plasmonic waves on 3D metals (Fig. 2.4). We consider

both massive and massless electrons, but since their kinetic inductance Lk and quantum capacitance Cq

can both be written by the same expressions Eqs. (2.28) and (2.33), their behaviors can be described

together.
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Figure 2.4: Qualitative comparison of dispersion relations for light, surface plasmonic wave on 3D metal, ungated
2D plasmonic wave, and gated 2D plasmonic wave [15]. The frequency scales of the dispersions for 2D plasmonic
waves were exaggerated to allow visual comparison of their shapes with surface plasmonic waves. With more
realistic values of EF assumed for the metal and the 2D conductor on which these waves propagate, the 2D
plasmonic waves typically appear at much lower frequencies (tens of GHz to tens of THz range) as opposed to
surface plasmonic waves that appear at optical frequencies (hundreds of THz).

2.2.1 Ungated 2D Plasmonic Waves

2.2.1.1 Dispersion Relation

We first consider the stand-alone 2D conductor with no other conductors nearby. By combining Eqs. (2.28),

(2.29), (2.33), and (2.35), we arrive at the following dispersion relation:

ω = vFkF

√
ge2

8πκε0~vF

(kp

kF

)
+

1

2

(kp

kF

)2
. (2.38)

Inside the square-root, the first term originates from the geometric capacitance and the second term

originates from the quantum capacitance. In order to determine which term has a more dominating

effect, we can rewrite the coefficient of the first term as

( g
2κ

)( e2

4πε0~c

)( c
vF

)
. (2.39)

The first factor is on the order of 1 as most practical substrates lead to an effective dielectric constant κ

smaller than 10. The second factor is the fine structure constant, a fundamental dimensionless constant

of approximate numerical value 1/137. The third factor is the ratio of the speed of light to the Fermi
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velocity of the electron gas. For typical semiconductor heterojunction based 2DEGs, the Fermi velocity

is 2 ∼ 3 orders of magnitude smaller than the speed of light [11, 13, 14, 20]. For graphene, the Fermi

velocity is known to be ∼ 300 times smaller than the speed of light [3,26]. Therefore, for most practical

situations, the coefficient of the first term in the square-root of Eq. (2.38) is on the order of 1. This

means that for kp smaller than kF, the first term dominates, while for kp larger than kF, the second term

dominates.

Often, one operates the 2D plasmonic waves at low enough frequencies where kp is much smaller

than kF. In this long-wavelength regime, the effect of the quantum capacitance is negligible and the

dispersion relation of Eq. (2.38) is approximated as [3, 11, 13, 14, 20, 26–28]

ω =

√
ge2vFkF

8πκε0~
kp. (2.40)

This characteristic square-root shape of the dispersion is displayed in Fig. 2.4.

2.2.1.2 Comparison to RPA Calculations

The dispersion relation for 2D plasmonic waves can also be obtained from a more general approach of

random phase approximation (RPA). The foregoing formalism only considered collective electron move-

ments within a single band (intra-band). However, at high enough excitation frequencies or wavenum-

bers, creation of electron-hole pairs within the band (Landau damping) or transitions between different

bands (inter-band effects) can happen [27] which cannot be described by the simple model of Fig. 2.1.

Description of 2D plasmonic waves using RPA is more general in that all of those effects can be handled

within its formalism.

The aforementioned effects however only take place in the large-kp regime (kp > kF). In frequency

or wavenumber regimes where such effects do not happen, the dispersion relation derived using RPA

reduces to Eq. (2.38), which we show below. While being limited in frequency range, the approach

presented in the foregoing sections is beneficial as: it provides more physical insight as to how the energy

is distributed into kinetic (inductive and capacitive) and electric (capacitive) energies in the 2D plasmonic

wave; it is more amenable for the purpose of engineering devices utilizing 2D plasmonic waves; the

frequency regime where the aforementioned damping mechanisms do not happen is the practically useful
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regime.

In the random phase approximation, the longitudinal dielectric function in the 2D conductor can be

written as

ε||(~q, ω) = 1− e2

2κε0q
Π0(~q, ω), (2.41)

where e2/2κε0q is the 2D Fourier transform of the Coulomb interaction and Π0(~q, ω) is the 2D po-

larizability, which can include both contributions from intra-band and inter-band effects. As our inter-

est here is to show the equivalence of the RPA approach and the transmission line model approach at

small wavevectors, we only use the intra-band polarizability. For small wavevectors (i.e., vFq < ω),

Π0,intra(~q, ω) can be expressed in the following form [22]:

Π0,intra(~q, ω) =
gvFkFq

2

4π~
1

ω2 − v2
Fq

2/2
, (2.42)

where T → 0 K and τ → ∞ were assumed. Plasmon dispersion is found by obtaining wavevectors ~q

that satisfy ε||(~q, ω) = 0, where we identify the real part of those values of q as kp. Thus, we obtain

ω =

√
ge2vFkF

8πκε0~
q +

1

2
v2

Fq
2, (2.43)

which is identical to Eq. (2.38) if we replace q → kp. Therefore, we conclude that the transmission line

model approach is consistent with the more general RPA description of 2D plasmons.

2.2.2 Gated 2D Plasmonic Waves

The dispersion relation for the proximately gated (i.e., kpd � 1) 2D plasmonic wave can be found by

combining Eqs. (2.28), (2.30), (2.33), and (2.35):

ω =

√
ge2kFd

4πκε0~vF
+

1

2
vFkp. (2.44)

This characteristic linear shape of the dispersion is displayed in Fig. 2.4. As in the ungated case, the first

term in the square-root originates from the geometric capacitance and the second term originates from

the quantum capacitance. In order to determine which term has a more dominating effect, we can rewrite
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the first term in the square-root as

(g
κ

)( e2

4πε0~c

)( c
vF

)
(kFd). (2.45)

The product of the first three factors is typically on the order of 1, as was seen in Sec. 2.2.1.2. The magni-

tude of the fourth factor is determined by the density of electrons in the 2D conductor via kF = 4πn0/g

and distance d between the 2D conductor and the gate. For n0 ∼ 1012 cm−2 (a typical value for both

2DEG and graphene), kFd = 1 happens at d ∼ 5 nm. This means that for d much farther than ∼ 5 nm,

the restoration force is dominated by Coulomb force (geometric capacitance), while for d much closer

than ∼ 5 nm, the restoration force is dominated by electron degeneracy pressure (quantum capacitance).

On typical high-mobility 2DEGs, d needs to be farther than ∼ 50 nm due to the semiconductor het-

erostructure, and it is difficult to obtain such a regime of 2D plasmonic waves propelled dominantly by

quantum capacitance. On graphene, d < 5 nm may be a possibility, but there has not been a demonstra-

tion of such 2D plasmonic wave propagation. In this thesis, we focus on the regime where kFd � 1 so

that the 2D plasmonic wave is propelled dominantly by Coulomb force. In this case, we can approximate

the gated 2D plasmonic wave dispersion as

ω =

√
ge2kFd

4πκε0~vF
vFkp. (2.46)

If we compare the ungated dispersion relation (Eq. (2.40)) and the gated dispersion relation (Eq. (2.46))

in the regime where Coulomb force dominates, we see that Eq. (2.46) has a much lower slope compared

to Eq. (2.40) because we assumed the gate to be ‘proximately’ gated (kpd � 1). In other words, com-

pared at the same frequency, the gated 2D plasmonic wave exhibits much shorter wavelength (much

slower phase velocity) compared to the ungated case because the proximate gate shortens the range of

Coulomb interactions in the 2D conductor. Using this principle, 2D plasmonic wave propagation ∼ 700

times slower than the speed of light was demonstrated [11], which we will discuss in more detail in

Chapter 3.
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Figure 2.5: Dispersion relation (a) and penetration depth (b) calculated for surface plasmonic wave at the interface
between a hypothetical metal with κm = 1− ω2

p/ω
2 and vacuum (κd = 1). ωsp = ωp/

√
2 in this situation.

2.2.3 Comparison to Surface Plasmonic Waves

Surface plasmonic wave on the surface of 3D metal is a hybridized mode of electromagnetic wave and

3D bulk plasmonic oscillation confined at the surface. Denoting the dielectric constant of the metal as

κm and that of the dielectric above the surface as κd, one can find the dispersion relation for this wave

by solving the Maxwell’s equations with appropriate boundary conditions at the surface [6]:

kp =
ω

c

√
κmκd

κm + κd
. (2.47)

By using the appropriate dielectric constant as a function of frequency for the metal, one can obtain the

dispersion relation for the surface plasmons. One commonly used choice for illustrative purposes is the

lossless Drude conductivity model, which is also used to explain the 3D bulk plasmonic oscillations,

where the dielectric constant of the metal as a function of frequency is given by

κm = κ∞ −
ω2

p

ω2
. (2.48)

Here, κ∞ is the frequency-independent dielectric constant due to the background ion structure, and

ω2
p ≡ n3De

2/m∗ε0 is known as the plasma frequency (n3D: density of electrons in the metal).

The resulting dispersion relation is illustrated in Fig. 2.5a. The dispersion has two asymptotes at

low frequencies and at frequencies approaching ωsp, known as the surface plasmon resonance frequency.
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At low frequencies, far enough away from the 3D bulk plasmonic resonance, the surface wave almost

does not ‘see’ the effect of the metal and propagate mostly in the dielectric (i.e., very weakly confined

to the surface), as seen in the almost light-like behavior in the dispersion. As the frequency rises, the

interaction between the electromagnetic wave and the 3D bulk plasmonic oscillation increases, causing

a more significant deviation of the dispersion curve from the light line. This culminates at the surface

plasmon resonance frequency ωsp, which is the frequency at which the effective dielectric constant seen

at the surface becomes zero (i.e., (κm + κd)/2 = 0). In the lossless case assumed here, kp approaches

infinity as ω → ωsp, or as the effective dielectric constant approaches 0. However, when loss is included

in the model for κm, the effective dielectric constant at the surface can no longer reach 0, and kp assumes

a finite maximum value. In experiments performed with real metals, kp/k0 is typically limited to less

than 10 (k0: wavenumber of electromagnetic wave in vacuum, i.e., k0 = ω/c) [6]. At frequencies above

ωsp, the effective dielectric constant of the surface becomes positive, meaning that the surface can no

longer support a confined wave.

Compared to 2D plasmonic waves (Fig. 2.4), this is qualitatively different in a number of ways.

The dispersion relations of 2D plasmonic waves deviate from the light dispersion at all frequencies and

does not exhibit an asymptotic behavior to a particular resonance frequency. This means 2D plasmonic

wave devices can be created in a wide range of frequencies, as opposed to the surface plasmonic wave

devices whose frequency is set by the plasma frequency of the metal in use. In addition, the presence of

scattering loss in the conductor does not put a fundamental limit to the maximum attainable kp for 2D

plasmonic waves. By carefully engineering the structure, very large values of kp, or in other words, very

slow propagation of 2D plasmonic waves is possible, with 2D plasmonic wave propagation ∼ 700 times

slower than the speed of light experimentally demonstrated [11], as mentioned in the previous section.

As an alternative description of surface plasmonic waves, the transmission line model of Fig. 2.1 can

also be used to further contrast surface plasmonic waves and 2D plasmonic waves, as the two main ener-

getic components of the surface plasmonic wave on 3D metal are also the kinetic energy of collectively

oscillating electrons and the electric potential energy corresponding to Coulomb restoring force [23].

To describe the behavioral difference between the 2D plasmonic wave and surface plasmonic wave

on 3D metal, we evaluate the kinetic inductance associated with the surface plasmonic wave. The col-

lective oscillation of electrons in the surface plasmonic wave occurs within the skin of a 3D bulk metal,
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whose frequency-dependent skin depth δ = 1/
√
k2

p − κm(ω/c)2 decreases with increasing frequency

(Fig. 2.5b) [23]. The kinetic inductance per unit length of this skin of the 3D metal with thickness δ and

width W can be derived by considering the inertial acceleration of electrons in the cross section, similar

to the derivation of Section 2.1.1.1, as

Lk,skin =
m∗

n3De2

1

Wδ
, (2.49)

where n3D is conduction electron density per unit volume (for 3D metal, there is no particular reason to

consider massless electrons).

Eq. (2.3) for the 2D plasmonic wave and Eq. (2.49) for the surface plasmonic wave both show that

kinetic inductance is inversely proportional to the number of electrons contained in the cross section

of the propagating wave (n0W for 2D or n3DWδ for surface plasmons). This can be understood as

follows. When there are fewer electrons in the cross section, they need to accelerate to a proportionally

higher maximum velocity to produce the same amplitude of current. The total average kinetic energy

then becomes larger, as kinetic energy is proportional to the square of velocity while being linearly

proportional to the number of electrons. Since we have fixed the current amplitude, the kinetic inductance

then should be larger when there are smaller number of electrons in the cross section, according to

Eq. (2.4).

To compare the kinetic inductance for 2D plasmonic wave and surface plasmonic wave, we can

rewrite Eqs. (2.3) and (2.49) using k2
F = 4πn0/g (2D), k3

F = 6π2n3D/g (3D), and EF = ~2k2
F/2m

∗, as

products of quantities sharing equal dimensions2:

Lk,2D =
(2π~2

ge2

)( 1

EF

)( 1

W

)
,

Lk,skin =
(3π2~2

ge2

)( 1

EF

)( 1

W

)( 1

kFδ

)
.

(2.50)

When the two expressions are juxtaposed, the 1/kFδ factor inLk,skin makes an apparent difference. Since

penetration depth δ decreases with frequency, Lk,skin increases with frequency; this is essentially because

the reduced δ decreases the number of conduction electrons participating in the surface plasmonic wave.
2We here use Lk,2D to denote the 2D kinetic inductance instead of Lk that we have used so far. Lk and Lk,2D will be used

interchangeably when a comparison to other types of kinetic inductance is needed.
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In order to fully describe the surface plasmonic wave in the transmission line model of Fig. 2.1, we

also need to take the contribution from magnetic inductance into account, which we have so far ignored

because the magnetic inductance is typically orders of magnitude smaller than the kinetic inductance

for the 2D plasmonic wave. The effect of magnetic inductance can be modeled as a per-unit-length

self-inductance Lm = µ0/2kpW [23] in series with the kinetic inductor in Fig. 2.1.

At frequencies below the optics regime (as ωp for most metals lies in the optics regime), δ is large

enough to renderLk,skin inappreciable compared to the magnetic inductanceLm of the surface plasmonic

medium. Hence, it is difficult to observe surface plasmons below the optics regime with 3D metals, and

the surface plasmonic dispersion resembles the light dispersion because the dispersion obtained by the

ungated Cc (Eq. (2.29)) and Lm is identical to the light dispersion ω = kp/
√
LmCc = kp/

√
κε0µ0. The

surface plasmonic dispersion curve deviates away from the light dispersion line only towards the optics

regime when Lk,skin becomes large enough to dominate Lm (Fig. 2.5). By contrast, Lk,2D of the 2D plas-

monic medium has no frequency dependency, as there is no such frequency-dependent penetration depth

where electrons are perfectly confined into two dimensions. Moreover, Lk,2D is typically many orders of

magnitude larger than the magnetic inductance of the 2D conductor. Therefore, the 2D plasmonic wave

emerges far below the optics regime, with its dispersion curve deviating significantly away from the light

line even at these low frequencies (Fig. 2.4).

Even when Lk,skin becomes appreciable in the optics regime with small enough δ and with more

pronounced surface plasmonic dynamics, kFδ is still much larger than 1, leaving Lk,skin � Lk,2D (in

principle, Lk,skin can grow indefinitely as the frequency grows towards ωsp with δ approaching 0, but in

practice loss obscures such excitations). The Lk,skin � Lk,2D inequality is further enhanced by the fact

that EF appearing in both Lk,skin and Lk,2D in Eq. (2.50) is typically much larger with the 3D bulk metal

such as gold than with semiconductor 2DEG or graphene. Overall, Lk,skin even in the optics regime is

typically far smaller than Lk,2D by 2 ∼ 3 orders of magnitude. This translates to very slow propagation

of 2D plasmonic waves as mentioned earlier, as vp ∝ 1/
√
Lk,2D.
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Figure 2.6: Lossy transmission line model of a 2D plasmonic medium [16]. If the medium is gated, the gate serves
as the ground. For an ungated medium, the ground is the potential of the free space far away from the 2D medium.
dx: infinitesimal segment length of the 2D plasmonic medium.

2.3 Temperature and Loss Considerations

So far, we have considered the behavior of 2D plasmonic wave at T = 0 K and without loss. In the ab-

sence of loss, the wave propagates indefinitely with a purely imaginary propagation constant (Eq. (2.35)).

As sources of loss are introduced into the system via impurities, defects, phonons at finite temperatures,

etc.3, electron scatterings cause the plasmonic wave to be damped, or in other words, finite real part is

introduced into the propagation constant. In this section, we discuss how these different types of loss

can be integrated into the transmission line model for 2D plasmonic waves, how the loss mechanisms

vary with temperature and how that affects the usefulness of 2DEG or graphene as a GHz 2D plasmonic

medium, and how the temperature affects other parameters in the model.

2.3.1 Loss Model and Temperature Dependence

Electron scatterings in the 2D plasmonic medium are manifested as a per-unit-length resistance R in

electrical measurements4, which can be added to the transmission line model in series with Lk as shown

in Fig. 2.6.

Transmission line theory [25] can be used to obtain the generalized complex propagation constant
3We here do not consider the loss mechanisms due to Landau damping or interband transitions, as many practical plasmonic

applications would be considered at frequencies where such loss mechanisms do not occur.
4In the literature, the loss in 2D systems is reported in a number of different forms, such as in sheet resistivity ρ, sheet

conductivity σ, mobility µ, or relaxation time τ . They are related to each other via R = ρ/W = 1/σW , σ = n0eµ, and
τ = (µ/e)(~kF/vF), where a n0-dependent definition of µ was assumed.
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and characteristic impedance, given by

γ =
√

(R+ iωLk)(iωC), (2.51)

Z0 =

√
R+ iωLk

iωC
. (2.52)

In contrast to the lossless expressions of Eqs. (2.35) and (2.37) that were purely imaginary and real,

respectively, these expressions are in general complex. The qualitative behavior of these quantities

are strongly dependent on whether the impedance of the resistance is larger than or smaller than the

impedance of the kinetic inductance. This is captured by the quality factor Q of the 2D plasmonic wave,

which is also obtained from the transmission line theory as

Q(ω) =
ωLk

R
= ωτ, (2.53)

where τ , the relaxation time due to electron scatterings, factors in through R. As the definition of quality

factor is ω × Energy Stored
Power Loss , this signifies how many oscillations the 2D plasmonic wave can make before

decaying due to electron scatterings. The plasmonic dynamics can be observed as far as Q is not too

far below 1. If Q � 1, many cycles of collective electron oscillation are sustained between scattering

events, making the plasmonic wave very easily observable. If Q < 1, the plasmonic behaviors are still

observable, but it becomes increasingly difficult as Q becomes smaller.

τ is affected by a number of different scattering mechanisms, each showing a different dependence

on the temperature. In particular, the scatterings due to impurities and defects show a relatively weaker

dependence on the temperature compared to the scatterings due to acoustic and optical phonons. The

effect of these different scattering types on the overall effective relaxation time τ is usually approximated

using Matthiessen’s rule assuming that each type of scattering is independent from others:

1

τ
=

1

τimpurity
+

1

τdefect
+

1

τacoustic phonon
+

1

τoptical phonon
· · · . (2.54)

This means the overall τ is dominated by the contribution from the scattering mechanism with the short-

est relaxation time.

Here, we briefly discuss the temperature dependence of these scattering mechanisms for high-mobility
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GaAs/AlGaAs 2DEG (to appear in Chapter 3) and graphene (to appear in Chapter 4), in relation to the

practically useful temperature and frequency regime set by these temperature dependencies. The scat-

tering mechanisms in high-mobility GaAs/AlGaAs 2DEG are dominated by extrinsic effects such as

impurities, defects, etc. at very low temperatures (liquid helium temperatures or lower), and by longi-

tudinal optical phonons at higher temperatures (∼ 100 K and higher) [1]. The GaAs/AlGaAs 2DEG

samples used in this thesis had τ ∼ 150 ps at cryogenic temperatures, meaning that Q > 1 at ∼ 1 GHz

or higher. At elevated temperatures, the decrease in τ due to the optical phonons as a function of temper-

ature is very rapid, rendering the room temperature τ to be about 0.08 ps, 3 orders of magnitude smaller

than the value at cryogenic temperatures. This means that the GaAs/AlGaAs 2DEG is inappropriate as a

GHz 2D plasmonic medium at room temperatures.

In contrast, such adverse effect of optical phonons is absent in graphene, and the main contributors to

scattering are longitudinal acoustic phonons and extrinsic scatterers [29]. Scatterings due to the acoustic

phonons scale almost linearly, leading to around ρ = 50 Ω/� at room temperatures. In most cases

except the cleanest mechanically exfoliated graphene on special substrates (or suspended), the scattering

is dominated by extrinsic scatterers, and the overall τ shows a very weak dependence on the tempera-

ture, varying by only 2 ∼ 3 times between cryogenic and room temperatures. Even with the cleanest

samples, the acoustic phonon scattering may dominate at room temperatures, but the transition from

phonon-limited regime to extrinsic-scatterer-limited regime does not happen at very low temperatures.

The graphene sample used in this thesis had τ ∼ 5 ps at cryogenic temperatures, which decreased by

about 4 times at room temperatures. This means that the graphene device just barely allows us to observe

plasmonic behaviors at GHz frequencies.

2.3.2 Temperature Dependence of Lk and Cq

The kinetic inductance Lk and quantum capacitance Cq introduced in the earlier sections were both

calculated at T = 0 K. As will be seen shortly, Eqs. (2.28) and (2.33) calculated at T = 0 K suffice

for the purposes of this thesis, but it is worthwhile discussing the variations of Lk and Cq at elevated

temperatures.

Lk at an arbitrary temperature can be obtained by considering the semiclassical treatment of intraband
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electrical conductivity [30],

σxx = e2

∫
ddk

(2π)d
g
v2
k,x

(
−∂f(εk−µ)

∂εk

)
τ−1 + iω

, (2.55)

where d is the number of dimensions, and f(εk−µ) = 1/(e(εk−µ)/kBT + 1) is the Fermi-Dirac distribu-

tion with chemical potential µ. Lk can be found by noting that in the limit of τ →∞ (i.e., no collisions),

σxx → (iωLkW )−1. Cq can be obtained by first calculating n0 at an arbitrary temperature as

n0 =

∫
ddk

(2π)d
gf(εk − µ), (2.56)

and noting that Cq = e2 ∂n0
∂µ W . In order to facilitate the calculation, we introduce normalized parameters

ξ = ε/kBT and η = µ/kBT , with which f(ξ − η) = 1/(eξ−η + 1) and ∂f(ξ−η)
∂η = −∂f(ξ−η)

∂ξ , and

use the identity
∫∞

0 dξξsf(ξ − η) = −Γ(1 + s)Li1+s(−eη), where Γ(z) is the gamma function and

Lin(z) =
∑∞

k=1
zk

kn is the polylogarithm function that satisfies d
dxLin(x) = 1

xLin−1(x). For a massive

2D electron gas with ε = ~2k2
2m∗ , it is then a straightforward exercise to show that

n0 =
gm∗kBT

2π~2

[
−Li1(−eµ/kBT )

]
, (2.57)

Lk =
2π~2

ge2kBT

1

−Li1(−eµ/kBT )

1

W
, (2.58)

Cq =
gm∗e2

2π~2

[
−Li0(−eµ/kBT )

]
W. (2.59)

We note that Eqs. (2.57) and (2.58) satisfy Lk = m∗

n0e2
1
W (identical to Eq. (2.3) calculated at T = 0 K) at

all temperatures.

For graphene, we need to consider the contributions from the conduction band (electrons) and the

valence band (holes) separately, as electrons and holes may exist simultaneously at an elevated tempera-

ture. For holes, we may use the same
∫∞

0 dξ as the integration limits but take f(ξ+η) as the distribution

function, with which−∂f(ξ+η)
∂η = −∂f(ξ+η)

∂ξ . We also note that while both electrons and holes contribute

positively to the conductivity in Eq. (2.55), their charges cancel each other to reduce the effective den-

sity (this may be seen as the total charge density in an electrostatically gated graphene, which is a fixed

32



quantity in such a situation) in Eq. (2.56). Noting these two, n0, Lk [31], and Cq [19] are evaluated to be

n0 =
g(kBT )2

2π(~vF)2

[
−Li2(−eµ/kBT ) + Li2(−e−µ/kBT )

]
, (2.60)

Lk =
4π~2

ge2kBT

1

−Li1(−eµ/kBT )− Li1(−e−µ/kBT )

1

W
, (2.61)

Cq =
ge2kBT

2π(~vF)2

[
−Li1(−eµ/kBT )− Li1(−e−µ/kBT )

]
W. (2.62)

Interestingly, LkCq = 2/v2
F holds at all temperatures for graphene, while it holds only at T = 0K for a

massive electron gas.

In order to see the temperature dependence of these expressions, Figs. 2.7 and 2.8 display the ratio of

Lk expressions and Cq expressions at finite and zero temperatures, showing that the expressions at zero

temperature are almost identical to the ones at finite temperature as long asEF > 5kBT . As practical val-

ues of EF are on the order of 0.01 eV for high-mobility GaAs/AlGaAs 2DEG and on the order of 0.1 eV

for graphene, EF > 5kBT condition is satisfied for both cases at cryogenic (liquid helium) temperatures.

At room temperature, as kBT = 0.026 eV, the zero temperature expression for Cq cannot be used for the

GaAs/AlGaAs 2DEG, and there may be notable corrections to the Lk and Cq expressions for graphene

as EF ≈ 5kBT . However, due to the rapid decrease of τ at elevated temperatures in GaAs/AlGaAs

2DEG, we limit ourselves to cryogenic temperatures for the devices made with GaAs/AlGaAs 2DEG,

while with graphene, one may be able to observe these temperature-dependent effects.
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Figure 2.7: Ratios of finite temperature expressions and zero temperature expressions for Lk (a) and Cq (b) in
a massive 2D electron gas. Constant n0 is assumed as temperature is varied; EF = ~2
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Chapter 3

2D Plasmonics in Semiconductor 2DEG

A 2D plasmonic medium can be readily shaped into a designed planar geometry by using standard

fabrication technology. 2D plasmonic waves can then be manipulated by reflections, interferences, and

superposition according to the geometry to create various 2D plasmonic circuits and metamaterials [11,

13, 14]. In this chapter, we discuss the design, realization, and measurements of a number of ultra-

subwavelength 2D plasmonic devices created using GaAs/AlGaAs 2DEG, including bandgap crystals

analogous to photonic crystals in optics, interferometers, and negatively refracting metamaterials with

extremely large negative index of refraction.

3.1 2D Plasmonic Crystals and Interferometers

2D plasmonic circuits1 in the electronics frequency regime (GHz) can bring the extreme subwavelength

confinement advantages of 2D plasmonic waves to electronics in direct interface with them. To this end,

we first construct 2D plasmonic waveguides consisting of a highly-degenerate GaAs/AlGaAs 2DEG at

T = 3 K as a 2D plasmonic medium and a metallic top gate 80 nm above the 2DEG as a ‘plasmonic

ground,’ thus creating localized plasmonic input and output terminals (Fig. 3.1). Due to these local ter-

minals, the plasmonic waveguides are directly and non-resonantly excited over a continuous frequency

range, driven by the voltage and current of electromagnetic signals guided to a local terminal. This

direct local coupling of electromagnetic signals to the full spectrum of plasmons allows complete free-
1Large portions of this section are derived from a paper in publication by W. F. Andress, et al. [11]. The author has

participated in large part to the theory, simulation, and experiment of this work.
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Figure 3.1: 2D plasmonic crystal with one-dimensional periodicity [11]. a, Optical image of plasmonic crystal
structure. Coplanar waveguides (CPWs; signal line ‘S’ and ground lines ‘G’) that direct electromagnetic waves to
and from the device are also shown. b, Diagram showing the cross section of the device. Electromagnetic waves
(red curves) couple to plasmonic waves (blue curve), which propagate underneath the gate through the periodically
shaped 2DEG. c, Measured (blue) and simulated (red) transmission (s21) magnitude through the device at 0.5 V
bias, showing plasmonic bandgap from 24 to 34 GHz. d, Measured (blue) and simulated (red) s21 phase curve
(plasmonic dispersion diagram).

dom to route and manipulate plasmons in between these local terminals. This manipulation is done by

freely shaping the planar geometry of 2DEG, the plasmonic signal medium itself, within the plasmonic

waveguide. Plasmons are elaborately routed according to the designer geometry to undergo specific

reflections and interferences , leading to GHz plasmonic circuits with a range of functionalities, such

as plasmonic-electromagnetic interferometers, plasmonic cavity, and plasmonic bandgap crystals with

designer bandgap characteristics and with one- and two-dimensional periodicities. These plasmonic cir-

cuits achieve extreme subwavelength confinement due to the large 2D kinetic inductance and the top

gate, or plasmonic ground, which shortens the Coulomb interaction range of electrons, occupying areas

up to 440,000 times smaller than their electromagnetic counterparts, which are ubiquitous in electronics

but not subject to Moore’s-law scaling enjoyed by transistors.

In operating principle and functional versatility, our passive 2D plasmonic circuits differ from the
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prior passive 2D plasmonic devices [20, 32–36], which are mostly used as resonant detectors from GHz

to THz to far infrared. They do not utilize the geometric shaping of the plasmonic medium to elab-

orately route plasmons in deriving their functionalities; they rather employ an overall exposure of the

2D plasma to electromagnetic waves, with the absorption occurring at some discrete set of resonant

coupling frequencies. This resonant coupling arises from the periodicity of grating couplers above the

plasma [32, 35, 36], or from the plasma’s spatial confinement [20, 33, 34]; one example of the latter type

involves GHz electromagnetic signals delivered to a gate metal overlying a bounded plasma, maximally

absorbed at the plasma resonances [20]. A different, active, type of 2D plasmonic devices attain THz

emission via instability-mediated self-sustained 2D plasma oscillation [37,38], or use its inverse mecha-

nisms to perform THz detection [39]; none of them utilizes the shaping of the plasmonic medium, thus, it

would be an interesting possibility to combine our passive shaping principle with the active mechanisms

in the instability regime.

3.1.1 2D Plasmonic Crystals with One-Dimensional Periodicity

A starting example of our approach is the plasmonic bandgap crystal (Fig. 3.1a). Here the plasmonic

waveguide consists of the 2DEG as a plasmonic signal medium and a top gate metal 80-nm above

(Figs. 3.1a-b), where the gate will act as a ‘plasmonic ground’ if configured properly. The planar ge-

ometry of the 2DEG is physically shaped by mesa etching into a channel of periodically varying width,

while the gate is not patterned. The plasmonic waveguide is excited at either of the local terminals on

the left and right, each of which connects the shaped 2DEG to the signal line (labeled ‘S’, Figs. 3.1a-b)

of a purely electromagnetic on-chip metallic coplanar waveguide (CPW), via a Ni/Au/Ge ohmic contact.

Each CPW, deposited over the etched insulating region, consists of the signal line and two ground lines

(labeled ‘G’, Fig. 3.1a). The CPWs’ ground lines connect with the gate, allowing this gate to act as a

plasmonic ground. This ground sharing prevents the gate itself from becoming a signal path, such that

a purely plasmonic waveguide continues from the purely electromagnetic CPWs (this will be discussed

in more detail in Sec. 3.1.3); this is an important principle to make our plasmonic circuits work, and is

different from works that use a gate as an overall excitation source of the underlying plasma [20].

When the plasmonic crystal (Fig. 3.1a) is excited at the left terminal, a plasmonic wave is launched

rightward. Transmission through the crystal is measured as the microwave scattering parameter s21 at
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the right terminal up to 66 GHz. Due to the crystal periodicity, a bandgap (24 ∼ 34 GHz) occurs in

the measurement (Fig. 3.1c). This bandgap arises from the first Brillouin-zone boundary, where the 20-

µm period equals half the plasmonic wavelength, λp/2. Since the frequency corresponding to the zone

boundary must lie in this band, the plasmonic velocity vp lies somewhere between c/220 and c/310,

thus, λp is 265± 45 times smaller than the free-space electromagnetic wavelength, λ0. The direct, non-

resonant, interface of plasmonic circuits with electronics (the measurement setup here) also makes the

direct measurement of the dispersion relation possible, which is simply s21’s phase that is proportional

to Bloch wavenumber kp measured over a continuous frequency range. As expected, the plasmonic

crystals’ dispersion (Fig. 3.1d) contains a discontinuity over the bandgap. The spurious phase deviation

within the bandgap arises from parasitic signals. From the dispersion curve’s passband slope, we extract

vp ∼ c/(300± 30), with precision limited by the frequency-dependent effects of the ohmic contacts on

s21’s phase (vp will be extracted more accurately later). The next bandgap does not occur until the third

Brillouin-zone boundary [40], beyond our measurement range. Simulated s-parameters obtained using

Sonnet frequency-domain field solver with estimated values of kinetic inductance and ohmic contact

parameters resemble the measured s-parameters (Figs. 3.1c-d) in the overall bandgap character, with

very similar bandgap positions; the differing transmission amplitudes are due to the estimated nature of

the ohmic contact parameters used in the simulation; the differing s21 phases (Fig. 3.1d, x-axis) within

the bandgap are not surprising, as they in general spuriously arise when the signal transmission is low in

the bandgap.

The plasmonic crystal serves to introduce a general geometric-shaping principle, which allows a great

deal of versatility. For instance one can begin to add subtle variation to the crystal’s geometry to produce

a conspicuous behavioral difference. Fig. 3.2a shows a variation on the plasmonic crystal, where the

transitions between the thin and thick sections are made abruptly. The plasmonic dynamics here cannot

be simply viewed as a perturbed horizontal routing as in Fig. 3.1; one must also consider the vertical

routing of plasmons to and from the ends of the thick sections, or vertical stubs (each thick section

contains two symmetric stubs). These vertical stubs act as plasmonic cavities, which resonate when

plasmons routed toward and reflected from the stub ends interfere to form standing waves. The repetition

of the plasmonic cavity is expected to result in another bandgap at around the cavity resonance frequency.

The measured transmission (Figs. 3.2b-c) indeed includes not only the Brillouin-zone-boundary bandgap
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Figure 3.2: 2D plasmonic cavity array [11]. a, Optical image of a periodic array of cavities. b, s21 magnitude
curves of the device in a at different bias voltages. c, s21 phase curves (plasmon dispersion diagrams) of the device
in a. Different slopes at each bias voltage reflect different plasma wave velocities. d, Scanning electron micrograph
of a stand-alone plasmonic cavity circuit (false-colored). The current amplitude profile of a λp/4 standing-wave
resonance in each vertical stub is illustrated. e, Measured voltage transmission (s21) magnitude through the device
at 0.5 V bias, with the effects of ohmic contacts de-embedded. The two resonance modes are illustrated.
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as in Fig. 3.1c, but also the additional bandgap, centered about 52 GHz, from the cavity resonance.

To verify this cavity behavior, we build a stand-alone cavity structure with two vertical stubs (Fig. 3.2d).

At the frequency where the stub-lengths are λp/4, a standing-wave resonance should emerge. In this sit-

uation, the standing wave’s current [voltage] amplitude is zero [maximal] at the stub ends (which act

as open circuits; fringing capacitances to the gate are negligible) and maximal [zero] at the stub inlets

(Fig. 3.2d). Thus at the λp/4 frequency, the impedance at the inlets becomes zero, and the entire wave is

absorbed into the stubs, with nothing transmitted to the right terminal. The s21 measured from the stand-

alone cavity structure (Fig. 3.2e) indeed shows this characteristic, with the λp/4 absorption at 15 GHz.

Given the 17-µm stub length, this corresponds to λp = 68 µm = λ0/294, thus, vp = c/294. Another

standing-wave resonance expected when the stub-length is 3λp/4 indeed appears at 45 GHz. The cav-

ity may be viewed as a ‘plasmon trap’ with frequency-dependent potential in the particle picture. This

resonance from the cross-shaping is independent of the input coupling. The more precise estimate of

vp = c/294 obtained from the cavity behavior is within the range deduced from the bandgap of Fig. 3.1c

and also within that deduced from the passband slope of Fig. 3.1d. Also we can now verify that the

additional bandgap (Fig. 3.2b) from the crystal of Fig. 3.2a originates from its vertical cavities; if we

continue to assume vp = c/294 (although different structures may support slightly different vp since

mesa boundaries influence electron density), the λp/4 resonance in the 5-µm long cavities should occur

at ∼ 51 GHz, which indeed falls within the second bandgap (Fig. 3.2b).

The extremely slow plasmonic velocity vp = c/294, and thus the extremely short plasmonic wave-

length λp = λ0/294, drastically miniaturizes the 2D plasmonic circuits relative to their electromagnetic

counterparts. As mentioned earlier, this extreme subwavelength confinement is attained by the inherently

large 2D kinetic inductance of the plasmonic medium and the top gate shortening the Coulomb interac-

tion range of electrons in the 2DEG. These two factors in conjunction result in vp ∼ 4vF, for which

the Coulomb restoring force is ∼ 30 times stronger than the restoring force due to degeneracy pressure

(i.e., Cc ∼ Cq/30). Using the gate as a dc bias, we can alter the 2DEG’s electron density, thus, kinetic

inductance by changing the gate’s bias relative to the signal line, tuning vp (and simultaneously, vF,

keeping vp ∼ 4vF) from c/187 at 0.8 V to c/660 at−0.13 V. This tunability can be seen in Figs. 3.2b-c,

where the bandgap frequencies and dispersion slopes are altered with bias. With λp as small as λ0/660,

plasmonic circuits can occupy up to ∼440,000 times less area than their electromagnetic counterparts.
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Another advantage is apparent from the quality factor, Q, at the λp/4 and 3λp/4 resonances, esti-

mated as 4.1 and 13 from their full-width half-maximums (Fig. 3.2e). The almost linear increase of Q

with frequency is characteristic of plasmons, for which Q/2π equals the frequency times momentum

relaxation time τ (Eq. (2.53)), indicating how many times electrons oscillate between collisions with

crystal impurities, defects, and phonons. Thus while this work demonstrates prototype plasmonic cir-

cuits at 3 K to attain a long enough τ to achieve Q ∼ 10 at GHz frequencies, their linearly increasing Q

suggests an intrinsic scalability of our plasmonic circuits into higher frequencies based on the geometric

shaping of the plasmonic medium and the resultant plasmon routing-manipulation, with possible appli-

cability toward the THz gap [41], where room temperature implementation may be feasible. With the

recent observation of light-plasmon coupling in graphene at THz and room temperature [12], graphene

may offer an especially interesting 2DEG platform on which to apply our shaping-based plasmon ma-

nipulation principle.

3.1.2 2D Plasmonic Crystals with Two-Dimensional Periodicity

To illustrate our principle further, we create plasmonic crystals with two-dimensional periodicity, by

etching lattices of holes into the 2DEG. Two rectangular lattices and a hexagonal lattice are shown in

Fig. 3.3a. The two rectangular lattices have identical unit cells, but the orientation of each lattice relative

to the propagation direction of the plasmonic waves differs by 90 ◦. For plasmons traveling rightward

in each lattice, a Brillouin-zone-boundary bandgap occurs when the distance between adjacent vertical

crystal planes is λp/2. Since these separations are 16, 14, and 12.1 µm in the three lattices and the

bandgap in the first structure occurs about 36 GHz (vp ∼ c/260), we expect bandgaps in the other

two structures near 41 and 47.6 GHz, which indeed fall within the corresponding measured bandgaps

(Fig. 3.3b). The frequency positions of the discontinuities in the measured dispersions follow these ratios

as well.

Measurements are performed with five additional 2D plasmonic crystals to further confirm the be-

havioral dependency on the planar geometry. Fig. 3.4a shows a pair of devices sharing the same square-

lattice crystal structure of a 14-µm periodicity, but of different overall lengths and widths. As seen in

the measured s21 magnitudes (Fig. 3.4b), the bandgap positions, which are governed by the distance

between two adjacent vertical crystal planes, are very similar. The difference in the overall amplitude
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Figure 3.3: 2D plasmonic crystal with two-dimensional periodicity [11]. a, Device images of rectangular and
hexagonal 2D plasmonic crystals. b, s21 magnitude (left) and s21 phase (right) of rectangular (top) and hexagonal
(bottom) crystals at 0.5 V bias. The three devices have similar velocities; note that the phase curve’s slope must
be multiplied by the device length in order to extract the velocity, hence the difference in slope between the two
rectangular orientations despite their similar velocities.
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Figure 3.4: 2D plasmonic crystal with two-dimensional periodicity (continued) [11]. a-c, Device images, mea-
sured s21 magnitudes, and s21 phase delays per unit cell, respectively, for a pair of devices that share the same
square-lattice crystal structure of a 14-µm periodicity (the image scale is different between the two devices), but
of different overall lengths and widths. d-f, Device image and measurement results for another square-lattice de-
vice with a larger periodicity of 16 µm. g-i, Device images and measurement results for another pair of devices
that share the same hexagonal-lattice crystal structure of a 14-µm periodicity, but of different overall lengths and
widths.
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is well expected, as one device is longer, thus more lossy, than the other. The measured dispersions

(Fig. 3.4c; obtained from the measured s21 phase; y-axis is frequency; x-axis is phase delay per unit

cell) also indicate very similar bandgap positions (y-axis) and passband dispersions; the differing phase

delays per unit cell (x-axis) within the bandgap are not surprising, as they in general spuriously arise

from noise and calibration errors when the signal transmission is low. In comparison to these results, the

bandgap position of another square-lattice device with a larger periodicity of 16 µm (Fig. 3.4d) is expect-

edly moved to a lower frequency (Figs. 3.4e,f). Fig. 3.4g shows another pair of devices sharing exactly

the same crystal structure (this time, hexagonal lattices with a periodicity of 14 µm), but with different

overall lengths and widths. The measured s21 magnitudes and dispersions (Figs. 3.4h,i) again show very

similar bandgap positions, along with the expected amplitude difference due to different lengths. These

new measurements confirm that the key behaviors arise primarily from geometry.

3.1.3 Hybrid Electromagnetic-Plasmonic Interferometer

While all the above circuits exploit interferences of multiple plasma waves, another interesting avenue

to explore is interference between plasmonic and purely electromagnetic waves. Fig. 3.5 shows a hybrid

electromagnetic-plasmonic interferometer. The 2DEG, excited from the left contact, is split into two

smaller 2DEG branches of equal width. The gate that covers the bottom branch is connected to one

of the ground lines of the metallic CPW. Therefore, as in all previous circuits of Figs. 3.1 to 3.3, this

branch acts as a plasmonic signal path. The top branch, on the other hand, is covered by a gate that is

not connected to the CPW ground. Although this gate is biased by a dc probe, at GHz frequencies the

inductance of the dc probe and cable prevents any current from flowing through it. Therefore, this gate

effectively functions as a ‘floating’ gate, and becomes a path for propagation of electromagnetic waves, as

opposed to plasmonic waves (this will be discussed in more detail below). The signal is therefore divided

into a slow plasmonic wave in one path, and a fast electromagnetic wave in the other, with amplitudes of

similar magnitude. As the excitation frequency is swept up to 50 GHz, the phase of the slow plasmonic

wave rapidly changes while the phase of the fast electromagnetic wave remains nearly the same, resulting

in interference. The measured interference pattern (Fig. 3.5b) features a sequence of dips, which occur

when the two types of waves interfere destructively, or when the plasmonic wave’s phase shift differs by

an odd multiple of a half cycle relative to the nearly constant phase of the electromagnetic wave. These
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Figure 3.5: Hybrid electromagnetic-plasmonic interferometer [11]. a, Optical image. A purely electromagnetic
wave (red curve) propagates along the floating gate while a purely plasmonic wave (blue curve) propagates along
the 2DEG below the grounded gate that is connected to the ground lines of the CPWs. b, s21 magnitude curve
of the device at 0.8 V bias. Repeated peaks and valleys result from the interference between plasmonic and
electromagnetic waves.

dips are separated by 6 GHz, implying vp of c/238 in this particular structure at 0.8 V gate bias. Note

that while a plasmonic Fabry-Perot resonance could manifest similarly to the measured interferometric

pattern, dissipations in the ohmic contacts and 2DEG prevent it in this circuit of Fig. 3.5 as well as all

other devices found in Figs. 3.1 to 3.3, except for a very weak Fabry-Perot resonance in the short device

of Figs. 3.2d-e.

The electromagnetic propagation in the top branch can be understood in more detail as follows.

Since the gate over the top branch is floating, we can see this gate in conjunction with the adjacent

L dxkRdx

Cdx

2DEG

Floating gate

Figure 3.6: Circuit model of the path with floating gate [11].
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CPW grounds as forming an electromagnetic transmission line. As the 2DEG below the floating gate

is depleted, signals propagating through this 2DEG predominately couple into this fast electromagnetic

transmission line. Even if the 2DEG beneath the floating gate is not completely depleted, propagation

is still predominantly through the floating gate. To illustrate this more quantitatively, we can create a

simple circuit model of this phenomenon. A gated 2DEG can be modeled using its kinetic inductance,

scattering resistance, and capacitance to the gate, as in Fig. 3.6. The floating metallic gate may be

treated as a short circuit, given its small length relative to the electromagnetic wavelength. The small

device length and the absence of ground connection for the floating gate allow us to treat this path

simply as a lumped element with an impedance Z across it (not to be confused with the local port input

impedance). In the regime where Q > 1, this impedance can be approximated from Eqs. (2.51) and

(2.52) as Z = 2Z0 tanh
[
(α + ikp)l/2

]
, where Z0 =

√
Lk/C, α = R/2Z0, kp = ω

√
LkC, and l

is the length of the gate. When the 2DEG is depleted to very low electron density, R and Lk are both

increased, and thus the argument of tanh can become large enough that Z approaches 2Z0, which is

real like a lumped resistor. This indicates that this branch with the floating gate introduces inappreciable

phase delay. It physically corresponds to the excitations beneath one edge of the gate simply traveling

into the gate to the other side.

3.1.4 Appendix: Materials and Methods

Our plasmonic circuits are fabricated on GaAs/AlGaAs 2DEG substrates grown by molecular beam

epitaxy (MBE). From the 2DEG up, the layer structure is as follows: 48 nm Al0.3Ga0.7As, 26 nm Si-

doped Al0.3Ga0.7As, and 6 nm GaAs cap, totaling to 80 nm. At 3.7 K, before processing, the carrier

density is 1.54 × 1011/cm2, with mobility 2.5 × 106cm2/Vs in the dark, and the carrier density is

2.8× 1011/cm2 with mobility 3.9× 106cm2/Vs after illumination.

Mesas defining the shape of a plasmonic circuit are formed by photolithography followed by wet

etching by > 80 nm to beneath the 2DEG layer, using 240:8:1 H2O : H2O2 : H2SO4. The next pho-

tolithography step defines the Ni-Au-Ge ohmic contacts, which overlap the mesas by 6 µm from the

ends. After an ammonia dip, the contact metals are deposited by thermal evaporation as follows: 5 nm

Ni, 20 nm Au, 25 nm Ge, 10 nm Au, 5 nm Ni, 40 nm Au. After liftoff, the contacts are annealed at 420 ◦C

for 50 seconds. The final photolithography step defines the coplanar waveguides (CPWs) as well as the
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gate that covers the plasmonic medium, which is connected to the ground (G) lines of the CPWs. The

signal (S) lines of the CPWs extend just over the ohmic contacts. The gate is separated from the contacts

and signal lines by roughly 4-µm wide ungated areas. The CPWs and gate metals, also deposited by

thermal evaporation, consist of 8 nm Cr and 500 nm Au.

3.2 2D Plasmonic Negative Index Metamaterials

Negative index metamaterials2 offer unusual abilities in manipulating electromagnetic waves, such as

sub-diffraction-limit focusing [42], light bending in the ‘wrong’ direction [43], and reversed Doppler

and Cerenkov effects [43]. These counterintuitive and technologically gainful behaviors have spurred

significant efforts to synthesize a broad array of negative index metamaterials with engineered electric,

magnetic, or optical properties [42–51]. Here we demonstrate another route to negative refraction; we

exploit the kinetic property, or inertia, of electrons in semiconductor 2DEG, collectively accelerated by

electromagnetic waves according to Newton’s law of motion, where this acceleration effect manifests

as kinetic inductance [20, 52]. Using kinetic inductance to attain negative refraction was theoretically

envisioned with three-dimensional metallic nanoparticles [53] and experimentally glimpsed with surface

plasmons on the surface of a 3D metal [54]. The semiconductor 2DEG we employ at cryogenic tem-

peratures exhibits larger kinetic inductance than 3D metals, leading to extraordinarily strong negative

refraction at GHz frequencies, with an index as large as -700. This pronounced negative refractive index

and corresponding reduction of the effective wavelength opens up a path to miniaturization in the science

and technology of negative refraction.

The vision of creating negative refraction by exploiting the collective electron acceleration (iner-

tia) effect, or kinetic inductance, was theoretically proposed with specific arrangements of 3D metallic

nanoparticles [53]. Experimentally the inertia-based negative refraction was implied in the work where a

particular guiding of surface plasmonic waves on the surface of a 3D metal led to negative refraction [54];

this cannot be explained without electrons’ acceleration, since a defining component of plasmonic waves

is the time-varying kinetic energy resulting from the acceleration of their constituent electrons.

The semiconductor 2DEG possesses much larger kinetic inductance than 3D bulk metals. Here we
2Large portions of this section are derived from a paper in publication by the author [14].
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create negative index metamaterials by fully exploiting this large kinetic inductance of the semiconductor

2DEG, whose impact manifests in the extraordinarily large negative index, measured down to n =

−700. This is two-orders-of-magnitude larger than n of−5 ∼ −1 in the surface-plasmon-based negative

refraction [54], indicating a far stronger role inertia plays in our 2DEG case. It is also far larger than the

theoretical expectation based on the kinetic inductance of 3D metallic nanoparticles [53], which is orders-

of-magnitude smaller than our 2D kinetic inductance (see Sec. 3.2.1.3 for a numerical comparison).

3.2.1 Device Structure and Description of Behavior

3.2.1.1 Device Structure

We choose a GaAs/AlGaAs 2DEG as a demonstrational platform, where electrons can accelerate for

∼ 0.2 ns at 4 K without scattering, rendering their large kinetic inductance effect not masked by the scat-

tering at and above GHz frequencies. Specifically, our metamaterial is a periodic array of mesa-etched

2DEG strips (Figs. 3.7a,b), each of which is tied to ground lines (labeled ‘G’) at its both ends via ohmic

contacts. Each strip’s width and length are denoted as W and l; the center-to-center distance between

neighboring strips, or periodicity, is denoted as a. This metamaterial is excited by electromagnetic waves

guided by the left signal line (labeled ‘S’), which, flanked by the ground lines, forms an on-chip coplanar

waveguide (CPW) with a 50-Ω characteristic impedance. This left signal line is extended up to over a

few 2DEG strips on the left side of the metamaterial, with dielectric in between. The metamaterial’s

response is picked up by the right signal line (also labeled ‘S’) of another CPW on the right side of the

metamaterial.

3.2.1.2 Principle of Operation

The excitation electromagnetic wave’s electric fields, oscillating between the signal and ground lines

of the left CPW, collectively accelerate electrons in the leftmost few 2DEG strips, producing currents

along the strips. The resulting alterations of charge distribution in these strips will capacitively couple to

neighboring strips to the right, accelerating electrons there. This process repeats to deliver an effective

wave from left to right, perpendicular to the direction of the strips. From the circuit point of view,

each 2DEG strip, along which electrons collectively accelerate with the resulting current lagging the
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Figure 3.7: Description of device structure [14]. a, Optical image of a 2DEG strip array metamaterial prototype.
Ground-Signal-Ground (GSG) on-chip CPWs direct electromagnetic waves to and from the metamaterial. The
inset shows a zoomed-in portion of the strip array. In this specific prototype, W = 1 µm, l = 112 µm, and
a = 1.25 µm. b, Schematic perspective of the metamaterial (not drawn to scale), with the front face corresponding
to the vertical cut through the dashed line in part a. c, Circuit description of the half structure of the metamaterial
below or above the horizontal symmetry line along the wave propagation direction (see Sec. 3.2.2.1).

accelerating voltage by 90 ◦ according to Newton’s law, acts as non-magnetic inductance of kinetic

origin [20, 52]. This 2D kinetic inductance, L′k,2D, results from Newton’s law of motion3:

L′k,2D =
m∗

n0e2

le
W
, (3.1)

where m∗, e, and n0 are electrons’ effective mass, charge, and density per unit area. le, which will be

identified shortly, is the effective length of each strip within which electrons accelerate in response to the

excitation. Our metamaterial is then an array of capacitively-coupled kinetic inductors (Fig. 3.7c; see

Sec. 3.2.2.1), and may be likened to the left-handed transmission line [55–57], the array of capacitively-

coupled magnetic inductors, which is known to be negatively refracting. From the physics viewpoint, our

device uses extremely large 2DEG kinetic inductance, while the left-handed line relies on much smaller

magnetic inductance.

To examine the negatively-refracting behavior of our device, we represent the effective wave with
3Note that we here use a lumped inductance as opposed to the per-unit-length inductance (Eq. (2.3)) that we have used so

far; prime (’) was added to the notation to signify this difference.
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Figure 3.8: Theoretical dispersion relation and simulation [14]. a, Plot of ω(k) =
[
2
√
L′k,2DC

′| sin(kea/2)|
]−1

,

withL′k,2D = 39 nH andC ′ = 4.6 fF estimated for the structure measured for Fig. 3.12 (W = 1 µm, a = 1.25 µm,
l = 112 µm). Group and phase velocities, dω/dke and ω/ke, have opposite signs, showing negative refraction; this
occurs for both ke > 0 and ke < 0, but we only show the latter, in relevance to our measurements. b, Simulated
current distributions below (left, 5 GHz) and above (right, 30 GHz) the cutoff frequency. Red and blue colors
indicate high and low current density. Above the cutoff frequency, regions of high, constant current density are
observed, from which the effective strip length le is estimated.

the voltage at the tip of the m-th kinetic inductor (Fig. 3.7c) as Vm(t) ∼ ei(ωt−mkea), where ω is the

angular frequency and ke is the effective wavenumber. The standard circuit analysis of Fig. 3.7c yields a

dispersion relation,

ω(k) =
ωc

| sin(kea/2)| , (3.2)

where ωc ≡ 1/2
√
L′k,2DC

′ is the cutoff frequency at the first Brillouin-zone boundary, ke = ±π/a, and

C ′ is the capacitance between adjacent strips over the effective length (see Sec. 3.2.2.1). For ω > ωc,

the dispersion relation (Fig. 3.8a) clearly predicts negative refraction, as the dω/dke tangential slope

(group velocity) and the ω/ke slope (phase velocity) have opposite signs [51]. The cutoff behavior

results from the metamaterial’s high-pass nature, and can be also seen from the current distributions

across the metamaterial below and above the cutoff frequency (Fig. 3.8b, right), simulated using an

electromagnetic field solver (see Sec. 3.2.4). Beyond the cutoff frequency, the current is concentrated at

the bottom and top regions of the strips, from which le can be estimated. Interestingly, while a sheet of

2DEG exhibits ordinary dispersion [10], its slicing into strips and acceleration of electrons along these

strips perpendicular to the effective wave propagation causes negative refraction.

The dispersion relation of our metamaterial assumes the same form as that of the left-handed trans-
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Table 3.1: Kinetic and magnetic inductances per unit length for 3D gold nanoparticles with various cross-sectional
areas [14]. Lm is estimated assuming no other conductors nearby.

A Lk,3D Lm Lk,3D/Lm

1× 1 nm2 600 pH/µm ∼ 1.4 pH/µm 430
5× 5 nm2 24 pH/µm ∼ 1.2 pH/µm 20

10× 10 nm2 6.0 pH/µm ∼ 1.0 pH/µm 6
20× 20 nm2 1.5 pH/µm ∼ 0.9 pH/µm 1.7

mission line [55–57], but with the magnetic inductance replaced with the much larger 2DEG kinetic

inductance; the 2DEG kinetic inductance is 1.25 nH/µm for a 1-µm wide 2DEG strip, which is ∼2,800

times larger than the same strip’s magnetic inductance, 0.44 pH/µm (see Sec. 3.2.1.3 for details). The

effective refractive index

n = − 2c

aω
sin−1

(ωc

ω

)
(3.3)

(c: free-space speed of light) derived from the dispersion has the maximum attainable magnitude of

πc/aωc = (2πc/a)
√
L′k,2DC

′, which is exceedingly large with the large 2DEG kinetic inductance,

corresponding to the significant slowing of the effective wave.

3.2.1.3 Numerical Comparison of 2D and 3D Kinetic Inductance

The kinetic inductance is significantly more pronounced in semiconductor 2DEG than in 3D bulk metal.

This is seen from numerical calculations in Tables 3.1 and 3.2, where the kinetic and magnetic induc-

tances, Lk and Lm, are calculated for 3D gold nanoparticles [53] of varying cross-sectional area and

for 2DEG strips of varying cross-sectional width. As can be seen, the 2DEG strip has both much larger

absolute kinetic inductance and much larger kinetic-to-magnetic inductance ratio. In both quantities,

typical cases compare with a factor of at least 100 or more, even when the 2DEC strip has much larger

cross-sectional linear scale than the 3D gold nanoparticle. For the same cross-sectional linear scale

(
√
A = W ), the difference is even larger (e.g., one can compare the bottom row of Table 3.1 to the top

row of Table 3.2 where
√
A = W = 20 nm; Lk is a factor of 42,000 larger, and Lk/Lm is a factor of

16,000 larger). Note that the kinetic-to-magnetic inductance ratio is a key factor determining the mag-

nitude of the negative index, thus, these tables show the impact of creating a large negative index by

utilizing the 2DEG kinetic inductance.
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Table 3.2: Kinetic and magnetic inductances per unit length for GaAs/AlGaAs 2DEG strips with various cross-
sectional widths [14]. Lk is calculated using the material parameters of the 2DEG used in this work. Lm is
simulated with the Sonnet electromagnetic field solver, with no other conductors nearby, but inside a 400 µm ×
400 µm × 1000 µm conducting box. Each strip is 400 µm long and is connected to the walls at the center of
the 400 µm × 1000 µm side walls. The magnetic inductance so simulated is frequency dependent, and the table
presents the value averaged over 5 ∼ 50 GHz frequency range. This simulation is conservative, as in our actual
device, Lm is even smaller due to neighboring strips (e.g., simulated Lm for a 1-µm wide strip in the presence of
neighboring strips is 0.44 pH/µm, as stated in Sec. 3.2.1.2, instead of 1.4 pH/µm).

W Lk,2D Lm Lk,2D/Lm

20 nm 62.5 nH/µm ∼ 2.3 pH/µm 27,000
100 nm 12.5 nH/µm ∼ 2.0 pH/µm 6,300
500 nm 2.50 nH/µm ∼ 1.6 pH/µm 1,600
1000 nm 1.25 nH/µm ∼ 1.4 pH/µm 890

3.2.2 Dispersion Relation and Effective Refractive Index

3.2.2.1 Derivation of Dispersion Relation

I
m

l
e

W

V
m

V
m-1

V
m+1

I
m+1

a

a

b

l

Figure 3.9: Schematic model of 2DEG strip array [14]. a, 2DEG strip array. Dark regions indicate 2DEG. b,
Half-structure cut at the horizontal symmetry line. Only the effective length le of each 2DEG strip is relevant.

This section derives the dispersion relation for the effective wave traveling through the 2DEG strip

array (Fig. 3.9a). Since no current flows vertically through the center of any strip due to symmetry,

only the lower/upper half below/above the horizontal symmetry line can be considered (Fig. 3.9b). In

this half-structure, each strip has width W , effective length4 le, and periodicity a. Each strip in this
4Because the field distribution of the guided modes in the CPWs is concentrated between the signal and ground lines, not

the total geometric strip length l but the effective length le within which the guided modes accelerate electrons is relevant. To
a good approximation, the distance between the signal and ground lines of the CPWs can be used for le, as shown in Fig. 3.8b,
right.
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Figure 3.10: Circuit model for the 2DEG strip array [14].

half-structure may be considered as a lumped kinetic inductance L′k,2D of Eq. (3.1). We ignore the

loss for simplicity. The interactions between two neighboring strips within the effective length can be

modeled using a lumped capacitance C ′ between them (we only consider the nearest-neighbor couplings

for simplicity), given by [58]

C ′ = κε0le
K(
√

1− u2)

K (u)
, (3.4)

where u ≡ (a−W )/(a+W ), κ is the effective dielectric constant of the surroundings, and K(u) is the

complete elliptic integral of the first kind:

K(u) =

∫ π/2

0

dθ√
1− u2sin2θ

. (3.5)

C ′ does not vary simply with the inter-strip distance, a−W , but varies in a more complicated fashion with

u, due to the confinement into two dimensions. The strip array then can be thought of as a capacitively-

coupled inductor array (Fig. 3.10). This lumped circuit model is a good approximation, for the plasmonic

wavelength along the strip is mostly much longer than le (see the following Sec. 3.2.2.2 for a more

detailed discussion of this approximation).

The effective wave is represented by voltage {· · · , Vm−1, Vm, Vm+1, · · · } at the tips of the kinetic

inductors (Figs. 3.9 and 3.10). For the m-th capacitor’s current, we have

C ′
d

dt
(Vm−1 − Vm) = Im. (3.6)
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According to the Kirchhoff’s current law, we have

Im − Im+1 = Km, (3.7)

where Km is the current flowing through the m-th kinetic inductor, and is related to Vm via

Vm = L′k,2D

dKm

dt
. (3.8)

By combining Eqs. (3.6) to (3.8), we obtain the wave equation,

1

L′k,2DC
′Vm =

d2

dt2
(Vm−1 + Vm+1 − 2Vm) . (3.9)

Plugging Vm = V0e
i(ωt−kema) into Eq. 3.9, where ke is the effective wavenumber and ω is the angular

frequency, we obtain the dispersion relation,

ω(k) =
1

2
√
L′k,2DC

′

1

| sin(kea/2)| =
ωc

| sin(kea/2)| , (3.10)

where

ωc ≡
1

2
√
L′k,2DC

′
(3.11)

is the cutoff frequency corresponding to ke = ±π/a, the first Brillouin-zone boundary. Eq. (3.10)

exhibits opposite signs of dω/dke and ω/ke (group and phase velocities) for ω > ωc, showing negative

refraction. This holds for both ke > 0 and ke < 0, but in Fig. 3.8a, we only show ke < 0, as ke > 0 is

irrelevant to the measurements of this work (Secs. 3.2.3.2 and 3.2.3.3). The refractive index is in general5

n =
sgn(dω/dk)

sgn(ω/k)

|k|c
ω
, (3.12)

5In our measurements, if the device under test is negatively [positively] refracting, ke < 0 [ke > 0], so the index expression
reduces to n = kec/ω.
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where sgn(x) ≡ x/|x|. By using Eq. (3.10) here, we obtain

n = − 2c

aω
sin−1

(ωc

ω

)
. (3.13)

3.2.2.2 Plasmonic Wave Consideration

So far we have represented the effect of the collective electron acceleration along the 2DEG strip as a

lumped kinetic inductor. More generally, this collective electron acceleration is part of the collective

plasmonic wave excitation along the 2DEG strip (not to be confused with the effective wave traversing

perpendicularly to the strips). The plasmonic wave behaviors within an individual 2DEG strip can be un-

derstood from the circuit point of view, by treating the strip as a plasmonic transmission line (Sec. 2.1).

The distributed kinetic inductances account for the time-varying kinetic energy (acceleration) of elec-

trons; the kinetic inductance per unit length is given by Lk,2D ≡ L′k,2D/le. The distributed capacitances

with the per-unit-length value of C account for the time-varying potential energy due to the Coulomb

interaction and degeneracy pressure within the 2DEG strip; in our frequency range, the degeneracy pres-

sure effect is negligible, and C is of purely electrostatic nature. These distributed capacitances C in the

plasmonic line are connected to ground at their one end, and should not be confused with the inter-strip

capacitance C ′ of Eq. (3.4) that plays a role in propagating the effective wave through the strip array.

C is generally frequency dependent, and depends on the presence/absence and detailed configuration of

grounded conducting objects nearby. The plasmonic velocity is vp = 1/
√
Lk,2DC. The plasmonic line’s

characteristic impedance is Z0 =
√
Lk,2D/C.

As discussed shortly, in our work, the plasmonic wavelength λp along the strip is mostly much

longer than the strip’s effective length le, or equivalently kple � 1 (kp: plasmonic wavenumber along

the direction of the strip). In this long wavelength regime, our 2DEG plasmonic line, whose one end is

grounded via finite ohmic contact resistance Rc that is much smaller than Z0, acts as a lumped kinetic

inductor. This can be seen by calculating the input impedance Zin of the 2DEG strip at its non-grounded

end. To begin with, with Rc � Z0, we have [25]

Zin = Z0
Rc + iZ0 tan kple
Z0 + iRc tan kple

≈ iZ0 tan kple. (3.14)

55



Now with kple � 1, tan kple ≈ kple, thus, Zin further reduces to

Zin ≈ iZ0kple = iZ0
ω

vp
le = iωLk,2Dle. (3.15)

This shows that the 2DEG strip behaves as a lumped kinetic inductor Lk,2Dle, which is no more than

L′k,2D of Eq. (3.1). In fact, even when a shorter wavelength is considered without satisfying kple � 1,

as far as kple < π/2, Zin is still inductive with the inductance value even larger than Lk,2Dle as seen

from Eq. (3.14), thus, the strip array will maintain its negatively refracting behavior. By contrast, if

kple > π/2, Zin would become capacitive, making the negative refraction vanish in the strip array

device. In between these two regimes, i.e., at kple = π/2 (le = λp/4), plasmonic standing wave

resonance occurs.

To compare λp to le in our frequency range, we estimate λp by resorting to the ungated 2D plasmonic

dispersion relation (Eq. (2.40)), which we rewrite here in terms of m∗ and n0 as

ω =

√
n0e2kp

2κε0m∗
, (3.16)

where n0 = 1.9 × 1011/cm2, m∗ = 0.067me, and κ is the effective dielectric constant given by

κ=(κGaAs + κAir)/2 = 6.95, in which we safely ignore the very thin AlGaAs layer (71 nm, includ-

ing a thin GaAs cap) [34]. Let us consider the longest strip (l = 112 µm; le = 31 µm) employed in this

work. At 50 GHz, λp ∼ 400 µm ∼ 3.6l ∼ 13le; at 25 GHz, λp ∼ 1600 µm ∼ 14l ∼ 50le. So even at 50

GHz and even with the longest strip, kple ∼ 0.5 and tan kple ∼ 0.54 ∼ kple; thus, even in this conserva-

tive case, Eq. (3.15) is valid, justifying the treatment of the 2DEG as a lumped kinetic inductance given

by Eq. (3.1). The first plasmonic standing wave resonance condition le = λp/4 is beyond our frequency

range. To be even more conservative (albeit not realistic), even with the actual geometric length l, the

first plasmonic standing wave condition l = λp/2 is still beyond our frequency range.

3.2.2.3 Dependency of n on L′k,2D

With Eqs. (3.10) and (3.13), we examine how the very large L′k,2D yields the extraordinarily strong

negative refraction, in comparison to the conventional left-handed transmission line [55–57], which has

essentially the same dispersion expression, but with magnetic inductance Lm in the place of Lk,2D.
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conventional left-handed transmission lines (LHTLs) and our 2DEG strip array metamaterials for the same a. b,
Comparison of the dispersion relations for conventional LHTLs and our 2DEG strip array metamaterials for the
same ωc. c, Comparison of our metamaterials with shorter and longer strips for the same a. Plots are not drawn to
scale.

Imagine a left-handed transmission line with similar physical dimensions to our 2DEG strip array. For

example, one can think of the same strip array as our metamaterial with the same geometric parameters

(a, W , and l), but with Lm replacing Lk,2D. Since this left-handed line and our metamaterial have the

same l, Lk,2D � Lm. For example, Lk,2D is 1.25 nH/µm for a 1-µm wide 2DEG strip, which is

∼2,800 times larger than the same strip’s Lm ∼ 0.44 pH/µm. In this case, the left-handed line’s cutoff

frequency ω′c is far larger than our metamaterial’s cutoff frequency ωc (Eq. (3.11)), while a remains the

same. Their dispersion relations are illustrated in Fig. 3.11a. The slope of a straight line connecting

the origin and a (ω, ke) point is the phase velocity ω/ke at frequency ω. Entering the shaded region

forbidden for the left-handed line, our metamaterial achieves a range of ω/ke values far smaller than the

minimum ω/ke of the left-handed line. Equivalently, in this region, our metamaterial exhibits a range

of negative refractive index values much larger in magnitude than the maximum negative index of the

left-handed line. The largest attainable negative index for our metamaterial (which corresponds to line

A, Fig. 3.11a), n = −πc/aωc, is much larger in magnitude than that for the left-handed line (line B),

n = −πc/aω′c, as ωc � ω′c.

Alternatively, one can consider a left-handed line and our metamaterial with Lm = Lk,2D; since the

magnetic inductance per unit length is much smaller than the kinetic inductance per unit length, Lm =

Lk,2D will mandate much larger physical dimensions for the magnetic inductors. In this scenario, ωc can

be made the same between our metamaterial and the left-handed line, but due to the much larger physical
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dimensions of the magnetic inductors, the left-handed line’s periodicity a′ will be much larger than our

metamaterial’s periodicity a. The dispersion relations for these two devices are illustrated in Fig. 3.11b.

In the shaded area forbidden for the left-handed line, our metamaterial exhibits a range of negative

refractive index values much larger in magnitude than the maximum negative index of the left-handed

line. The largest attainable negative index for our metamaterial (line C in Fig. 3.11b) n = −πc/aωc

is much larger in magnitude than that for the left-handed line (line D in Fig. 3.11b) n = −πc/a′ωc, as

a′ � a.

By the same token, the effect of the change in l (or le) between our 2DEG metamaterials can be

examined graphically as well. With the a and W fixed, longer le causes C ′ and L′k,2D to increase,

resulting in lower ωc. Fig. 3.11c shows the dispersion curves for our metamaterial with the same a

but differing ωc. Only the longer-strip metamaterial can access the shaded region, in which it attains

negative indices larger in magnitude than the maximum negative index of the shorter-strip metamaterial;

the longer-strip metamaterial has a larger maximum attainable negative refractive index. On the other

hand, at the same frequency accessible for both metamaterials, the shorter-strip metamaterial exhibits a

larger negative refractive index.

3.2.3 Measurement and Analysis

Microwave scattering experiments with on-chip probing confirm the extraordinarily strong negative re-

fraction. The reflection of an electromagnetic wave launched onto the left on-chip CPW and its trans-

mission onto the right on-chip CPW after propagation through the metamaterial are measured over

1 ∼ 50 GHz using a vector network analyzer. Propagation delays in the two on-chip CPWs and para-

sitic couplings between them bypassing the metamaterial were separately measured and de-embedded;

from the resulting transmission and reflection coefficients, s21 and s11, at each measurement frequency,

we extract, using a well-established prescription [59–63], the effective wave’s phasor change e−iked due

purely to propagation across the metamaterial of distance d (see Sec. 3.2.3.2). Fig. 3.12a shows the f -ke

dispersion so obtained at temperatures 4.2, 10, and 20 K for a 13-strip metamaterial with W = 1 µm,

l = 112 µm, le = 31 µm, and a = 1.25 µm. Since the measured s21 and s11 parameters set the left-

to-right energy propagation direction (i.e., group velocity direction) as the positive reference direction,

if our metamaterial is negatively refracting, the extracted ke’s sign will be minus with no ambiguity,
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which is indeed seen in Fig. 3.12a. Negative refraction is also consistently confirmed in Fig. 3.12a by

the fact that the dω/dke tangential slope and the ω/ke slope have opposite signs above the 12-GHz

cutoff frequency. This measured dispersion, including the cutoff frequency, is different in details from

the calculation that uses lumped circuit elements, ignores losses due to electron scattering in the 2DEG

strips and ohmic contacts, and considers only nearest capacitive couplings (Fig. 3.8a). But the same

essence prevails, demonstrating negative refraction. The dark area in Fig. 3.12a, where the distinctively

spurious behavior of the dispersion appears, is indicative of the cutoff region, which is irrelevant to the

device operation (see Sec. 3.2.3.2). From this f -ke dispersion, we obtain the effective refractive index via

n = kec/ω, whose real part is as large as -500 (Fig. 3.12b). This large negative index, which is difficult

to achieve, if not impossible, with magnetic inductance [44–46, 55–57, 64, 65], enables dramatic device

miniaturization and can facilitate ultra-subwavelength localization. The same measurements performed

on the 2DEG strip array, but with energy propagation along the strips, yield positive refraction, further

highlighting our negative refraction strategy (see Sec. 3.2.3.3).

|Re(n)| decreases with frequency (Fig. 3.12b), because as frequency becomes higher, adjacent strips

are coupled more capacitively, smearing the electron acceleration effect within separated strips. Fig. 3.12c

shows the figure of merit, |Re(n)/Im(n)|, which here reflects losses due to electron scatterings in the

2DEG strips and ohmic contacts. It is around 2 in good part of the negative refraction region, similarly

to negative refraction devices using metals at optical frequencies [64, 65]. Figs. 3.12a-c show that neg-

ative refraction behaviors are essentially consistent regardless of temperature (4.2, 10, 20 K), indicating

that the degree of electron scatterings in the 2DEG strips and ohmic contacts remains largely the same

within this temperature range, not masking the inertia effect. In Fig. 3.12c, the figure of merit is largest at

10 K instead of 4.2 K, but these variations with respect to temperature arise mostly by inconsistent probe

landings during multiple calibration steps, which are executed for measurements at each temperature.

Fluctuations at high frequencies, e.g., in Fig. 3.12c, are also due to imperfect calibration.

At 297 K, electron scattering in each 2DEG strip becomes severe to completely mask the acceleration

effect. Equivalently, the strip’s ohmic resistance becomes far larger (ca. 100 kΩ) than the impedance

of its kinetic inductance. The strip array then becomes essentially open-circuited, causing the signal

to be mostly reflected. This reflection can be seen from |s11| ∼ 1 measured at 297 K, which differs

from |s11| at cryogenic temperatures where the strip array exhibits negative refraction (Fig. 3.12d). The
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Figure 3.12: Temperature-dependent measurements [14]. a, Dispersion of the 13-strip metamaterial at 4.2, 10,
and 20 K. The dark region is indicative of the cutoff behavior. b, Re(n) vs. frequency. c, Figure of merit
|Re(n)/Im(n)| vs. frequency. d, |s11| and |s21| of the metamaterial at 4.2, 10, 20, and 297 K. Also shown are |s11|
and |s21| of the open device at 4.2 K. Unlike parts a, b, and c, these are raw s-parameters without de-embedding,
to show the parasitic coupling between the two CPWs.
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transmission |s21| becomes smaller at 297 K due also to the open-circuit behavior, but is not inappreciable

(Fig. 3.12d). To understand this, we fabricate exactly the same structure as the previous device, but

without the strip array, thus, creating an actual open circuit between the two on-chip CPWs. |s21| of

this open device at 4.2 K closely resembles |s21| of the strip array device at 297 K (Fig. 3.12d). This

demonstrates that the latter is due largely to the parasitic coupling between the two CPWs bypassing

the strip array, confirming the open-circuit nature of the strip array at 297 K (in fact, the phases of s-

parameters are also much similar between the 4.2-K open device and 297-K strip array; see Sec. 3.2.3.4).

These results constitute another confirmation that our negative refraction at cryogenic temperatures is

due to the kinetic inductance. Also in the most of the dark region (Fig. 3.12d), |s21| of the metamaterial

even at cryogenic temperatures is much similar to that of the open device, confirming the cutoff nature

in that region.

To further examine the impact of kinetic inductance on negative refraction, we measure a new set

of devices with varying geometric parameters. Comparison of devices with different l (thus different le)

for the same W and a is especially illuminating; it scales each of L′k,2D, C ′, and ωc proportionally to

le, affecting the index n = −(2c/aω) sin−1(ωc/ω) with only one parameter, ωc. Specifically, a longer-

strip device, with larger L′k,2D and C ′, and smaller ωc, will have a larger maximum attainable negative

index magnitude, πc/aωc, reaching the frequency region forbidden for a shorter-strip device, while the

shorter-strip device assumes a larger negative index at the same frequency, as discussed in Sec. 3.2.2.3.

This clear-cut property evidently emerges in measurements of a pair of a = 1.25 µm devices with

differing l (112 µm vs. 52 µm), or differing le (31 µm vs. 14 µm) (Fig. 3.13a). This property is affirmed

again with two additional pairs of devices (Fig. 3.13b), where the index is as large as −700.

Altering the periodicity a, which in general may have to be accompanied by altering W , affects the

index n = −(2c/aω) sin−1(ωc/ω) in a more complicated manner, due to simultaneous changes in a and

ωc. For l = 112 µm, as we decrease [a, W ] from [1.5 µm, 1 µm] to [1.25 µm, 1 µm] to [0.75 µm,

0.6 µm] with the first reduction increasing C ′ by 1.2 times with L′k,2D unchanged, and second reduction

increasing L′k,2D by 1.7 times with C ′ unchanged, ωc does not vary as significantly as a, due to ωc’s

square-root dependence on L′k,2D and C ′. Thus, a smaller periodicity will yield a larger negative index

for the same frequency away from the cutoff regions, as evident in measurements (Fig. 3.13c). In these a

and W variations, the magnitude of the characteristic impedance, thus, impedance mismatch, is varied,
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Figure 3.13: Geometry-dependent measurements [14]. a, Re(n) for a pair of 13-strip metamaterials with a =
1.25 µm and W = 1 µm, but with differing l. b, Re(n) for another pair of 13-strip metamaterials with a =
0.75 µm and W = 0.6 µm, for differing l; and for the third pair of 13-strip metamaterials with a = 1.5 µm and
W = 1, for differing l. c, Re(n) for l = 112 µm with differing a and W . d, Re(n) for l = 52 µm with differing a
and W . Parts c and d are rearrangements of the data in a and b to facilitate the comparisons for the same l. Each
device result is shown above its respective cutoff frequency.

62



yielding imperfect de-embedding of the parasitic couplings near cutoffs, obscuring the cutoff behaviors.

The tendency of larger negative index for smaller periodicity is seen again for l = 52 µm with the same

variations of a and W (Fig. 3.13d), except the data crossing between a = 1.25 µm and a = 1.5 µm

devices, which we suspect arises from the impedance mismatch variation.

3.2.3.1 Frequency Scaling

The exceedingly strong inertia-based negative refraction demonstrated here requires a solid-state plat-

form with very large kinetic inductance and low electron scattering, for which we employed the GaAs/AlGaAs

2DEG at cryogenic temperatures. Scaling the 2DEG metamaterial into higher frequencies by simulta-

neous reduction of the strip length and periodicity (Fig. 3.13) would relax the condition for electron

scattering time and temperature; demonstration [66] of THz plasmonic devices at room temperature with

GaAs/AlGaAs 2DEG bodes well for this direction. Graphene, another form of 2D conductor with high

mobility at room temperature [67], may offer another potential platform for negative refraction at THz

frequencies based on the similar kinetic approach; while individual electrons in graphene act as mass-

less particles, they still possess kinetic energy and can exhibit plasmonic behaviors with implicit kinetic

inductance; in fact, THz light-plasmon coupling has been recently observed at room temperature [12].

Graphene would have similar dimensions and frequency scaling properties as our GaAs 2DEG devices,

because graphene’s kinetic inductance with a feasible doping density is expected to be a few hundred

pH/square [22], which is on the same order of magnitude as the kinetic inductance used in this work.

Measurements in Fig. 3.13 show, in keeping with the theory, that reducing the strip length l increases

ωc, but reduces |n|, and this |n|-reduction can be offset by decreasing the periodicity a. In fact, it is

feasible to increase ωc while maintaining a similar range of |n|, by reducing both l and a in a particular

fashion, which we discuss now using the maximum attainable refractive index magnitude, |nmax| ≡

πc/(aωc).

If l is reduced by a factor of6 α (< 1), and a and W are reduced by a factor of β (< 1), ωc is altered

by a factor of
√
β/α (Eqs. (3.1), (3.4), and (3.11)) and |nmax| is changed by a factor of α/β3/2. To keep

|nmax| constant, we must have α = β3/2; ωc will then increase by a factor of 1/β = α−2/3. As our 13-

strip metamaterial with l = 112 µm, W = 1 µm, and a = 1.25 µm has a cutoff frequency of ∼10 GHz,
6To be rigorous, one must consider the scaling of le, but here we seek to provide the essence simply.
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to scale up the cutoff frequency to 1 THz while keeping |nmax|, β = 1/100 and α = 1/1000. Thus this

THz device would have l = 112 nm, W = 10 nm, and a = 12.5 nm. These W and a dimensions are at

the verge of what is feasible with the current top-down fabrication technologies. In going to the 1-THz

device, if we allow |nmax| to reduce by a factor of 5 (with which |nmax| is still ∼100), β = 0.05 and

α = 0.00224, yielding l = 251 nm, W = 50 nm, and a = 62.5 nm, which are well within the capability

of current top-down fabrication technologies.

This high-frequency scaling is a theoretical projection; actual implementation of such small devices

is expected to face various challenges. For example, the edge depletion effect, which is not a significant

issue in the current work, will become pronounced when the 2DEG strip becomes narrower, as the

edge depletion portion becomes an increasingly significant fraction of the strip, thus mandating careful

design considerations. Coupling of the THz electromagnetic waves into such small negative refraction

devices can pose another challenge, which one may be able to overcome by using wide-band log periodic

antennae or other forms of electromagnetic structures [68]. At the same time, the small structures might

offer some interesting avenues to explore. For example, as the 2DEG strip width approaches tens of

nanometers, the 2DEG would start exhibiting 1D quantum wire behaviors (especially if it is operated

at low temperatures, although we suggest the high-frequency scaling as a means to potentially achieve

the room temperature operation), with 1D kinetic inductance quantized per each conduction channel.

Exploiting this 1D kinetic inductance, if observable, for negative refraction would offer an interesting

opportunity.

3.2.3.2 Extraction of n from s-Parameters

From the final set of s21 and s11 parameters at each measurement frequency after calibration and de-

embedding of parasitic signals, we extract the effective wavenumber ke inside the metamaterial by using

the standard prescription detailed in Refs. [59] and [60]. Specifically, ke is given by7

eiked = X ± i
√

1−X2,

X =
1− s2

11 + s2
21

2s21
.

(3.17)

7These formulas directly from Refs. [59] and [60] use the phasor convention of ei(kex−ωt), which differs from the phasor
convention ei(ωt−kex) our vector network analyzer uses. For the extraction to be consistent with our phasor convention, we
actually use s∗11 and s∗21 in these formulas, which leads to exactly the same physical results [69].
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Due to causality and analyticity, ke can be uniquely determined despite the apparent multiplicity of signs

and branches [59, 60]. This extraction connects the s21 and s11 parameters at any given measurement

frequency f to the effective wavenumber ke at the same frequency, thus, leading to the f -ke dispersion

curve, such as Fig. 3.12a. The measured s21 and s11 parameters set the left-to-right energy propagation

direction (i.e., group velocity direction) as the positive reference direction. Therefore, if the device under

test is negatively [positively] refracting, the extracted ke’s sign will be minus [plus], with no arbitrariness.

For any physically meaningful situation, the refraction sign decision based on the sign of the extracted

ke will be consistent with the refraction sign decision made by examining the extracted dispersion curve

as to whether the dω/dke tangential slope (group velocity) and ω/ke slope (phase velocity) have the

opposite or same signs. In sum, a negative [positive] refraction device will yield a negative [positive] ke

in our setup, and consistently, opposite [same] signs for dω/dke and ω/ke. In Fig. 3.12a, dω/dke and

ω/ke have opposite signs in the bright region, and the sign of ke is minus, both of which consistently

confirm negative refraction in the bright region. From the dispersion relation in the bright region, the

negative refractive index is obtained by n = kec/ω.

In the dark region of Fig. 3.12a where the cutoff behavior occurs and the de-embedded |s21| be-

comes exceedingly small mostly below8 −30 dB, the extraction method above becomes increasingly

error-prone, as discussed in Ref. [59] and as can be seen from Eq. (3.17). This can result in a dispersion

relation which is physically not meaningful or mathematically troublesome without being able to satisfy

the causality condition [59]. For example, in the dark region of Fig. 3.12a, the group velocity is nega-

tive, while the energy actually propagates in the positive reference direction, which is a contradiction;

an alternative way of viewing this contradiction is that in the dark region, ke < 0 indicates negative

refraction, but the identical signs of dω/dke and ω/ke suggest positive refraction. Thus, calculating n is

meaningless with its sign indeterminable in this cutoff region, and we truncate the effective index curves

in cutoff regions. However, we show the dispersion in the dark region in Fig. 3.12a to use the spurious

behavior as an indicator of the cutoff region.
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Figure 3.14: Comparison of dispersion relations and effective refractive indices for positively refracting and neg-
atively refracting structures [14]. a, 3-mm CPW on GaAs (CPW). b, 2DEG strip array excited along the direction
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3.2.3.3 Comparison to Positively Refracting Structures

To further illuminate our negative refraction strategy in contrast to positive refraction and also to check

the soundness of our methods for calibration, de-embedding, and effective index extraction (albeit well

established and broadly used), we have fabricated and measured positively refracting structures. All

measurements, calibration, de-embedding (if applicable), and effective index extraction procedures per-

formed on these structures are exactly the same as those used for our negative index metamaterials.

As discussed in Sec. 3.2.3.2, because the measured s21 and s11 parameters set the left-to-right energy

propagation direction (i.e., group velocity direction) as the positive reference direction in all of our mea-

surements, if the device under test is positively [negatively] refracting, the extracted ke’s sign will be

plus [minus] with no ambiguity, and at the same time, dω/dke and ω/ke will have the same [opposite]

signs. Fig. 3.14 juxtaposes the measurement results of our metamaterial device of Fig. 3.12 with the

measurement results of these positively refracting devices.

Fig. 3.14a shows a 3-mm long electromagnetic coplanar waveguide (CPW) on a GaAs substrate. Its

measured dispersion relation (Fig. 3.14d) shows the same signs for dω/dke and ω/ke, and consistently

with this, ke is positive, thus, the CPW is positively refracting, as is well known. The effective dielectric

constant κ of ∼ 7.0 for this CPW is the average of the dielectric constants of GaAs and air. This leads to

an effective refractive index of n =
√
κ ∼ 2.6. This is matched by the measured index (Fig. 3.14e).

Fig. 3.14b shows the same 2DEG strip array as the device measured for Fig. 3.12 (a = 1.25 µm,

W = 1.0 µm, and l = 112 µm), but with excitation along the strips. We expect positive refraction;

in fact, as all strips are excited together, this device does not feel the inter-strip capacitances, and thus

is more or less the same as a sheet of 2DEG. The measured dispersion indeed shows the positive re-

fraction, consistently judged by ke > 0, and by the same signs of dω/dke and ω/ke (Fig. 3.14f, blue).

The refractive index extracted from measurements is ∼ 23 in a good part of the measurement frequency

range (Fig. 3.14g, blue), with the lower frequency regions showing fluctuations due to low |s21|, where

impedance mismatch and losses are severe. The index of this device is larger than that of the electromag-

netic CPW, because the former comes from the plasmonic excitation (in the long plasmonic wavelength

regime), or equivalently, as it involves collective electron accelerations. The index ∼ 23 of this device,
8Note that this is smaller than what is shown in Fig. 3.12d, which is the s21 magnitude before de-embedding the parasitic

signals.
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however, is not as large in magnitude as the negative index of our metamaterial, because the inter-strip

capacitance does not participate in the dynamics in the former.

Finally, Fig. 3.14c shows our negative index metamaterial measured for Fig. 3.12. Its measured

dispersion and index (Figs. 3.12a-b) are repeated here (Figs. 3.14f-g, green) to facilitate the comparison

with the positive refraction devices. In Fig. 3.12, the dispersion relation was plotted with −ke as the

x-axis, but here, we use ke as the x-axis; the data are exactly identical (in either case, ke < 0). Both the

negative sign of ke and the opposite signs of dω/dke and ω/ke in the measured dispersion in the bright

region consistently confirm negative refraction. Contrast from the positive refraction devices is evident.

3.2.3.4 Pre-De-Embedding Data

Fig. 3.15 corresponds to Figs. 3.12a-c, but without the parasitic coupling de-embedded; as mentioned

earlier, Figs. 3.12a-c are obtained after the full de-embedding. By comparing Figs. 3.12a-c and Fig. 3.15,

we see that the positively refracting parasitic coupling lowers the magnitude of the measured negative

index, as expected. Even when the parasitic coupling is treated as a part of the device response, the

measured effective index is still very large on the order of hundreds (Fig. 3.15b). The parasitic coupling

is also seen to lower the measured loss and cause the figure of merit to be overestimated (Fig. 3.12c vs.

Fig. 3.15c).

Fig. 3.16 shows the entire set of the raw s-parameter data up to the probe tips for the device of

Fig. 3.12; previously, only the magnitudes of s11 and s21 were presented to show the essence of the

difference between the 2DEG and parasitic signals. Each set of data, now including phase information,

clearly shows that the 2DEG device behaves largely consistently as a negative index metamaterial at

temperatures of 4.2 K, 10 K, and 20 K, while its behavior is completely different at 297 K. This once

again confirms the negative refraction due to kinetic inductance in the acceleration-dominated regime

(4.2 K, 10 K, and 20 K) and the open-circuit behavior in the scattering-dominated regime (297 K). In

addition, all of these data show that the 2DEG device’s behavior at 297 K much resembles the behavior of

the device having only the CPWs with no 2DEG strip array (labeled ‘open’ in Fig. 3.16); this once again

attests to the open-circuit behavior of the metamaterial at 297 K, with the kinetic inductance completely

masked by electron scattering.
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Figure 3.16: Full s-parameter data for the device of Fig. 3.12 [14]. |s11| is slightly (∼ 0.1 dB; 2 %) larger than
0 dB for the ‘open’ device measurement due to the calibration error.
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3.2.4 Appendix: Materials and Methods

We fabricate the devices on GaAs/AlGaAs 2DEG substrates obtained by molecular beam epitaxy. The

layer structure above the 2DEG is 40-nm Al0.36Ga0.64As, 14-nm Si-doped Al0.36Ga0.64As, 10-nm

Al0.36Ga0.64As, and 7-nm GaAs cap. At 4 K, the mobility of the 2DEG is 4.6 × 106 cm2/Vs, and

the carrier density is 1.9 × 1011/cm2, both in dark. 2DEG strips are defined by electron beam lithog-

raphy, followed by wet etching (> 71-nm depth) with 150:1:1 H2O : H2O2 : NH4OH. Ohmic contacts

are defined by photolithography followed by thermal evaporation of 5-nm Ni / 20-nm Au / 25-nm Ge

/ 10-nm Au / 5-nm NI / 40-nm Au, and annealing at 420 ◦C for 50 seconds. CPWs are defined by

photolithography and formed by thermal evaporation of 8-nm Cr / 500-nm Au.

The microwave scattering analysis is performed in a Lakeshore cryogenic probe station at feedback-

controlled cryogenic temperatures in dark. 100-m pitch ground-signal-ground microwave probes con-

nected to probe arms land on the on-chip CPWs. Coaxial cables lead to the probes from an Agilent

E8364A network analyzer, which generates the excitation signals up to 50 GHz with -45 dBm power

reaching the devices, and measures the scattering parameters. To see the pure effect of the metama-

terial (strip array) only, we first calibrate the system, at each measurement temperature, up to the tips

of the probes by using the NIST-style multi-line TRL technique [70], and then perform additional de-

embedding to remove the on-chip CPW delays and parasitic couplings between the CPWs, which bypass

the metamaterial (see Appendix Ch. A). The CPWs used for this calibration [11] are fabricated on un-

doped GaAs substrates and designed to have a 50-Ω characteristic impedance, which is the characteristic

impedance of the network analyzer, cables, and probes.

Fig. 3.8b and Table 3.2 were obtained using Sonnet frequency-domain electromagnetic field solver.

For a conductor, the simulator takes complex resistivity as a simulation parameter; we use the real part

of the resistivity to model the electron scattering effect in the 2DEG, and its imaginary part to model the

kinetic inductance of the 2DEG.

The simulated structures lie in a 400 µm × 400 µm × 1000 µm (x, y, and z) box surrounded by

conducting side and bottom walls. Inside the box there are three dielectric layers; from bottom up, the

first layer is 500 µm-thick GaAs with κGaAs = 12.9 (which corresponds to the actual thickness of the

GaAs substrate below the 2DEG), the second layer is 71 nm-thick AlGaAs with κAlGaAs = 12.9 (which

corresponds to the actual thickness of the AlGaAs and GaAs cap above the 2DEG), and the third layer

71



is 500 µm thick air with κAir = 1.0. Between the first and second dielectric layers lies the 2DEG

structure; the 2DEG’s resistance per square 7.2 Ω and kinetic inductance per square 1.25 nH are entered

into the aforementioned complex resistivity parameter. Between the second and third dielectric layers,

we define the gold CPWs with conductivity 4.09 × 107 S/m and thickness 0.5 µm (which corresponds

to the actual thickness of the CPWs). In the actual structure, most parts of the CPWs sit directly on top of

GaAs, instead of AlGaAs as defined in the simulation, as most of AlGaAs except where the 2DEG strips

are defined is etched away. However, this makes only a negligible difference as the 71-nm thickness of

the AlGaAs layer is much smaller than the relevant wavelengths.

To model the strip array of Fig. 3.12, for instance, the 2DEG is formed into strips of width 1 µm and

length 112 µm, separated from each other with 0.25 µm gaps (i.e., periodicity is 1.25 µm). There are a

total of 13 strips in the strip array. The ohmic contact between each 2DEG strip and the CPWs’ ground

is modeled as a 1 µm× 1 µm conductor (at the 2DEG layer level) with a resistance of 450 Ω/�, which

is an estimation (the real contact resistance varies from device to device); the ohmic contact is completed

by inserting a resistance-less vertical via to the gold CPW layer.

CPWs are also designed using Sonnet to possess a 50-Ω characteristic impedance on air-clad GaAs

substrate. The dimensions of the CPWs are signal line width 50 µm, gaps between the signal line and

the ground lines 32 µm, and ground line width 143 µm (top and bottom). In the real devices, slightly

narrower (120 µm) ground lines were used due to space constraints on the small 2DEG samples, but this

causes only a negligible change in the characteristic impedance of the CPWs, and the measured signal as

well, as confirmed by additional simulations and experiments. The signal lines extend over the first two

2DEG strips from both sides (left and right) of the strip array.
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Chapter 4

2D Plasmonics in Graphene

4.1 Measurement of Collective Mass of Graphene Electrons

Individual electrons in graphene1 behave as massless quasiparticles [3, 26, 71–75]. In surprising twist,

it is inferred from plasmonic investigations [12, 27, 76, 77] that collectively excited graphene electrons

must exhibit non-zero mass and its inertial acceleration is essential for graphene plasmonics. Despite

such importance, this collective mass has defied direct unequivocal measurement. It may be directly

measured by accelerating it with a time-varying voltage and quantifying the phase delay of the result-

ing current; this voltage-current phase relation would manifest as kinetic inductance, representing the

collective inertia’s reluctance to accelerate. However, at optical (infrared) frequencies phase measure-

ment of current is generally difficult and at microwave frequencies the inertial phase delay has been

buried under electron scattering [78–80]. Here we directly, precisely measure the kinetic inductance,

thus, collective mass, by combining innovative device engineering that reduces electron scattering and

delicate microwave phase measurements. Particularly, encapsulation of graphene between hexagonal-

boron-nitride layers [67], one-dimensional edge contacts [81], and a proximate top gate configured as

microwave ground [11,13] together enable resolving the inertial phase delay from the electron scattering.

Beside the fundamental importance, the kinetic inductance demonstrated here to be orders-of-magnitude

larger than magnetic inductance can dramatically miniaturize radio-frequency integrated circuits. More-

over, its bias-dependency heralds a solid-state voltage-controlled inductor to complement the prevalent
1Large portions of this section are derived from a paper in publication by the author [16].
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resentation of the collective electron motion in the E-k space, in conjunction with the massless single electron
energy dispersion E = ~vFk near the Dirac point. c, The per-unit-length collective kinetic energy Etotal exhibits
quadratic dependency on the per-unit-length collective momentum P = n0W~∆k. The curvature is inversely
proportional to the per-unit-length collective dynamical mass, M . d, Graphene as a lossy transmission line.

voltage-controlled capacitor.

4.1.1 Collective Mass of Graphene Electrons

4.1.1.1 Concept of Collective Mass

The collective excitation of massless fermions in graphene exhibits a non-zero mass. This fact is sub-

sumed under the general theoretical framework of graphene plasmonics [27], yet it can be simply seen as

follows. Let electrons in graphene (widthW , unit length) be subjected to an electric field along the length

with a voltage difference V across the length. The resulting translation of the Fermi disk in k-space by

∆k � kF (from disk A to B, Figs. 4.1a,b) yields a per-unit-length collective translational wavenumber,

K = n0W∆k, and a per-unit-length collective momentum, P = ~K = n0W~∆k. The corresponding

74



per-unit-length collective kinetic energy2 Etotal is obtained by subtracting the sum of single electron

energies E = ~vFk for disk A from that for disk B. Since Etotal assumes an extremum (minimum) when

∆k = 0, i.e., in the collective ground state, we must haveEtotal ∝ (∆k)2 ∝ P 2 for small ∆k (Fig. 4.1c).

In fact, calculation to the lowest order of ∆k shows

Etotal =
EFW

2π
(∆k)2 =

1

2

EF

πn2
0W

K2 =
1

2

EF

π~2n2
0W

P 2, (4.1)

which is identical to Eq. (2.14) with g = 4 (spin and valley degeneracy in graphene), but rewritten here

in terms of the collective wavenumber K and collective momentum P .

Hence, while individual electrons with the linear E-k dispersion (E = ~vFk) behave as massless

particles, electrons in collective dynamics with the quadratic relation Etotal ∝ (∆k)2 ∝ K2 ∝ P 2 must

exhibit a non-zero collective mass per unit length

M =
π~2n2

0W

EF
, (4.2)

with which Eq. (4.1) can be written as

Etotal =
~2K2

2M
=

P 2

2M
. (4.3)

The velocity vc of the collection of electrons is then given by

vc =
1

~
∂Etotal

∂K
=

~K
M

=
P

M
. (4.4)

As K increases with time t by per-unit-length force F (e.g., due to the electric field considered here)

applied to the unit length of the collection of electrons in the graphene strip, vc increases with t. Since

Etotal =
∫ t
t0
Fvcdt = P 2/(2M) (t0 is when the electron gas is at rest), by differentiating this relation

with respect to t, we obtain
d

dt
(Mvc) = F. (4.5)

That is, the collective mass of electrons in graphene ‘inertially’ accelerates according to the Newton’s
2Unlike in Chapter 2, we here express the collective kinetic energy per unit length for convenience in notations.
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2nd law. Note the contrast between the collective velocity vc and the individual electron velocity given

by 1
~
∂E
∂k = vF, which is constant even in the presence of the force F .

In sum, in graphene, while an individual electron behaves like a massless particle with a constant ve-

locity vF, electrons in collective excitation together exhibit a non-zero collective inertial mass and a vari-

able collective velocity vc in keeping with the Newton’s equation of motion. The emergence of the non-

zero collective electron mass despite the zero individual electron mass in graphene sharply contrasts typi-

cal conductors where the non-zero individual electron effective massm∗ appearing in the quadratic single

electron energy dispersionE = ~2k2/(2m∗) is plainly multiplied by the total number of electrons to give

the collective mass. For instance, consider a unit-length strip (widthW ) of GaAs/AlGaAs 2DEG. We can

repeat the calculation above but with E = ~2k2/(2m∗) and g = 2 to obtain Etotal =
~2k2FW
4πm∗ (∆k)2. By

using k2
F = 4πn0/g and P = n0W~∆k, we can see Etotal = 1

2
1

Wn0m∗P 2, i.e., the collective mass per

unit length is m∗ multiplied by the total number of electrons contained in the unit-length GaAs/AlGaAs

2DEG.

To estimate how large the collective mass of electrons in graphene is, we can operationally calculate

the collective mass per electron: m∗c = M/(Wn0) = EF/v
2
F. For EF = 0.1 eV, m∗c = 0.02me. For

comparison, in GaAs/AlGaAs 2DEG, m∗ = 0.067me. Incidentally, we note that this collective mass

per electron is quantitatively related to an insightfully defined theoretical entity called ‘plasmon mass’ in

graphene [76,77,82]; the former, which we set out to measure here, is an observable physical reality that

proves the existence of the latter beyond a theoretical model.

The collective current I associated with the Fermi disk shift, i.e., the inertial acceleration of the col-

lective massM , has an inductive phase relationship to the applied voltage V that causes the acceleration,

where the associated inductance is kinetic inductance. The kinetic inductance can be evaluated by noting

Etotal ∝ I2, given I ∝ ∆k for small ∆k and Etotal ∝ (∆k)2; by analogy to magnetic inductance, this

energy can be then expressed as Etotal = 1
2LkI

2, where

Lk =
π~2

e2EF

1

W
=

~
√
π

e2vF
√
n0

1

W
(4.6)

is the per-unit-length kinetic inductance, which is identical to Eq. (2.18). The same underlying physics,

namely quadratic dependence of Etotal on ∆k, gives rise to both M and Lk, which are thus intimately
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related by

M = e2n2
0W

2Lk. (4.7)

Typical conductors with the quadratic single electron E-k dispersion also exhibit kinetic inductance

arising from their more obvious collective electron mass, and Lk ∝ 1/n0 [11, 13, 20]. By contrast, in

graphene, Lk ∝ 1/
√
n0. This peculiarity of graphene results from the linear single electron E-k disper-

sion; that is, while individual and collective behaviors of electrons in graphene exhibit vast difference

with zero individual electron mass and non-zero collective electron mass, the values of the collective

electron mass and kinetic inductance are directly affected by the single electron energy dispersion.

To weigh M , we directly measure Lk essentially by interrogating the voltage-current phase relation

in graphene via microwave transport experiment, where graphene acts as a lossy transmission line [11,

13,14,20,22] (Fig. 4.1d). This entails the per-unit-length kinetic inductance Lk modeling local collective

mass and per-unit-length geometric capacitance C terminated to ground specific to device configuration.

The magnetic inductance, which is orders of magnitude smaller [11, 14] than Lk expected in graphene

(see Sec. 4.1.2.3), and quantum capacitance [19], whose effect is far weaker than that of geometric

capacitance in our device geometry to be discussed, are both ignored. The per-unit-length resistance R

models electron scattering.

While the graphene kinetic inductance can be implied from the plasmonic theory [27] and has been

considered in explicit theories [15,21,82], its direct measurement has been evasive. In far-infrared inten-

sity transmission spectroscopies, kinetic inductance can be indirectly inferred from the fitting parameter

called Drude weight [76, 77, 82], but as these experiments do not measure the phase progression of the

collective current, they do not unambiguously prove the existence of the collective mass and its inertial

acceleration. At microwave frequencies, while Lk can in principle be directly measured by probing the

voltage-current phase relation, experimental attempts [78–80] have proven unfruitful because R is far

larger than the inductive impedance iωLk at microwave frequencies (i.e., the kinetic inductor’s quality

factor Q = ωLk/R is far smaller than 1) even in reasonably high-mobility graphene, although Lk is far

larger than magnetic inductance.
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Figure 4.2: Electron density and potential distribution along a graphene strip where a plasmonic wave propagates
along the length (x-axis) [16]. The infinitesimal length ∆x is exaggerated.

4.1.1.2 Collective Mass and Plasmonic Wave

In Chapter 2, we saw how a 2D plasmonic wave can propagate on a 2D conductor in terms of Lk and

C, leading to a plasmonic dispersion relation vp = ω/kp = 1/
√
LkC. Instead, we can visualize the

link between the graphene plasmonic wave and the collective electron mass without using the circuit

(transmission line) model, but by directly considering the dynamics of the collective electron mass in the

presence of Coulomb restoring force and electron-degeneracy restoring pressure.

Imagine a plasmonic wave propagating along the length (x-axis) of the graphene strip. Let the

potential and electron density of the infinitesimal segment of length ∆x at position x be V (x, t) and

n(x, t) = n0 + δn(x, t), respectively (Fig. 4.2)3, where δn(x, t) accounts for the extra (excess or deficit)

electron density in this infinitesimal segment. The extra charge due to the extra electron density and

potential V (x) of the segment are related through its capacitance, C∆x, where C = CcCq/(Cc + Cq):

−eW∆xδn(x, t) = C∆xV (x, t) (4.8)

Since the restoring force per unit positive charge is − ∂
∂xV (x, t), the restoring force that collectively

drives the collection of electrons in the infinitesimal segment is given by

F = −[−en(x, t)W∆x]
∂

∂x
V (x, t) = −e

2n(x, t)W 2∆x

C

∂

∂x
δn(x, t), (4.9)

where we have used Eq. (4.8) in obtaining the last expression. With this force expression at hand, we
3The potential V (x, t) is due not only to the Coulomb force, but also to the electron degeneracy pressure, that is, it combines

the electric and quantum-mechanical potential. We include this quantum effect here for generality, although its effect in our
actual graphene device is negligible.
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now set up the equation of motion for the collection of electrons in the infinitesimal segment according

to Eq. (4.5) as
∂

∂t
[M(x, t)∆xvc(x, t)] = −e

2n(x, t)W 2∆x

C

∂

∂x
δn(x, t). (4.10)

Here vc(x, t) is the collective velocity of electrons in the infinitesimal segment and M(x, t) is the per-

unit-length collective electron mass at position x (thus M(x, t)∆x is the collective electron mass of the

infinitesimal segment). Given Eq. (4.2), M(x, t) can be expressed as

M(x, t) =
π~2n2(x, t)W

EF(x, t)
, (4.11)

where EF(x, t) is the Fermi energy corresponding to n(x, t). Since δn(x, t) � n0 in any practical

situation, in the two equations above, we may use n(x, t) ≈ n0 and EF(x, t) ≈ EF, where EF is the

previously defined equilibrium Fermi energy corresponding to n0. Then Eq. (4.10) reduces to

∂

∂t
vc(x, t) = − 1

LkCn0

∂

∂x
δn(x, t). (4.12)

where we have used Eq. (4.6). On the other hand, as the total number of electrons is conserved, vc(x, t)

and n(x, t) satisfy
∂

∂x
[n(x, t)vc(x, t)] = − ∂

∂t
n(x, t). (4.13)

By using n(x, t) = n0 + δn(x, t) on both sides, but noting that n(x, t) can be approximated as n(x, t) ≈

n0 on the left hand side, we obtain

n0
∂

∂x
vc(x, t) = − ∂

∂t
δn(x, t). (4.14)

By combining Eqs. (4.12) and (4.14), plasmonic wave equations are obtained as

∂2

∂x2
δn(x, t) = LkC

∂2

∂t2
δn(x, t),

∂2

∂x2
vc(x, t) = LkC

∂2

∂t2
vc(x, t).

(4.15)

These plasmonic wave equations confirm vp = ω/kp = 1/
√
LkC, which is the plasmonic dispersion
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Figure 4.3: Device description and DC measurements [16]. a, Optical image of the h-BN/graphene/h-BN layered
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colored scanning electron micrograph of the central region of the device that contains the layered structure under
the top gate. c, Schematic diagram of h-BN encapsulated graphene device with the front face corresponding to
the vertical cut through the dotted line in b. d, Total device resistance Rdev, including both in-graphene electron
scattering effect R and contact resistance, measured at 30 K and 296 K with Vb varied while graphene and the top
gate are kept at the same DC potential. (inset: corresponding plot of (Rdev/(l/W ))−1, a conductivity estimate
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or Vb,0 = −0.9 V (296 K)). Solid curves are fits to σ−1 = (n0eµC)−1 + ρs.

relation previously obtained in Chapter 2. This dynamic consideration once again attests to the physical

reality of the collective electron mass, by directly delineating the machinery of the participation of the

collective mass in the plasmonic wave propagation.

4.1.2 Device Measurements Summary

In our microwave measurements of Lk, we help overcome the difficulty faced by previous works [78–80]

by reducing electron scattering, thus, R, as much as possible. In particular, we encapsulate exfoliated

graphene between two hexagonal boron nitride (h-BN) layers (Fig. 4.3) by a polymer-free assembly

method [67, 81], which greatly reduces electron scattering by disorder. To reduce electron-phonon scat-
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tering within graphene, the device is cooled to 30 K. Furthermore, to reduce additional electron scat-

tering in the contact regions at both ends of graphene, we make one-dimensional, edge-only contacts

to the graphene by etching the stack of h-BN and graphene into a desired shape (W = 7.5 µm; length

l = 19.0 µm) and depositing metal onto the side edges [81] (Figs. 4.3a-c). Graphene is connected to

the signal (S) lines of on-chip coplanar electromagnetic waveguides (CPWs) to the left and right via the

aforementioned edge-only contacts, and is placed under a top gate merged with the ground (G) lines of

the CPWs.

4.1.2.1 DC Resistance Measurements

We first measure the DC resistance between the S lines using a lock-in technique, with the graphene and

top gate kept at the same DC potential. The total device resistance Rdev, including the effect of both R

and contact resistance, is measured as a function of the back gate potential Vb that sets the carrier density

n0 (Fig. 4.3d). At 30 K, it shows a charge neutrality at Vb,0 = −0.5 V and excellent performance in the

electron-doped region (Vb > Vb,0), which is fit well by the widely-adopted conductivity formula [67,83]

σ−1 = (n0eµC)−1 + ρs, with µC = 390, 000 cm2/Vs representing the n0-independent mobility due to

long-range scattering, and ρs = 80 Ω representing the short range scattering. We note that this is only

a lower bound of the actual graphene mobility, because the estimation of conductivity in this two-probe

measurement includes the contact effects. The hole-doped region (Vb < Vb,0) shows similar results, but

with slightly lower µC = 320, 000 cm2/Vs and higher ρs = 110 Ω due to the contact characteristics [81].

The room-temperature measurement shown for comparison (which exhibits a slightly shifted neutrality at

Vb,0 = −0.9 V) has a 4 times smaller µC of 110, 000 cm2/Vs in the electron-doped regime, which still

is an excellent number. This high µC at room temperature confirms the reduction in electron scattering by

the h-BN encapsulation [67,81], and its 4-fold increase at 30 K confirms the further scattering reduction

at the low temperature.

4.1.2.2 Microwave Measurements and Lk Extraction

To measureLk, a vector network analyzer launches microwaves (10-50 GHz) onto the CPWs, and records

the amplitude and phase response of their transmission (s21, s12) and reflection (s11, s22) (Fig. 4.4a). The

network analyzer connects to graphene via cables, probes, and the CPWs, whose phase delay and loss

81



Frequency (GHz)

B
a

c
k 

g
a

te
 b

ia
s,

V
b

(V
)

∠s
11

(deg)

10 20 30 40 50
−20

−15

−10

−5

0

5

10

15

20

|s
11

| (dB)

10 20 30 40 50
−20

0

20

−9

−8

−7

−6

−5

−4

−3

−2

−4

−3

−2

−1

Frequency (GHz)

B
a

ck
 g

a
te

 b
ia

s,
V

b
(V

)

∠s
21

(deg)

10 20 30 40 50
−20

−15

−10

−5

0

5

10

15

20

|s
21

| (dB)

10 20 30 40 50
−20

0

20

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

−25

−20

−15

−10

10 20 30 40 50
−20

−15

−10

−5

0

|s
2
1
| 
(d

B
)

Frequency (GHz)

−80

−70

−60

−50

−40

−30

−20

−10

0

∠
s

2
1

(d
e

g
)

V
b

= 1 V

V
b

= 4 V

V
b

= 20 V

a

Sample holder

CPW

Parasitic
coupling

Graphene signal

156 mm 156 mm19 mm

s11

s12
s22

s21

CPW

Network Analyser

mwave
probe

mwave
probe

mwave
cable

mwave
cable

c

b

Figure 4.4: Microwave s-parameter measurements [16]. a, Schematic diagram of the measurement setup. The
s-parameters shown are after calibrating out the delay and loss of the cables, probes, and on-chip CPWs, and
also after de-embedding the parasitic coupling bypassing graphene. b, Phase (insets: amplitude) of the measured
transmission (s21; left) and reflection (s11; right) parameters after the calibration and de-embedding at 30 K. The
s-parameters with excitation from the opposite side (s12 and s22; not shown here) look almost identical to s21
and s11. c, Select data from b, specifically, transmission phase (∠s21; solid curves) and amplitude (|s21|; dashed
curves) at three representative bias values Vb = 1, 4, and 20 V.

82



are calibrated out. The direct parasitic coupling between the left and right CPWs/probes bypassing the

graphene channel is separately measured and de-embedded (see Appendix A for details on calibration

and de-embedding procedure). We extract Lk from the resulting s-parameters. This extraction, however,

poses a stiff challenge for moderate-mobility graphene with Q � 1, which can be appreciated from the

expression for the per-unit-length phase delay φ through the graphene transmission line (Fig. 4.1d),

φ ≈
√
ωRC

2
+

√
ω3

8

√
C

R
Lk ≡ φ1 + φ2, (4.16)

with only φ2 containing Lk (see Sec. 4.1.3.1 for the derivation), capturing the phase delay due to the

collective mass acceleration. The ratio φ2/φ1 = ωLk/2R = Q/2; with Q � 1, extraction of Lk is

challenging because φ2 is entirely swamped by φ1, which typically renders φ2 itself minuscule below

the unavoidable phase measurement error, which we denote as φe, caused by imperfect calibration and

non-ideal parasitic signal de-embedding.

To enable Lk extraction from the measured s-parameters, we first reduceR via the aforementioned h-

BN encapsulation of graphene and 30-K operation, which amplifies φ2 and attenuates φ1 with improved

Q = 2φ2/φ1. This crucial improvement alone, however, is insufficient with the improved Q still smaller

than 1. A second improvement is to enhance C by proximate top gating. Although increasing C does

not change Q = 2φ2/φ1, it further increases φ2 to ensure φ2 > φe. Importantly, these improvements

also make φ2 more sensitive to Lk variation, as seen from the factor
√
C/R in φ2, thereby increasing the

accuracy of Lk extraction (see Sec. 4.1.3.1 for an in-depth discussion). To estimate the enhanced value of

C in our device, we note that the proximate top gate merged with the CPWs’ G lines (Figs. 4.3a-c) serves

as a well-defined microwave ground [11, 13] with per-unit-length capacitance Cg between graphene and

this grounded top gate. In contrast, the silicon back gate untapped to the G lines ‘floats’ in microwave

signaling, largely because its connection to the DC bias line exhibits a very large inductive impedance

and also because the silicon has a high resistivity. Therefore, the per-unit-length capacitance Cb between

graphene and the back gate is irrelevant for microwave signaling, and C = Cg. As 44-nm thick top h-BN

(κ ≈ 7 [84, 85]) and ∼150-nm thick hydrogen silsesquioxane (HSQ; κ ≈ 2.8 ∼ 3.0 [86]) lie between

graphene and the grounded top gate, Cg/W is estimated to be 0.15 fF/µm2, which is far larger than the

capacitance of ungated graphene [22]. Incidentally, we attribute the inability to observe [78, 79] Lk or
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its spurious measurement [80] in prior works to their larger R with graphene on SiO2 and no proximate

gate configured as a microwave ground.

Figure 4.4b is a color map of the phase and amplitude of transmission (s21) and reflection (s11)

parameters measured at 30 K as functions of Vb (thus n0) and frequency. The s21 [s11] amplitude

exhibits a sharp drop [peak] near Vb,0 = −0.5 V. Fig. 4.4c shows s21 at three select Vb values in the

electron-doped region to show that our device s-parameters are amenable toLk extraction. Were it not for

the R-reduction and C-enhancement, the measured s21 phase and its portion contributed by Lk, which

are intimately related to φ and φ2, respectively, would exhibit far smaller absolute values as well as far

smaller differences with the variation of Vb (thus with the corresponding variation of Lk), hampering Lk

extraction (see Sec. 4.1.3.2 for a detailed discussion).

To determine Lk from the measured s-parameters for each bias, we use the microwave optimization

method [11]; we add contact models to both sides of the transmission line model (Fig. 4.1d withC = Cg),

and alter the component values (e.g., Lk, Cg, R, and contact resistance) until the s-parameters calculated

from the model best fit the measured s-parameters across the frequency range in the least-square method

(Sec. 4.1.3.3 discusses this procedure in detail). In this way, we determineLk and other component values

at each Vb. This method’s reliability is based on the model’s physicality and the fact that the limited

number of model components must reproduce the vastly larger number of measured s-parameters over

the frequency range. Its cogency will be checked ultimately by the consistency amongst the extracted

values and other measured parameters, and with the physical theory. The same experiment repeated on

a completely different device led to almost identical results (see Sec. 4.1.2.4), further attesting to the

reliability of this approach.

Figures 4.5a-c display Lk, Cg, and R so determined for each Vb at 30 K and 296 K. We first focus

on the 30-K results in the electron-doped region (Vb > Vb,0) that showed the best DC characteristics

(Fig. 4.3d), in particular in the region away from Vb,0 (unshaded region in Fig. 4.5). As expected,

the extracted Cg/W stays nearly constant with negligible variation from quantum capacitance effect

[19], and its value of ∼ 0.15 fF/µm2 is consistent with the value roughly estimated earlier. Also, the

extracted Lk closely follows the theoretical curve given by Eq. (4.6) with vF = 106 m/s. The slight

discrepancy between the observed and theoretical Lk in this region is attributed dominantly to imperfect

calibration and parasitic-signal de-embedding, but also potentially to variations of vF due to dielectric
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screening and impurities [85], and/or electron-electron interaction effects [82]. Further confirming the

consistency of the technique, Rdev extracted from the s-parameters agrees well with Rdev measured

at DC (Fig. 4.5c). Most importantly, from the measured Lk, we obtain the per-unit-length collective

mass, M = e2n2
0W

2Lk, or operationally defined collective mass per electron that Ref. [82] theorizes

as ‘plasmon mass,’ m∗c = M/(Wn0) = e2n0WLk, which closely follows the theoretical prediction

(Fig. 4.5a, inset); m∗c is a few percent of me = 9.1× 10−31 kg.

Near the charge neutrality point or in the hole-doped region (Vb < Vb,0) (shaded region, Fig. 4.5), the

extracted values of Lk, C, and m∗c at 30 K exhibit more appreciable deviation from theory. The discrep-

ancy near the charge neutrality is readily understood, because transmission amplitude is significantly

smaller due to the sharply reduced n0 (Fig. 4.4b). In this region, the raw transmission s-parameters

before removing the graphene-bypassing parasitic signal are dominated by the parasitic signal itself,

making the parasitic-signal-de-embedded s-parameters highly distorted. The best-optimized model s-

parameters then still poorly fit the distorted s-parameters, for our model does not take into account the

distortion effect (see Sec. 4.1.3.4 for an in-depth discussion). The discrepancy in the hole-doped region

is similarly explained, as the measured signal is distorted in a way that cannot be fully captured by the

model in use. This distortion can be traced back to the asymmetric behavior caused by work function

mismatch in our edge contacts, where the contact between the metal and hole-doped graphene has been

demonstrated to exhibit non-ideal behaviors [81] that are difficult to capture with a passive linear model

(see Sec. 4.1.3.4).

Back in the higher-fidelity electron-doped region (unshaded region in Fig. 4.5), the data at 296 K

result in more appreciable deviation from theory, due to the∼ 4× decrease in mobility (∼ 4× increase in

R), which reduces all of φ2/φ1, φ2,
√
C/R, and transmission amplitude. This highlights the challenge in

measurements of sub-unit Q devices. Nonetheless, while not as quantitatively accurate as the 30-K data,

the 296-K data still present a firm direct proof of Lk and collective dynamical mass, made possible by

the h-BN graphene interface and the proximate gating. Thus even the 296-K data represent a significant

leap from the prior works that have only failed to observe the kinetic inductance [78–80].

Beside its fundamental importance for graphene electrodynamics and plasmonics, this work may

offer exciting technological vistas. The graphene kinetic inductance as a manifestation of the collec-

tive inertia effect is orders of magnitude larger than the magnetic inductance at similar dimensions (see
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Sec. 4.1.2.3), and thus can be used in the future to substantially miniaturize inductors, as it allows one to

obtain the same inductance value in orders of magnitude smaller area. Radio-frequency integrated cir-

cuits, such as resonators, filters, oscillators, and amplifiers, prevalent in communication and computing

systems, suffer from large chip areas due to magnetic inductors. Thus these high frequency applications

may benefit greatly from harnessing the kinetic inductance of graphene revealed in this work. Better

room temperature scalability and facile tunability as compared to traditional kinetic inductors from su-

perconductors and semiconductor two-dimensional gases also bode well in this direction as the mobility

of graphene continues to improve. Furthermore, the bias-dependency of graphene kinetic inductance

renders graphene a natural voltage-controlled tunable inductor as a counterpart to the prevalent voltage-

controlled semiconductor capacitor.

4.1.2.3 Comparison of Kinetic and Magnetic Inductance

We envisioned that the large kinetic inductance of graphene compared to its magnetic inductance may

enable one to build substantially miniaturized inductors in orders of magnitude smaller area. This can be

more concretely seen in numbers in the following examples.

Magnetic inductors prevalent in high frequency analog integrated circuits occupy very large chip

area. For instance, in order to obtain 2.4 nH of inductance at GHz frequencies, around 4 mm2 of chip

area is needed [87]. Taking the kinetic inductance per square of graphene as 100 pH/square (at ∼ 5 V

bias in Fig. 4.5a), with a graphene width of 10 µm, the same amount of inductance would be obtained

in a 0.0024 mm2 area, which is about 2600 times smaller than the magnetic inductor considered earlier.

Such an application may be a possibility as the mobility of CVD-grown graphene continues to improve.

As another example of the comparison between the magnitudes of kinetic and magnetic inductances

in graphene, we can consider our own graphene device of Fig. 4.3. The magnetic inductance per unit

length in a parallel plate configuration (graphene and the top gate) is given by Lm = µ d
W , where µ is

the magnetic permeability, d is the distance between the plates, and W is the width of the plates. With

d ≈ 200 nm and W = 7.5 um in our device, this magnetic inductance per unit length evaluates to

3 × 10−3 pH/µm, while the kinetic inductance per unit length (kinetic inductance per square divided

by the width, W ) is measured to be around 10 pH/µm, 3 orders of magnitude larger than the magnetic

inductance. The magnetic inductance was ignored in the model of Fig. 4.1d for this reason.
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Figure 4.6: Device description and DC measurements of additional device [16]. a, False colored scanning electron
micrograph of the device. The rough, rounded edges around the central rectangular region are artifacts from
fabrication not important in the analysis. b, Schematic illustration of the device. Device dimensions are W =
3.5 µm, l = 8.9 µm, top h-BN thickness 43 nm, bottom h-BN thickness 13 nm, and HSQ thickness ∼ 100 nm.
c, DC total device resistance Rdev measured at 30 K as a function of Vb, while graphene and the top gate are kept
at the same DC potential, i.e., Vg = 0 (inset: corresponding plot of conductivity estimate, σ ≡ (Rdev/(l/W ))−1;
n0 = Cb/W × (Vb − Vb,0) /e with Cb/W = 0.12 fF/µm2 and Vb,0 = −2 V ). Red solid curves are fits to
σ−1 = (n0eµC)

−1
+ ρs with µC = 85, 000 cm2/Vs and ρs = 113 Ω.

4.1.2.4 Additional Device Measurements

Here we present measurement results from another device in addition to the device of Fig. 4.3. The results

confirm that the measurement and analysis presented in this work are clearly reproducible despite the

difficult microwave measurement conditions detailed in Sec. 4.1.1.1, owing to the h-BN encapsulation of

graphene, one-dimensional edge contact, low temperature, and delicate microwave phase measurements.

Fig. 4.6 shows the additional device’s image and its DC 2-terminal resistance measurement result at

30 K. The device is relatively smaller (W = 3.5 µm, l = 8.9 µm) compared to the device of Fig. 4.3,

and shows a lower mobility of µC = 85, 000 cm2/Vs in the electron-doped region (Vb > Vb,0 = −2 V).

The hole-doped region (Vb < Vb,0) shows a much stronger asymmetric behavior compared to the device

of Fig. 4.3, and therefore we focus our analysis on the electron-doped region where it functions as a clean

graphene device.

Fig. 4.7 shows the results from microwave measurements performed with this device at 30 K. For

this device, bias voltage is applied on the S-lines of the CPWs via bias tees (Vg), while the back gate

was kept at the same DC potential as the top gate (Vb = 0). This means the charge density induced

on graphene is now expressed as n0 ≈ (Cb + Cg) /W × (Vg,0 − Vg) /e, as opposed to n0 ≈ Cb/W ×

(Vb − Vb,0) /e for the DC 2-terminal measurement. Cg/W is estimated to be roughly 0.22 fF/µm2

from the thicknesses of the top h-BN and the HSQ layer. The microwave measurement results seen
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Figure 4.8: Kinetic inductance per square, LkW (a), graphene to top-gate capacitance per area, Cg/W (b), total
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The solid curve in c is Rdev measured at DC (Fig. 4.6c) but with the x-axis inverted and rescaled according to the
ratio of the capacitance Cb relevant to the DC measurement of Fig. 4.6c, to the capacitance Cg + Cb relevant to
the DC biasing in the microwave measurements.

in Figs. 4.7b,c are qualitatively similar to those obtained from the device of Fig. 4.3, amenable to Lk

extraction.

Fig. 4.8 shows the device model parameters (Lk, Cg, and Rdev) extracted from the microwave mea-

surement data. The results are qualitatively and quantitatively very similar to the device of Fig. 4.3. In

the electron-doped region away from charge neutrality (Vg < Vg,0 = 1.2 V; note the inverted direction

due to the different biasing scheme in this measurement), extracted Cg stays nearly constant close to

the expected value, extracted Lk closely follows the theoretically expected curve, and Rdev extracted

from microwave measurements matches that measured at DC. The collective mass m∗c obtained from Lk

also closely follows the theoretically expected curve. This confirms that the measurement and analysis

presented in this work are clearly reproducible despite the difficult microwave measurement conditions

posed by in-graphene and contact resistances. The analysis in the following (Sec. 4.1.3) will be based on
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Figure 4.9: Lossy transmission line model for proximately gated graphene [16].

this device unless noted otherwise.

4.1.3 s-Parameters and Extraction of Lk

4.1.3.1 Phase Delay φ(Lk, C,R) and Device Design Implications

In Sec. 4.1.2, the propagation phase delay φ expressed in terms of Lk, C, and R provided the key

device design guideline (encapsulation of graphene with top and bottom h-BN layers, and proximate top

gating) to enable the Lk measurement. Here we derive this φ expression, and elaborate more on the

design guideline. As the electron scattering severely interferes with Lk measurement, we consider the

full graphene transmission line model of Fig. 4.1d, including per-unit-length resistance R modeling the

electron scattering effect. For convenience, this lossy transmission line is re-produced in Fig. 4.9.

Let a wave of a microwave angular frequency ω propagating on the graphene transmission line be

represented by the phasor e−γz with the complex propagation factor γ = α + iβ (α, β are real). γ’s

real part, α, captures the loss in the transmission line. Its imaginary part, β, is actually the plasmonic

wavenumber kp, as the wave in the graphene transmission line model considered here is the graphene

plasmonic wave. As was seen in Sec. 2.3.1, γ is related to the transmission line’s per-unit-length com-

ponents, Lk, C, and R, as

γ = α+ iβ =
√

(R+ iωLk)(iωC). (4.17)

The kinetic inductor’s quality factor Q = ωLk/R is smaller than 1. Even after we substantially reduce

R with the h-BN encapsulated structure and 30-K operation, Q ranges from 0.05 to 0.2 for the device of

Fig. 4.6 and from 0.2 to 0.8 for the device of Fig. 4.3, as frequency is varied from 10 to 50 GHz; with

graphene on a more standard substrate such as SiO2, R is far larger and Q is even smaller. Therefore,
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we can approximate4 the expression above to the first order of Q = ωLk/R as

α ≈
√
ωRC

2

(
1− 1

2

ωLk

R

)
β ≈

√
ωRC

2

(
1 +

1

2

ωLk

R

)
.

(4.18)

The total propagation phase delay through the graphene transmission line of length l is βl, and thus, the

per-unit-length phase delay φ is no more than β, and we express it as in Sec. 4.1.2.2:

φ ≈
√
ωRC

2︸ ︷︷ ︸
φ1

+

√
ω3

8

√
C

R
Lk︸ ︷︷ ︸

φ2

. (4.19)

As seen, while the first term φ1 is independent of Lk, the second term φ2 contains Lk, and thus, is of key

interest; incidentally, their ratio is given by

φ2

φ1
=

1

2

ωLk

R
=
Q

2
. (4.20)

As described in Sec. 4.1.2.2, decreasing R and increasing C are crucial for a given Lk to have

a more ‘measurable’ impact on the phase delay φ, whose information is essentially included in the

transmission coefficients s21 and s12, which will be discussed in more detail in Sec. 4.1.3.2. The R-

reduction proportionally improves φ2/φ1 = Q/2 and makes φ2 a more appreciable fraction of φ1,

by reducing φ1 and amplifying φ2. The C-enhancement keeps φ2/φ1 constant, but still increases φ2

itself. Taken together, the R-reduction and C-enhancement amplify φ2 beyond the phase measurement

error, which we call φe, caused by the imperfect calibration and non-ideal parasitic signal de-embedding.

Now, the criterion φ2 > φe we have focused right above is necessary but not sufficient for Lk extraction.

∆φ2 > φe must be also satisfied, where ∆φ2 is the variation of φ2 corresponding to a targetLk extraction

accuracy (resolution) ∆Lk, i.e., ∆φ2 =
√
ω3/8

√
C/R∆Lk. To meet this additional criterion, we have

to maximize ∆φ2/∆Lk = φ2/Lk ∝
√
C/R, which is also achieved by theR-reduction and C-increase;

in fact, the R-reduction and C-enhancement increased φ2 above, by increasing the proportionality factor
4The approximation, which may be numerically inaccurate near 50 GHz for the device of Fig. 4.3 due to its large mobility,

is used here to capture the most dominant effect affecting the measurements without complicating the algebra. However, no
approximation is used in the extraction procedure (Sec. 4.1.3.3) to ensure accuracy.
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√
C/R.

To substantially reduce R, we interface graphene with h-BN layers on both the top and bottom sides,

and to obtain extra R-reduction, we also lower the operation temperature to 30 K in our experiment. The

C-enhancement is achieved by the proximate top gating. As discussed in Sec. 2.1.2.1, with the distance

d between graphene and top gate being much smaller than graphene plasmonic wavelength λp = 2π/kp

(i.e., kpd � 2π, which is the case with our device), Cc of Fig. 4.9 is just the parallel plate capacitance,

Cc = κε0W/d, and with the effect of Cq negligible, C = Cc = κε0W/d. This is much larger than the

capacitance of ungated graphene5 2κε0kpW because kpd � 2π. We can indefinitely increase C of our

gated structure by keeping reducing d, but we stop at a certain point; in fact, we placed the extra layer

of HSQ in addition to the top h-BN layer between graphene and top gate so that d is not too small. This

is because with too large a C value, the attenuation constant α ∝
√
C of Eq. (4.18) would become too

excessive, causing a significant attenuation. The C value chosen in our work is large enough to enable

Lk extraction, but not so large so that we can maintain mild attenuation; αl ≈ l
√
ωRC/2 ranges around

0.1 ∼ 2, depending on frequency ω and graphene bias Vg, as far as we keep away from the neutrality

point, e.g., up to Vg ∼ 0.6 V for the device of Fig. 4.6.

4.1.3.2 Detailed Analysis of s21-Parameters

To confirm that the C-enhancement and R-reduction indeed make the measured s-parameters amenable

to Lk extraction, we analyze in details the measured transmission (s21) parameters in Fig. 4.7c in con-

junction with simulations. In the foregoing section, we discussed the impact of the C-enhancement and

R-reduction not on s21’s phase (∠s21), but on the propagation phase delay φl. These two phase quantities

are not exactly the same, because ∠s21 takes into account not only φl, but also the phase change incurred

by the reflection at the CPW-graphene interface6. Nonetheless, the behavior of φl is strongly reflected

in ∠s21, and thus, the impact of C-enhancement and R-reduction on φl should be also distinctively ob-

served from ∠s21. With this understanding, in the analysis of the s21 parameters here, our language will
5In either our top gated case or the ungated case imagined here with our device, the back gate unconnected to the G lines

of the CPWs in our device is irrelevant as far as the microwave signaling is concerned, thus the capacitance Cb associated with
the back gate does not come into our consideration here.

6More concretely, s21 can be approximated as the following, after ignoring multiple reflection effects and contact effects
for simplicity [59]:

s21 ≈ 4R0Z0

(R0 + Z0)2
e−αle−iβl. (4.21)
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not be too rigorous in distinguishing the two phase quantities; we seek to present the essence instead of

the most rigorous analysis that complicates algebra.

To appreciate the impact of the C-increase and R-reduction on our ability to extract Lk, we com-

pare the measured s21-parameters to the s21-parameters simulated under various scenarios. For the s-

parameter simulation, we use Sonnet frequency-domain electromagnetic field solver, where the graphene

is modeled as a two-dimensional conductor where its resistive and kinetic inductive impedances enter as

simulation parameters. Its capacitance (and negligible magnetic inductance) is attained as part of the

simulation outcome. Electromagnetic waves in the frequency range of 10-50 GHz are launched onto

the CPWs in the simulator; the simulated response of the graphene device is recorded in terms of s-

parameters at each frequency.

1. Reconstruction of the measured s21 of Fig. 4.7c: Fig. 4.10a shows ∠s21 (solid curves) and |s21|

(dashed curves) simulated for our top-gated, h-BN encapsulated graphene device. This simulation

is done with three sets of Lk and R values, extracted7 from the measured s-parameters—whose

s21 is in Fig. 4.7c—at three different graphene bias (Vg) values. The simulated s21 of Fig. 4.10a is

almost identical to the measured s21 of Fig. 4.7c. We can also examine the current distribution in

the CPWs and graphene; a simulated graphene-layer current distribution example corresponding to

the red curves of Fig. 4.10a at 50 GHz is presented in Fig. 4.10b, visualizing the signal propagation

from the left CPW through graphene to the right CPW with attenuation.

2. Lk’s contribution to s21: The dark-colored simulated s21 curves of Fig. 4.10c are the repetition of

Fig. 4.10a, but the light-colored s21 curves of Fig. 4.10c are simulated after removing Lk from the

impedance parameter of graphene used in the simulation. The appreciable change in ∠s21 curves

after removing Lk at each bias reflects that the Lk-bearing φ2 term is a measurable fraction of the

Lk-independent φ1 term. This is owing to the reduced R and increased C in our device.

Here R0 = 50 Ω is the characteristic impedance of the measurement environment, and Z0 is the characteristic impedance of
the lossy graphene transmission line,

Z0 =

√
R+ iωLk

iωC
≈
√

R

2ωC

[(
1 +

1

2

ωLk

R

)
− i

(
1 − 1

2

ωLk

R

)]
. (4.22)

where the last expression is an approximation to the first order of Q = ωLk/R. As can be seen, ∠s21 is not just φl = βl but
includes the phase change associated with the reflection, captured by the complex factor 4R0Z0/(R0 + Z0)2.

7The extraction procedure will be fully detailed in Sec. 4.1.3.3.
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Simulated current density distribution in the graphene layer at 50 GHz in the red-colored case of a. c, Dark-colored
curves are identical to a; light-colored curves are simulations without Lk in otherwise the same situation as a. d,
Simulation results after removing the top gate from the case of c. e, Simulation results after increasing R by 5
times at each bias from the case of d (i.e., RW is 700 Ω [blue], 1, 000 Ω [green], and 1, 850 Ω [red] per square).
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3. Impact of C-increase in our device: The s21 curves in Fig. 4.10d are simulated after removing

the proximate top gate (thus with decreased C) in otherwise the identical simulation settings as

Fig. 4.10c. As seen in Fig. 4.10d, even with the lowerC,∠s21 curves before and after removingLk

at any given bias exhibit an appreciable difference, because C does not affect φ2/φ1 (Eq. (4.20)).

On the other hand, with C reduction, the progression of ∠s21 with frequency (and thus ∠s21

itself) substantially decreases, as can be seen by comparing dark ∠s21 curves between Fig. 4.10c

and Fig. 4.10d. Consequently, without the top gate, the variation of∠s21 with varying values of Lk

due to different graphene biases reduce to∼ 1◦ even at the highest frequency (dark ∠s21 curves of

Fig. 4.10d), while the phase measurement accuracy φe in our microwave measurement is typically

limited to ∼ 1◦ at best, due to the (inherently) imperfect calibration and non-ideal parasitic signal

de-embedding8. This shows how the top gating and consequently larger C in our device enables

Lk extraction.

4. Impact of R-reduction in our device: The s21 curves of Fig. 4.10e are simulated without top

gating, just as in the case of Fig. 4.10d, and now also with 5 times larger R value at each bias to

emulate the situation of graphene interfaced with a more standard substrate (e.g., SiO2/Si) and thus

with reduced mobility. The already bad situation of Fig. 4.10d is now even worsened in Fig. 4.10e,

where the dark-colored∠s21 curves with Lk and light-colored∠s21 curves without Lk at each bias

become close with difference ∼ 1◦ even at the highest frequency. This simulation demonstrates

how the smaller R in our device helps Lk extraction.

5. Behavior of |s21|: So far we have focused on ∠s21, but |s21| is also of importance. As can be seen

in and across Figs. 4.10c,d, |s21| is hardly affected by Lk or C, but is almost solely determined

by R. Specifically: when Lk is removed, |s21| at a given bias remains almost the same in either

Fig. 4.10c or Fig. 4.10d; with differing C values between Figs. 4.10c and d, |s21| at a given bias

also remains practically the same; by contrast, both Figs. 4.10c and d show that with increasing

R with the varying graphene bias, |s21| conspicuously decreases. This R dependency of |s21| can

be also seen by comparing Figs. 4.10c,d with Fig. 4.10e; with the 5 times larger R at any given

bias, |s21| in Fig. 4.10e is conspicuously smaller than |s21| in Figs. 4.10c,d. Too small a value of

8Section 4.1.3.5 will present our experiment with an ungated graphene device, demonstrating the exceeding difficulty in Lk

extraction from the s-parameters in the ungated case.
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Figure 4.11: Simulated∠s11 (solid curves) and |s21| (dashed curves) with and withoutLk (dark and light-colored),
which corresponds to the dark and light red-colored simulated s21 curves of Fig. 4.10c [16].

|s21| as in Fig. 4.10e (or near the charge neutrality point not discussed in this section) makes the

de-embedding of graphene-bypassing parasitic signal highly error-prone, leading to spurious Lk,

as will be discussed in Sec. 4.1.3.3. This is another reason why we should reduce R, hence the

necessity of our h-BN graphene interface.

In the above, we have shown how reduced R and increased C allow Lk to exert a more measurable

impact on s21. However, this does not mean that Lk can be extracted solely from s21 (and s12)9. While

s21 certainly carries the information on Lk, Lk cannot be determined separately from C with s21 alone,

because the effects of Lk and C are mixed in ∠s21, and they have little impact on |s21|. To determine Lk

and C separately, we also need the reflection parameter s11 (and s22).

We can see the effects of Lk and C on s11 from the Sonnet electromagnetic simulation of our top-

gated, h-BN encapsulated graphene device; Fig. 4.11 shows the simulated s11 with and without Lk (dark

and light-colored, respectively), which correspond to the dark and light red-colored simulated s21 curves

of Fig. 4.10c. By comparison, we can see that while Lk and C had an additive effect on ∠s21 (they

both increased ∠s21), they have a subtractive effect for ∠s11 (C increases ∠s11 but Lk decreases ∠s11).

Therefore, by combining ∠s21 and ∠s11 measurements, Lk and C can be separately determined.
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Figure 4.12: Model used for fitting to the measured s-parameters [16]. Corresponding transmission matrix repre-
sentation is shown below. Here, ξ = l

√
(R+ iωLk)(iωC) [dimensionless], Z0 =

√
(R+ iωLk)/(iωC) [Ω], and

Z1,2 = (Rcon,1,2 + iωLug,1,2)||(1/iωCcon,1,2) [Ω]. R, Lk, and C are per-unit-length variables whereas Rcon,1,2,
Lug,1,2, and Ccon,1,2 are lumped variables.

4.1.3.3 Device Parameter Extraction Procedure

Figure 4.12 shows the graphene transmission line model, plus the models for the left and right graphene

contacts with the CPWs’ S-lines. The left [right] contact model consists ofRcon,1 [Rcon,2] accounting for

the contact resistance as well as the resistance of the small ungated graphene region near the left [right]

contact seen in Figs. 4.3 or 4.6, Lug,1 [Lug,2] accounting for the kinetic inductance of the small ungated

graphene region on the left [right], and capacitance Ccon,1 [Ccon,2] due to the small segment of the left

[right] S-line edging over graphene. For a given set of model parameters (Lk, C,R and the contact model

component parameters), we calculate the s-parameters using the transmission matrix method [25]; this is

a precise calculation, contrasting the approximate calculations that appeared in Secs. 4.1.3.1 and 4.1.3.2

to illustrate the physics of the measurement in a simple manner. The calculated model s-parameters

consist of 8 sets of curves (real and imaginary parts of s11, s21, s12, and s22) that span the frequency

range of 10-50 GHz. To determine Lk as well as other model parameters at a given bias, we repeat the

calculation by altering the model component parameters until the calculated model s-parameters best

fit the measured s-parameters in the sense of least square curve fit, by using ‘lsqcurvefit’ function of

MATLAB. This procedure is repeated at each bias voltage.

This optimization procedure requires a set of initial guesses for each model parameter. To ensure no

arbitrariness, the same set of initial guesses were used across all the different sets of measurement data
9If our device is perfectly reciprocal, s21 = s12; in reality, the perfect reciprocity is somewhat compromised, because the

left and right contacts can behave differently.
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Figure 4.13: Measured (black) vs. fitted (blue) s-parameters for the device data of Fig. 4.8 at Vg = 0.6 V
(30 K) [16]. Gray s-parameter curves obtained with the initially-guessed model parameters evolve to the blue
curves as the optimization proceeds.

taken at varying bias voltages and temperatures for both device of Figs. 4.3 and 4.6. These initial guesses

are also very generic, taking values such as LkW = 50 pH, Rl = 500 Ω, and Cl = 1 fF. The fitting

results are insensitive to the initial guesses; for instance, providing initial values 10∼20 times away from

the actual values does not alter the end result. The maximum and minimum bounds of the optimization

range for each model parameter, also needed by the ‘lsqcurvefit’ function, were set well away from

the parameter’s expected end value to ensure no interference with the arbitrarily set boundaries (e.g.

5 Ω ≤ Rl ≤ 50, 000 Ω, 0.5 pH ≤ LkW ≤ 5000 pH, 0.01 fF ≤ Cl ≤ 100 fF, etc.). These initial

guesses and upper/lower bounds basically serve as a rough estimate of the order of magnitude that the

parameters are expected to take for the ‘lsqcurvefit’ function to facilitate the curve fitting.

As an example, the final curve fits for the device data of Fig. 4.8 at Vg = 0.6 V (30 K) are shown in

Fig. 4.13. The final model s-parameters almost exactly match the measured s-parameters, attesting to the

physical validity of the model of Fig. 4.12. The fluctuations in the measured s-parameters in the higher

frequency regions are due to residual parasitic signals and calibration errors; as these are not modeled by

Fig. 4.12, the model s-parameters do not generate such fluctuations. Device parameters so extracted are

the Vg = 0.6 V (30 K) data points in Fig. 4.8. The rest data points of Fig. 4.8 as well as Fig. 4.5 were

obtained through exactly the same procedure.
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Figure 4.14: Measured (black) vs. fitted (blue) s-parameters for the device data of Fig. 4.8 at Vg = 1.2 V
(30 K) [16].

4.1.3.4 Extraction Error Analysis

As seen in Figs. 4.5 or 4.8, the extracted Lk value deviates substantially from the theory near the charge

neutrality point. In this regime, R is very large, and the transmission through graphene is substantially

lowered. Therefore, the raw s21 and s12 before removing the graphene-bypassing parasitic signal are

dominated by the parasitic signal itself, rendering the parasitic-signal-de-embedded s21 and s12 highly

distorted with residual parasitic signal. Since our model in Fig. 4.12 does not take into account this resid-

ual parasitic signal, the final (best optimized with the least square curve fit) model s-parameters poorly

fit the distorted s-parameters. For example, Fig. 4.14 shows the finalized fitting for the s-parameters for

the device data of Fig. 4.8 at Vg = 1.2 V (30 K); the finalized model s21 and s12 exhibit conspicuous

deviation from the measured ones. This explains how the extracted Lk at Vg = 1.2 V (30 K) in Fig. 4.8

becomes spurious, causing its deviation from the prediction.

Even with the bias away from the charge neutrality point, at 296 K, the extracted Lk deviates from

theory (Fig. 4.5 or inset of Fig. 4.8). In this case, R is increased only by a few times compared to the 30-

K case, thus, the detrimental residual parasitic signal effect is not as significant as near charge neutrality

point, but the R-increase occurs for a fixed Lk, reducing both φ2 and φ2/φ1. Consequently, measured

s-parameters become once again more fraught with the measurement errors not modeled by Fig. 4.12,

rendering Lk extraction less accurate. The high sensitivity of our ability to reliably extract Lk onR stems
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Figure 4.15: Plots of e21(Vg) and e11(Vg) for the data corresponding to Fig. 4.8 [16].

from the fact that we are dealing with the sub-unit Q device.

We can quantify the fidelity of the curve fitting for a given type of s-parameter (e.g., s21) by summing

the magnitude squared of the residual s-parameter fitting error normalized by the measured s-parameters’

magnitude squared, over the measurement frequencies. This quantifies how well the model (Fig. 4.12) is

representing the measured data after the optimization. For s21, this measure will be given by

e21(Vg) =
∑
i

|s21,fitted(fi, Vg)− s21,measured(fi, Vg)|2

|s21,measured(fi, Vg)|2
, (4.23)

where the frequency fi runs over the measurement frequencies.

Figure 4.15 plots e21(Vg) and e11(Vg) for the data corresponding to Fig. 4.8 at 30 K and 296 K. We

first note that e11(Vg) is smaller than e21(Vg), as in our measurements, |s21| is much smaller than |s11|,

leaving s21 more prone to measurement errors. Next, we note that at 30 K, e21(Vg) is small away from

the charge neutrality point, but becomes very large near the charge neutrality point (note the logarithmic

scale); this is consistent with the degree of theory-measurement match of Lk shown in Fig. 4.8. The

worse theory-measurement match of Lk at 296 K as compared to 30 K (Fig. 4.8) in the bias region away

from the charge neutrality point is also consistently captured by the fact that e21(Vg) is larger for the 296

K data in this bias region. All in all, the fully consistent explanation of the sub-optimal-fitting in certain

bias and temperature regimes furthers our confidence in the extracted Lk values in the regime where the

fitting is optimal.

Figure 4.16 plots e21(Vb) and e11(Vb) calculated for the data corresponding to Fig. 4.5, showing very
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Figure 4.16: Plots of e21(Vb) and e11(Vb) for the data corresponding to Fig. 4.5 [16].

similar behaviors. Specifically: e21(Vb) is the smallest for the electron-doped region (Vb > Vb,0) at 30 K

where the extracted result was closest to the theory; e21(Vb) shows a spike the near charge neutrality

at both temperatures due to the distortion from parasitic signals; e21(Vb) is larger overall for the 296 K

data compared to the 30 K data due to the increase in R. Additionally, we can observe that e21(Vb) in

the hole-doped region (Vb < Vb,0) is conspicuously larger than that in the electron-doped region. This

suggests that the microwave measurement data taken in the hole-doped region are distorted in a way

that is inexplicable by the model of Fig. 4.12, leading to a larger residual error after the optimization.

Clean graphene device fabricated in an identical method [81] is expected to show a nearly symmetric in-

graphene resistivity characteristic but the contacts show a highly asymmetric behavior due to the work

function mismatch between the metal electrode and hole-doped graphene. Because hole-doped graphene

is expected to exhibit exactly the same kinetic inductance and therefore exactly the same model for its

microwave characteristics, we suspect that this distortion originates from the contact model of Fig. 4.12

not being an accurate representation of the device with hole-doped graphene. More study will be needed

to determine a high-frequency model for the one-dimensional edge contact of hole-doped graphene to

metal electrodes that can more accurately describe the measured data.

4.1.3.5 Experiments with Ungated Higher-Resistance Graphene

To further demonstrate how Lk measurement can fail without the strategies we employ (low graphene

resistance and top gating), we here present experiments with an ungated graphene device with greater
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Figure 4.17: DC resistance measurement of ungated graphene device [16]. a, Optical image of an ungated
graphene device. b, 2-terminal DC resistance measurement of the device at 296 K (inset: corresponding con-
ductivity estimate σ ≡ (Rdev/(l/W ))−1 normalized to e2/h).

resistance. The optical image of this device is shown in Fig. 4.17a, where the graphene strip (W =

4.1 µm, l = 18.4 µm) is visible. 2-terminal DC resistance measurement and analysis similar to those

for the device of Fig. 4.3 are performed at 296 K (Fig. 4.17b). Charge neutrality occurs at Vb = Vb,0 =

−6.6 V, with µC = 8, 000 cm2/Vs in the electron doped region (Vb > Vb,0) and µC = 26, 000 cm2/Vs

in the hole doped region (Vb < Vb,0). This is considerably lower than the device of Fig. 4.3, due both

to the higher temperature and poorer innate sample quality. We also note that the contact resistance of

∼ 2 kΩ in this device is several times worse than the device of Fig. 4.3. The back gate capacitance is

almost identical to the device of Fig. 4.3 (Cb = 0.12 fF/µm2).

Microwave s-parameter measurements are performed in the same manner as the other devices. The

DC biasing scheme for the microwave measurement is identical to the measurements in Fig. 4.7, but only

Cb = 0.12 fF/µm2 is relevant in determining n0 in this case, as top gate is absent and the aforementioned

ungated capacitance 2κε0kpW is irrelevant to DC biasing. The results reveal that the device response

suffers greatly from parasitic signals (Fig. 4.18) due to the lower mobility and higher contact resistance

in this device. Figs. 4.18a,b show measured |s21| and ∠s21 after calibration, but before removing the

parasitic signals. We see that at certain biases (Vg = 0 V), the device signal is almost completely buried

in parasitic signals, while in other biases the signal is increasingly affected by parasitic signals at high

frequencies where the parasitic signal magnitude is larger.

After de-embedding the parasitic signals (Figs. 4.18c,d), a substantial deformation occurs to the

measured ∠s21 (compare to Fig. 4.4c), especially on the Vg = 0 V data. Even the less distortion at

Vg = 10 V and 20 V is still quite detrimental. In addition, as graphene is not gated in this device, the
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Figure 4.18: s21 measurements of ungated graphene device [16]. a, |s21| before parasitic signal de-embedding. b,
∠s21 before de-embedding. c, |s21| after de-embedding. d, ∠s21 after de-embedding.
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substantial change in the graphene bias (red and green curves, Fig. 4.10d) that must cause an appreciable

change in Lk leads only to a small ∠s21 difference of only a few degrees at best, further hampering Lk

extraction. Device parameter extracted from these s-parameters are highly spurious (Fig. 4.19), with the

final curve fits for s-parameters plagued with large residual errors.

4.1.4 Appendix: Materials and Methods

We fabricated h-BN encapsulated graphene by mechanical exfoliation and polymer-free mechanical

transfer of h-BN single crystals and graphene through optical alignment [81]. High resistivity (>

5000 Ωcm) silicon wafers coated with 285-nm thick thermal oxide were used as the substrate to minimize

high-frequency substrate losses. Optical differentiation and Raman spectroscopy were used to confirm

that graphene is single layered. Contacts [81] and waveguides were created by thermal evaporation of

Cr/Pd/Au (1/10/300 nm) with dimensions defined by electron beam lithography and inductively coupled

plasma etching.

Measurements took place in a Lake Shore Cryotronics cryogenic probe station at feedback-controlled

temperatures in the dark. DC resistance measurements were performed using a Stanford Research Sys-

tems SR830 lock-in amplifier and a DL Instruments 1211 current preamplifier. Microwave s-parameter

measurements were performed using an Agilent E8364A vector network analyzer, where the calibration

was performed using the NIST-style multiline TRL technique [70] at each temperature just before the

measurement. The parasitic coupling bypassing the graphene device was measured on a separate device

with the identical CPW structures but with no h-BN encapsulated graphene, and was then de-embedded

from the measured s-parameters of the main device [14] (see Appendix A for details).

The design of the CPWs was performed using a Sonnet frequency-domain electromagnetic field

solver. The CPW dimensions were chosen to match the 50-Ω characteristic impedance of the network

analyzer, cables, and probes [14].
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4.2 Fluctuation and Collective Dynamics

In this section10, we theoretically study a microscopic formulation of thermal current fluctuation, or

Johnson-Nyquist noise, in graphene. While a conventional massive (m 6= 0) electron gas exhibits

equipartition form of fluctuation that increases linearly with temperature, it is shown that the current

fluctuation in graphene exhibits a more complicated dependency on temperature due to its unique band

structure. Nonetheless, the total collective current fluctuation is shown to obey the equipartition form

together with the collective mass or kinetic inductance of graphene electrons, implying that the collec-

tive current’s degree of freedom follows a massive equation of motion. Hence, we show an intimate link

between the fluctuation behaviors and the collective dynamics (including plasmonics) in graphene. This

observation can also be generalized to an arbitrary electron gas.

4.2.1 Introduction

Thermal agitation of electrons in a conductor creates spontaneous current fluctuations, or Johnson-

Nyquist noise [88, 89], whose power spectral density is SI(f) = 4kBTG (kB: Boltzmann constant;

T : temperature; G: conductance). Nyquist explained this formula with a macroscopic thought experi-

ment [89], where the thermal noise energy coupled to electromagnetic modes of an external transmission

line was considered with the equipartition theorem. The Johnson-Nyquist noise can also be explained

without considering external entities, but by directly considering the thermal motions of electrons. In this

microscopic approach [90], electrons (mass: m) are treated as classical particles following the Maxwell-

Boltzmann distribution, and the mean squared thermal fluctuation velocity vf (‘f’ notes fluctuation) of

each electron is set by the equipartition theorem: 〈v2
f 〉 = kBT/m × dimensions. The aggregate of this

electron velocity fluctuation causes the total current fluctuation 〈I2〉 ∝ T , from which SI(f) = 4kBTG

follows.

It is then of interest to study the microscopic machinery behind the thermal noise in graphene.

Graphene’s unique band structure causes a broad palette of surprising phenomena, for which the thermal

stochastic dynamics is not expected to be an exception. Concretely, as individual graphene electrons

act as massless relativistic particles [71], the equipartition theorem used in the traditional microscopic
10Large portions of this section are derived from a paper in publication by the author [17].
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approach cannot be applied and 〈I2〉 ∝ T will not hold. Moreover, the coexistence of electrons and

holes due to graphene’s zero-bandgap nature [71] can further enrich their fluctuation dynamics.

We will elucidate the unique thermal fluctuation behaviors of massless electrons (and holes) in

graphene, i.e., the nonlinear T -dependence of 〈v2
f 〉 and 〈I2〉, using a microscopic formalism based

on Fermi-Dirac statistics, as the traditional approach with Maxwell-Boltzmann statistics is fundamen-

tally limited. Despite the nonlinear T -dependence of 〈I2〉 in graphene, the fluctuation-dissipation theo-

rem [91] still demands SI(f) = 4kBTG [92, 93]; showing how this occurs will be a corollary.

While individual graphene electrons are massless, their collective excitation exhibits a Newtonian

inertia, which is essential for graphene plasmonics and has been measured recently [16]. We will unveil

that the thermal fluctuation dynamics has an intimate connection to this collective mass; i.e., 〈I2〉—

while arising from massless electrons—is given by the equipartition theorem applied to the collective

mass’s kinetic energy, with the nonlinear T -dependence of 〈I2〉 arising from the collective mass’s T -

dependence. Moreover, we will show that this fluctuation-collective-dynamics relation manifested in

〈I2〉 is so general that it applies to any conductor beyond graphene.

4.2.2 Microscopic Formulation of Thermal Fluctuations

To this end, we first formulate the thermal fluctuation of electron velocity 〈v2
f 〉 and the corresponding

total current fluctuation 〈I2〉 in a general conductor using Fermi-Dirac statistics. This formulation is

applicable to conductors in any dimensions, but for simplicity, we consider a two-dimensional (2D) con-

ductor, whether it be graphene with massless electrons or 2D conductors with massive (m 6= 0) electrons

(e.g., GaAs/AlGaAs quantum wells). An electron with a wavevector k assumes an intrinsic velocity of

vk: for a massive 2D electron gas, vk = ~k/m, where k ≡ |k| = (k2
x + k2

y)
1/2; for graphene with

massless electrons, vk = vF (constant). These intrinsic velocities, even existing at T = 0, by themselves

are not thermal velocity fluctuations but arise due purely to the quantum nature of the electron gas. The

thermal velocity fluctuation vf can be evaluated properly only if these intrinsic velocities are considered

judiciously together with the Fermi-Dirac thermal distribution of electrons, fk = 1/[e(εk−µ)/kBT + 1]

(εk: single electron energy; µ: chemical potential).

Note first that 〈v2
f 〉 must not be the average of v2

k across all electrons, (1/n)
∫

(d2k/(2π)2)gv2
kfk

(g: spin/valley degeneracy; n: electron density). This all-electron average includes electrons moving
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in opposite directions with the same velocity, whose velocities cancel and cannot contribute to current

fluctuations. Concretely, if a k-state and a−k-state sit deep below the Fermi surface with fk = f−k = 1,

each of these states is surely occupied by an electron, and these two electrons do not contribute to current

fluctuation; yet the all-electron average counts many such non-contributing pairs. Also note that the

all-electron average does not vanish at T = 0, whereas 〈v2
f 〉 must at T = 0.

To evaluate 〈v2
f 〉, we only consider electrons whose velocities are not canceled. The probability that

a k-state is occupied and a −k-state is not occupied is fk(1− f−k), and thus 〈v2
f 〉 can be calculated as

〈v2
f 〉 =

1

n

∫
d2k

(2π)2
gv2

kfk(1− f−k), (4.24)

where the electron density n is

n =

∫
d2k

(2π)2
gfk. (4.25)

Assuming εk = ε−k, fk(1− f−k) can be rewritten as

fk(1− f−k) =
∂fk

∂(µ/kBT )
= − ∂fk

∂(εk/kBT )
, (4.26)

which we will make use of later. At low T , since fk(1−f−k) in k-space peaks around the Fermi surface

with a vanishing width for T → 0, 〈v2
f 〉 vanishes at T = 0, as it should. Note that, for graphene, while

each electron has the constant velocity (vk = vF), Eq. (4.24) shows that 〈v2
f 〉 6= v2

F, as 〈v2
f 〉 is determined

not solely by vk = vF, but also by the probability distribution fk(1 − f−k). We will calculate 〈v2
f 〉 for

graphene shortly.

〈v2
f 〉 leads to the total current thermal fluctuation 〈I2〉. Consider a 2D conductor strip of width W

and length l along the x axis, and let 〈I2〉 be measured along the length. Then only the x-component

of vf , or vf,x, contributes to the overall current fluctuation. Since a single electron would contribute a

fluctuation current of (evf,x/l)
2, and since there are a total of nWl electrons,

〈I2〉 = nWl
e2

l2
〈v2

f,x〉 = ne2W

l
〈v2

f,x〉, (4.27)

where 〈v2
f,x〉 = 〈v2

f 〉/2 follows from angular integrations.

SI(f) readily follows from 〈I2〉. The autocorrelation of the stationary process I is [94] 〈I(0)I(t)〉 =
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〈I2〉e−|t|/τ (τ : Drude scattering time), because electron scatterings randomize initial momenta at an av-

erage rate of 1/τ . It is in this step that the relation between the thermal fluctuation and the dissipative be-

havior is established. The single-sided power spectral density is then SI(f) = 4
∫∞

0 dt〈I(0)I(t)〉 cos(ωt)

with ω = 2πf , or,

SI(f) = 4〈I2〉 τ

1 + ω2τ2
. (4.28)

To check the cogency of this formalism, we first apply it to a massive 2D electron gas, as the result

can be compared to the traditional approach [90] valid for massive electron gas. Using εk = ~2k2/2m,

vk = ~k/m, Eqs. (4.25) and (4.26), and 〈v2
f,x〉 = 〈v2

f 〉/2 in Eq. (4.24), we find

〈v2
f,x〉 =

kBT

m

∫∞
0 dξξ ∂

∂ηf(ξ − η)∫∞
0 dξf(ξ − η)

, (4.29)

where ξ ≡ εk/kBT , η ≡ µ/kBT , and f(ξ) ≡ 1/(eξ + 1). Using
∫∞

0 dξξsf(ξ − η) = −Γ(1 +

s)Li1+s(−eη), where Γ(z) is the gamma function and Lin(z) =
∑∞

k=1 z
k/kn is the polylogarithm

function, we reduce Eq. (4.29) to

〈v2
f,x〉 =

kBT

m

∂
∂ηLi2(−eη)
Li1(−eη) =

kBT

m
, (4.30)

where we have used d
dxLin(x) = 1

xLin−1(x). This is consistent with the traditional approach [90] based

on Maxwell-Boltzmann statistics, where Eq. (4.30) results from the equipartition theorem. Eq. (4.27)

then yields

〈I2〉 =
ne2

m

W

l
kBT. (4.31)

In sum, for a massive electron gas, our general approach and the traditional approach agree; impor-

tantly, 〈v2
f,x〉 ∝ T and 〈I2〉 ∝ T . Incidentally, Eq. (4.28) then yields SI(f) = 4kBT [(ne2τ/m)(1 +

ω2τ2)−1](W/l), where the real part of the Drude conductivity σ = (ne2τ/m)/(1 + iωτ) appears inside

the square brackets. As the real part of σW/l is G, we arrive at SI(f) = 4kBTG.

4.2.3 Fluctuations in Graphene

We now apply the formalism to graphene with εk = ±~vFk and vk = vF [3]. This constant vk of

massless individual electrons and holes will lead to a nonlinear T -dependency of 〈v2
f,x〉 and 〈I2〉, sharply
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Table 4.1: T -dependence of µ and η for a fictitious graphene with conduction or valence band only (Fig. 4.20), or
for the actual graphene with both bands (Figs. 4.21 and 4.22) [17].

T = 0 T →∞
Band Constraint µ η µ η

Conduction only ne εF +∞ −∞ −∞
Valence only nh −εF −∞ +∞ +∞

Conduction and valence ne − nh ±εF ±∞ 0 0

contrasting the linear T -dependency of the massive case. The coexistence of electrons and holes further

enriches the thermal fluctuation behaviors. For graphene, 〈v2
f,x〉 and n are calculated separately for

electrons in the conduction band and for holes in the valence band (‘e’: electrons, ‘h’: holes):

〈v2
ef,x〉 =

v2
F

2

Li1(−eη)
Li2(−eη) , 〈v

2
hf,x〉 =

v2
F

2

Li1(−e−η)
Li2(−e−η) , (4.32)

ne =
−g(kBT )2

2π(~vF)2
Li2(−eη), nh =

−g(kBT )2

2π(~vF)2
Li2(−e−η). (4.33)

Here, fk = f(ξ + η) and fk(1 − f−k) = −(∂/∂η)fk = −(∂/∂ξ)fk are used for the distribution of

holes.

To first see the massless effect without the complication from the electron-hole coexistence, consider

a fictitious graphene with the conduction band only (electrons only) with εk = ~vFk. The T -dependency

depends on whether the chemical potential µ or electron density ne is fixed for varying T . We consider

the constant ne case, as it is practically achieved with electrostatic gating. Then ne = constant condition

[Eq. (4.33)] determines µ(T ) with µ(0) = εF = ~vF

√
4πne/g > 0 [Table 4.1]. With this particular

µ(T ), 〈v2
ef,x〉 first grows linearly with T just as in the massive case, but eventually saturates to v2

F/2,

drastically deviating from the persistent linear T -dependence of the massive case [Fig. 4.20].

This low-T similarity, high-T difference between the massless and massive case can be explained

with Eq. (4.24). For kBT � εF, fk(1 − f−k) peaks sharply around the Fermi surface, so vk = vF for

graphene coincides with vk ≈ vF for the massive case, while this peak’s width grows linearly with T . So

Eq. (4.24) is linear to T in both massless and massive cases. For kBT � εF with µ→ −∞ [Table 4.1],

in the conduction band, fk(1−f−k) ≈ fk ≈ e−(εk−µ)/kBT is the far tail of the Fermi-Dirac distribution.

So v2
k = v2

F (massless) and v2
k ∝ k2 (massive) makes a difference in Eq. (4.24); in the former, 〈v2

ef,x〉
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Figure 4.20: T -dependence of 〈v2f,x〉 for fictitious conduction-band-only graphene with constant ne, or valence-
band-only graphene with constant nh [17]. Inset: the same plot, log scales.

saturates; in the latter, 〈v2
ef,x〉 ∝ T persists.

We can also consider a fictitious graphene with the valence band only (holes only) with εk = −~vFk.

In this case, nh = constant [Eq. (4.33)] determines µ(T ) with µ(0) = −εF < 0 [Table 4.1]. The

resulting T -dependence of 〈v2
hf,x〉 is exactly the same as that of 〈v2

ef,x〉 [Fig. 4.20].

Now consider the actual graphene with both the conduction and valence bands. Let graphene be

electron-doped at T = 0 and the total charge density ∝ ne(T )−nh(T ) be kept constant via electrostatic

gating. µ(0) = εF = ~vF

√
4πne(0)/g > 0, nh(0) = 0, and ne(T )− nh(T ) = ne(0) for any T . Using

ne(T ) and nh(T ) from Eq. (4.33), this last expression can be rewritten as

g(kBT )2

2π(~vF)2
[−Li2(−eη) + Li2(−e−η)] = ne(0). (4.34)

Eq. (4.34) determines µ(T ) [Table 4.1]. µ = 0 for T → ∞, which contrasts the electron- or hole-only

case, because ne and nh grow increasingly similar with T (ne/nh → 1) despite their fixed difference.

〈v2
ef,x〉 and 〈v2

hf,x〉 are still given by Eq. (4.32), but due to the new µ(T ), T -dependence of 〈v2
ef,x〉 and

〈v2
hf,x〉 [Fig. 4.21] now deviates from Fig. 4.20.

〈v2
ef,x〉 is still linear to small T , as the actual electron-doped graphene in this regime is no different

from the fictitious, electron-only graphene. For T → ∞, 〈v2
ef,x〉 also saturates, but to (6 ln(2)/π2)v2

F

instead of v2
F/2, because µ(T →∞) = 0 now, while µ(T →∞)→ −∞ in the electron-only graphene.
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assuming constant charge density (i.e., ne − nh = constant) [17].

〈v2
hf,x〉 in Fig. 4.21 more drastically differs from Fig. 4.20, as we start from an electron-doped graphene.

The small number of holes in the valence band at low T are at the far tail of the Fermi-Dirac distribution

(similar to the T → ∞ case of Fig. 4.20), so 〈v2
hf,x〉 → v2

F/2 for low T . For large T , µ → 0, so 〈v2
hf,x〉

approaches (6 ln(2)/π2)v2
F just like 〈v2

ef,x〉. In a similar manner, the T -dependencies for a hole-doped

graphene are exactly the same as seen above but with the roles of electrons and holes reversed.

These unique behaviors of 〈v2
ef,x〉 and 〈v2

hf,x〉 yield a unique T -dependence of 〈I2〉. As electron and

hole current fluctuations are independent, Eq. (4.27) is now 〈I2〉 = (We2/l)[ne〈v2
ef,x〉+ nh〈v2

hf,x〉], or

〈I2〉 =
ge2W

4π~2l
(kBT )2[−Li1(−eη)− Li1(−e−η)], (4.35)

using Eqs. (4.32) and (4.33). Figure 4.22 plots 〈I2〉 vs. T with µ(T ) set by Eq. (4.34). At low T , as

ne(T ) ≈ ne(0), nh(T ) ≈ 0, and 〈v2
ef,x〉 ∝ T , we have 〈I2〉 ∝ 〈v2

ef,x〉 ∝ T (or electrons/holes reversed

for a hole-doped graphene). At high T , as both 〈v2
ef,x〉 and 〈v2

hf,x〉 converge to (6 ln(2)/π2)v2
F, and as

both ne and nh grow with T 2 (see Eq. (4.34) with µ = 0 for T → ∞), 〈I2〉 ∝ (ne + nh) ∝ T 2. In

sum, the massless-ness of electrons and holes and their coexistence in graphene yield unique thermal

fluctuation dynamics. In particular, 〈v2
ef,x〉, 〈v2

hf,x〉, and 〈I2〉 vary nonlinearly with T , contrasting the

linear T -dependence in massive electron gases.
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Incidentally, graphene intraband conductivity is [31]

σ =
−ge2kBT

4π~2(τ−1 + iω)

∫ ∞
0

dξξ
(∂f(ξ − η)

∂ξ
− ∂f(−ξ − η)

∂ξ

)

=
ge2kBT

4π~2(τ−1 + iω)
[−Li1(−eη)− Li1(−e−η)], (4.36)

where the conduction and valence band contributions are separated. Comparing the real part of the above

with Eq. (4.35) and noting that Re[σW/l] = G, we attain 〈I2〉 = kBTG(1 + ω2τ2)/τ . By plugging this

into Eq. (4.28), we arrive at SI(f) = 4kBTG. Despite the distinct T -dependence of 〈I2〉 in graphene, as

σ shows the same T -dependence except for the kBT factor, the Johnson-Nyquist noise expression still

holds. This is how the fluctuation-dissipation relation [91] manifests in graphene.

4.2.4 Fluctuation and Collective Dynamics

We now make a fundamental observation on the intimate relation between the thermal fluctuation 〈I2〉

and collective dynamics (first for graphene, then generally). To this end, we first briefly discuss the

collective motion of graphene electrons [16], while setting aside the fluctuation. Imagine graphene elec-

trons collectively moving due to a voltage V . Individual electrons’ velocity vF remains constant, but

their wavevectors change by ∆x̂. The total kinetic energy of the electron gas has then grown by an
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amount Ee. It can be shown that Ee assumes a smooth minimum at ∆ = 0 for graphene, i.e., Ee ∝ ∆2

for small enough ∆ [16]. On the other hand, the collective momentum Pe ∝ ∆. Hence, Ee ∝ P 2
e

and the collective motion exhibits a Newtonian inertia Me satisfying Ee = P 2
e /(2Me), while individual

electrons are massless.

Thus Me accelerates according to the Newton’s law, increasing its velocity Vec ≡ Pe/Me. The

frequency-domain equation of motion is−(neWl)(eV/l) = iωMeVec. As the current is Ie = −neeWVec,

V/Ie = iω[Me/(eneW )2] = iωLek, yielding the kinetic inductance of the electron gas. Noting that the

same holds true for holes,

Lek = (e2n2
eW

2)−1Me, Lhk = (e2n2
hW

2)−1Mh. (4.37)

That is, the collective acceleration can be described usingMe (Mh) or intimately related Lek (Lhk). Note

that Ee = MeV
2

ec/2 = LekI
2
e /2 and Eh = MhV

2
hc/2 = LhkI

2
h/2.

We can find the expressions of Lek and Lhk in graphene from Eq. (4.36). As ωLk = Im[l/σW ], we

have

Lk =
4π~2

ge2kBT

1

[−Li1(−eη)− Li1(−e−η)]
l

W
. (4.38)

This is the overall kinetic inductance combining Lek and Lhk in parallel as L−1
k = L−1

ek + L−1
hk , with

Lek =
−4π~2

ge2kBT

l/W

Li1(−eη) , Lhk =
−4π~2

ge2kBT

l/W

Li1(−e−η) . (4.39)

In the collective dynamics discussed above, we set aside the fluctuation problem. In fact, graphene

plasmonic waves—a non-fluctuation (non-stochastic) event—can occur owing to the kinetic inductance

and collective mass, which have been recently measured in graphene [16]. We now turn back to the

fluctuation problem and find its deep-seated connection to the collective dynamics.

Comparing the total current fluctuation 〈I2〉 [Eq. (4.35)] to the total kinetic inductanceLk [Eq. (4.38)]

yields
1

2
Lk〈I2〉 =

1

2
kBT. (4.40)
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This can be broken into electron and hole contributions:

1

2
Lek〈I2

e 〉 =
1

2
kBT,

1

2
Lhk〈I2

h〉 =
1

2
kBT, (4.41)

as 〈I2〉 = 〈I2
e 〉+ 〈I2

h〉 and L−1
k = L−1

ek +L−1
hk . Or equivalently, in terms ofMe andMh, and their thermal

velocity fluctuations 〈V 2
ec〉 and 〈V 2

hc〉,

1

2
Me〈V 2

ec〉 =
1

2
kBT,

1

2
Mh〈V 2

hc〉 =
1

2
kBT. (4.42)

Eqs. (4.40), (4.41), and (4.42) are the same statement on the intimate relation between thermal

fluctuations and collective dynamics. Although individual graphene electrons and holes act as massless

relativistic particles, their thermal fluctuations are governed by the classical kinetic energies of the col-

lective electron mass Me and of the collective hole mass Mh, with each receiving a thermal energy of

kBT/2, satisfying the equipartition theorem [Eq. (4.42)], thus determining the collective velocity ther-

mal fluctuations 〈V 2
ec〉 and 〈V 2

ec〉. These directly translate to the thermal current fluctuations of electrons

and holes, 〈I2
e 〉 and 〈I2

h〉 [Eq. (4.41)]. Eq. (4.40) expresses this most concisely; the total current thermal

fluctuation 〈I2〉 is determined by the total kinetic inductance storing an average collective kinetic energy

of kBT/2.

Eq. (4.40) holds even for the massive electron gas; Eq. (4.31) has the same form as Eq. (4.40),

as (m/ne2)(l/W ) is the kinetic inductance of massive electron gas, as well known from the Drude

model. However, the energy equipartition for the collective kinetic energy in the massive case is less

surprising, as each electron already follows equipartition and the collective mass is their simple aggregate

(M = nWlm). In sum, in both massless and massive cases, 〈I2〉 arises from the unified equipartition

form of Eq. (4.40) applied to the collective kinetic energy stored in kinetic inductance (or collective

mass). Importantly, despite the innocuous appearance of 〈I2〉 = kBT/Lk [Eq. (4.40)], in the massless

case, Lk is decisively temperature dependent [Eq. (4.38)]; this is the key to the unique nonlinear T

dependence of 〈I2〉 in graphene. In the massive electron gas, Lk is independent of T , thus, 〈I2〉 ∝ T .

In fact, Eq. (4.40), which we write here again—as the key result—with emphasis on the T -dependence

of Lk,
1

2
Lk(T )〈I2〉 =

1

2
kBT, (4.43)
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holds for any conductor regardless of the individual electron’s energy dispersion (massive, massless, non-

constant mass) and conductor dimensions. To demonstrate, we write the conductivity along the x-axis in

a b-th band (note subscripts ‘b’ in the equations below) in a d-dimensional conductor with a general εk

(or vk) [30]:

σb =
e2

τ−1
b + iω

∫
ddk

(2π)d
gv2
bk,x

(
− ∂fk
∂εbk

)
. (4.44)

In graphene, this reduced to either the electron or hole term in Eq. (4.36). Thus, the corresponding kinetic

inductance Lbk = ω−1Im[l/σbW ] is given by:

Lbk =

[
e2

∫
ddk

(2π)d
gv2
bk,x

(
− ∂fk
∂εbk

)]−1
l

W
. (4.45)

On the other hand, the mean squared electron velocity fluctuation along the x-axis in the b-th band is

〈v2
bf,x〉 =

kBT

nb

∫
ddk

(2π)d
gv2
bk,x

(
− ∂fk
∂εbk

)
, (4.46)

where we have used Eqs. (4.24) and (4.26). Comparing the two equations above, we note 〈v2
bf,x〉 =

(kBT/e
2nb)(1/Lbk)(l/W ), then 〈I2〉 =

∑
b(e

2nbW/l)〈v2
bf,x〉 = kBT

∑
b(1/Lbk). But as the total

kinetic inductance is Lk = [
∑

b(1/Lbk)]−1, we arrive at 〈I2〉 = kBT/Lk, which is Eq. (4.43).

In sum, regardless of the inner structure for individual electrons, their collective excitation exhibits

a definite collective mass and corresponding kinetic inductance Lk(T ), with thermal current fluctuation

〈I2〉 determined by applying the equipartition theorem to the collective kinetic energy stored in Lk(T )

[Eq. (4.43)]. The detailed inner structure determines the specific T -dependency of Lk(T ), and thus 〈I2〉

has a unique T -dependence reflecting the internal nature of the conductor.

As a final remark, we note that 〈I2〉 =
∫∞

0 dfSI(f) assumes a finite value regardless of τ , even in

the lossless case with τ → ∞ (i.e., G = 0) [Eq. (4.28)]; cf. SI(f) = 4kBTG. That is, 〈I2〉 = kBT/Lk

holds with or without loss, as Eq. (4.46) makes no connection to electron scatterings. In this sense,

〈I2〉 = kBT/Lk represents the thermal fluctuation in its very intrinsic form, stored in a self-reactive

collective component Lk.

Eq. (4.43) also suggests a way to measureLk via noise measurement. In low dimensional conductors,

electromagnetic measurements of Lk have proven daunting, despite the importance of Lk in probing
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plasmonic behaviors in general, and Luttinger liquid behaviors in one-dimensional conductors. In fact,

Lk measurement in graphene has been only recently performed by the authors through a very delicate

electromagnetic measurement [16]; and the decisive Lk measurement in one-dimensional conductors

such as quantum wires and carbon nanotubes has yet to be carried out. The 〈I2〉 measurement and use

of Eq. (4.43) might provide a new way of tackling this long-standing experimental problem.
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Appendix A

Microwave Measurement and Analysis

Most of the microwave measurements appearing in this thesis were performed using Agilent E8364A

two-port vector network analyzer and Cascade Microtech WinCal XE 4.2 software. Here we go over the

details of the microwave measurement and analysis including calibration and de-embedding techniques

for future reference. Large portion of the measurement and analysis techniques to be discussed here are

shared in the three experimental works introduced in the thesis, with additional details pertaining to a

specific work provided in its respective chapter.

Network Analyzer and WinCal XE Settings

Network analyzer front panel connections

PORT 1
CPLR ARM−SOURCE OUT
RCVR A IN−CPLR THRU
REFERENCE 1
SOURCE OUT−RCVR R1 IN

PORT 2
SOURCE OUT−CPLR ARM

CPLR THRU−RCVR B IN
REFERENCE 2

RCVR R2 IN−SOURCE OUT
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Table A.1: ‘Stimulus Settings’ for WinCal XE.

Sweep Mode Lin
Freq Segment 1 45 MHz ∼ 50 GHz (401 points)

IF Bandwidth 30 Hz
Averaging Off
Alternate Sweeps Off
Interpolation On
Port Extensions Disable
Port Power Coupled On
Port 1 Power -30 dBm
Enable Power Slope Enable
Power Slope 0.14 dB/GHz
Auto Attenuation On
System z0 50 ohm

Calibration

Prior to any sets of measurements at a new temperature, Multiline TRL calibration [70] was performed.

The calibration method involves landing microwave probes on thru/open/short structures and multiple

sets of lines (CPWs) of different lengths (Fig. A.1; this mask file was created by W. F. Andress [11]).

Calibration structures were fabricated on undoped GaAs substrates using standard photolithography,

with 8-nm Cr / 300-nm∼500-nm Au. The widths of the signal line, ground lines, and the gaps between

the two are determined using Sonnet simulations to match the 50-Ω characteristic impedance of the

network analyzer, cables, and probes (see Sec. 3.2.4 for detailed simulation settings). For 100-µm pitch

microwave probes, 24 µm/15 µm/123 µm (signal line/gap/ground line) widths were used, and for 150-

µm pitch microwave probes, 50 µm/32 µm/ 143 µm (signal line/gap/ground line) widths were used.

After the calibration, the loss and phase delay from the microwave cables and probes are calibrated

out, and the reference planes are set at the tips of the probes (Fig. A.2a). In addition, the r-l-g-c pa-

rameters (per-unit-length series resistance/series inductance/shunt conductance/shunt capacitance) of the

CPWs in the calibration substrate (Fig. A.3) and the calibrated measurement results from the CPWs (to-

tal of 8 lines: 150 µm / 500 µm / 1000 µm / 1500 µm / 2200 µm / 3000 µm / 6000 µm / 9000 µm) are

displayed, which can be used to determine if the calibration was sound.

Measurements for the actual devices are now performed, whose signal components contain the delays

in the CPWs that lead to [from] the device-under-test (DUT) from [to] the probe tips, the response of
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Figure A.1: Schematic of the multiline TRL calibration substrate [11]. CPW dimensions are
24 µm/15 µm/123 µm (widths of signal line/gap/ground line).
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Figure A.2: a, Schematic of the microwave measurement setup. The illustration is taken from the 2D plasmonic
negative index metamaterial work [14], but it applies similarly to all other devices appearing in the thesis. b,
Optical image of the device appearing in Fig. 3.12. c, The ‘open’ structure corresponding to the device in b.
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Figure A.3: r-l-g-c parameters of the CPWs extracted from the calibration procedure. Data taken from the 296 K
measurements of Ref. [16].
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the DUT, and parasitic signals that bypass the DUT. In order to obtain the pure response of the DUT, the

delays in the CPWs are first removed from the measured signal by essentially moving the reference planes

further to the planes right before the DUT (Fig. A.2a), and then the parasitic signals are de-embedded

from the remaining signal by using the parasitic signals measured from an ‘open’ device (Fig. A.2c). The

CPW delays are removed from both the actual device and the ‘open’ device measurements.

Moving the Reference Planes

Shift of the reference planes is performed by constructing the transmission matrix of an arbitrary length

of the CPWs and multiplying the inverse of these matrices to the measured device signals’ transmission

matrix. The conversion from the measured s-parameters to transmission matrix parameters is performed

by [25]

T11 =
(1 + S11)(1− S22) + S12S21

2S21
,

T12 = Z0
(1 + S11)(1 + S22)− S12S21

2S21
,

T21 = Y0
(1− S11)(1− S22)− S12S21

2S21
,

T22 =
(1− S11)(1 + S22) + S12S21

2S21
,

(A.1)

where Z0 ≡ 1/Y0 is the characteristic impedance of the measurement environment (Z0 = 50 Ω in our

case). The transmission matrix for a CPW of length li is given by [25]

TCPW,i =

 cosh γli z0 sinh γli

y0 sinh γli cosh γli

 , (A.2)

where γ =
√

(r + iωl)(g + iωc) and z0 =
√

(r + iωl)/(g + iωc) ≡ 1/y0. The transmission matrix for

the device after removing the delay from length l1 of the CPW on the left of the device and length l2 of

the CPW on the right (Fig. A.4a) is then given by

TDUT+parasitic = [TCPW,1]−1Tmeasured[TCPW,2]−1. (A.3)
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Note that this still includes the effects of the parasitic signals. The same procedure is performed to obtain

Topen, which is the transmission matrix of the ‘open’ device (Fig. A.4b) after removing the CPW delay

effects. The resulting transmission matrix parameters can be converted back to s-parameters via [25]

S11 =
T11 + T12/Z0 − T21Z0 − T22

T11 + T12/Z0 + T21Z0 + T22
,

S12 =
2(T11T22 − T12T21)

T11 + T12/Z0 + T21Z0 + T22
,

S21 =
2

T11 + T12/Z0 + T21Z0 + T22
,

S22 =
−T11 + T12/Z0 − T21Z0 + T22

T11 + T12/Z0 + T21Z0 + T22
.

(A.4)

In the measurements, γli is determined at each frequency by examining sii of the ‘open’ device (the

actual device biased to be nearly open can also be used) instead of using the geometric length, as the

actual point of contact of the probe to the CPW is not exactly known. In the measurement of sii for

the ‘open’ device, the signal travels to the middle and reflects back, traveling a total distance of 2li with

negligible reflection from the probe side as the probes and the CPWs are matched to 50 Ω. Assuming

that the termination at the open end is ‘open’ enough, the impedance looking into the CPW is given by

Zin,i = Z0/ tanh γli, and hence γli can be found by examining

sii =
Zin,i − Z0

Zin,i + Z0
=

1− tanh γli
1 + tanh γli

. (A.5)

With negligible losses (which is the case with our CPWs on GaAs), this reduces to ∠sii = −2 tanβli,

where γ = iβ.

De-embedding the Parasitic Signals

In the microwave measurements, parasitic couplings, such as those originating from the direct couplings

between the probes or the CPWs that bypass the DUT, arise and distort the measured signal. In the

works appearing in this thesis, we remove this effect by measuring the parasitic signal from the ‘open’

device and de-embedding it from the measured signal. This is performed by converting the measured

s-parameters (with the CPW delays removed) to admittance matrix parameters and subtracting the ad-

mittance matrix of the parasitic signals (with the CPW delays removed) from the device’s admittance
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Figure A.4: ‘Open’ de-embedding scheme. a, Illustration of the measured device before de-embedding, with
the device-under-test (DUT) at the center. b, Illustration of the ‘open’ structure. c, Schematic explanation of the
de-embedding procedure.
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matrix. The conversion from s-parameters to admittance matrix parameters is performed by [25]

Y11 = Y0
(1− S11)(1 + S22) + S12S21

(1 + S11)(1 + S22)− S12S21
,

Y12 = Y0
−2S12

(1 + S11)(1 + S22)− S12S21
,

Y21 = Y0
−2S21

(1 + S11)(1 + S22)− S12S21
,

Y22 = Y0
(1 + S11)(1− S22) + S12S21

(1 + S11)(1 + S22)− S12S21
.

(A.6)

The de-embedding procedure is illustrated in Fig. A.4c, where Y1, Y2, and Y3 represent the different

parasitic signal contributions as circuit components. One can show using simple network analysis theory

[25] that the de-embedded admittance matrix of the DUT is given by

YDUT = YDUT+parasitic − Yopen, (A.7)

where the effects of Y1, Y2, and Y3 are essentially subtracted, or ‘de-embedded,’ from the device’s re-

sponse. The resulting admittance matrix parameters can be converted back to s-parameters via [25]

S11 =
(Y0 − Y11)(Y0 + Y22) + Y12Y21

(Y0 + Y11)(Y0 + Y22)− Y12Y21
,

S12 =
−2Y12Y0

(Y0 + Y11)(Y0 + Y22)− Y12Y21
,

S21 =
−2Y21Y0

(Y0 + Y11)(Y0 + Y22)− Y12Y21
,

S22 =
(Y0 + Y11)(Y0 − Y22) + Y12Y21

(Y0 + Y11)(Y0 + Y22)− Y12Y21
.

(A.8)

The aforementioned procedure is not perfect and may not completely remove the parasitic signal, be-

cause the ‘open’ device may not be perfectly identical to the actual device minus DUT, and also because

of probe landing inconsistencies and temperature fluctuations during measurements. The consequences

of the residual parasitic signal was discussed in Sec. 4.1.3.4.
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Appendix B

Fabrication Details

Detailed recipes for fabrication steps appearing in the thesis are listed below for future reference. Some

portions of the following have appeared in Refs. [11,14,16]. William F. Andress, Charles Marcus group

(formerly at Harvard University), Philip Kim group (formerly at Columbia University), and James Hone

group (Columbia University) are acknowledged for some parts of the following.

Photolithography

1. Sonicate in TCE, acetone, IPA
2. Hotplate 180 ◦C, 5 min
3. Spin resist (Shipley 18xx series)

1) 500 rpm, 100 rpm/s, 5 sec
This step will be omitted in the recipes below, but it is to be understood that this initial acceler-
ation step is there before the main spinning step. Upon entering this first step, apply resist while
accelerating, and skip to next step. This leads to more even distribution of resist on small chips.

2) 4000 rpm, 1000 rpm/s, 40 sec
4. Hotplate 115 ◦C, 3 min
5. Expose

1805 ∼ 60 mJ/cm2

1818 ∼ 130 mJ/cm2

6. Develop in CD-30, ∼ 30 sec (can bake before developing; refer to Shipley datasheet)
7. Stop in DI water

E-beam Lithography

1. Sonicate in TCE, acetone, IPA
2. Hotplate 180 ◦C, 5 min

PMMA
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3. Spin resist (can spin multiple layers depending on need)
4000 rpm, 1000 rpm/s, 40 sec; hotplate 180 ◦C, 10 min

4. Expose
495K, ∼ 300 µC/cm2 @ 30 kV
950K, ∼ 450 µC/cm2 @ 30 kV

5. Develop (choose either method)
DI:IPA=1:3, ∼ 60 sec; stop in IPA (prepare the solution cold)
MIBK:IPA=1:3, ∼ 90 sec; stop in IPA

PMMA / HSQ etch mask
3. Spin resist

PMMA 950A2, 4000 rpm, 40 sec; hotplate 180 ◦C, 5 min
HSQ (XR-1541, 2∼6 %), 6000 rpm, 60 sec; hotplate 150 ◦C, 2 min

4. Expose ∼ 225 µC/cm2 @ 30 kV
5. Develop in CD-26, ∼ 3 min
6. Etch PMMA in O2 plasma

GaAs 2DEG Specific Recipes

Gate deposition
1. Perform lithography as detailed above
2. Plasma clean 30 sec, 30 W, 30 sccm O2

3. Dip in NH4OH:DI=1:3, 5 sec; rinse in DI
4. Evaporate metal

Thin gates 5 nm Cr / 30 nm Au
Thick gates 8 nm Cr / 500 nm Au
Alignment markers 15 nm Cr / 55 nm Au

5. Liftoff in acetone

Ohmic Contacts
1-3. Same as above
4. Evaporate metal

5 nm Ni / 20 nm Au / 25 nm Ge / 10 nm Au / 5 nm Ni / 40 nm Au
5. Liftoff in acetone
6. Anneal at 420 ◦C, ∼50 sec

Mesa Etching
1. Perform lithography as detailed above
2. Wet etch

Shipley resist: dip in H2SO4:H2O2:H2O=1:8:240; etch rate 4 ∼ 5 nm/sec
PMMA resist: dip in NH4OH:H2O2:H2O=1:1:150; etch rate ∼ 4 nm/sec

3. Stop in DI water
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