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A Role for Focal Adhesions and Extracellular Matrix in Traumatic Axonal Injury 

Abstract 

Traumatic Brain Injury (TBI) is linked to a diverse range of diffuse pathological damage for 

which there is a severe lack of therapeutic options.  A major limitation to drug development is the 

inability to identify causal mechanisms that link head trauma to the multitude of secondary injury 

cascades that underlie neuropathology.  To elucidate these relationships, it is important to consider how 

physical forces are transmitted through the brain across multiple spatial scales ranging from the whole 

head to the sub-cellular level.  In doing so, the mechanical behavior of the brain is typically characterized 

solely by its material properties and biological structure.  Alternatively, forces transmitted through 

distinct cellular and extracellular structures have been shown to influence physiological processes in 

multiple cell types through the transduction of mechanical forces into cellular chemical responses. As an 

essential component of various biological processes, these mechanotransduction events are regulated by 

mechanical cues directed through extracellular matrix (ECM) and cell adhesion molecules (CAM) to 

mechanosensitive intra-cellular structures such as focal adhesions (FAs).  Using a series of in vitro 

models, we have implicated FAs in the cellular mechanism of traumatic axonal injury by showing that 

forces directed through these structures potentiate injury levels and, moreover, that inhibition of FA-

mediated signaling pathways may be neuroprotective. In addition, we show that localizing trauma forces 

through specific brain ECM results in differential injury rates, further implicating mechanosensitive cell-

ECM linkages in the mechanism of TBI.  Therefore, we show that FAs play a major role in axonal injury 

at low strain magnitudes indicating that cellular mechanotransduction may be an important mechanism 

underlying the initiation of cell and sub-cellular injuries ultimately responsible for the diffuse 

pathological damage and clinical symptoms observed in diffuse axonal injury.  Furthermore, since these 

mechanisms may present the earliest events in the complex sequelae associated with TBI, they also 

represent potential therapeutic opportunities. 
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1 Mechanisms of Diffuse Damage Caused by Traumatic Brain Injury 

1.1 Introduction 
Traumatic Brain Injury (TBI) is caused by a mechanical insult to the head and is estimated to 

affect 1.7 million people annually in the United States [92] and 235 per 100,000 people annually 

in Europe [274].  TBI is categorized as mild, moderate, or severe based on clinical symptoms 

often in combination with imaging and post mortem histology.  Pathological lesions consisting of 

contusion, hemorrhage, and edema are clinical indicators of head injuries.  As such, traumatic 

cell death in regions directly adjacent to sites of trauma is often viewed as the primary 

neurological damage [3,105,116,238,308].  However, it is now understood that additional forms 

of neuropathology contribute significantly to the ensuing morbidity associated with TBI.   

Broadly described as diffuse TBI, a complex array of microscale pathologies including 

diffuse axonal injury (DAI), microvascular damage, and diffuse neuronal injury can develop 

throughout the brain parenchyma following trauma.  Even though clinical symptoms may 

improve, the microscale damage can persist and potentially contributes to an increased likelihood 

of future neurodegenerative disease [102,189,114].  Although the risk associated with diffuse 

damage has clearly emerged, a comprehensive understanding of the mechanical and biological 

processes that initiate this damage remains elusive.   

Difficulties in identifying the events that initiate diffuse pathologies are likely due in part to 

the complexity of characterizing forces distributed through structures ranging in size from the 

whole brain down to subcellular levels [60].  Understanding the biomechanical events that 

initiate brain injuries has typically relied on determining how neural tissue responds to rapidly 

applied loads through both mathematical modeling and experimental techniques [164,60,52].  In 

order to understand disease pathogenesis, there has been a tendency to focus on forces that 
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disrupt the integrity of the networked architecture of the brain [275,152].  However, establishing 

a causal link between a mechanical insult and the ensuing diffuse pathology observed in TBI has 

been met with limited success. 

In this dissertation, we begin by introducing the known diffuse neuropathological damage 

associated with TBI and the multi-scale biomechanics that may explain patterns of cell-level 

injury in the brain.  We propose that to improve the mechanistic understanding of diffuse brain 

damage, it may be necessary to consider how mechanical forces below the threshold for 

mechanical failure influence cellular physiological processes.  Specifically, we hypothesize that 

injury forces directed through extracellular matrix molecules activate cellular 

mechanotransduction mechanisms that cause axonal injury.  The importance of cellular 

mechanotransduction, or the ability of cells to convert mechanical forces into biological signals, 

has been widely established in many organs, tissues, and cells across multiple species 

[292,289,291].  Cell-cell and cell-matrix interactions have been shown to influence both 

physiological and pathophysiological processes [131,139], suggesting that they play an important 

role in brain injury and remodeling after TBI.  Herein, we focus on understanding whether the 

brain ECM serves as a conduit to direct forces associated with mechanical trauma through 

mechanosensitive cellular structures that affect axonal injury.   

1.2 Biomechanics and Neuropathology of Traumatic Brain Injury 

1.2.1 Trauma Induced Local and Distributed Loading Within the Brain  

Many studies have explored the role of sudden impact, acceleration, and blast force in 

brain injury [221,220,17] (Fig. 1-1).  Localized forces are typically associated with impact 

injuries where the brain deforms against the skull, while distributed loading is typically attributed 

to both inertial forces due to rapid head acceleration [220] as well as pressure transients due to 
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explosive blast waves [17].  Although these loading patterns are not mutually exclusive, we will 

focus on the current limitations in understanding the effects of diffuse loading patterns and the 

complexity of understanding the cellular damage and injury mechanisms associated with them.  

1.2.2 Assessing and Diagnosing Anatomical Brain Injury 

  Diagnosis of TBI typically relies on a neurological assessment followed by imaging to 

detect pathology.  Classes of TBI pathology, termed focal and diffuse, have been attributed to 

local and distributed loading in the brain.  Povlishock and Katz suggested a distinct classification 

between focal and diffuse injuries predicated upon both clinical and basic science perspectives, 

with the acknowledgement of some overlap in pathobiology and clinical outcome [235]. They 

classified a typical focal injury as consisting of contusion and hemorrhage located near the site of 

impact and a diffuse injury as consisting of diffuse axonal injury (DAI) and petechial white 

matter hemorrhage located at multiple sites throughout the brain.   

While pathological lesions consisting of contusion and hematoma formation associated 

with focal injures are readily distinguishable by CT and traditional MRI scans, DAI and other 

 
Figure 1-1: Mechanical Loading of the Brain Due to Trauma. 
A mechanical insult to the head resulting from impact, acceleration, or blast forces can generate both 
localized and distributed forces throughout the brain.  Localized forces typically occur due to impact 
of the brain against the skull.  Distributed forces can be caused by inertial effects during rapid 
acceleration or by increased pressure transients caused by explosive blast. 
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subtle hemorrhages are not.  For example, abnormalities were detected by CT scan in only 5-

30% of patients exhibiting clinical symptoms consistent with  mild TBI (mTBI) [35], and the 

extent of pathology detected by CT scan and MRI did not correlate with the clinical outcomes 

[167].  Therefore, identifying diffuse pathology following head injury has historically relied on 

postmortem histological analysis in which DAI is detected by the presence of punctate, swollen 

axons [269].  The inability to measure the extent of diffuse pathology demonstrates a deficiency 

in diagnostic methods that may contribute to the debate about the etiology of TBI. 

A major breakthrough occurred in 2002 when Arfanakis et al. showed that Diffusion 

Tensor Imaging (DTI), a form of MRI, could detect abnormalities not found on CT scans in 

patients diagnosed with TBI within 24 hours of trauma [11].  DTI abnormalities were measured 

as regional reductions in diffusion anisotropy, which were later shown to correlate with regions 

of axonal damage from histological analysis [180].  Subsequent studies further correlated 

reductions in diffusion anisotropy with neuropsychological dysfunction in longitudinal studies 

[20] while also showing that DTI abnormalities can be used to predict cognitive outcome [117].  

The incorporation of DTI as a diagnostic technique has improved the ability to identify diffuse 

brain damage and may contribute to an understanding of how diffuse pathology may contribute 

to TBI related morbidity.      

Recent reports have shown that diffuse damage can occur even after mild insults with no 

previously identifiable neuropathology [190,265,218], supporting the notion that diffuse damage 

may contribute more greatly to morbidity than previously understood.  Concussion and repetitive 

sub-concussive impacts are now linked to progressive neurodegeneration classified as Chronic 

Traumatic Encephalopathy (CTE) [190]. This disease was first reported in boxing as dementia 

pugilistica where it was characterized clinically by declining mental capacity, lack of 
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coordination, and behavioral problems [63].  McKee et al. showed that professional athletes who 

suffered repetitive mTBI developed diffuse, microscale injury patterns characterized by post-

mortem identification of neurofibrillary and glial tangles, hyperphosphorylated tau, axonal 

degeneration, and immunoreactive microglia [189].  Moreover, blast combat casualties from the 

wars in Afghanistan and Iraq exhibited similar tissue damage [114] as well as additional 

pathology such as cerebral vasospasm [12] and traumatic axonal injury [181].  The diffuse 

neuropathological changes associated with CTE and explosive blast, some of which are distinct 

from those previously attributed to TBI, suggest that the extent of diffuse brain damage, 

especially following mTBI, may be greater than previously understood.   

While traumatic cell death attributed to focal injuries was for many years viewed as the 

primary contributor to morbidity following TBI, it is now understood that pathophysiological 

conditions may ensue even without widespread cell death [91].  For example, an acute phase of 

neuroexcitation was shown to occur in the brain immediately following impact.  This event has 

been linked to the indiscriminant release of neurotransmitters, such as glutamate, that activate 

excitatory neurons [314,6].  Diffuse patterns of metabolic change throughout the brain of live 

human patients have been detected following trauma using Positron Emission Tomography 

(PET) [22].  These abnormal activity patterns have been shown to initiate immediately and 

persist up to weeks following the initial insult.  Furthermore, these changes were identified in 

patients diagnosed with mTBI based upon neurological assessment, in which neither focal 

pathology nor, in some cases, diffuse pathology was detected.  Glutamate release combined with 

a loss of ionic homeostasis may manifest in mitochondrial dysfunction [112] and lead to general 

cellular dysfunction.  A combination of acute neuroexcitation and potential vascular damage is 

believed to lead to a cellular energy crisis.  Furthermore, progressive degeneration linked to this 
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energy crisis may lead to deafferentiation, or a loss of synaptic terminals [86], affecting 

regulation of neuronal activity patterns that are crucial to brain function.  Recently, patients with 

mTBI were shown to exhibit decreased connectivity between brain regions, as measured by 

magnetoencephalography [322].  Therefore, a diverse range of pathophysiological events may 

occur following TBI.  The diffuse patterns of pathology and functional impairment in patients 

lacking focal injuries supports the notion that diffuse damage may contribute significantly to the 

morbidity associated with TBI.   

While multiple forms of diffuse pathology have been identified and the extent of 

associated pathophysiological change is still emerging, many questions remain regarding the 

development of diffuse tissue damage.  In addition to questions surrounding the initiating events, 

a difficult problem remains in understanding the spatiotemporal distribution of diffuse pathology.    

1.2.3 Regional Susceptibility to Diffuse Pathology 

Identification of diffuse damage throughout the brain has revealed non-uniform 

distributions of injury suggesting that certain tissue and cellular structures may be more 

vulnerable than others.  Blumbergs et al. compared the extent of DAI occurring in multiple brain 

regions by analyzing histological slices from patients diagnosed with either mild or severe TBI 

[34].  Following mTBI, no evidence of DAI was detected in the cerebellum, one half of the 

patients exhibited injury in the brainstem, and all patients exhibited injury in the cerebral 

hemispheres.  Following severe TBI, patients exhibited evidence of DAI in all examined regions.  

White matter within the cerebral cortex and large axonal tracts within the cerebral hemispheres, 

such as the corpus callosum and fornices, were especially susceptible to injury.  These 

vulnerabilities were supported by findings in patients in which MRI was used to detect a greater 

number of lesions located in the cerebral hemispheres compared to the brainstem, which also 
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correlated with injury severity [146].  A preferential decrease in diffusion anisotropy has been 

measured in structures such as the corpus callosum, internal capsule, and the centrum semiovale 

[137], confirming the susceptibility of large axonal bundles to damage.  DAI lesions have also 

been shown to localize to the interface of cerebral white and gray matter [258].  Therefore, 

diffuse damage appears to differentially affect tissue regions and structures within the brain. 

Although diffuse pathology appears primarily in certain brain regions and tissue 

structures, heterogeneity at the cellular level also exists within these damaged regions.  For 

example, injured regions are typically distributed in a multi-focal pattern [259].  Furthermore,  

injured axons are typically dispersed amongst neighboring uninjured axons within these focal 

regions [34]. Heterogeneity in axonal vulnerability is also suggested by reports indicating 

differential injury responses in myelinated versus small caliber, non-myelinated axons [241].  

Within myelinated axons, DAI has been shown to occur preferentially at the Nodes of Ranvier 

[240], which are the periodic regions of exposed axon between regions of myelination.    

Additional heterogeneity in injury distribution is observed in relation to the 

microvasculature.  Evidence of diffuse damage in the vasculature has been suggested by micro-

hemorrhage of small vessels, which often occurs diffusely within the white matter similar to that 

of DAI [34].  Furthermore, tau-immunoreactive neurofibrillary and astrocytic tangles associated 

with CTE have been shown to exhibit perivascular localization [189] suggesting a role for the 

vasculature in the injury process.   

Biomechanical studies provide some explanation for diffuse injury distributions 

[220,130], however, the growing diversity of diffuse pathology combined with the inability to 

explain cellular and sub-cellular injury patterns highlights the difficulties in understanding how 

this damage occurs.  Purely mechanical explanations provide some insight into injury initiating 
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mechanisms.  For example, Ommaya and Gennerelli posited that head rotation results in an 

injury distribution consistent with the degree of inertial forces generated by centripetal 

acceleration [219].  However, explaining the subsequent distribution of diffuse tissue, cellular, 

and sub-cellular damage due to head trauma is complicated by several orders of spatial 

magnitude that separate these anatomies.  Therefore, to understand the diversity of injury that 

comprises diffuse damage, it may be necessary to consider the multi-scale mechanics that 

characterizes brain trauma.   

1.3 Multiscale Biomechanics and Mechanisms of Diffuse Traumatic Brain Injury 

1.3.1 Multiscale Structural Organization and Mechanical Properties of the Brain  

Biomechanics of TBI are complicated by the brain’s diversity in structure and range of 

material properties.  Although the brain is a relatively soft tissue, it is encased by multiple layers 

of tissue and fluid that provide protection from mechanical forces.  These protective layers 

include the skin (~1.0 MPa), the skull (~8.0 GPa), the dura matter (31.5 MPa), the pia matter 

(11.5 MPa), and the cerebral spinal fluid [318].  Together, these multiple layers provide a 

relatively rigid structure that protects the much softer underlying brain tissue from normal 

environmental factors, such as mechanical trauma. The underlying brain tissue is characterized 

by large brain regions such as the cerebral hemispheres, the cerebellum, and the brain stem (Fig. 

1-2A), which are defined by anatomical features and functional properties [39,150].  Early 

studies on human brain tissue reported shear stiffness between 0.6 and 1.1 kPa [89], indicating 

that the brain is relatively soft and susceptible to deformation compared to other biological 

tissues.  Subsequent studies highlighted the variation in mechanical properties due to age, region, 

and sample preparation [236], reporting values between 0.7-33 kPa [276].  Brain tissue also 

exhibits viscoelastic behavior, with loss modulus ranging between 2.8-81.4 kPa [256], indicating 
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the greater the rate of an applied load the greater the apparent stiffness.  The variation in material 

properties of brain tissue is clearly indicated by elasticity maps of rodent brains showing regional 

variations in shear stiffness ranging between 2-25 kPa [182,286].  Therefore, the brain is 

considered a heterogeneous material.   

Differences in material properties between brain regions are attributed to differences in 

cell population demographics, network architectures, and other micro-architectural attributes that 

facilitate functional uniqueness.  The adult human brain consists of a diverse cellular population 

of approximately 100 billion neurons and at least as many non-neuronal cells [14]. Neuronal, 

glial, and vascular cells are the primary constituents of the brain parenchyma and together form 

intricate cellular and multicellular structures (Fig. 1-2B).  Neurons are polarized cells that 

transmit electrical signals through small diameter processes (axons and dendrites) that extend 

away from their cell body (soma) to neighboring cells [39,150].  While the typical neuronal cell 

body is 10 - 50 μm in diameter, neuronal processes extend up to 500 μm (dendrites) or several 

centimeters to a meter (axons) away while remaining only 0.2-20 μm in diameter [150,4,239].   

In addition to neuronal processes, other cellular constituents also exhibit polarized 

morphologies that form complex multi-cellular structures. For example, oligodendrocytes wrap 

multiple layers of cellular processes around axons at consistently spaced intervals to form 

myelination.  It is this precise wrapping that forms periodic regions of exposed axon called 

Nodes of Ranvier that are important for electrical conduction.  Astrocyte processes interact with 

axons and dendrites to form synapses that are critical for transmitting signals between neurons.  

The cerebral vasculature forms prominent structures within the brain with vessels existing in a 

large range of diameters:1-3 mm for large arteries and veins [88], 10-60 μm for small arterioles 

and venules, and 4-8 μm for capillaries [321].  While larger vessels near the surface of the brain 
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are sparse, smaller vessels within the parenchyma have been reported at high densities ranging 

from 25 per mm2 in the corpus callosum to 150 per mm2 in the hippocampus [51].  Together, 

these multicellular constituents form complex micro-structures throughout the brain.   

In addition to structural complexity, neural cells exhibit differences in mechanical 

properties.  Heterogeneity in mechanical properties is important because it indicates that 

 
Figure 1-2: Structural Organization of the Brain. 
Understanding the occurrence of diffuse pathology at the cellular level is complicated by the intricate 
cell and tissue structures that span ~4 orders of magnitude in spatial scale to form the human brain. (A) 
Large brain regions such as the cerebral hemispheres (comprised of four lobes), the cerebellum, and the 
brain stem are well defined by anatomical features and functional properties. (B) Within each tissue 
structure, there is an underlying multicellular composition comprised of neurons, neuroglia, and vascular 
cells.  Many of these cells are highly polarized and together form intricate multi-cellular structures.  
Differences in material properties between brain regions are attributed to differences in cell population 
demographics, network architectures, and other micro-architectural attributes that facilitate functional 
uniqueness.     
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different regions or cell types may deform differently when experiencing the same load.   For 

example, astrocytes may deform to a greater extent than neurons since elasticity measurements 

have shown neuronal somas to vary between 480 Pa and 970 Pa [23,74] and astrocyte somas to 

vary between 300 Pa and 520 Pa [177].  A difference may also exist between sub-cellular 

regions, as neuronal soma stiffness was reported to be ~ 500 Pa [25,177] while axons were 

reported to be ~12 kPa [23,74].  Evidence of delayed elasticity has been observed in some axons 

following rapid stretch, in which a return to their initial length occurs over timescales much 

larger than the initial stretch [275,260].  Therefore, traditional mechanical metrics such as 

elasticity may not fully capture the behavior of these biological structures.   

Heterogeneity in mechanical properties is also important because of the potential for 

shear forces to occur at the interface between regions with different shear stiffness.  These 

interfaces exist between prominent structures such as cerebral white and gray matter [258], 

which were measured in humans to have shear stiffnesses of 13.6 kPa and 5.22 kPa, respectively 

[160].  Additionally, the stiffness of human arteries was reported to be ~20 MPa and veins to be 

~3MPa [200], 2-4 orders of magnitude larger than bulk brain tissue.  Although the largest 

arteries and veins course superficially in the brain, smaller arterioles, venules, and capillaries 

permeate the brain parenchyma and account for ~2.5% of the total volume [214], providing for 

regional material heterogeneity.  

The complexity of the cellular and multi-cellular structures within the brain can likely 

explain the heterogeneous mechanical properties observed within the tissue.  The structural and 

mechanical properties at the cellular and sub-cellular level must therefore be considered in 

mechanical analyses to properly understand the brain’s vulnerability to trauma.   
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1.3.2 Linking Biomechanics to Mechanisms of Diffuse Traumatic Brain Injury 

Mathematical modeling and experimental techniques are providing insight as to how 

forces applied to the brain are transmitted to the cellular level.  By including cellular anisotropy, 

multi-scale models have recapitulated the effect of cellular structures, such as the 

microvasculature and axonal bundle orientation, on localized cellular strain and have begun to 

incorporate these effects over the spatial scales of TBI [55,306,60].   These models have 

suggested that vessels can create microscale heterogeneities that increase localized stress or 

strain generation near the vessel, potentially explaining the susceptibility of these structures to 

injury [61]. For example, microscale inclusions were predicted to increase localized cellular 

strain levels by 60% compared to the gross tissue level.  Furthermore, the same modeling effort 

suggested that vessels may force abrupt changes in axonal orientation that can affect localized 

strain distribution along the axon.  Mathematical predictions of microscale variations in strain 

have been verified by high-speed optical measurements of tissue deformation that indicate 

inhomogeneity in strain fields in local regions containing both white and grey matter  [166]. 

Therefore, gross tissue deformation may not completely describe the distribution of forces 

exerted on the underlying cellular structures or the variability in cellular injury within a region of 

the brain.   

Although forces exerted on the brain initiate biological processes associated with diffuse 

pathology, the sequence of events between initial injury and subsequent pathology is poorly 

understood.  Transient membrane tearing, termed mechanoporation has been suggested as a 

possible mechanism in axonal injury [152,106].  Mechanoporation is believed to occur in 

response to a rapid increase in axonal strain, which has been shown using in vitro stretch models 

of axonal injury.  In these experiments, 30% uni-axial strain applied at a rate of 10s-1 resulted in 

brief tearing of the membrane that is observed through the cellular uptake of a membrane 
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impermeable marker [104].  It is proposed that transient membrane tearing causes a loss in 

cellular homeostasis that initiates a cascade of secondary events that ultimately result in DAI.   

The presence of punctate swollen axons, the hallmark morphology associated with DAI, 

has been linked to a progressive series of cellular pathologies believed to result from 

mechanoporation.  Previous studies have suggested that cytoskeletal abnormalities occur due to 

impaired axonal transport, causing an accumulation of vesicles and organelles leading to axonal 

swelling [2,59,108,233,234].  This disruption is thought to result from the action of cysteine 

proteases, such as calpains and caspases that degrade the cytoskeleton  [47]. The involvement of 

protease activation in cytoskeleton disruption is supported by improved injury outcomes in rats 

that were administered protease inhibitors prior to or following experimental brain injury 

[45,245,231,246,161].  Pathological activation of proteases has been linked to an influx of ions, 

such as Ca2+ and  Na+,  that occurs due to mechanoporation [152,103,153]. As such, one 

therapeutic candidate, Poloxamer 188, has shown the potential to treat DAI by promoting 

membrane resealing.  Although Poloxamer 188 has exhibited neuroprotective effects following 

TBI in animal models, it has yet to be tested in humans [15,254].  Therefore, no therapeutic 

treatment options currently exist that effectively target a specific injury mechanism of DAI.    

1.3.3 Current Limitations in the Understanding of Diffuse Traumatic Brain Injury 
Mechanisms  

 While membrane poration has been linked to much of the secondary injury cascade 

associated with DAI using experimental models, its role as the sole injury mechanism is not 

without controversy.  Evidence of cytoskeleton breakdown, as indicated by calpain-mediated 

proteolysis [90,305], as well as impaired axonal transport [267], have been reported to occur 

without evidence of membrane poration, challenging the membrane poration hypothesis.  

Additional injury markers such as neurofilament compaction have also been shown to occur in 



14 
 

different cell populations than impaired axonal transport implicating the existence of multiple 

injury mechanisms [76].  Although not investigated as extensively as mechanoporation, 

additional injury mechanisms, including traumatic mechanical failure of microtubules [275] and 

impaired sodium channel function [138] can be linked to the secondary injury cascades 

associated with DAI.  

 Therefore, additional mechanisms likely exist by which neural cells respond to 

mechanical forces associated with TBI resulting in subsequent injury.  While mechanical failure 

of biological structures such as the cell membrane or cytoskeleton is likely to occur when 

sufficient forces are applied, the potential for physical forces below mechanical failure 

thresholds to influence physiological processes provides additional mechanisms to explore.   

1.4 Mechanobiology and the Cellular Microenvironment of the Brain  

1.4.1 Mechanisms of Conversion of Mechanical Signals to Biochemical Signals 

 Cellular mechanotransduction, or the ability of cells to convert physical forces into 

biological signals, is a widely established phenomenon that has been linked to the regulation of 

diverse cellular physiological processes [131] including morphogenesis, growth, and survival 

[110,123].  Mechanotransduction pathways are influenced by interactions between intracellular 

structures, such as the cytoskeleton, and extracellular structures, such as the ECM or neighboring 

cells, through CAMs in the cell membrane.  Mechanical coupling of the intracellular and 

extracellular space allows cells to ‘sense’ their local mechanical environment through physical 

interactions directed through these structures [144], and their mechanosensitive properties have 

been demonstrated in many cell types [122].   

 Several mechanisms exist by which exogenous forces are converted by sub-cellular 

mechanosensitive components into biochemical signals that influence cellular processes.  Both 
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properties of the cellular microenvironment, such as ECM stiffness [176,313,77], and dynamic 

conditions, such as a change in cellular force distribution [185,187,316], can affect development, 

differentiation, disease, and regeneration by influencing gene expression and biochemical 

signaling pathways [165,132,298].  Redistribution of forces within a cell can be initiated by 

intracellular events, such as alterations in the cytoskeleton due to remodeling of microtubules 

[18], and also by extracellular events, such as an exogenous force directed through CAMs [292].  

The conversion of force to biological signals is accomplished by changes in interactions and 

properties of proteins, often localized to intracellular structures such as the integrin associated 

focal adhesion complex, that regulate the activation of biochemical signaling pathways 

[168,185].  For example, changes in the relative force balance between the intracellular and 

extracellular space have been linked to acute cytoskeleton remodeling [282] through the 

activation of Rho signaling pathways [319].  The mechanochemical control mechanism is 

believed to occur through force induced enzymatic activation of protein kinases.  Interestingly, a 

single mechanical perturbation has been shown to activate Src kinase in both endothelial and 

smooth muscle cells [209,253], suggesting that an acute insult may be sufficient to influence 

biological signaling pathways.  Moreover, this activation can occur at locations distant to the 

stimulus site and over time scales that cannot be accomplished by diffusion or active transport, 

suggesting mechanical propagation through the cytoskeleton.  Force transmission through the 

cytoskeleton has been previously postulated to explain how mechanotransduction may alter 

signaling pathways in the nucleus that affect gene expression [298].  While extensive literature 

has focused on mechanotransduction in multiple cell types, relatively few have focused on it 

within the developed brain.  Nonetheless, the ubiquitous nature of these sub-cellular components 
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and signaling pathways suggest a potential for similar phenomena to occur within the developed 

brain.   

1.4.2 Mechanobiology of the Developed Brain  

 Although the brain is typically viewed as a mechanically isolated organ, mechanical 

interactions at the cellular and sub-cellular level are critical components of normal biological 

function.  Both the existence of endogenous forces as well as their influence on cellular function 

within the developed brain have been reported [281].  Specifically, mechanical interactions 

between sub-cellular structures such as the cell membrane, CSK, ECM, CAMs, and ion channels 

have been shown to influence diverse neural functions including ion channel activity [13], 

synaptic vesicle clustering [257], neurotransmitter release [57], and axonal growth cone 

dynamics [261].  Signaling pathways associated with mechanotransduction have also been linked 

to important neuronal functions.  For example, integrin binding forms a mechanical linkage at 

the synapse, but subsequent activation of integrin mediated signaling pathways is a critical step 

in the formation and regulation of synapse morphology and maturation [24].  Moreover, RhoA 

activation has been shown to influence synaptic plasticity [311] potentially by affecting the 

structural stability of dendritic spines through cytoskeleton remodeling.  Integrin mediated 

RhoA-Rho Associated Kinase (ROCK) signaling also affects the potential for remyelination in 

damaged white matter [215], indicating the broad influence of these pathways in neural function.  

Although a comprehensive understanding is far from complete, the potential for physical forces 

to influence cellular function in the developed brain via cellular mechanotransduction is clearly 

evident.   

The cytoskeleton, CAMs, and ECM are important sub-cellular structures that contribute 

to the mechanical integrity of the cell.  The cytoskeleton consists of multiple filamentous 
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polymers including actin, microtubules, and neurofilaments that form an interconnected network 

with extracellular structures, such as the ECM (cell-ECM) or neighboring cells (cell-cell), 

through CAMs located in the cell membrane (Fig. 1-3) [144].  Actin filaments are 5-9 nm in 

diameter and, with cross-linking proteins, form load bearing structures within the cell 

[94,163,48].  Microtubules are ~25 nm in diameter and form rigid structures with stiffness 

measurements of ~100 MPa that can bear compressive loads [94,36,156].  Intermediate filaments 

are ~10 nm in diameter and have shown the ability to resist tensile forces by stretching up to 3.5 

fold [158,127].  Therefore, the cytoskeleton consists of biologically active filamentous structures 

that can provide mechanical integrity to the cell.    

Cell adhesion molecules, consisting of members of the integrin, cadherin, 

immunoglobulin, selectin, and proteoglycan superfamilies, are integral membrane proteins that 

provide mechanical continuity across the cell [120,198,290].  CAMs exhibit binding specificity 

to both intracellular and extracellular components, some of which are indicated in Table 1.  For 

example, tenascin binds integrins but not L1 IgCAMs [198,172], and CSPGs bind L1 IgCAMs 

but not integrins [183,290].  Furthermore, intracellular components, such as the focal adhesion 

complex, bind to integrins but not to cadherins [73,121].  This selective binding provides the 

ability to regulate mechanical coupling between the cell and its local microenvironment by 

influencing the organization of structural elements within the cell in response to both 

intracellular and extracellular cues.  
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Figure 1-3: Protein networks maintain connectivity and structural integrity of neural networks. 
Within all cell types, there are sub-cellular components that dictate cellular architecture by providing mechanical 
structure.  Such structure is formed by interconnected networks of proteins in both the intracellular and 
extracellular space.  Intracellular structures include cytoskeleton components such as actin, microtubules, 
neurofilaments, and crosslinking proteins (CP).  Extracellular structures include extracellular matrix proteins as 
well as neighboring cells.  These structures are connected through transmembrane receptors called cell adhesion 
molecules that include IgCAM (Ig), Selectin, Cadherin, Integrin, and other glycoproteins (GP) and 
proteoglycans (PG).  The resulting networks bear loads and distribute forces throughout the cell and across the 
cell membrane to the extracellular space and neighboring cells.   
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Table 1: Cell Adhesion Molecules and Binding Partners Expressed in the CNS 
 

Receptor 
Family 

Sub-Types 
Expressed 
in the CNS 

Intracellular 
Cytoskeleton 
Binding 

Extracellular 
Binding 

Associated Signaling 
Pathways 

References 

Integrin α(1,5,6,v) 

β(1,3) 

FAC  Actin 

α –actinin  
Actin 

 

ECM proteins 
(Laminin, 
Tenascin 
Reelin) CAM 
(Ig, Cadherin 

 

Rho-family GTPases 

PTK, PTP  

[73,175,133,148,
134] 

 

Cadherin N-Cadherin 
E-Cadherin 

Catenin  
Actin 
Desmoplakin  
IF 

Cadherin 
Integrin 
ECM 
(Reelin) 
 

Rho-family GTPases 
PTK 
Wnt signaling 
Src-family kinase 

[121{Nelson, 
2004 
#385,303,10,148,
212,155,21] 
 
[212,303,10,148,
155,21,118,119] 

IgCAM L1, NCAM Ankyrinspect
rin  Actin 

Ezrin  Actin 

IgCAM, 
Integrin, 
HSPG, CSPG 

PTK, PTP, MAPK 

Src-family kinase 

[119,68{Juliano, 
2002 
#84,148,223,155,
21] 

Selectin  α –actinin  
Actin 
 

Selectin 
PSGL-1 

MAPK, c-Src [148] 

Additional 
Glycoproteins 
and 
Proteoglycans 

CD44 

Neurexin 

Neuroligin 

ERM  Actin 

Ankyrin  
Actin 

 

HA, laminin,  

Neuroligin, 
Neurexin 

PTK (p195HER2, c-
src) 

Rho-family GTPases 

[285{Goodison, 
1999 
#456,280,115,21] 

HA: Hyaluronan, CSPG: Chondroitin Sulfate Proteoglycan, HSPG: Heparin Sulfate Proteoglycan, FAC: Focal Adhesion 
Complex, IF: Intermediate Filament, PTK: Protein Tyrosine Kinase, PTP: Protein Tyrosine Phosphatase, MAPK: Mitogen 
Activated Protein Kinase 
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1.5 Conclusion 

Given the critical importance of sub-cellular structures such as ECM and cell adhesion 

molecules in cell mechanics, we sought to determine their potential involvement in TBI.  

Specifically, we sought to determine if pathological cellular mechanotransduction may provide a 

mechanism by which axons are injured during diffuse TBI.  To do so, we utilized multiple in 

vitro models of DAI allowing the greatest level of control over the cellular structures necessary 

to address the following specific aims: 

1. Determine if focal adhesions transmit forces in such a way as to potentiate axonal injury 

as observed in Traumatic Brain Injury 

2. Determine if localizing injury forces through different ECM affects axonal injury levels 

  

 

 

 

 

 

 

 

 

 

 

 

 

 



21 
 

2 Focal Adhesion Density Affects Levels of Strain Induced Axonal Injury 

2.1 Introduction 

Over the past decade, investigators have attempted to establish the pathophysiological 

mechanisms by which non-penetrating injuries induce diffuse damage in the brain.  A primary 

motivator for the increased attention to non-penetrating injuries arose from the increased 

incidence of Blast-induced mild Traumatic Brain Injury (mTBI).  Blast mTBI is the most 

frequent wound of the conflicts in Afghanistan  and Iraq [29], with approximately 60% of total 

combat casualties associated with blast events generated by improvised explosive devices.  

Furthermore, recent studies suggest that nearly 16% of US combatants have been diagnosed with 

mTBI [129].  Although how blast energy is transmitted to the brain is not well understood, in 

vivo studies and clinical reports have shown that exposure to blast can cause mTBI [84,129,53].  

Interestingly, the neuronal injury observed in these studies  resembles DAI, a common pathology 

observed following mTBI in vivo [107].  DTI studies have identified structural alteration in white 

matter tracts in military personnel who previously suffered Blast-induced mTBI [263], and 

experimental mouse models have linked these structural alterations to DAI [179].  However, the 

mechanisms that initiate this pathophysiological response are unclear.   

In vitro models of TBI may not fully recapitulate the complexity of the brain structure or 

mechanical trauma, but they provide unique insight into its cellular pathology by allowing the 

manipulation of specific biological components.  Previous models of mTBI have proposed that a 

strain magnitude and rate dependent disruption in ion homeostasis initiates a sequence of 

secondary events ultimately leading to neuronal death.  However, evidence of membrane 

poration is not observed in all injured neurons [153,90], and excitotoxicity due to loss of ion 

channel homeostasis [262] cannot account for observations of axonal retraction.  
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We hypothesized that cellular mechanotransduction events at the focal adhesion initiate 

secondary injury cascades that cause axonal injury. Focal adhesions are clusters of proteins 

containing transmembrane integrin receptors that couple the cytoskeleton in the intracellular 

space to the ECM network in the extracellular space, providing mechanical continuity across the 

membrane [296]. Mechanical forces propagating through these coupled networks can activate 

signal transduction pathways, alter ion channel currents, and initiate pathological cascades 

[140,194]. In the brain, roles for integrin signaling have been studied extensively in development 

and memory potentiation [54,152,198,247,270,300], however, there are no reports on the role of 

integrin signaling in mTBI.  

 To test our hypothesis, we built a high velocity tissue stretcher to deliver an abrupt 

mechanical perturbation to cultured neonatal rat cortical neurons exhibiting varying amounts of 

ECM adhesion coupling. These experiments demonstrated that neuronal injury is a function of 

focal adhesion size and density, with greater FA presence corresponding to increased injury 

susceptibility. Membrane poration was only observed at extreme strains in a subset of 

experiments, whereas at lower strains, neurite focal swelling was observed without membrane 

poration. The injury was not mitigated with the use of a calpain inhibitor, suggesting a calpain-

independent injury mechanism. Treatment with a Rho-kinase inhibiter decreased neuronal injury, 

suggesting a role for mechanochemical signaling events in neuronal injury.  

 

2.2 Results 

2.2.1 High Speed Stretchers Induced Strain-Dependent Injury 

The spatio-temporal profile of the mechanical perturbation, such as a blast wave, in the brain 

during mTBI is likely variable and, given the timescale of blast wave propagation, quite rapid.  
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In order to mimic this sudden mechanical stimulus, we designed and built a high speed stretcher 

(HSS) system to  deliver an abrupt strain to a population of neurons cultured on a flexible silicon 

elastomer substrate coated with PLL (Fig. 2-1A), similar to previous in vitro stretch models [85]. 

We seeded primary neonatal rat cortical neurons on stretchable membranes five days before 

experiments to allow dendritic and axonal extension. During experiments, the substrates 

underwent an abrupt, uniaxial stretch (at 1% per ms) to generate a strain field of defined 

magnitude (Fig. 2-2). Neuronal injury was defined as the appearance of focal swellings along 

neurites, neurite retraction, or abrupt mechanical failure of the neurite (Fig. 2-1B), similar to 

injury morphologies reported in previous in vitro fluid shear models of injury [153] and similar 

to swellings seen in DAI in vivo [232]. We found that neuronal response to stretch was 

heterogeneous and dependent upon strain magnitude (Fig. 2-1C), similar to what has been 

reported in vivo [90].  Few neurons were lost, defined as abrupt failure of all attachment to the 

substrate, due to the stretch at strain magnitudes less than 10% and a small increase in loss was 

observed at 25% strain.  At 10 minutes following stretch, a significant increase in focal swelling 

was observed for strain magnitudes greater than 5%.   For all subsequent studies, we focused on 

strain magnitudes of 0-10%, as this range captured the threshold of inducing neuronal injury. 

Also, in this strain range only a small percentage of neurons exhibited signs of mechanoporation, 

as indicated by the uptake of membrane impermeable dye from the extracellular solution (Fig. 2-

1D), or apoptosis, as indicated by TUNEL staining (Fig. 2-3).  Thus, we identified a strain 

dependent injury response in our neuronal populations that is not explained by membrane 

poration. 
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Figure 2-1: High speed stretch model of neuronal cultures indicates a strain dependent injury 
response identified by focal swelling of the neurites without porating the membrane. 
(A) Neurons were cultured on elastomer membranes that were quickly stretched, transferring injurious 
forces to neurons.  (B) Beta-3-Tubulin immunofluorescence imaging showed that prior to stretch, 
neurons exhibited highly branched, smooth neurite morphology.  After stretch, many neurons 
developed widespread focal swellings along their neurites (red arrows) (Scale Bar = 20 µm). (C) 
Quantification of neuronal injury showed an initial significant response between 0% and 10% strains 
(n ≥ 4).  Neuron loss due to stretch also increased with strain magnitude.  (D) Mechanoporation cannot 
account for the injury morphology as strain magnitudes less than or equal to 25% showed no 
significant uptake of a membrane impermeable dye following stretch (n ≥ 3).  All bars SEM for all 
panels, * p < 0.05. 
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Figure 2-2: Characterizing Substrate Strain Levels. 
(A) The high speed stretcher induces a rapid strain within the culture substrate.  (B) Strain profiles 
indicating magnitude and rate are measured by (C) high speed imaging (80FPS) of the distortion of a 
grid printed onto the substrate surface and subsequently calculating 3-point strain values (max values 
indicated here for 40% strain field).    
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2.2.2 High Speed Stretcher Injury is Focal Adhesion Density-Dependent   

The cytoskeleton of the neuron is anchored to the substrate through FAs [266] providing 

a link for force propagation in the cell (Fig. 2-4A).  We reasoned that we could control FA 

density by culturing neurons on microcontact printed surfaces coated with PLL or saturated FN. 

On PLL surfaces, extracellular matrix (ECM) deposition from media serum provides specific 

attachment sites for neuronal FAs (Fig. 2-4B). We found that neurons cultured on FN-coated 

substrates formed  FAs throughout ~25% more of their neurite area compared to PLL-coated 

substrates (Fig. 2-4C). FAs were also smaller and appeared less dense on PLL-coated substrates 

as compared to those in neurons on FN-coated substrates.  

We asked how neuronal focal adhesion density affected the neuronal injury. We coated 

the culture wells of the stretchable substrates with either FN or PLL prior to seeding them with 

neurons to regulate the density and number of FAs.  After five days in culture, we subjected the 

neuronal networks to an abrupt strain with the HSS system.  We observed an increase in the 

 
Figure 2-3: Stretch Induced Cell Death. 
The extent of induced cell death following stretch was measured using TUNEL staining at both (A) 10 
minutes and (B) 60 minutes post stretch.  Significant increases in cell death were not observed at either 
time point.  All bars SEM. 
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Figure 2-4: Substrate coating influences neuronal FA formation and injury progression. 
(A) Neurons are mechanically coupled to the substrate via FAs that couple the intracellular 
cytoskeleton to the ECM. (B)  Immunofluorescence imaging of vinculin puncta indicated the presence 
of FAs. Scale bars correspond to 8 and 10 µm, for PLL and FN respectively. Quantification of (C) 
total vinculin puncta area (n = 8) indicated that a fibronectin coated substrate induced FA formation 
over a larger area and with greater average cluster size compared to a PLL coated substrate (n = 5).  
(D) The percentage of neurons that exhibited widespread focal swelling following stretch injury was 
greater on a FN coated substrate compared to a PLL coated substrate at 10 minutes (n ≥ 4 for PLL and 
n ≥ 8 for FN). All bars SEM for all panels, * p < 0.05.   
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proportion of neurons exhibiting focal swellings on FN-coated substrates when compared to 

neurons cultured on PLL at both 5% and 10% strains (Fig. 2-4D).  Since PLL-coated substrates 

induce the formation of smaller and less dense FAs when compared to neurons cultured on FN, 

the difference in injury rates as a function of FA size and density suggests a role for an integrin-

mediated injury mechanism. In this case, abrupt stretch of the cell substrate uniformly injures the 

more robust focal adhesion architectures of the FN-seeded neurons because they are more rigidly 

adhered at networked points throughout the neuron’s soma and neurites. 

2.2.3 Injury is ROCK-Dependent  

Mechanochemical coupling may activate secondary signaling cascades which cause 

neuronal injury.  Previous reports suggest that cysteine proteases, such as calpains, actively 

degrade the cytoskeleton and that their inhibition can reduce neuronal injury [90,46]. Others, 

however, have suggested the involvement of additional or multiple pathways leading to different 

forms of neuronal injury [268,186].  We asked if a calpain inhibitor would reduce the instance of 

focal swelling in our model.  Using the HSS system with neuronal cultures seeded on PLL 

substrates, we observed that the application of MDL-28170 to inhibit calpain activation either 

before (Fig. 2-5), or immediately following, abrupt stretch yielded no significant change in 

neurite focal swelling, suggesting that calpain activation cannot explain neuronal injury in our 

model (Fig. 2-6A). Previous work has shown that integrin mediated RhoA activation may cause 

cytoskeleton reorganization, stiffening, and contraction in other cell types [188,199].  Since 

increased RhoA activity has been noted in previous in vivo TBI models [82], and more recently 

inhibition of ROCK, a downstream effector of RhoA,  has been shown to be an important 

therapeutic target in various neurodegenerative disease [206], we asked whether integrin-

activated Rho-ROCK signaling may contribute to neuronal injury in our model. Immediate 
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application of HA-1077, a ROCK inhibitor, following stretch with the HSS system resulted in a 

dose-dependent decrease in the percentage of neurons exhibiting focal swellings (Fig 2-6B).  

This apparent neuroprotective effect of HA-1077 was observed at both 5% and 10% strain 

magnitudes (Fig 2-6C). These studies suggest that a FA mediated signaling cascade may be 

converging on a ROCK-mediated pathway, identifying a series of potential targets for future in 

vivo therapeutic intervention studies following TBI.  

 
Figure 2-5: Effect of Calpain Inhibition on Injury Levels 
Neither (A) pre-administration 30 minutes prior to nor (B) post-administration immediately following 
stretch of Calpain inhibitor elicited neuroprotective effects against stretch induced focal swelling. All 
bars SEM for all panels 
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Figure 2-6:Pharmacological inhibition of secondary injury pathways may reduce neuronal 
injury. 
(A) Immediate administration of a Calpain inhibitor MDL 28170 following 10% stretch of neurons 
seeded on PLL substrates was unable to reduce the percentage of injured neurons 10 minutes later (n ≥ 
4). (B) However, immediate application of a ROCK inhibitor, HA-1077, was able to reduce neuronal 
injury in a dose dependent manner (n ≥ 5). (C) Decreases in injury were observed at both 5% and 10% 
strain magnitude (n ≥ 5). All bars SEM for all panels, * p < 0.05.   
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2.3 Discussion 

 Here we have shown that given the same mechanical stimulus, neurons exhibiting 

increased FA density are more likely to experience axonal injury.  Previous studies have 

attributed this injury to a loss of ionic homeostasis caused by either a disruption of the cell 

membrane [104,153,90] or changes in ion channel function [262,305].  However, we have shown 

that injury can be induced by applying small strains, less than what can disrupt the cell 

membrane, at high rates directly through mechanically sensitive FAs. A recent in vitro study 

directly linked focal swelling to the pathological influx of calcium and activation of calpains 

which degrade the cytoskeleton [153].  Other studies have shown that not all neuronal injury is 

dependent on membrane disruption and calpain activity [90,268], but offer little evidence for an 

alternative mechanism to account for the calpain-independent injury. Our in-vitro study indicates 

that integrin mediated Rho-ROCK activation may account for calpain independent pathways of 

injury.  

Concurrent with this study, our group showed that axons may be more vulnerable to 

injury than the soma because the failure strength of FAs in neurites is significantly lower than in 

the soma.  Furthermore, force transmission via integrin binding ECM proteins always produced 

widespread focal swelling, whereas non-specific force transmission through the membrane 

produced only local injury [126].  A previous study has demonstrated a similar sensitivity of 

neuronal injury to ECM composition in the 3D cell microenvironment [43]. Neurons embedded 

in a 3-D gel composed of collagen conjugated to agarose exhibited increased cell death following 

an acute, high rate deformation when the collagen concentration was increased, indicating that 

the degree of cell-ECM contacts may influence neuronal injury [69].  Cell-matrix interactions 

have also been shown to be involved in pathological processes following acute mechanical 

stimulation in other cell types such as vascular smooth muscle cells [302] and epithelial cells 
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[283,32].  These reports, coupled with the data reported herein, suggest ECM-cell adhesions may 

be important conduits for mechanical cell trauma.   

Previous reports suggest a role for calpains in neuronal injury [153,90,268].  In our low 

strain model, we were unable to mitigate neuronal injury with a calpain inhibitor.  However, we 

were successful in reducing neurite injury with the use of a ROCK inhibitor.  Integrin stimulation 

can activate many signaling cascades, but activation of the Rho-ROCK pathway is of particular 

interest because of its known effects on the cell cytoskeleton. ROCK activation can affect 

cytoskeleton remodeling by activating downstream targets that regulate cytoskeleton tension 

[154], actin polymerization [217], neurofilament depolymerization [125], and microtubule 

stability [9].  Interestingly, studies have shown that axon focal swelling may be a result of the 

breakdown of microtubules and impairment of the axonal transport system [151].  Furthermore, 

axon retraction following mTBI can be linked to active remodeling of the neuronal cytoskeleton 

[178].  The activation of RhoA in in vitro studies has demonstrated neurite retraction in 

neuroblastoma cell lines [143] and dendritic retraction in brain slices [33].  A genetic study in 

Drosophila indicates that in mature neurons, the RhoA-mediated axon retraction pathway is 

actively repressed by negative regulators [31].  The synaptic degeneration associated with DAI 

implies that the activation of RhoA is a maladaptive response.  Blocking activation with a Rho 

antagonist can reduce injury related apoptosis in the CNS [83], suggesting that blocking Rho 

activation may be effective in treating TBI.  Furthermore, recent studies on axon growth cone 

retraction have demonstrated a link between ECM protein type, integrin activation, cyclic AMP 

levels, and Rho activity [169].  With the growing concern about the lack of therapeutic options 

for treating mTBI [145], our results suggest that further exploration of cellular 
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mechanotransduction mechanisms associated with ECM-cell adhesions may identify novel 

therapeutic opportunities.   

This chapter has focused on introducing the concept that axonal injury may be affected 

not only by the magnitude or rate of applied insult, but also by mechanochemical coupling at the 

focal adhesion.  We utilized a standard in vitro TBI model with a subtle, but important 

modification to substrate surface chemistry to indicate that mechanosensitive properties of the 

neuron must also be considered in addition to the mechanics to fully understand the neurons 

response to trauma forces.  This is equivalent to saying that the neuron is not a passive material, 

but has an active response to applied force.  Future chapters of this dissertation will aim to 

elucidate additional factors that influence this active response. 

2.4 Materials and Methods 

2.4.1 Ethics Statement 

All procedures were approved by the Harvard Animal Care and Use Committee under 

Animal Experimentation Protocol permit number 24-01.  This protocol, entitled "Harvest and 

Culture of Neural and Cardiac Tissue from Neonatal Rats and Mice for In Vitro Disease 

Models," meets the guidelines for the use of vertebrate animals in research and teaching of the 

Faculty of Arts and Sciences of Harvard University. It also follows recommendations included in 

the NIH Guide for the care and use of laboratory animals and is in accordance with existing 

Federal (9 CFR Parts 1,2&3), state and city laws and regulations governing the use of animals in 

research and teaching. 

2.4.2 Neuron Harvest and Culture 

Cortical neurons were isolated from 2-day old neonatal Sprague-Dawley rats (Charles 

River Laboratories, Boston, MA). Reagents were obtained from Sigma-Aldrich (St. Louis, MO) 
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unless otherwise indicated. Cortices were surgically isolated and minced in Hanks’ balanced salt 

solution (Invitrogen, Carlsbad, CA) followed by digestion with trypsin (USB, Santa Clara, CA) 

overnight at 4°C.  The cell suspension was then filtered through a nylon filter of 40µm pore size 

(BD Bioscience) and finally separated using a Percoll gradient (GE Healthcare Life Sciences, 

Piscataway, NJ). Subsequently, cells were re-suspended in DMEM culture medium (Invitrogen) 

supplemented with 10% (v/v) heat-inactivated fetal bovine serum (Invitrogen), 30 mM Glucose, 

2mM L-glutamine, 25 mM KCl, 50 mU Insulin, 7µM p-Aminobenzoic acid, 100 U/mL 

penicillin, and 100μg/mL streptomycin. Cells were seeded at a density of 30,000 cells per cm2 

and supplemented with 10 µM cytosine arabinoside for the first 48 hours of culture on substrates 

coated with either 100µg/ml PLL or 50 µg/ml FN. Samples were incubated under standard 

conditions at 37°C and 5% CO2. After 48 hours cells were washed 3 times with PBS to remove 

non-adherent cells.  Media was replaced every 48 hours until experiments were executed. All 

experiments were performed on either day 4 or 5 post seeding. 

2.4.3 High Speed Stretcher in vitro TBI Model 

 Medical grade silicone elastomer membranes   (SMI .010” NRV) were spin-coated with 

Sylgard 527 (Dow Corning, Midland, MI) polydimethylsiloxane (PDMS) that was mixed at a 1:1  

base to curing agent ratio and allowed to cure for at least 4 hours at 70oC.  The elastomer 

membranes were then clamped into custom made brackets to maintain tension, and a reducing 

well to hold cell media was adhered using additional PDMS which was allowed to cure again for 

at least 4 hours at 70oC.  Samples were then oxidized using UV ozone (Model No. 342, Jetlight, 

Irvine, CA) for 8 minutes to sterilize the surface and increase hydrophilicity for protein 

adsorption.  Either isotropic Poly-l-Lysine (PLL) or Fibronectin (FN) (BD Biosciences, San Jose, 

CA) was then deposited on the PDMS at a concentration of 100 µg/ml or 50 µg/ml, respectively, 
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in sterile deionized water for at least 20 minutes.  Excess PLL or FN was removed by washing 

with deionized water.  Neurons were seeded and cultured inside the reducing well as indicated 

previously.  Each sample was loaded into a custom made High Speed Stretching (HSS) device 

which used a high precision linear motor (LinMot Model P01-23x80F-HP, Elkhorn, WI) to 

displace the brackets and strain the elastomer sheet to a desired magnitude at a rate of 1% per ms 

(Movie S1).  Membrane strain was verified by recording the deformation of a 1x1 cm grid using 

a high speed camera (FasTec Troubleshooter Model #: TS1000ME) and calculating the strain 

using a three-point strain algorithm [8].   

2.4.4 Immunofluorescent Staining and Microscopy 

 Cells were washed 3 times in PBS at 37oC and fixed for 10 minutes in 4% 

paraformaldehyde and 2.5% TritonX-100 in PBS at 37oC.  Cells were then washed 3 times in 

PBS and an initial blocking step using 5% Bovine Serum Albumin (Jackson ImmunoResearch, 

West Grove, PA) in PBS was performed for 1 hour at 37oC.  The blocking solution was aspirated 

away and the primary antibody solution was immediately added and incubated for 1.5 hours at 

room temperature.  The primary antibodies used were either anti-β-Tubulin III (1:200), 

monoclonal anti-Vinculin (1:200), or  anti-glial fibrillary acidic protein (1:200).  Primary 

antibodies were added to a 0.5% BSA in PBS solution.  Following primary staining, cells were 

washed 3 times, and the secondary staining solution consisting of either goat anti-mouse 

conjugated to Alexa-Fluor 488 or goat anti-rabbit conjugated to Alexa-Fluor 546 and 4’,6-

diamidino-2-phenylindole (DAPI) was added to the cells for 30 minutes at room temperature.  

Samples were then washed 3 times.  For samples seeded on silicon sheets, a scalpel was used to 

cut out an 18mm circular section of the substrate which was placed on a glass slide.  For glass 

bottom samples, the glass was removed from the dish and placed on a glass slide.  ProLong Gold 
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Antifade reagent (Invitrogen) was added to preserve the samples and glass coverslips are affixed 

using nail polish (company info).  Prepared slides were either imaged immediately or stored at -

20oC. Imaging was performed on a LSM 5 LIVE confocal microscope (Carl Zeiss, Oberkochen, 

Germany) with appropriate filter cubes.     

2.4.5 TUNEL Assay 

Click-iT TUNEL assays (Invitrogen) were performed following the manufacturer’s 

protocol [211]. Briefly, cells were fixed in 4% paraformaldehyde and fragmented strands of 

DNA were labeled with a fluorescent indicator.  Fluorescence imaging was performed on 

experimental and control populations, and neurons exhibiting fluorescence levels above a 

threshold set by control samples were considered to be apoptotic.    

2.4.6 HSS Membrane Poration Studies 

Immediately prior to HSS experiment, membrane impermeable fluorescein dye 

(Invitrogen) was added to the cell media at a 10µM concentration.  Following completion of the 

experiment, samples were fixed as described previously but TritonX-100 was excluded.  Cell 

nuclei were labeled with DAPI as described earlier.  Uptake of the dye was determined by 

fluorescence microscopy.  Cells exhibiting uptake of the dye above a set fluorescence intensity 

threshold of three standard deviations greater than the control mean were considered to be 

porated. 

2.4.7 Vinculin Puncta Quantification  

Using a watershed algorithm to separate neighboring structures according to the intensity 

‘valley’ between them, individual FAs could be identified and their respective area quantified. In 

order to segment very large and granular adhesion sites, as observed on FN- and PLL-coated 
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substrates respectively, we used a different set of threshold values for watershed segmentation 

[149,317]. 

2.4.8 Pharmacological Interventions  

Calpain inhibitor MDL 28170 (Sigma) was prepared per manufacturer’s 

recommendations. Briefly, MDL 28170 was reconstituted in anhydrous DMSO and neurons 

were treated with concentrations ranging between 100nM and 1mM in Tyrode’s solution. The 

effects of the calpain inhibitor were determined for both 30 minute pre-incubations and 

immediate post stretch applications. Rho-associated Kinase (ROCK) inhibitor HA-1077 (Sigma) 

was prepared by dissolving in water and neurons were treated with concentration ranging 

between 1nM and 100 μM in Tyrode’s solution.  The effects of calpain inhibitor were 

determined for immediate post stretch applications.   

2.4.9 Statistical Analysis  

Statistical significance was measured by ANOVA and subsequent pairwise comparison 

when comparing multiple values. p<0.05 for all statistically significant differences.   
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3 Developing a Tool Set for Localizing Injury Forces through Specific 
Subcellular Structures 

3.1 Introduction 

Following the implication of mechanochemical coupling in axonal injury, we sought to 

pursue the importance of trauma forces directed through specific brain extracellular matrix 

(ECM) components in axonal injury.  However, to address the primary limitations of our 

previous work as well as to facilitate future in vitro axonal injury studies focusing on cellular 

mechanotransduction mechanisms, we identified 3 technological limitations that were necessary 

to address prior to moving forward.     

While the previous study was performed using an established in vitro model of Traumatic 

Brain Injury (TBI), we identified no suitable existing model that would allow the isolation of 

forces through specific ECM components while providing sufficient control over additional cell-

ECM influences.  Previous reports have summarized the existing models of TBI as well as their 

features [201].  To address this shortcoming, we identified an established technique called 

Magnetic Twisting Cytometry (MTC) [295,292,87,194,5,196,210] that could be adapted as an in 

vitro model of TBI and that could provide the necessary level of control for directing injury 

forces through specific brain ECM components.   

Although traumatic damage to all neural cell processes is likely, Diffuse Axonal Injury 

(DAI) is focused specifically on neuronal axons.  In order to isolate our study to axons, we 

developed improved seeding and cell culture methods that provided axon rich regions in which 

injury analysis could be isolated.  This was accomplished through the combination of mask 

seeding and microcontact printing [304] into a technique termed stamp mask culturing. 

Finally, since the primary form of pathology associated with DAI is a morphological 

change within the axon, specifically axonal focal swelling, and visual confirmation of injury is 



39 
 

an acceptable form of analysis.  However, in order to minimize the influence of user bias, 

maximize the efficiency and consistency of analysis, and to provide increased complexity of 

analysis we sought to develop an automated method to quantitatively identify and measure 

axonal injury.  To do so, we developed a protocol combining semi-automated imaging of live 

neuronal cultures with post image analysis in both ImageJ and Matlab to identify and 

quantitatively measure the extent of axonal injury in vitro.      

3.2 Development of an in vitro TBI Model for Delivering Localized Injury Forces 
through Specific Subcellular Structures 

3.2.1 Design Criteria for the Development of an in vitro TBI Model Capable of 
Localizing Forces at the Subcellular Level 

In order to address the experimental task of investigating brain ECM-cell interaction 

mechanisms in axonal injury, we built an  in vitro device that allows the localization of well 

defined mechanical stimuli through specific ECM proteins to their receptors on the cell surface.  

The development of a new device was required because there are currently no in vitro assays that 

allow enough precision to isolate injury forces to multiple cellular sites across multiple cells 

while minimizing global cell strain that results in non-specific force application.  MTC is a 

technique that  is similar to the magnetic tweezer based technology that has previously been used 

in our lab to study axonal injury, but it has previously been used only to study the mechanical 

and mechanosensitive properties of cells [293].  We chose MTC because it provided a means to 

direct localized forces to multiple axons simultaneously through specific ECM-coated 

microbeads and is known to be compatible with live cell imaging.   

3.2.2 Building the MTC in vitro  Model of TBI 

MTC delivers localized forces to cells by manipulating small ferromagnetic beads (~5µm 

diameter) bound to cell surface receptors.   Microbeads are rapidly rotated by applying an initial 
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magnetizing magnetic pulse (~.1T or 1000 G) followed by an orthogonal twisting magnetic pulse 

(~.01T or 100G). To use this technique as a means to direct injury inducing forces to our cell 

populations, we designed and built the necessary device components in house.  Four primary 

components were designed (Fig 3-1A). Charging circuitry converts a standard 110 volt power 

input to as much as 1 kV for charging the capacitor bank.  The capacitor bank  consists of 

multiple 10 uF and 900 uF units and stores charged energy to be rapidly discharged through the 

coils.  Due to the electric circuit design (Figure 3-2), the output current can be modeled as a 

simple RLC circuit whose waveform morphology is dictated by the circuit resistance, 

inductance, capacitance, and charge voltage.  A pulse shaping network is used to modify the 

characteristic resistor-inductor-capacitor (RLC) circuit transient into a waveform with 

appropriate duration and morphology for magnetizing and twisting the beads.  Field generating 

coils convert the discharged electric current into a transient magnetic field. The first three 

components are combined into a single, mobile power supply cart which allows the user to select 

appropriate charging voltage as well as discharge waveform duration (Fig. 3-1B).  Both coils 

were initially designed using computer aided drafting (CAD) software (Fig 3-1C,E) prior to 

actual fabrication (Fig 3-1D,F). The twisting coil includes several important design aspects that 

facilitate long term live cell imaging of a cell sample following bead twisting.  These design 

features include the incorporation of the coils into a standard microscope stage insert and a 

closed environmental chamber with cover glass lid to minimize contamination and evaporation 

during long term microscopic imaging.  Each coil was designed in a helmholtz configuration to 

maximize field uniformity.  Simulations were used to direct the design of the coils, and 
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Figure 3-1: Magnetic Twisting Cytometry Device as an in vitro model to study TBI. 
(A) Four primary MTC device components were designed and constructed in house.  (B) The high 
voltage charging circuitry, capacitor banks, and pulse shaping network are housed in a single cart both 
safety and convenience.  (C,E) Both the magnetizing and twisting coils were designed using CAD 
software and supported by simulations of magnetic field generation.  (D,F) The coils were fabricated 
in house and adapted to facilitate long term live cell imaging by incorporating the twisting coil into a 
standard microscope stage and including a closed cell chamber to minimize contamination and 
evaporation of bath solution.      
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following coil construction, we verified the design parameters by directly measuring the 

magnetic fields generated by each coil using a small magnetometer probe. The magnetic field 

magnitude and orientations were measured in the center of each coil pair, corresponding to the 

location in which the culture dish sits,  while the current driven through the coil was increased 

(Fig. 3-3 A-B).  As exected, we observed a linear increase in field magnitude along the axis of 

the coil (inset indicates each direction relative to the coil cross section).  Measurement of the 

slope of this line allowed us to convert current through the coils to magnetic field magnitude for 

 
Figure 3-2: Schematic Diagram of MTC Power Supply. 
The magnetic twisting cytometry device is driven by a high voltage power supply designed based on a 
simple resistor-inductor-capacitor (RLC) circuit.  A standard 110 volt wall outlet is converted to high 
voltage through a proprietary circuit.  The high voltage outlet then charges a capacitor bank of 900 µF 
and 10 µF capacitors up to 1 kV.  The capacitors are subsequently discharged through a circuit 
consisting of the coil and a series resistance that is modified to produce transient currents of specified 
magnitude and duration.  Multiple safeguards are built into the power charging circuitry to protect 
users from potentially dangerous current discharges.  
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Figure 3-3: Two pairs of electromagnetic coils each in a Helmholtz configuration are used to 
generate the magnetic fields required for the MTC injury model. 
(A) A magnetizing coil is used to initially magnetize small ferromagnetic beads and a (B) twisting coil 
is used to provide a subsequent orthogonal field causing the beads to rotate and generating a stress at 
the site of adhesion to the cell.  (C-H) The magnetic field strengths and distributions were measured 
with a magnetometer to verify the experimental design parameters. 
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both the magnetizing coil (.7 Gauss/Amp) and the twisting coil (160 Gauss/Amp).  This also 

verified that the axial field was much greater in magnitude than either orthogonal field 

magnitude components. The uniformity of the generated magnetic field was also  measured by 

moving the magnetometer probe in both the axial and radial directions (Fig. 3-3C-F) while 

keeping the current through the coils constant. As expected, we observed uniform fields within 

the constraints of the coil (indicated by the dashed lines).  Uniformity in field magnitude is 

important in order to ensure consistent bead torque at all locations within a coverslip.  

 Twisting of the microbeads is accomplished by applying a transient magnetic field in an 

orthogonal direction to the microbead magnetic moment resulting in a torque: τ = M x B (Fig. 3-

4A).  The ferromagnetic beads are exposed to a brief, large magnetic field (Fig. 3-4B) generate 

and align the magnetic moments followed by a brief twiting coil (Fig. 3-4C) that produces the 

torque.  The degree of magnetization is indicated by the magnetic moment, which can be 

calculated by measuring the decay of the remnant magnetic field as the beads rotate to align with 

a known twisting field in a medium of known viscocity.  We placed a high concentration of 

ferromagnetic beads in glycerol (Fig. 3-4D), magnetized the beads in one direction, and 

subsequently applied a low magnitude twisting field in an orthogonal direction.  We used a 

magnetometer to measure the remnant magnetic field strength in the original magnetized 

direction and observed an exponential decay in field magnitude (Fig. 3-4E).  An exponential fit 

provided the decay constant which, combined with solution viscosity, bead dimensions, and 

physical constants, was used to calculate the effective stress delivered by each bead [294].  From 

these results, we calculated a bead calibration factor of 0.314 Pa/Gauss which indicates the 

effective stress delivered by each bead for a given field strength.  This data, in combination with 

the coil properties previously measured in Figure 3-3, allow the calculation of the bead stress 
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induced by delivering a current pulse through the twisting coil. Two limitations currently exist in 

determining the exact shear force at the bead adhesion site.  First, the force is dependedent upon 

the surface area of bead binding, and precise imaging studies are needed to experimentally 

measure this value.  Second, the bead rotation cannot currently be measured in real time.  

Therefore, stimulus values will be reported as the max shear stress delivered by each bead, which 

is dictated by the peak current discharged through the coil. 

 In addition to microbead twisting, there is a small degree of microbead translation that 

will produce a localized strain.  High speed imaging during the application of the twisting field 

captures the projection of bead translation (Fig. 3-4F).  Tracking the motion of the centroid of 

multiple beads (N>100) we measured a typical motion profile (Fig. 3-4G).  The motion profile 

 
Figure 3-4: Measurement of the induced bead magnetic moment allows for calculation of the 
induced bead torque for a given magnetic field strength. 
(A) Small ferromagnetic beads were placed in a solution of glycerol. (B) The beads were initially 
magnetized and then exposed to a twisting field while the remnant magnetization along the original 
magnetization axis was measured in time.  The magnetic moment can be is proportional to the 
exponential decay time constant.    
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indicated an absolute displacement of ~.75 μm that occurred over the 50 ms of applied twisting 

field with a subsequent relaxation to near its original location by ~ 300 ms.   

A primary feature of the MTC device is that it can deliver mechanical stimuli at multiple 

sites across multiple cells in a single sample.  However, just as important is its ability to direct 

these injury forces through microbeads coated with specific proteins or ligands that target 

specific cell surface receptors.  In order to verify microbead coating with proteins of interest, we 

utilized a basic chemical reaction producing covalently bonded protein coating on the bead 

surface.  The covalent bond was accomplished using a two pot reaction process (Fig 3-5A).  The 

initial step consisted of carboxyl coated microbeads (CFM 40-10, Spherotec)  incubated with 100 

μM 1-Ethyl-3-(3-dimethylaminpropyl)carbodiimide) (EDC) and 100 μM N-Hydroxysuccinimide 

(NHS) in a 1.0 M Sodium Acetate Buffer for 1 hour at room temperature.  The microbead 

mixture then underwent a 3x series of centrifugation at 500 G for 1 minute and a subsequent 

rinse with isotonic buffered saline.  The second reaction step consisted of adding the protein of 

interest at a concentration of 1μM in isotonic buffered saline overnight at 4 oC.  The final coating 

step consisted of incubating the microbeads in 1% Bovine Serum Albumin (BSA) for 1 hour 

(also served as storage solution for up to 3 days).   

Following microbead coating, the presence of protein on the microbead surface was 

verified using multiple techniques.  We utilized X-ray photoelectron spectroscopy (XPS) to 

assess the elemental composition of the bead’s surface. After incubating beads with fibronectin 

(FN), a CAM previously used to injure neurons in our studies, beads analyzed via XPS showed 

marked increase in nitrogen content (Fig. 3-5B). This, combined with the decrease in chromium 

content, suggest successful FN binding since the carboxyl-coated chromium oxide surface of the 

bead is now covered with nitrogen-containing FN. Moreover,  we observed  more positive zeta 
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potential of the bead following incubation with proteins including Acetylated Low Density 

Lipoprotein (AcLDL), poly-l-lysine (PLL), and FN (Fig. 3-5C), which suggest successful bead 

coating as the protein coatings shield the uncoated bead’s more negative carboxyl groups. To 

more specifically determine whether proteins were attached to the beads, we imaged beads 

coated with fluorescently tagged AcLDL, PLL, or FN (Fig. 3-5D-E). The normalized 

fluorescence intensity of beads revealed increased signal intensity relative to uncoated beads 

(Fig. 3-5F), which indicated that proteins were bonded to the bead’s surface. We next sought to 

characterize the ability of beads with various protein coatings to bind neurons. To this end, we 

seeded 1 million microbeads per well resulting in a saturating coverage of microbeads  (Fig. 3-

5G) and allowed the microbeads to adhere for 30 minutes.  For normal experiments, the 

microbeads were not perturbed, providing a conistent likelihood for an axon to be in close 

proximity to a microbead independent of the microbead coating.  Only for the purpose of 

determining if microbead attachment differed significantly with microbead coating, a subset of 

samples were gently rinsed, fixed, and immunostained (Fig. 3-5H).  The number of bound beads 

per unit length of axon was calculated by counting the number of beads across 1-10 mm of axon. 

This preliminary analysis revealed variable bead binding with no statistically significant 

difference in neuronal bead binding for AcLDL, PLL, or FN coatings (Fig. 3-5I), however, due 

to high variation in the bead binding the rinsing step was omitted from all injury studies. Since 

beads coated with different proteins attached to neurons to similar degrees, the observed 

differences in injury rates are likely a function of the specific nature of bead-neuron interactions 

and not because of differences in net applied force to neurons.  
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Figure 3-5: Verification of microbead coating with specific ligands. 
(A) CAM ligands such as ECM proteins can be covalently bonded to the microbeads in order to target 
specific molecules that may potentiate brain injury. AcLDL binds a specific membrane receptor that 
is not a CAM and serves as a control for injury experiments.  PLL beads binds non-specifically 
through charge interaction and serves as another control for injury experiments.  FN is an ECM 
protein that binds specific CAMs such as integrins.  Microbead coating can be verified through 
multiple techniques including (B) measurement of bead surface composition, (C) measurement of 
bead surface charge, and (D-F) identification of fluorescently tagged CAMs.  Following bead coating, 
adhesion to neurons is accomplished by (G) seeding a high concentration of microbeads followed by 
a 30 minute incubation period and a gentle rinse to remove unbound beads.  The number of bound 
beads remaining can be quantified by fluorescently labeling (H) the axons with a neurofilament 
antibody and (I) counting the average number per length of axon, which indicated slight differences 
in the extent of binding between coatings. 
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3.2.3 Testing the MTC Device as an in vitro Model of TBI 

Following characterization of the coils and the microbead rotation and translational 

motion, initial experiments were performed to determine the axonal response to a mechanical 

stimulus delivered by the MTC device.  Using a low throughput magnetic tweezer model,  we 

have previously shown that an acute mechanical pull on Fibronectin (FN) coated beads bound to 

neurons results in neurite focal swelling and subsequent retraction.  We sought to reproduce 

these results using the new MTC model to verify that MTC could in fact injure axons.  Control 

experiments showed no morphological changes in response to experimental conditions or to bead 

binding over a 4 hour time window indicating the experimental conditions were not inducing a 

noticeable injury within the population of neurons (Fig. 3-6A-B).  However, application of a 

single twist using the maximum applied load of 125 Pa per bead resulted in focal swelling within 

1 hour post stimulus (Fig. 3-6C).  This response was observed in multiple cells on a single 

coverslip indicating that the MTC device was able to reproduce the characteristic changes in 

axonal morphology consistent with axonal injury in multiple cells simultaneously.   Furthermore, 

we were able to track these changes in ~25 neurons on a single coverslip which drastically 

increased our experimental throughput compared to the previous magnetic tweezer model which 

allowed for analysis of only a single neuron.   
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Figure 3-6: Preliminary experiments showed that the MTC device could induce the similar 
neuronal-axonal injury responses previously observed. 
(A1-2) Control experiments consisting of time lapse imaging of neurons under experimental 
conditions with and (B1-2) without beads attached indicated neurons did not exhibit characteristic 
morphology changes over a period of 4 hours.  (C1) Mechanical stimulation by the MTC device was 
able to produce the characteristic morphology of focal swellings (arrows) at (C2) 1 hr post bead twist.     
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After verifying the induction of axonal injury, a set of control experiments was performed 

in order to determine if evidence of mechanoporation was observed during the MTC  mechanical 

stimulus. In order to rule out this potential event, we performed live, high speed calcium (Ca2+) 

imaging during the application of the twisting field.  FN coated beads were attached to neurons 

and identified using DIC imaging (Fig. 3-7A).  Neurons were then loaded with Fluo4, a Ca2+ 

sensitive fluorescent dye, whose fluorescence level is dependent upon the intracellular 

concentration of Ca2+.  This allowed simultaneous measurements of Ca2+ concentrations at 

multiple locations along the axon (Fig. 3-7B).  Due to the large calcium gradient that exists 

across the cell membrane, if the membrane is torn one would expect to see a rapid increase in 

intracellular Ca2+ levels corresponding to a spike in the Fluo4 signal.  In order to test whether 

such an increase occurs during the mechanical stimulus delivered by the MTC device, we 

recorded from a neuron loaded with Fluo4 at 250 frames per second (FPS) during a single bead 

twist.  We analyzed the intensity of the fluorescence signal over this time interval (Fig. 3-7C).  

We observed physiological calcium cycling due to action potential firing but did not observe any 

change in Ca2+ signal during the twist (black arrow).  While we cannot rule out 

mechanoporation, we can conclude that if there is a transient tearing of the membrane the 

resulting Ca2+ flux is much less than that which occurs in the normal axon and thus should not 

account for the pathological changes observed at later time points.  
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In order to better understand the extent of axonal injury induced by the MTC model, we 

tested analyzed injury rates in neuronal cultures of varying age and varying stimulus intensity.   

We have previously performed our injury assays on primary cortical neurons harvested from day 

2 neonatal Sprague Dawley rats and cultured for 5 days in vitro (DIV).  Neurons at this stage, 

although generally considered immature, exhibit long branched neurites that exhibit injury 

responses similar to that observed in more mature cells.  However, neurons are not typically 

considered mature until 14-21 DIV.  Therefore, in order to accommodate this as well as to 

maintain consistency with previous results, we performed MTC injury experiments on neurons 

cultured for 5 and 19 DIV.  We also compared the injury rates in response to twisting field 

 
Figure 3-7: Measuring bead twisting  induced intracellular calcium (Ca2+) increase as a marker 
of mechanoporation. 
(A) DIC image of a neuron prior to bead twisting illustrates bead binding location and sites analyzed 
for Ca2+ fluorescence.  (B) Immunofluorescence image illustrates a single snapshot taken at 250 fps 
during the bead twist.  (C) Example regions show raw Ca2+ fluorescence intensity signal at each 
location illustrated in the images.  The dashed line illustrates the approximate time of the bead pull, 
but no spike is observed in Ca2+ intensity, suggesting that the neuron is not experiencing 
mechanoporation.   
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strengths corresponding to capacitor charges of 20 and 100 or induced shear stresses of 6 and 30 

Pa per bead, respectively.  As expected, we observed a magnitude dependent incidence of neurite 

focal swelling, in the DIV 19 cells, but we were unable to induce consistent levels of elevated 

injury rates in the DIV 5 neurons (Fig. 3-8A).  One explanation for this is that the magnitude of 

the mechanical stimulus delivered to each neuron using the MTC injury model may be less than 

that of previous injury models and insufficient to generate large amounts of injury across the 

entire coverslip.  Interestingly, we did observe neurite retraction, another indicator of injury, in 

both DIV 5 and DIV 19 neuronal cultures indicating that there is a response to the mechanical 

stimulus even in the less mature cultures (Fig. 3-8B).  Nonetheless, it is an important potential 

result in that future in vitro studies may need to qualify their results based upon the maturity of 

their cultures.  All future injury studies will be performed on the mature 14-21 DIV neuronal 

cultures.   

 
 After verifying that the MTC model can reproduce our previous neuronal injury results, 

we continued our efforts to understand the effects of directing trauma forces through specific 

ECM components.  Building on our previous results using the high speed stretch injury model, 

we compared the extent of axonal injury induced by directing forces through PLL coatings 

compared to FN coatings.  PLL will interact non-specifically with the cell membrane due to its 

large positive charge, yet has no specific ligand-receptor interaction, whereas FN is known to 

bind specifically to multiple integrin subunits. To this end, we performed live imaging 

experiments on neurons subjected to MTC stimulus through where multiple neurons from each 

culture sample were imaged every 5 minutes for one hour allowing timelapse images to be 

constructed for each neuron.  The percentage of neurons that had become injured, indicated by 

the presence of axonal focal swellings, at each timepoint was recorded for each sample condition 
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(Fig. 3-9A).  The results indicated that the progression of injury was different in neurons injured 

through PLL coated beads compared to those injured through FN coated beads.  A significant 

different in injured neurons was observedat 10 minutes following injury but not at 60 minutes 

(Fig. 3-9B).  Additionally, using a sigmoidal fit to the data, a significant difference was observed 

in the time to 50% of maximum injury percentage (Fig. 3-9C).  Together, this data shows that 

forces delivered through FN coated beads injured neurons quicker than PLL coated beads 

suggesting a difference in the the cellular response to the applied stimulus.  This is important 

because it supports our previous implication of ECM-cell adhesion in axonal injury and supports 

the hypothesis of integrin mediated injury.   

 
Figure 3-8: Neuronal injury identified in vitro may be dependent upon the days in culture. 
(A) Neurite focal swelling exhibited an age and magnitude dependent response using the MTC injury 
model.  (B) Neurite retraction depends upon stimulus magnitude but occurred independent of how 
long the neurons were cultured. 
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To better understand the differences in injury progression observed between FN and PLL 

coated beads, we aimed to determine the structures through which these beads adhere to the 

neuron.  A primary advantage of the MTC technique is that it allows us to control the cellular 

structures through which injury forces are delivered by coating the beads with different proteins.   

Our hypothesis posits that injury forces encountered during mTBI couple to the neuronal 

cytoskeleton via mechanically sensitive, transmembrane proteins. One class of such proteins 

includes integrins, which are a family of transmembrane proteins that mechanically couple the 

intracellular cytoskeleton of cells to the extracellular space through focal adhesion complexes 

[292,5,293]. Alternatively, other proteins which do not bind integrins will not result in focal 

adhesion formation.  To test this, we attempted to immunostain for both focal adhesion markers, 

such as vinculin, and for integrins themselves.  We have been successful in identifying evidence 

of focal adhesion formation near FN coated beads.  We observed an increase in the localization 

of both vinculin (Fig. 3-10A)  and  β1 integrin (Fig. 3-10C) to areas of the axon bound by FN 

coated beads suggesting that the mechanical actuation of these beads engages integrin proteins 

 
Figure 3-9: Bead coating affects injury rate. 
(A) The percentage of neurons exhibiting injury by the indicated time point is recorded for both FN 
and PLL coated beads. (B) A significant difference in injured percentage is observed at 10 minutes but 
not at 60 minutes following bead twist corresponding to 30 Pa max shear strain.  (C) Using a 
sigmoidal fit to the data, FN induces injury at a significantly earlier time point than PLL. 
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and is directly transferred to the cytoskeleton of the neuron.  Brightfield images indicate the 

location of bound beads with respect to the axon (Fig. 3-10B,D). Although the colocalization 

appears more prominent in area of FN bead attachment compared to PLL beads, we unable to 

produce consistent immunostaining results such that a quantitative analysis could be performed.  

Therefore, a current limitation exists in that the specific membrane receptors and specifically cell 

adhesion molecules that are coupled to the ECM coated microbeads is unclear.  This is likely due 

to the difficulty of stabilizing these transient structures during the fixation procedure as well as 

their small clustering size compared to other adherent cell types.  Future work will be necessary 

to clarify the specific structures through to which these ECM coated beads adhere in neurons.   

 

 
Figure 3-10: Fibronectin coated ferro-magnetic beads bound to neurons recruit integrins and 
focal adhesion components. 
(A) Immunostaining for vinculin (green) reveals the presence of focal adhesions (white arrows) where 
beads attach to neurons (neurofilament: red). (B) β1 integrins also cluster at bead adhesion sites. (C,D) 
Bright field images confirm bead colocalization with vinculin and integrin immunofluorescence 
images. Scale bar = 5 µm. 
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3.3 Development of Anisotropic Neuronal Substrates to Isolate Axon Rich Regions 

3.3.1 Design Requirements for Neuronal Cultures with Isolated Axons 

Axonal swelling is the hallmark morphology of DAI and thus remains the most definitive 

means of identifying injured axons in vitro.  Unfortunately, due to the intricate structures of 

neurons and glial cells, it is often difficult to accurately identify these markers.  Part of the 

difficulty lies in the fact that neuronal cultures are typically isotropic and densely seeded to 

promote viability.  In our previous work, we seeded our cultures sparsely in order to increase the 

likelihood of finding isolated neurons.  However, sparse neuronal cultures do not maintain their 

viability well over the long term culture period necessary for maturation (14-21 DIV).  

Furthermore, by definition DAI is an injury to axons.  While it is unlikely that dendrites are 

immune to damage, their injury response may vary from that of axons and therefore it may be 

beneficial to separate these two types of processes in the experimental setting.  As is evident 

from a typical neuronal cortical culture, most neurons exhibit a highly branched, complex tree of 

processes consisting of a mixture (Fig. 3-11).  While immunolabeling techniques as well as 

subtle morphological differences can distinguish dendritic and axonal processes, clear distinction 

between these two subsets is often difficult.  In order to facilitate studies of axonal injury, it is 

therefore beneficial to introduce a level of anisotropy into the neuronal cultures such that axons 

are (1) isolated from dendritic and glial processes, (2) concentrated in a single region to increase 

analysis throughput, and (3) aligned to decrease the effects of overlapping or directional effects 

of force application. 
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3.3.2 Building Stamp Masks to Produce Neuronal Cultures with Isolated Axons 

Many strategies have been used successfully to introduce anisotropic cues to cultured 

cells.  We utilized a combination of mask seeding and microcontact printing [304] in a technique 

termed stamp mask cultures to produce regions of isolated axons with specific degrees of 

alignment (Fig. 3-12).  Mask seeding uses a physical barrier to prevent cell bodies from adhering 

to regions of a coverslip during the seeding process.  Microcontact printing utilizes microscale 

features imprinted onto the surface of a polymer, typically PDMS, that are inked with adhesive 

protein and then transferred to a substrate surface.  The resulting printed chemical cues direct cell 

adhesion along certain paths presenting specific boundary cues to the cell.  We combined these 

two techniques by initially molding microscale lines that were  1cm x 15 μm x 5 μm (L x W x H) 

into one surface of a 1 mm thick slab of PDMS.  After molding one surface, an epilog CO2 laser 

 
Figure 3-11: Isotropic Neuron with Highly Branched Processes. 
Example image of a neuron after 14 days in culture illustrates the extensive branching of its processes.  
The distinctive morphology presents multiple challenges to identifying axonal injury including 
distinguishing axons and dendrites, attributing a particular axon to a cell body, and quantifying the 
degree of axonal injury within a given process.  The isotropic morphology also results in a low degree 
of consistency in general structure across multiple neurons. 
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was used to cut out a 3x3 grid of squares.  Each square was 3 mm x 3mm and separated by 1 

mm.  After the stamp masks were cut by the laser, they underwent a 3x cycle of rinsing and 

sonicating in 90% Ethanol to remove any debris left over and to sterilize for cell culture.  

Following sterilization, the stamp masks were inked with an adhesive chemical composition of 

50 μM Laminin reconstituted in .1% Poly-L-Lysine for 1 hour.  The stamp masks were then 

dried and placed on clean glass coverslips sterilized by UVO treatment.  PLL was then 

immediately added to the wells and incubated for an additional hour.  The PLL was removed and 

rinsed 3x with sterile Phosphate Buffered Saline.  Neurons from primary harvest of Sprague 

Dawley rat cortices were seeded at a concentration of 200k cells per cm2.  See section on primary 

neuronal culture harvest for full protocol.  After 1 hour, the stamp masks were removed, 

coverslips were rinsed 2x and then returned to the incubator.  
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3.3.3 Testing the Effectiveness of the Stamp Mask Technique. 

The stamp mask procedure utilized the 1 mm barrier regions (Fig. 3-13A) to both isolate 

a region of the coverslip from cell bodies and to lay down chemical cues to promote axonal 

growth.  Immediately following seeding and removal of the stamp mask, the isolated region was 

easily visible (Fig. 3-13B).  After 14-21 DIV, immunolabeling of neuronal cultures indicated that 

only axons (indicated with Tau) grew into the isolated region whereas both dendrites (MAP2) 

and glial cells (GFAP) were confined to the seeding well regions.  Therefore, any process found 

 
Figure 3-12: Construction of Stamp Mask. 
The stamp mask technique utilizes a combination of mask seeding and microcontact printing, also 
referred to as ‘stamping’ to produce anisotropic neuronal cultures with regions of isolated axons.  The 
stamp mask is constructed from a PDMS disk that contains microgrooves on one side.  A versa laser is 
used to cut multiple squares out of the disk to create wells for seeding.  Prior to seeding, the mask is 
inked with adhesive proteins, dried, and placed onto a clean glass coverslip.  Neurons are seeded into 
the wells and allowed to adhere to the glass surface.  The stamp mask is subsequently removed leaving 
adhered cell bodies and axon growth cues on the surface.  Over 7-14 days, neurons extend axons onto 
the adhesive ECM proteins creating regions of isolated axons.   
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in the central region could be identified as an axon without the use of immunolabeling 

procedures.   

 In addition to generating regions of isolated axons, we were able to modify the degree of 

axonal anisotropy by changing the geometric cues of the microcontact printed area.  Whereas the 

15 x 15 μm lines indicated previously produced nicely aligned, separated axons, removing these 

features allowed the printing of an isotropic adhesive surface resulting in an isolated region of 

non-aligned axons (Fig. 3-14).  Although we did not fully characterize the effects of changing 

the stamp mask features, it was clear that modifying the feature properties such as line width as 

well as the distance between wells affected the general alignment of the isolated axonal region.  

Furthermore, modifying the density of neuronal somas seeded in the well regions also influenced 

the density of axonal processes found in the isolated axon regions.  For all future injury studies, 

we found the optimal parameters to be 15x 15 µm lines with well regions spaced 1.5 mm apart 

and a seeding density of 200k cells per cm2.  
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Figure 3-14: Isotropic and Anisotropic Axon Only Regions. 
Depending on the microgroove features imprinted onto the PDMS, the isolated axon region can 
exhibit varying degrees of aligned axons. Using only a smooth surface, isotropic axons are grown in 
the central region.  Using uCP lines of 15 µm width with 15 µm spacing results in highly aligned, 
anisotropic axons.  

Calcein 3 mm 20 μm 15 μm

Isotropic µCP 15x15 µm lines

 
Figure 3-13: Isolation of Axon Rich Region Using Stamp Mask. 
Example images from the stamp mask protocol indicate the microcontact printed (ucp) lines on one 
surface of the stamp mask as well as the separation of cell seeding regions (upper left).  After seeding, 
neuronal cell bodies are separated by a region of uCP adhesive proteins that promotes axonal growth 
(lower left).  After 7-14 days in culture, immunostaining reveals the outgrowth of only axons (upper 
right) into the center region with dendrites unable to extend across the gap (lower right). 
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3.4 Development of an Automated Method for Quantifying Axonal Injury in vitro 

3.4.1 Design of Automated Analysis of Axonal Morphology.    

A major difficulty in studying axonal injury in vitro arises in the proper identification of 

injured axons.  Since the only definitive pathology is a morphological change of the axon, the 

obvious analysis technique is microscopy.  However, distinguishing a normal axon from an 

injured axon is not obvious, and moreover, distinguishing the severity of an injured axon is 

completely unclear.  At what point a normal change in axon diameter becomes pathological is 

left to the individual researcher to determine and to attempt to keep consistent throughout the 

analysis.   

In order to address this shortcoming, we sought to develop an automated analysis strategy 

in which (1) no manual identification of morphology is necessary and (2) no preconceived 

characteristics of axon focal swellings are defined. 

 

3.4.2 Building the Software Package for Automated Analysis of Axon Morphology  

We developed a protocol combining semi-automated imaging of live neuronal cultures 

with post image analysis in both ImageJ and Matlab to identify and quantitatively measure the 

extent of axonal injury in vitro.  The process begins with live imaging of neurons that are 

fluorescently tagged in order to provide sufficient signal to noise ratio as to identify axon 

segments (Fig. 3-15A).  We utilized Calcein to label our neurons as this provided a fluorescent 

molecule that is confined to the interior of the cell membrane yet is able to diffuse freely 

throughout the cell volume without attaching to specific structures.  Calcein is typically used in 

live/dead stains to indicate viable cells and therefore provides the additional benefit of verifying 

the viability of the axons we are imaging.  Following time lapse imaging of a field of view 

(FOV) within the isolated axon regions of our neuronal cultures, the image series undergoes a 
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sequence of post processing using custom scripts and image processing techniques written in 

both ImageJ and Matlab software packages.  ImageJ scripts are responsible for skeletonizing the 

first image of each sequence to provide a mask that indicates the coordinate locations of axons 

within the particular FOV (Fig. 3-15B).  Skeletonizing is accomplished through a series of image 

filtering and morphological analysis that can be found in the attached code.  After skeletonizing, 

the image sequence is passed to Matlab where the morphological properties of the axon are 

measured at each time point.  This process begins with the measurement of the axon cross 

section at each point along each axon at each time point (Fig. 3-15C).  The cross section provides 

the best estimate of the axon width at a particular point.  Multiple options exist for specifying 

how the cross section is measured.  For future injury experiments, and absolute threshold was set 

where the cross section was measured as the full width at a pixel intensity value of 25 within an 

8 bit image.  Initial images are background subtracted such that the absolute value provides a 

constant SNR above background levels of fluorescence.  After the width is measured at each 

point along an axon segment (Fig. 3-15D), the width values are inserted into a matrix (Fig. 3-

15E) that provides a quantitative depiction of the morphology of that particular axon in time.  

The morphology matrix is used in subsequent analysis to identify the presence of injury.         
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3.4.3 Testing the Automated Analysis of Axon Morphology. 

Initial testing to ensure the effectiveness of our custom analysis software was performed on fake 

axon segments drawn in adobe illustrator that will be referred to as pseudo axons.  The 

importance of this verification step is twofold.  First, the accuracy of the automated measurement 

of cross sections was verified.  Second, the ability to resolve axonal swellings given the optical 

resolution of our experimental setup was verified.  To do so, multiple axon segments were drawn 

with varying sizes and number of focal swellings (Fig. 3-16A).  These segments were converted 

 
Figure 3-15: Summary of AMA Protocol. 
(A) Automated analysis of axon morphology begins with skeletonizing an entire field of view (FOV) 
that has been imaged throughout the course of an experiment.  Skeletonizing results in a 1 pixel wide 
trace of the axons.  (B) After tracing, axon width is measured at each discrete point along the axon.  
The width is quantified by measuring the distance between an absolute threshold of pixel intensity, set 
to 30 in an 8 bit image for this analysis.  (C) Width measurements are made along the entire axon 
segment and for all axons within a FOV.  (D) Each axon width measurement is made at multiple time 
points allowing the generation of a map of axon widths in time.  This matrix is referred to as the axon 
morphology map. 
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to tiff images with resolution that matched the output from our imaging system, meaning that the 

number of pixels that defined a typical real axon segment was also imposed onto the fake axon 

segments.  Subsequent analysis of the pseudo axons was performed and produced a morphology 

matrix that indicated accurate measurement of both smooth axon segments as well as individual 

focal swellings (Fig. 3-16B).      

 After verifying the accuracy of the measurements, it was necessary to define an injury 

metric that converted the morphology matrix data into a numerical indicator for comparison 

across conditions.  Given that the morphology matrix contains a wealth of information, multiple 

single parameters could potentially be calculated.  In order to maximize robustness we sought a 

 
Figure 3-16: Verifying Measurement Accuracy on Pseudo Axon Images. 
Verification of the accuracy of axon width measurements was performed using a set of pseudo axons 
that were drawn in adobe illustrator with specific, known widths and focal swelling sizes.  (A) Fake 
axons were constructed to contain multiple width measurements and amounts of focal swellings.  (B) 
Automated analysis of the pseudo axons revealed accurate measurement of axon widths and accurate 
detection of the multiple degrees of axonal swelling. 
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simple metric that captured the amount of change in axon morphology that occurred in time.  We 

decided on a metric termed the sum of the width gradient squared (SGS) to condense the 

morphology matrix into a single parameter (Fig. 3-17A).  The essence of the metric is that it 

captures any change in morphology by first taking the geometrical derivative (change of width in 

space) and then captures the amount of change by summing up the square of this value along the 

entire segment.  It was necessary to control for differences in axon segment lengths, which was 

accomplished by dividing by the total length of the segment to produce a unit less parameter that 

effectively indicates the amount of change of the axon width per length of axon.  The usefulness 

of condensing the information of the morphology matrix into a single parameter can be indicated 

using example segments (Fig. 3-17B).  An initially smooth segment can be quantified by a 

specific SGS that changes at a later time point once axon swellings appear.  By normalizing the 

SGS to the earlier or initial time points, a relative changes in SGS (NSGS) is calculated and can 

be compared across axon segments. 

The automated analysis of axon morphology combined with the NSGS metric was tested 

on multiple FOV to verify robustness in detecting axon segments and quantifying axon 

morphology characteristics.  An example  FOV illustrates how multiple axons (Fig. 3-18A) are 

segmented (Fig. 3-18B) and subsequently measured to produce quantitative descriptions of 

length and width measures (Fig. 3-18C,D).  
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Figure 3-17: Testing Injury Metric on Pseudo Axons. 
(A) In order to quantify the axon morphology using a single metric, we developed a score based on the 
sum of the square of the gradient of the axon width, termed SGS. This metric captures the relative 
amount of change in axon width along the length of the axon.  In order to compare the SGS metric in 
time, it is normalized to an initial point, typically the first time point, to generate a normalized SGS 
metric or NSGS.  (B) Analysis of an example segment illustrates how the SGS metric quantifies two 
segments with varying amounts of focal swelling and how the NSGS metric can quantify the relative 
amount of change within that segment in time.     
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 Individual segments exhibiting focal swellings can be identified and isolated for 

additional analysis or for demonstration purposes.  Figure 3-19 illustrates a specific segment that 

exhibited axonal swelling.  The morphology change is noticeable in the binary image (Fig. 3-

19A) and is further identified in the traces of axon width (Fig. 3-19B) and width gradient (Fig. 3-

19C).  In order to determine the effectiveness of the NSGS parameter in detecting the 

morphology change, we plotted the temporal progression that indicated an increase around 30 

minutes post MTC induced injury (Fig. 3-19D).  Future axonal injury studies will use the 

automated axon morphology analysis strategy combined with additional statistical analysis to 

pursue the relevant scientific hypothesis.   

 

 
Figure 3-18: AMA Analysis on Example FOV. 
Extending the AMA analysis beyond single segments to an entire population is necessary to quantify 
the amount of axonal injury within a population.  A single field of view can be divided into multiple 
axon segments of constrained length, each of which has a range of potential axon widths. 
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3.5 Discussion 

A large effort was placed in developing this tool set for the sole purpose of addressing our 

research question.  While some of the tools represent novel developments of technologies (e.g. 

AMA analysis) others consist of a combination or adaptation of existing technologies with novel 

purpose (e.g. MTC as an injury model, stamp masks for producing isolated axons).  Effort was 

made in writing this dissertation to provide necessary reference to the pre-existing techniques 

and technology and to clearly indicate where the ‘novelty’ was in adaptation or combination as 

opposed to conception.   

The primary advancement and contribution of this chapter was in the development of a 

complete package aimed at advancing the ability of current in vitro TBI studies to better address 

questions of mechanosensitivity of axons.  We focused on adapting techniques and strategies 

from relevant fields that could be applied to our research interests and developing new strategies 

 
Figure 3-19: NSGS Measurement of Axon Segments. 
Each axon segment from a single field of view is analyzed individually in time.  Its distinct (A) 
threshold morphology, (B) measured width, (C) and gradient of the width is calculated.  Following 
this analysis, multiple segments can be compared across conditions generating (D) a data set with 
multiple independent variables. 
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and techniques when no existing ones could be found.  In particular, a wealth of relevant 

information, tools, and techniques was found amongst the traditional field of mechanobiology.  

Although this field is by no means new, there is relatively little crossover between it and in vitro 

TBI.  Mechanobiology tends to focus on the basic principles of mechanosensitivity of cells at the 

cell and sub-cellular level.  The tendency is to focus on cells that experience more obvious 

mechanical interactions such as muscle or endothelial cells, yet many of the structures and 

processes are ubiquitous and likely relevant to mature neurons as well.  It is our intention that by 

borrowing from existing knowledge within the field of mechanobiology, we can make more 

timely advances in understanding how mature neurons respond to physical forces during TBI.  

By developing a package of technologies including the injury model, in vitro tissue substrates, 

and analysis methodology that is amenable to elucidating mechanosensitive structures within the 

axon, this chapter has served as the foundation for our future TBI studies focused on elucidating 

mechanosensitive processes related to cell-ECM interactions.       
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4 Axonal Injury Depends on the Extracellular Matrix through which 
Trauma Forces are Directed 

4.1 Introduction 

  The non-uniform distribution of axonal injury within the brain previously described in 

Chapter 1 supports the question of why certain brain regions are more or less susceptible to 

Traumatic Brain Injury (TBI). Despite previous attempts to explain vulnerabilities from a 

mechanical standpoint (also outlined in Chapter 1), certain aspects of TBI pathology appear to 

depend on factors other than purely mechanics and mechanical properties.  One particular 

example is the distribution of Diffuse Axonal Injury (DAI) that is typically described as a multi 

focal, non-uniform distribution observed diffusely throughout the brain [34].  These injury 

patterns include multiple isolated regions in which injured neurons are found immediately 

adjacent to uninjured neurons.  We hypothesized that the distribution of injured neurons 

interspersed with uninjured neurons may be due to factors in the local cellular microenvironment 

that affect the susceptibility of a neuron or axon to local forces.  Given the implication of 

mechanochemical coupling in axonal injury from Chapter 2, we reasoned that the local 

extracellular matrix (ECM) composition surrounding a neuron may influence its 

mechanochemical coupling and thus its susceptibility to trauma. 

 Despite the high density of cellular components in the brain, the extracellular space 

constitutes approximately one-fifth of its total volume [273] and is comprised of diverse ECM 

proteins including glycosaminoglycans (GAG), proteoglycans (PG), and glycoproteins (GP). 

Hyaluronic Acid (HA), Chondroitin Sulfate Proteoglycans (CSPGs), Tenascin-R (TnR), and 

Link Proteins together form the primary extracellular scaffolding structure within the brain.  

Although an extensive analysis of the regional expression levels of individual ECM molecules 

has only been performed in the mouse brain [64], several reports support the existence of 
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differential regional expression in multiple species including opossum [44], hedgehog [204], and 

humans [43].  Table 2 summarizes the extent of known ECM localization reported in the 

literature for both non-human and human brains, indicating that while less is known about the 

human distribution, brain ECM is ubiquitously expressed and differentially distributed.   

The most prevalent component of the brain’s ECM is HA, a GAG formed by a linear 

polymer of disaccharides [195]. HA is secreted into the extracellular space by membrane bound 

enzymes called Hyaluronan synthases (HAS) [278] that may localize to neurons [50].  CSPGs 

are comprised of a protein core to which variable numbers of linear, unbranched chondroitin 

sulfate GAG chains are covalently bonded.  Aggrecan, brevican, neurocan, and versican are 

prominent CSPGs, commonly referred to as lecticans, that vary in size between ~90kDa 

(Brevican) up to ~400kDa (versican) [244,320].  The cellular source of CSPGs is controversial, 

but likely includes both neurons and glial cells [50].  Tenascin-R is a trimeric, modular GP found 

primarily in the nervous system [279] and has been shown to be synthesized by both neurons and 

glial cells [50].  Link proteins are a group of small ~38-43 kDa proteins shown to be synthesized 

by both neurons and glial cells [50].  Additional proteoglycans, such as heparin sulfate 

proteoglycans (HSPGs), and glycoproteins, such as reelin, also exist in the brain ECM, 

contributing to its structural and functional diversity.  

Unique sub-cellular components form structures within the brain that contribute to the 

mechanical integrity of the cell.  Furthermore, distinct compositions of these components exist 

within the brain, forming specific cellular microenvironments that serve varying functions.   
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4.1.1 Distinct Cellular Microenvironments Contain Sub-cellular Structures that 
Influence Physiological Processes in the Brain   

The diversity of cell types and ECM within the brain has led to distinct microenvironments 

in which specific structures comprised of these components influence physiological processes.  

Organized ECM structures called Perineuronal Nets (PNNs) (Fig. 4-1A) localize to the soma and 

perisomatic extensions of neurons in multiple brain regions [37,205,227,50,191,43,99].  PNNs 

preferentially ensheath highly active neurons [205], suggesting they may function as a buffer for 

cations important in action potential generation [124].  PNNs may also limit plasticity as they are 

upregulated at the end of critical periods in development [227,49] and stabilize dendritic spine 

Table 2: Regional ECM Expression in the Developed CNS 
 
 Non-Human Human Reference (N,H) 
Cerebral Hemisphere 

Cerebral Cortex HA, A, B, N, V, P, LP, Tn-
R, Tn-C, R, HSPG 

HA, CSPG, A, B [320,66,67,41,16,81,101,20
2,64], 
[203,42,251,312,287,225,1
71] 

Amygdala HA, A, N, B, V, P, LP, Tn-
R, Tn-C, L, HSPG 

CSPG [193,197,230,202,288,27,1
92,101,93,136,65,184,64], 
[225,203,224] 

Hippocampus HA, A, N, B, V, P, LP, Tn-
R, Tn-C, R, HSPG 

HA, A, B, R [320,16,81,101,202,288,93,
136,65,184,252,26,28,27,6
4], [312,171,98] 
 

Thalamus HA, A, N, B, V, P, LP, Tn-
R, Tn-C, HSPG 

HA, CSPG, A [202,27,288,320,40,64], 
[203,170]  

Basal Ganglia  HA, CSPG,  A, HSPG CSPG [43,312,64] 
Hypothalamus HA, CSPG, N, V, LP, Tn-

C, HSPG 
CSPG [193,197,230,64], [203] 

Cerebellum HA, A, B, LP, Tn-C, R, 
HSPG 

HA [310,237,202,16,309,252,1
36,65,184,64], [312] 

Brainstem HA, A, N, B, V, P, LP, Tn-
R, Tn-C, HSPG 

CSPG [202,27,288,320,40,64], 
[249] 

Spinal Cord    
Gray Matter HA, CSPG, A, HSPG HA, Tn-R, A, B, N, 

V 
[64], [142,64] 

White Matter HA, CSPG, A, HSPG HA, Tn-R [64], [142,64] 

HA: Hyaluronan, CSPG: Chondroitin Sulfate Proteoglycan, A: Aggrecan, B: Brevican, N: Neurocan, V: Versican, HSPG: 
Heparin Sulfate Proteoglycan, LP: Link protein, TnC: Tenascin-C, TnR: Tenascin-R, R: Reelin 
 



75 
 

formation [162] potentially by influencing binding of CAMs.  Distinct ECM structures also 

surround synapses, influencing both development and plasticity associated remodeling of these 

structures (Fig. 4-1B) [323,78].  ECM molecules at the synapse have been shown to both 

promote and inhibit plasticity, as well as influence the clustering of postsynaptic receptors by 

limiting diffusion in the membrane [96].  This is accomplished through interactions with CAMs 

such as integrins and NCAMs [79,71] and transmembrane channels such as voltage dependent 

calcium channels [207,157].  Traditional adhesions like integrins [56] and cadherins [284] as 

well as neural specific adhesions like Neuroligin, Neurexin [271] and SynCAM [30,109] 

influence synaptic connectivity through signaling pathways that directly influence synapse 

formation and plasticity by regulating cytoskeleton organization [79,80].  Specific CAMs such as 

Caspr2, contactin, and NrCAM are also important in organizing the myelin structure that forms 

around axons in the brain [111,229].  Organized ECM scaffolds occupy the space between 

myelin wrappings, called Nodes of Ranvier (Fig. 4-1C) [19], and may promote clustering of Na+ 

channels that is necessary for signal propagation in the axon [272].  Finally, an organized ECM 

scaffold exists around the vasculature in the brain and influences cellular attachment and 

organization of the multicellular vascular structures (Fig. 4-1D).  ECM comprised of collagen, 

laminin, and HSPGs surrounds the inner layer of endothelial cells and also engulfs pericytes 

forming a structure referred to as the tunica intima [113].  In larger vessels, such as arteries and 

arterioles, a middle layer referred to as the tunica media is formed by multiple layers of ECM 

and smooth muscle cells as well as an outer layer called the tunica adventitia [135].  The external 

layer of ECM promotes adhesion of neural cells, such as terminal nerve fibers and astrocyte 

endfeet, which contribute to numerous vasculature functions including regulating cerebral blood 

flow and forming the blood brain barrier [1].  Thus, distinct cellular microenvironments 
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Figure 4-1: Unique cellular microenvironments exist within the brain. 
(A) The Perineuronal Net (PNN) is formed by extracellular matrix (ECM) and engulfs the soma and 
proximal dendrites of neurons.  Neuronal structure may be influenced by the PNN through interactions 
with cell adhesion molecules (CAMs), which together regulate neuronal connectivity.  (B) Synapses 
are formed between neuronal axons and dendrites but are also influenced by supporting ECM and 
astrocytes.  These components are structurally connected through binding of CAMs that influence 
formation and remodeling of the synapse.  (C) Myelinated axons consist of multiple layers of 
oligodendroctye processes that wrap around the axon with distinct spacing referred to as Nodes of 
Ranvier (NOR).  ECM within the NOR may influence the clustering of ion channels important for 
axonal signal propagation.  (D) The extensive vasculature within the brain varies in size from larger 
arteries and veins down to small capillaries, each of which has a unique structure. ECM comprised of 
collagen, laminin, and HSPGs surround the inner layer of endothelial cells (En) and also engulf 
pericytes (P), forming a basement membrane (BM) for cell attachment.  In larger vessels, such as 
arteries and arterioles, a middle layer referred to as the tunica media is formed by multiple layers of 
ECM and smooth muscle cells (SM) as well as an outer layer called the tunica adventitia (TA).  The 
external layer of ECM promotes adhesion of neural cells, such as terminal nerve fibers and astrocyte 
endfeet (A), which contribute to numerous vasculature functions including regulating cerebral blood 
flow and the blood brain barrier. 
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influence both cellular structures and functions important to normal brain physiology. Although 

critical functions of brain specific CAMs and ECM structures are beginning to emerge, their 

potential influence in mechanotransduction mechanisms remains relatively unexplored.  

4.1.2 Brain Extracellular Matrix and CAM Expression in Axons 

Unlike other tissue types such as muscle, an understanding of the structure and 

composition of the ECM directly adjacent to neural cells is not clear.  Although a general 

understanding of components and to some extent localization has been reported, these remain 

insufficient to correlate with the location of TBI pathology.  We previously hypothesized that 

cell-ECM linkages may direct injury forces through mechanosensitive cellular structures and 

showed that the extent of focal adhesions correlated with injury sensitivity.  Different ECM 

proteins can interact with different cell surface receptors and CAMs and therefore present a 

potential to elicit varying severities of injury.     

Integrins are expressed heterogeneously throughout the brain and have been shown to be 

differentially expressed in the adult rat brain [54,226].  Integrins are highly expressed in synaptic 

regions [243,213] and can modulate synaptic plasticity by regulating ion channel currents 

[173,255,300].  In the developing nervous system, integrins are involved in dendrite and axon 

outgrowth [242,277,128,248] and guide synaptogenesis [255,300], and in mature neurons, they 

influence remodeling of dendritic spines [255,301].  Their ability to modify Ca2+ handling and to 

modulate synaptic strength has also been linked to stabilizing long term memory potentiation 

[264], suggesting that integrins may be key players in memory and learning [300,54]. 

Beyond implications in normal functions, the potential for integrins to contribute to the 

pathophysiology associated with TBI remains unexplored.  Previously, TBI related forces at the 

cellular level have been linked to the cell membrane as well as the underlying cell cytoskeleton.  
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However, no specific conduit for propagating these forces has been proposed or explored.  Given 

the large body of research that indicates CAMs serve as a mechanical linkage between the 

extracellular space across the membrane to the cytoskeleton, we reasoned that they may serve as 

that conduit. 

In this chapter, we aim to determine if directing injury forces through different components 

of brain ECM-cell linkages elicit differential injury levels.  In doing so, we can answer the 

question of whether the ECM composition of neuronal microenvironments can explain the 

differences in injury susceptibility of certain neurons and thus clarify the multi-focal distribution 

axonal injury observed in DAI.      

 
 

4.2 Results 

4.2.1 ECM Expression in the Brain 

Reports of brain ECM immunolabeling are rare and none are sufficient to provide a 

complete understanding of what ECM are in closest proximity to the axon.  In fact, the most 

quantitative analysis was performed in the mouse with labeling of only 4 components and a 

semi-quantitative scoring method [64].  Therefore, we performed a series of immunolabeling 

studies in which we attempted to immunostain the predominant brain ECM components in both 

tissue sections from adult rat (Fig. 4-2A,B)  as well as in mature neuronal cultures at DIV 14-21 

(Fig. 4-2C,D).  We successfully labeled multiple classes of brain ECM in both tissue and cell 

culture verifying that components such as TnR, CSPGS, and HA are present.  We also observed 

varying staining patterns that are typically characterized by sparsely labeled neurons with 

increased density near the soma and perisomatic extensions.  These results are consistent with 

those previously published in the literature.  We attempted to further characterize the distribution 
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of specific components using colocalization, especially in regions nearest the axon.  

Unfortunately, the large degree of variability in staining patterns and difficulty in obtaining 

multiple antibodies resulted in the inability to quantitatively measure which components are 

predominantly localized near the axon.  Instead of pursing a detailed immunolabeling study of 

brain tissue, we decided to utilize a range of brain ECM molecules in the subsequent axonal 

injury studies.    

 

 
Figure 4-2: Immunolabeling of Brain ECM Molecules. 
Adult rat tissue sections indicate ECM distribution of (A) Aggrecan and the dual localization of (B) 
Aggrecan and Tenascin-R.  Mature neuronal culture DIV 14-21 indicate the presence of (C) Aggrecan 
and (D) Brevican near neurons (indicated by β3 Tubulin).  All scale bars indicate 100 µm. 
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4.2.2 Brain ECM Dependent Axonal Injury Rates 

Since multiple forms of ECM exist in the brain, we sought to determine the effect on 

axonal injury susceptibility when trauma forces are directed through a specific type of ECM.  To 

do so, we utilized the Magnetic Twisting Cytometry (MTC) model of axonal injury wherein the 

microbeads were coated with a specific type of ECM (Fig. 4-3A).  Coating of microbeads with 

each type of brain ECM was verified by fluorescently tagging the molecules prior to binding.  

Subsequently, the microbeads were imaged (Fig. 4-3B) and fluorescence levels were compared 

to that of stock beads to ensure fluorescence was due to the tagged ECM (Fig. 4-3C).     

In order to determine if the brain ECM microbead coating affected axonal injury 

susceptibility, we performed multiple injury studies using either Bovine Serum Albumen (BSA), 

Acetylated Low Density Lipoprotein (LDL), FN, TnR, Brev, Agg, or HA coated beads.  All 

microbeads were coated with BSA following their respective ECM coatings.  Microbeads coated 

solely with BSA served as a control to account for potential interactions between the microbead 

surface and cell surface receptors.  LDL coated beads served as another control condition as LDL 

is known to bind to a cell membrane receptor that influences metabolism but that does not serve 

as a CAM, and therefore represents non-adhesion binding proteins.  The remaining ECM types 

are all found in the adult brain and represent multiple classes of brain ECM.       

 Axonal injury experiments consisted of a precise protocol in which the only variation was 

due to the microbead coating.  Experiments began by seeding coated microbeads onto a neuronal 

culture coverslip at a concentration that was verified to ensure maximum coverage of the 

coverslip.  This number was initially estimated based on the coverslip area and experimentally 

verified to be ~5 million microbeads.  The experimental protocol is illustrated in Figure 4-4.    
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 Following injury experiments, a large data set was generated that was characterized by 

multiple independent variables.  In order to properly determine the effects attributed to bead 

coating, we had to also account for variability due to additional factors such as presence of the 

bead, time, and axon width.  To do so, we initially pooled the entire data set and determined if 

there were significant differences in any of these main effects.  We found that adhering ECM-

 
Figure 4-4: Axonal Injury Experimental Protocol. 
A precise protocol was followed to induce axonal injury.  Microbeads were initially seeded at a 
density of ~5 million beads per coverslip or ~65 thousand per mm2.  Following seeding, neurons 
underwent a precisely timed sequence of bead magnetization, neuronal labeling, and imaging.  The 
protocol produced a time series consisting of 15 minutes of pre-twist data followed by 60 minutes of 
post-twist data.   
 

 
Figure 4-3: Labeled ECM Coated Microbeads. 
(A) Schematic illustration indicates how MTC can be used to control the local ECM through which 
forces are directed to neurons.  (B) Verification of ECM coating on the microbeads was accomplished 
using immunofluorescence which indicated (C) a significant increase in fluorescence levels compared 
to control beads when fluorescently tagged proteins were adhered to the microbead surface. All bars 
SEM for all panels, * p < 0.05.   
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coated microbeads (without twisting) was not sufficient to cause changes in NSGS levels (Fig. 4-

5A).  However, when the beads were twisted, we did find a significant increase in the NSGS 

value indicating that microbead twisting did induce axonal injury.  Next, we identified a 

significant difference in the time course of axons subjected to bead twist compared to those that 

experienced no twist (Fig. 4-5B).  There was a small increase in the NSGS value for the no twist 

condition in time, however, this can likely be attributed to normal fluctuations in axon 

morphology.  Finally, we found that the average initial width of the axon segment also affected 

its NSGS level.  Significant differences were found between the no twist and twist conditions in 

axons whose initial average width was between 1.25 and 2.25 µm but not in those with widths 

between 2.25 and 2.75 µm (Fig. 4-5C). Therefore, variations in the NSGS level were found to 

depend upon bead twist, time, and initial axon width.  

After identifying multiple sources of variance in our data set, we then sought to address 

our primary hypothesis.  This is consistent with asking whether there are significant differences 

in NSGS values that can be attributed to microbead ECM coating, taking into consideration bead 

twist, time, and initial axon width.  We found that when variance due to time and axon width was 

accounted for, there was no significant difference between ECM coatings when microbeads were 

adhered but not twisted (Fig. 4-5D).  When microbeads were twisted, we did observe a 

significant difference in NSGS levels attributed to ECM coating (Fig. 4-5E).  Specifically, we 

found no difference between control microbeads coated only with BSA or LDL indicating that 

directing forces either non-specifically or through non-adhesion receptors did not increase injury 

levels.  FN, TnR, and Brev coated microbeads all exhibited increased injury levels, significantly 

greater than the other bead coatings, with TnR eliciting the largest degree of injury.  Neither Agg 
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nor HA coated microbeads elicited injury levels significantly above control or non-adhesion 

coatings.  Taken together, these results suggest that the local ECM composition through which 

forces are directed to neurons can influence the susceptibility to injury.  Furthermore, whether 

the specific ECM component exhibits affinity for CAMs may be an important factor in 

determining how injurious the localized forces are to the neuron. 

 
Figure 4-5: Brain ECM Dependent Axonal Injury. 
The extent of axonal injury induced by MTC was compared across multiple independent variables.  
(A) Initial tests ensured that there was no statistical difference in samples subjected only to the 
presence of adhered microbeads.  However, when those microbeads were twisted, injury levels did 
increase significantly.  (B) Injury levels were also shown to depend upon time following the bead 
twist.  An average onset time of injury can be observed around 10 minutes post twist.  (C) Injury 
levels were also shown to depend upon the average initial axon width.  These results indicate that 
axons with lower initial widths are more susceptible to injury compared to their larger counterparts.  
After controlling for the multiple conditions that contribute to variation in the axonal injury data set, 
we identified (D) no injury dependency on bead coating in samples that were not subjected to bead 
twist, however (E) we did detect a dependency in samples that were subjected to bead twist indicating 
that certain brain ECM coatings resulted in higher levels of injury. Statistics analyzed using multi-way 
ANOVA followed by Post hoc Bonferroni pairwise comparison (α=.05). All bars SEM.     
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4.2.3 Integrin Dependent Axonal Injury Rates 

In order to determine if directing forces through integrins is sufficient to cause axonal 

injury, we again utilized the MTC model of axonal injury (Fig. 4-6A).  Instead of attaching 

various ECMs to the microbead surface, we instead used the same chemistry to covalently attach 

integrin antibodies (Abs) for specific subunits.  We verified the existence of receptors for 

specific Abs to be used in injury experiments by immunolabeling neuronal cultures. Two 

different integrin antibodies to β1 and β3 subunits successfully labeled neurons as well as the 

axon only regions of the coverslip (Fig. 4-6B).  These results indicate that both β1 and β3 

integrin subunits are expressed in vitro  and furthermore that they localize to the axons.           

After verifying that both of the β integrin subunits were expressed in axons of our neuronal 

culture, we attempted to determine their influence on microbead binding.  Of the three brain 

ECM molecules that produced the largest injury rates in previous studies, FN is the best known 

and most widely studied as an integrin binding ECM.  To determine if FN coated microbeads are 

interacting with integrin subunits in our cultures, we performed Ab blocking experiments in 

which 1 µM of either β1 or β3 integrin Ab was incubated with the neuronal cultures prior to 

addition of microbeads.  After 30 minutes of incubation, non-adhered beads were gently 

removed by placing a permanent magnet in the solution above the coverslip surface.  The 

percentage of the coverslip area covered by axons that remained covered by adhered beads was 

compared to control samples that contained no blocking Ab.  We found that with the addition of 

either β1 or β3 antibody, the amount of bead coverage may be slightly reduced, however, the 

results contained too much variance to draw a definitive conclusion.  Future experiments such as 

these will be necessary to determine the extent of interaction between specific ECMs cell surface 
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receptors.     

 Given the shortcoming of directly measuring the effects of integrin blocking Abs on 

ECM mediated injury, we sought to measure injury levels elicited by directing injury forces 

specifically through integrins.  To do so, we utilized the MTC injury model with microbeads 

coated with antibodies to either β1 or β3 integrins. Experiments were performed as previously 

indicated.  We found that neither β1 nor β3 integrin Ab coated beads induced injury when 

microbeads were adhered but not twisted (Fig. 4-7A).  However, following microbead twist, an 

increase in NSGS levels was observed (Fig. 4-7B). β1 integrins elicited injury levels that were 

slightly elevated compared to both control and non-adhesion receptors coatings, however these 

levels were not statistically different.  We did observe statistically greater NSGS levels elicited 

by β3 integrin Ab coated microbeads.  Moreover, these injury levels were greater than both 

control and non-adhesion coatings as well as that of the β1 induced levels.  Therefore, this data 

 
Figure 4-6: Integrin Ab Staining In Axon Rich Regions. 
(A) Schematic illustration indicates that integrin binding beads will couple directly into the 
cytoskeleton whereas non-integrin binding beads will interact with cell surface receptors that do not 
couple into the cytoskeleton.  (B) Immunostaining for the presence of integrins in the axon only region 
of neuronal cultures indicates that both β1 and β3 integrins are expressed in vitro in axons.     
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indicates that directing forces through integrins is sufficient to induce axonal injury.  

Furthermore, the specific subtype of integrin receptor may influence susceptibility to injury.    

 
 

4.3 Discussion  

In this chapter, we explored the implication of focal adhesions and mechanochemical 

coupling in TBI by asking whether specific cell-ECM adhesions mediate axonal injury.  The 

composition of ECM surrounding a cell has been tied to both selective CAM binding [133] and 

differential mechanochemical coupling [250].  This indicates that the local ECM composition 

can influence not only the cell adhesions that form but also the extent of mechanosensitivity of 

the cell.  Little is known about the brain ECM composition, structure, and specific interactions 

with cell receptors.  Therefore, we chose to test the effect of directing injury forces through the 

most common components of brain ECM.  Here we showed that trauma forces directed through 

different components of the brain ECM elicit differential axonal injury levels.  This result is 

important because it indicates that susceptibility of axons to injury may depend upon the 

 
Figure 4-7: Integrin Mediated Axonal Injury. 
Axonal injury levels elicited by localizing injury forces through specific integrin subunits were 
measured.  (A) No significant differences were observed simply by binding coated microbeads to 
neurons.  (B) Injury rates elicited by β3 integrin bound microbeads were found to be significantly 
elevated following bead twist compared to control coatings, non-adhesion receptor coatings, and β1 
integrin coatings.  Statistics analyzed using multi-way ANOVA followed by Post hoc Bonferroni 
pairwise comparison (α=.05). All bars SEM.      
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composition of the cellular microenvironment.  While susceptibility to axonal injury has 

previously been tied primarily to mechanics, the potential for an extracellular biological 

influence at the sub-cellular level has not been reported.   

One important implication of an ECM dependent susceptibility to axonal injury is that it 

may provide an explanation for the diffuse injury patterns observed throughout the brain 

following TBI.  While material properties and tissue structure have been proposed to account for 

these regional vulnerabilities, differences in the sub-cellular compositions or microenvironments 

near the injured regions have not.  Mapping of the composition and distribution of brain ECM 

currently established in the literature is insufficient to correlate with brain regions that exhibit 

elevated injury levels following TBI. Therefore, future studies will be necessary to determine if 

specific compositions of cellular microenvironments may predispose specific regions to injury 

induced by traumatic forces.   

In addition to understanding where an injury may occur within the brain, these results 

provide a potential explanation of the diffuse injury patterns that is directly related to the 

mechanism of injury.  We discussed a brief overview of cellular mechanotransduction and 

highlighted some of the key players, and within this work we have focused on the primary 

components of the brain ECM.  While little evidence exists indicating which brain ECM 

components exhibit specific affinity for CAMs and which exhibit specific mechanosensitive 

characteristics, we assumed the potential for mechanochemical coupling due to the extensive 

literature base focused on integrins and ECM coupling.  Some reports have indicated specific 

binding between brain ECM components and integrins subunits (Table 3), although a 

comprehensive list is not known.     
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Due to its abundance in different tissues, Fibronectin is the best studied of the ECMs that were 

tested in our experimental model, and as such its interactions with integrins have been widely 

documented [147,72,62].  While FN may not be as predominant as HA, CSPGs, or TnR in the 

brain, its interactions with specific integrins, such as the α5β1 and αvβ3 subunits known to be 

expressed in the brain is the best established.  Interestingly, TnR is similar in structure to FN, 

although somewhat less complex [58], but its specific interactions with integrin subunits are 

much less documented.  Nevertheless, there is at least some evidence that suggests the potential 

for direct interaction with specific integrin subunits for all the primary components of the brain 

ECM in this study except for HA (summarized in Table 3).  Interestingly, FN and TnR exhibited 

some of the highest injury levels and are also the most established integrin binding ECMs.  Brev 

also exhibited elevated injury levels even though its potential for integrin binding is less 

established.  While this data certainly cannot definitively point to integrins as the 

mechanosensors, it presents a strong argument that CAMs such as integrins likely potentiate 

Table 3: Reported Integrin Binding to Brain ECM 
Microbead Coating Reported Neuronal Integrin 

Binding 

Bovine Serum Albumin (BSA) Non-specific 

Low Density Lipoprotein (LDL) Non-adhesion 

Fibronectin (FN) α5β1, αvβ3 

Tenascin-R (TnR) α5β1 

Aggrecan (Agg) β1*  (CSPG binding) 

Brevican (Brev) β1* (CSPG binding) 

Hyaluronic Acid (HA) None 
 
 

  Summarized from [228] and [307] 
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axonal injury.  Interestingly, when injury forces were directed through specific integrin subunits, 

injury levels were much lower for β1 integrins compared to FN, TnR, and Brev.  However, injury 

levels elicited by forces directed through β3 integrins did induce injury levels similar to that of 

these ECMs.  Multiple explanations may exist for these differences: (1) Differences in 

mechanical strength of ligand-receptor interactions between ECM and antibodies, (2) 

Differences in the activation state of integrins bound by antibodies as opposed to ECM, and (3) 

Differences in amount of ligand present on microbead surface between ECM and antibody.  

Therefore, future studies will be necessary to directly conclude that integrins are the 

mechanosensors as well as specifically which subunits are implicated.  However, the current 

results due indicate a likely injury mechanism by which exogenous forces are directed through 

specific ECM to mechanosensitive integrins.   

   In this chapter, we have focused on the potential for the ECM composition surrounding 

neurons to influence axonal injury levels.  Our findings suggest that variation in injury 

vulnerability at the cell and sub-cellular level may be due to differences in the ECM composition 

of the cellular microenvironment.  While the cellular microenvironment is influenced by multiple 

factors, ECM composition may be especially important in TBI due to its potential influence on 

cellular mechanosensitivity.  ECM-cell adhesions are known to be critical to maintaining 

neuronal structural integrity and therefore provide conduits for distributing mechanical force 

throughout the cell.  It is this specificity that provides the unique mechanosensitive functionality 

of CAMs and their associated intracellular proteins.  While we are limited in our current 

understanding of the exact cell-ECM linkages within the brain, our findings indicate that specific 

linkages affect vulnerability to axonal injury and likely provide an injury mechanism that is 
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linked to mechanochemical coupling that influences the neuronal response to exogenous 

mechanical force. 

 

4.4 Materials and Methods 

4.4.1 Ethics Statement 

All procedures were approved by the Harvard Animal Care and Use Committee under 

Animal Experimentation Protocol permit number 24-01.  This protocol, entitled "Harvest and 

Culture of Neural and Cardiac Tissue from Neonatal Rats and Mice for In Vitro Disease 

Models," meets the guidelines for the use of vertebrate animals in research and teaching of the 

Faculty of Arts and Sciences of Harvard University. It also follows recommendations included in 

the NIH Guide for the care and use of laboratory animals and is in accordance with existing 

Federal (9 CFR Parts 1,2&3), state and city laws and regulations governing the use of animals in 

research and teaching. 

4.4.2 Neuron Harvest and Culture 

Cortical neurons were isolated from 2-day old neonatal Sprague-Dawley rats (Charles 

River Laboratories, Boston, MA). Harvest protocol was established from Brewer et al., 2007 

[38].  Stamp mask technique (Chapter 3) was utilized to form anisotropic substrates with regions 

of isolated axons.  Neurons were cultured for 14-17 days post-harvest.   

4.4.3 Immunolabeling of Brain ECM in Tissue Slices 

Adult female Sprague-Dawley rats (Charles River Laboratories, Boston, MA) were 

euthanized using a combination of CO2 and cervical dislocation.  Brains were immediately 

extracted and placed on ice.  Coronal tissue slices at ~30 µm thick were taken sequentially using 

a custom built tissue slicer. Slices were fixed in 4% paraformaldehyde and 2.5% TritonX-100 in 
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PBS at 4oC for 24 hours.  Primary antibodies for Aggrecan, Brevican, and Tenascin-R were 

incubated at 200 ug/ml in 1% Bovine Serum Albumin (BSA)  (Jackson ImmunoResearch, West 

Grove, PA)  in PBS for 1 hour.  Secondary antibodies were subsequently incubated at 200 ug/ml 

in 1% BSA for 1 hour.  Immunolabeled tissue slices were mounted and preserved in ProLong 

Gold Antifade reagent (Invitrogen) and stored at -20oC until imaging.  Imaging was performed 

on an Olympus IX83 Platform with a Hamamatsu Spinning Disk Confocal (Olympus).         

4.4.4 Verification of Microbead Coating 

Microbead coating with various ECM was verified using immunofluorescence.  ECM was 

initially labeled with a fluorescence tag by incubation with TFM.  Unbound dye was 

subsequently removed using dye removal columns.  Labeled ECM was adhered to microbeads 

using the standard microbead coating protocol (outlined in Chapter 3).  Coated microbeads were 

imaged using an Olympus IX83 Platform with a Hamamatsu Spinning Disk Confocal (Olympus) 

and fluorescence levels were measured using the same laser intensity and exposure time for each 

bead coating.  Fluorescence levels of control coatings in which no protein was initially added 

were used to determine base line levels of fluorescence. Microbeads with fluorescence levels 

significantly greater than control beads were considered coated with ECM.       

4.4.5 Immunolabeling Axonal Integrins 

Cells were washed 3 times in PBS at 37oC and fixed for 1 minute in 4% 

paraformaldehyde at room temperature.  Cells were then washed 3 times in PBS and an initial 

blocking step using 5% Bovine Serum Albumin (Jackson ImmunoResearch, West Grove, PA) in 

PBS was performed for 1 hour at 37oC.  The blocking solution was aspirated away and the 

primary antibody solution was immediately added and incubated for 1.5 hours at room 

temperature.  The primary antibodies used were either anti-β1 integrin (1:200) or anti-β3 integrin 
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(1:200).  Primary antibodies were added to a 0.5% BSA in PBS solution.  Following primary 

staining, cells were washed 3 times, and the secondary staining solution consisting of either goat 

anti-mouse conjugated to Alexa-Fluor 488 4’, 6-diamidino-2-phenylindole (DAPI), and 488 

Phalloidin (1:200) (Invitrogen) were added to the cells for 30 minutes at room temperature.  

Samples were then washed 3 times.  ProLong Gold Antifade reagent (Invitrogen) was added to 

preserve the samples and glass coverslips are affixed using nail polish.  Prepared slides were 

stored at -20oC. Olympus IX83 Platform with a Hamamatsu Spinning Disk Confocal (Olympus).         

4.4.6 Microbead Binding to Neurons 

Following coating, microbeads were seeded at a density of ~5 million beads per coverslip 

or ~65 thousand per mm2.  This number corresponded to a saturating coating in which the 

maximum coverslip area was covered by microbeads.  Following microbead seeding, neuronal 

cultures were returned to the incubator for 30 minutes to allow the formation of adhesions 

between microbeads and the cells. 

4.4.7 Calcein Labeling of Neurons 

Neurons were fluorescently labeled using Calcein (Invitrogen).  Stock Calcein was reconstituted 

in 10% pluronic solution in DMSO (Invitrogen) at a concentration of 50 µg in 50 uL.  For 

labeling, 4 uL of Calcein solution was added to 1 mL of imaging media and incubated with the 

neurons for 2 minutes at room temperature.  Neurons were rinsed gently 3x with fresh imaging 

media followed by a 2 minute rest period and then rinsed 3x again.  Neurons were incubated at 

37oC for 30 minutes prior to imaging to allow fluorescence levels to stabilize.        
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4.4.8 Axonal Injury Experiment 

Axonal injury experiments followed a precise protocol that is outlined in Figure 4-4.  

Microbeads are initially adhered to neurons and allowed to incubate for 30 minutes.  Neurons 

were then rinsed gently 3x with imaging media.  All media except for 100 uL retained in the 

central area of the live imaging dish was removed and neurons were carefully transferred to the 

magnetizing coil while minimizing mechanical perturbation due to motion.  Microbeads were 

then magnetized by a single pulse of ~.1 T parallel to the length of the axon only region.  

Neurons were subsequently moved to the imaging chamber and 1 ml of imaging media was 

added.  After 30 minutes, neurons were labeled with Calcein.  Following another 30 minute 

period, multiple regions (5-10 fields of view were typical) were designated.  Each  region was 

imaged for 10 minutes at 5 minute intervals generating a time lapse of pre-twist images.  If 

samples were to be injured by microbead twist, they were then subjected to a single pulse ~.01 T 

oriented orthogonally to the magnetizing field.  High speed imaging at 50 FPS in brightfield 

verified rotation of microbeads.  Neurons were then imaged again every 5 minutes for 60 

minutes generating a time laps of post-twist images.  Following live imaging, time lapse images 

were subjected to post analysis. 

4.4.9 Post Processing of Axonal Injury Data 

 Axonal injury data (time lapse images) was analyzed using custom axon morphology 

analysis software developed in both ImageJ and Matlab.  This process is described in Chapter 3.     

4.4.10 Statistical Analysis 

Statistical analysis was performed in Matlab following the post processing automated 

analysis of axon morphology.  A multi way ANOVA test was initially used to determine if 

differences in mean values attributed to independent variables existed.  If so, subsequent 
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pairwise comparisons were run using post hoc Bonferroni analysis to identify differences in main 

effects.  Statistical tests were limited to 3 independent variables due to technical limitations of 

the software package.  Tests were run multiple times with different groupings of independent 

variables to test necessary comparisons.  α = .05 for all analyses.  All error bars are standard 

error of the mean.    
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5 Conclusions 

5.1 Importance of Implicating Focal Adhesions and Extracellular Matrix in 
Axonal Injury 

5.1.1 Interpretation of Results 

Current limitations in understanding diffuse brain damage associated with TBI may be a 

result of the complex interactions between mechanical forces and biological structures within the 

brain.  Previous studies aimed at identifying the cellular mechanisms underlying TBI have 

tended to focus on the non-specific application of force to tissue or cells within the brain.  In 

contrast, here we have suggested that a mechanical insult could utilize the extracellular matrix 

(ECM), cell adhesion molecules (CAMs), and the cytoskeleton as specific conduits through 

which forces are directed to mechanosensitive focal adhesions (FAs) within the intracellular 

space (Fig. 5-1).  Although the concept of mechanotransduction, a general process by which 

force is converted to chemical signaling, is by no means novel to TBI research, here we have 

focused on a specific class of cellular mechanotransduction previously unexplored in the context 

of TBI.  

Beyond transient membrane tearing, pathological mechanotransduction processes remain 

relatively unexplored in TBI.  In this dissertation, we have implicated mechanosensitive sub-

cellular structures in axonal injury by employing in vitro models designed to control the density 

of FAs through which injurious forces are delivered to neurons.  Using an in vitro uniaxial 

stretch model, we showed that modifying the FA density can influence the percentage of injured 

neurons, identified by morphological swellings similar to those observed in DAI in vivo.  This 

suggests that the neuronal adhesions to the ECM are an important factor in initiating injury.  

Since FAs serve as attachment sites for the cell, it is not surprising that they may influence 

cellular mechanical events.  However, since FAs also provide sites of mechanochemical 
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coupling, they may provide a means by which neurons ‘sense’ trauma forces associated with 

TBI.   

We showed evidence that inhibition of Rho-Associated Kinase (ROCK), a downstream 

effector of Rho-GTPases, was able to significantly reduce stretch induced injury levels.  

Activation of Rho-GTPases may initiate at the FA suggesting that these pathways may be 

activated in neurons following an acute mechanical strain.  In addition to supporting 

mechanochemical coupling at the FA as an injury mechanism, these findings are promising 

because they present a novel, potential strategy for treating axonal injury.  There are currently no 

therapeutic options for TBI and, even more troubling, there are few treatment strategies that have 

exhibited promising neuroprotective results.  On the other hand, much is understood about the 

vast signaling capabilities of the FA as well as the extensive physiological pathways they 

influence [159].  Determining if and which of these pathways play critical roles in TBI may 

identify numerous targets for pharmacological intervention.  Therefore, implicating ROCK 

signaling in axonal injury presents not only an additional drug target, but more importantly it 

provides a potential link to the wealth of knowledge within the field focusing on cellular 

mechanotransduction.        

Building on these results, we sought to determine the effects of modifying the extracellular 

conduit that localizes forces to FAs.  To do so, we directed forces through different brain ECM 

to affect the cell-ECM linkages through which neurons ‘sensed’ trauma.  Using a Magnetic 

Twisting Cytometry (MTC) injury model, we found that forces directed through Tenascin-R, 

Brevican, and Fibronectin resulted in elevated injury levels compared to Aggrecan or Hyaluronic 

Acid.  These results indicate that differences in the ECM content of the local cellular 

microenvironment may affect neuronal susceptibility to injury potentially due to the resulting 
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Figure 5-1: Injury forces may be transmitted through mechanosensitive sub-cellular structures 
that regulate cellular architecture. 
The intracellular space is mechanically coupled to the extracellular space through components such as 
the cytoskeleton, transmembrane CAMs, and ECM.  A dynamic force balance exists within cells 
whereby forces on intracellular components balance forces on extracellular components dictating 
cellular structure. Cells can respond to external mechanical cues by sensing alterations in this balance 
through mechanosensitive structures that respond by activating signaling pathways, many of which 
remodel the cytoskeleton to redistribute forces.  A mechanical insult suffered during TBI could alter 
this force balance by changing the forces distributed throughout the structural elements of the ECM, 
CAMs, and cytoskeleton.   
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differences in cell-ECM adhesions.  Interestingly, when forces were localizing through non-

specific adhesions using either bovine serum albumin or low density lipoprotein coatings, injury 

levels were low and on the same level as that induced by both Aggrecan and Hyaluronan.  

Therefore, directing forces specifically through adhesion receptors may be an important factor in 

initiating axonal injury, potentially because only these adhesions exhibit mechanochemical 

coupling.   

To further implicate the importance of forces directed through cell-ECM adhesions, we 

measured injury levels elicited by localizing forces through integrins.  We again utilized the 

MTC injury model to determine that directing forces though β integrins, specifically β1 and β3 

subunits, was sufficient to induce axonal injury.  These results indicate that directing injury 

forces specifically through CAMs such as integrins may be a predominant component of axonal 

injury and support the implication of FAs in axonal injury.  Furthermore, forces directed through 

β3 subunits resulted in elevated injury levels compared to forces directed through β1 subunits.  

This result suggests that the subtype of integrin may influence vulnerability to injury potentially 

by influencing the extent of mechanochemical coupling that occurs at the adhesion.  Taken 

together, these findings are important because for the first time, they implicate a family of known 

mechanosensitive sub-cellular structures in TBI.   

5.1.2 What Evidence Supports Cellular Mechanotransduction in TBI  

Several previous reports support the implication of cellular mechanotransduction events in 

TBI.  A rapid deformation of 3D collagen gels resulted in a reduction in embedded neuronal 

viability when collagen concentration was increased, suggesting a potential influence of cell-

matrix interactions on injury [69].  The actin cytoskeleton and its regulatory pathways have also 

been implicated in axon degeneration by reports showing intrinsic activation of Rho signaling 
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pathways in response to trauma in the optic nerve, increased localization of RhoA with F-actin 

rich swellings in primary hippocampal neurons, and upregulation of RhoA in both rats subjected 

to fluid percussion brain injury and in stretch injured organotypic hippocampal slices 

[100,75,82].  Cytoskeleton and membrane associated proteins such as integrins have been 

previously hypothesized to influence the axonal morphology associated with DAI in peripheral 

nerve fibers as well [216].  Evidence also suggests neurite retraction exhibits a strain dependent 

response that is regulated by stretch sensitive channel activity [95], and mechanically initiated 

sodium influx has been shown to occur in neurons subjected to rapid stretch in vitro [305].  

Interestingly, integrins have been linked to these stretch activated channels in sensory neurons 

and other cell types [174,70].  Therefore, evidence for the involvement of mechanotransduction 

events beyond transient membrane rupture is emerging, however, future studies are necessary to 

elucidate and link these components of injury.       

In addition to the immediate contribution of mechanotransduction, there is evidence that 

suggests possible long term cellular changes initiated by mechanical events.  Alterations in 

protein expression have been observed in neurons exposed to a single rapid stretch in which 

sodium channel expression was greatly increased 24 hours following trauma [315].  This 

increase in channel expression was linked to an increased susceptibility to subsequent injury.  In 

our lab, we previously showed that vascular smooth muscle cells subjected to a single, rapid 

stretch exhibited altered calcium handling followed by a phenotypic switch to either contractile 

or synthetic states depending upon the magnitude of stretch [7]. Furthermore, the increased 

contractility was mitigated by immediate treatment with a ROCK inhibitor, providing additional 

evidence for the involvement of Rho-signaling following stretch induced injury.  In addition to 
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providing a potential explanation for the vasospasm observed following blast TBI, these studies 

illustrate the potential long term effects of cellular remodeling due to a single mechanical event.   

The major importance of this research lies in the potential identification of mechanical 

activation of specific signaling pathways, termed mechanochemical coupling, that likely 

accompany the initial trauma.  Since much of the morbidity associated with TBI is now 

correlated with progressive degeneration attributed to diffuse damage in the brain, identification 

of relevant biological signaling pathways is critical for therapeutic intervention.  While a few 

secondary injury cascades associated with diffuse injury such as DAI have been identified, there 

remain few treatment strategies and no approved pharmacological agents to mitigate this 

damage.  Although potential treatment options such as membrane resealing agents like 

Poloxamer 188 have shown promising results in animal studies, experimental evidence suggests 

this may not be the only mechanism leading to diffuse damage.  A search of all current and 

previous NIH clinical studies (performed on 9/25/13 at clinicaltrials.gov) revealed only 10 

candidate therapeutics for mTBI, none of which directly target a mechanotransduction 

mechanism.  On the other hand, many therapeutic options currently exist that target cellular 

mechanotransduction pathways.  It is our intent that by applying the current knowledge and 

principles of cellular mechanotransduction to TBI, future studies may elucidate underlying 

mechanisms and therapeutic strategies previously unexplored in the context of TBI.      

5.2 Limitations of Current Studies and Suggested Future Directions 

Herein we have focused on implicating cell-ECM adhesions and their potential to localize 

forces to mechanosensitive FAs that mediate axonal injury.   As we believe this represents a 

critical advancement in understanding the mechanisms underlying TBI, we also acknowledge 

that many of our conclusions rely on previous work to connect the dots.  Furthermore, much of 
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the previous work relied on was not conducted in neurons nor verified in the adult central 

nervous system.  While the results reported previously have broad implications, several key 

limitations must also be addressed. 

The initial high speed stretcher studies were intended to minimize deviation from prior in 

vitro TBI studies while incorporating only a small change to study the effect of FAs.  In doing 

so, potential changes due to culturing of neurons on different ECM could not be controlled.  

While we reported clear differences in FA coverage due to culturing on either Poly-L-Lysine 

(PLL) or Fibronectin (FN) surfaces, we did not account for potential changes in gene expression 

or cytoskeleton organization that could also depend upon ECM composition.  While it is 

impossible to control for all biological variation, the particular importance of a consistent culture 

substrate was a primary motivation for moving to the MTC injury model in which all neurons are 

cultures similarly prior to injury experiments. Moreover, the global strain induced by substrate 

stretch is insufficient to localize forces through FAs.  We did establish a direct link between 

adhesion strength and vinculin density (data published in [126]), yet we cannot control for non-

specific interactions between cell membrane bound structures and the substrate.  Furthermore, 

multiple mechanisms exist by which mechanical forces are transduced within the cell [185], and, 

while we have focused on FAs, it is possible that cytoskeleton prestress or changes in the force 

balance between the cytoskeleton and the ECM post stretch could also provide potential 

mechanosensitive responses.   Therefore, the high speed stretcher experiments provided minimal 

deviation from established models of TBI, yet presented limitations to isolating the effects of 

cell-ECM adhesions.   

In order to minimize the influence of culture conditions and global strain, we sought to 

adapt MTC to use as an in vitro model of axonal injury.  Moving to this mode of mechanical 
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stimulus presented several important limitations as it represented a clear deviation from 

previously established models of axonal injury and most importantly a clear link between the 

magnitude of mechanical insult.  Whereas strain magnitude and rate were relatively easy to 

measure in the high speed stretcher experiments, measuring the exact mechanical stimulus 

produced by the MTC injury model presented many challenges.  Although this technique has 

been previously used to measure mechanical properties of cellular structures, individual 

measurements are typically acquired by averaging multiple cycles of bead twisting with highly 

sophisticated magnetometer setups and noise minimization techniques [294].  Incorporating 

these strategies to measure the mechanical stimulus provided by a single bead twist was deemed 

beyond the scope of this study as both a magnitude and rate dependency of mechanical stimuli 

has been previously reported in axonal injury studies.  Nonetheless, approximate magnitudes 

were provided and the potential for future studies to focus on specific force responses using this 

model is possible.     

Although we have provided a detailed description of the known brain ECM content and 

organization from the literature as well as additional immunostaining of both tissue sections and 

cell culture, it is clear that a comprehensive understanding is far from complete.  Numerous 

classes and sub-types of ECM molecules have been reported to exist in the brain and even an 

organized structure is beginning to emerge.  A key question remains in elucidating the specific 

ECM content and respective CAM binding that exists in axons, and moreover how this may 

differ in myelinated and non-myelinated axons.  Therefore, while we have identified specific 

ECM that may result in elevated sensitivity to mechanical forces, additional information about 

where this ECM occurs within the brain is necessary to determine if it can fully account for the 

regional susceptibility and multi-focal patterns observed in DAI [34].  In vivo studies are also 
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likely necessary to account for other differences in cellular microenvironment that were not 

considered here such as soluble factors or multicellular architecture. 

Finally, we presented evidence that brain ECM may direct forces through integrins and 

that this may be sufficient to induce axonal injury.  Integrins are the best studied class of CAMs 

and have been widely implicated in mechanosensitive pathways in multiple cell types [133,299] 

and were therefore the logical choice with which to begin.  By implicating integrins, we by no 

means suggest they are solely responsible for distributing forces that are injurious to neurons, but 

instead suggest they may represent a predominant conduit for force transmission, especially in 

the case of mild insults, that may provide a means by which neurons can actively respond to the 

mechanical insult.  From our current results, we cannot rule out additional mechanotransduction 

events, and in fact, suggest that TBI likely causes cellular damage through multiple mechanisms.  

While the evidence reported herein represents only the initial studies necessary to determine if 

mechanochemical coupling at the FA causes axonal injury, we believe that it is a promising 

target for future studies and should provide a foundation for future research. 

Both experimental design and interpretation of our findings have relied heavily on 

previous studies in the field of mechanotransduction.  Most of these studies have been performed 

on non-neuronal cells and those that are performed on neurons tend to focus on the developing 

nervous system.  Even so, there is strong evidence that propagation and distribution of forces 

through the cytoskeleton is a ubiquitous phenomenon that can initiate mechanotransduction 

signaling cascades, modulate cytoskeleton remodeling, and even alter ion channel activity 

without inducing membrane poration [70,208,299].  Interestingly, cytoskeleton remodeling has 

been shown to occur through integrin mediated activation of Rho signaling proteins that 

influence microtubule stability and actin dynamics [222,141], providing a potential link to the 
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microtubule breakdown and transport disruption observed in axonal injury. Given the existing 

evidence that supports the importance of mechanical forces directed through cell-ECM 

adhesions, future studies aimed at linking integrin mediated cellular mechanotransduction and 

previously reported secondary injury processes in axonal injury are warranted.  These include 

signaling pathways that regulate cytoskeleton structure and stability such as the class of integrin 

associated small GTPases including Rho, Rac, and CDC42.  We reported a successful decrease 

in axonal injury using the Rho-Associated Kinase (ROCK) inhibitor HA-1077.  ROCK is a 

downstream effector of Rho and is therefore to our knowledge the first implication of targeting 

integrin signaling for neuroprotection.  While these signaling pathways have been widely studied 

in non-neuronal cells, future studies will be necessary to determine the effectiveness of targeting 

pathways to treat TBI.   

The diverse content that comprises the brain ECM has the potential to interact with 

numerous CAMs.  While we have focused on integrins and integrin signaling as they are 

currently the best understood mechanosensors, additional membrane receptors including HAS, 

CD44, RHAMM, Layilin, and GPI-linked Brevican may also provide conduits into the neuron as 

they bind directly to HA and may thus serve as a physical link to the brain ECM [97].  Although 

we found that microbeads coated with HA elicited low injury levels, reports have shown that 

GPI-linked proteins interact with HA and can transmit extracellular forces to the cytoskeleton 

[297].  Therefore, while microbeads presented an effective means of controlling the local ECM 

content, they may not fully recapitulate the native form and extent of adhesion interactions 

between the neuron and its microenvironment.  Furthermore, in addition to the traditional cell-

ECM linkages that we have focused on, numerous cell-cell linkages also exist and support 

structural integrity.  Therefore, the existence of brain specific CAMs may provide additional 
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diversity that influences both the mechanical linkages and mechanochemical coupling that 

occurs in neurons.  

Future studies designed to elucidate the brain specific structures involved in cellular 

mechanotransduction as well as their associated signaling pathways will improve our ability to 

understand how the brain responds to exogenous mechanical forces, such as those experienced 

during TBI.  Key aspects to consider include: (1) Identifying the sub-cellular components 

involved in mechanotransduction within the brain, such as localized ECM and associated CAM 

expression and binding; (2) Understanding whether heterogeneities in the distribution of 

mechanosensitive cellular components can explain regional vulnerabilities to TBI; (3) 

Understanding if these mechanosensitive components can result in activation of signaling 

pathways that ultimately lead to the secondary injuries associated with TBI.   

5.3 Funding Sources 

We acknowledge financial support from the Defense Advance Research Projects Agency’s 

PREVENT Program (Office of Naval Research SPAWAR N66001-09-c-2064), a 

Congressionally Directed Medical Research Program through the United States Army 

#W81XWH-11-2-0057, and the Harvard School of Engineering and Applied Sciences.  

 

 

 



106 
 

6 References 

1. Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ (2010) Structure and 
function of the blood-brain barrier. Neurobiol Dis 37 (1):13-25. 

2. Adams JH (1982) Diffuse axonal injury in non-missile head injury. Injury 13 (5):444-445. 
3. Adams JH, Graham DI, Gennarelli TA (1983) Head injury in man and experimental animals: 

neuropathology. Acta Neurochir Suppl (Wien) 32:15-30. 
4. Alberts B (1994) Molecular biology of the cell. 3rd edn. Garland Pub., New York. 
5. Alenghat FJ, Ingber DE (2002) Mechanotransduction: All Signals Point to Cytoskeleton, 

Matrix, and Integrins. Sci STKE 2002 (119):pe6-. 
6. Alessandri B, Doppenberg E, Zauner A, Woodward J, Choi S, Bullock R (1999) Evidence for 

time-dependent glutamate-mediated glycolysis in head-injured patients: a microdialysis 
study. Acta Neurochir Suppl 75:25-28. 

7. Alford PW, Dabiri BE, Goss JA, Hemphill MA, Brigham MD, Parker KK (2011) Blast-
induced phenotypic switching in cerebral vasospasm. Proc Natl Acad Sci U S A 108 
(31):12705-12710. 

8. Alford PW, Taber LA (2003) Regional epicardial strain in the embryonic chick heart during 
the early looping stages. Journal of Biomechanics 36 (8):1135-1141. 

9. Amano M, Kaneko T, Maeda A, Nakayama M, Ito M, Yamauchi T, Goto H, Fukata Y, Oshiro 
N, Shinohara A, Iwamatsu A, Kaibuchi K (2003) Identification of Tau and MAP2 as 
novel substrates of Rho-kinase and myosin phosphatase. Journal of Neurochemistry 87 
(3):780. 

10. Angst BD, Marcozzi C, Magee AI (2001) The cadherin superfamily: diversity in form and 
function. J Cell Sci 114 (Pt 4):629-641. 

11. Arfanakis K, Haughton VM, Carew JD, Rogers BP, Dempsey RJ, Meyerand ME (2002) 
Diffusion tensor MR imaging in diffuse axonal injury. AJNR Am J Neuroradiol 23 
(5):794-802. 

12. Armonda RA, Bell RS, Vo AH, Ling G, DeGraba TJ, Crandall B, Ecklund J, Campbell WW 
(2006) Wartime traumatic cerebral vasospasm: recent review of combat casualties. 
Neurosurgery 59 (6):1215-1225; discussion 1225. 

13. Arnadottir J, Chalfie M (2010) Eukaryotic mechanosensitive channels. Annu Rev Biophys 
39:111-137. 

14. Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, Jacob Filho W, 
Lent R, Herculano-Houzel S (2009) Equal numbers of neuronal and nonneuronal cells 
make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513 
(5):532-541. 

15. Bao HJ, Wang T, Zhang MY, Liu R, Dai DK, Wang YQ, Wang L, Zhang L, Gao YZ, Qin 
ZH, Chen XP, Tao LY (2012) Poloxamer-188 Attenuates TBI-Induced Blood-Brain 
Barrier Damage Leading to Decreased Brain Edema and Reduced Cellular Death. 
Neurochemical Research. 

16. Bartsch U, Pesheva P, Raff M, Schachner M (1993) Expression of janusin (J1-160/180) in 
the retina and optic nerve of the developing and adult mouse. Glia 9 (1):57-69. 

17. Bauman RA, Ling G, Tong L, Januszkiewicz A, Agoston D, Delanerolle N, Kim Y, Ritzel D, 
Bell R, Ecklund J, Armonda R, Bandak F, Parks S (2009) An introductory 
characterization of a combat-casualty-care relevant swine model of closed head injury 
resulting from exposure to explosive blast. J Neurotrauma 26 (6):841-860. 



107 
 

18. Bayless KJ, Davis GE (2004) Microtubule depolymerization rapidly collapses capillary tube 
networks in vitro and angiogenic vessels in vivo through the small GTPase Rho. J Biol 
Chem 279 (12):11686-11695. 

19. Bekku Y, Rauch U, Ninomiya Y, Oohashi T (2009) Brevican distinctively assembles 
extracellular components at the large diameter nodes of Ranvier in the CNS. Journal of 
neurochemistry 108 (5):1266-1276. 

20. Bendlin BB, Ries ML, Lazar M, Alexander AL, Dempsey RJ, Rowley HA, Sherman JE, 
Johnson SC (2008) Longitudinal changes in patients with traumatic brain injury assessed 
with diffusion-tensor and volumetric imaging. Neuroimage 42 (2):503-514. 

21. Benson DL, Schnapp LM, Shapiro L, Huntley GW (2000) Making memories stick: cell-
adhesion molecules in synaptic plasticity. Trends Cell Biol 10 (11):473-482. 

22. Bergsneider M, Hovda DA, Lee SM, Kelly DF, McArthur DL, Vespa PM, Lee JH, Huang 
SC, Martin NA, Phelps ME, Becker DP (2000) Dissociation of cerebral glucose 
metabolism and level of consciousness during the period of metabolic depression 
following human traumatic brain injury. J Neurotrauma 17 (5):389-401. 

23. Bernal R, Pullarkat PA, Melo F (2007) Mechanical properties of axons. Physical review 
letters 99 (1):018301. 

24. Bernard-Trifilo JA, Kramar EA, Torp R, Lin CY, Pineda EA, Lynch G, Gall CM (2005) 
Integrin signaling cascades are operational in adult hippocampal synapses and modulate 
NMDA receptor physiology. Journal of neurochemistry 93 (4):834-849. 

25. Bernick KB, Prevost TP, Suresh S, Socrate S (2011) Biomechanics of single cortical 
neurons. Acta biomaterialia 7 (3):1210-1219. 

26. Bertolotto A, Goia L, Schiffer D (1986) Immunohistochemical study of chondroitin sulfate in 
human gliomas. Acta Neuropathol 72 (2):189-196. 

27. Bertolotto A, Manzardo E, Guglielmone R (1996) Immunohistochemical mapping of 
perineuronal nets containing chondroitin unsulfated proteoglycan in the rat central 
nervous system. Cell Tissue Res 283 (2):283-295. 

28. Bertolotto A, Palmucci L, Gagliano A, Mongini T, Tarone G (1986) Immunohistochemical 
localization of chondroitin sulfate in normal and pathological human muscle. Journal of 
the neurological sciences 73 (3):233-244. 

29. Bhattacharjee Y (2008) Neuroscience. Shell shock revisited: solving the puzzle of blast 
trauma. Science 319 (5862):406-408. 

30. Biederer T, Sara Y, Mozhayeva M, Atasoy D, Liu X, Kavalali ET, Sudhof TC (2002) 
SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science 297 
(5586):1525-1531. 

31. Billuart P, Winter CG, Maresh A, Zhao X, Luo L (2001) Regulating axon branch stability: 
the role of p190 RhoGAP in repressing a retraction signaling pathway. Cell 107 (2):195-
207. 

32. Birukova AA, Fu P, Xing J, Yakubov B, Cokic I, Birukov KG (2010) Mechanotransduction 
by GEF-H1 as a novel mechanism of ventilator-induced vascular endothelial 
permeability. Am J Physiol Lung Cell Mol Physiol 298 (6):L837-848. 

33. Bito H, Furuyashiki T, Ishihara H, Shibasaki Y, Ohashi K, Mizuno K, Maekawa M, Ishizaki 
T, Narumiya S (2000) A critical role for a Rho-associated kinase, p160ROCK, in 
determining axon outgrowth in mammalian CNS neurons. Neuron 26 (2):431-441. 



108 
 

34. Blumbergs PC, Scott G, Manavis J, Wainwright H, Simpson DA, McLean AJ (1995) 
Topography of axonal injury as defined by amyloid precursor protein and the sector 
scoring method in mild and severe closed head injury. J Neurotrauma 12 (4):565-572. 

35. Borg J, Holm L, Cassidy JD, Peloso PM, Carroll LJ, von Holst H, Ericson K (2004) 
Diagnostic procedures in mild traumatic brain injury: Results of the WHO Collaborating 
Centre Task Force on Mild Traumatic Brain Injury. J Rehabil Med 36:61-75. 

36. Brangwynne CP, MacKintosh FC, Kumar S, Geisse NA, Talbot J, Mahadevan L, Parker KK, 
Ingber DE, Weitz DA (2006) Microtubules can bear enhanced compressive loads in 
living cells because of lateral reinforcement. Journal of Cell Biology 173 (5):733-741. 

37. Brauer K, Hartig W, Bigl V, Bruckner G (1993) Distribution of parvalbumin-containing 
neurons and lectin-binding perineuronal nets in the rat basal forebrain. Brain Res 631 
(1):167-170. 

38. Brewer GJ, Torricelli JR (2007) Isolation and culture of adult neurons and neurospheres. Nat 
Protoc 2 (6):1490-1498. 

39. Brodal P (2004) The central nervous system : structure and function. 3rd edn. Oxford 
University Press, Oxford ; New York. 

40. Bruckner G, Bringmann A, Koppe G, Hartig W, Brauer K (1996) In vivo and in vitro 
labelling of perineuronal nets in rat brain. Brain Res 720 (1-2):84-92. 

41. Bruckner G, Hartig W, Kacza J, Seeger J, Welt K, Brauer K (1996) Extracellular matrix 
organization in various regions of rat brain grey matter. J Neurocytol 25 (5):333-346. 

42. Bruckner G, Hausen D, Hartig W, Drlicek M, Arendt T, Brauer K (1999) Cortical areas 
abundant in extracellular matrix chondroitin sulphate proteoglycans are less affected by 
cytoskeletal changes in Alzheimer's disease. Neuroscience 92 (3):791-805. 

43. Bruckner G, Morawski M, Arendt T (2008) Aggrecan-based extracellular matrix is an 
integral part of the human basal ganglia circuit. Neuroscience 151 (2):489-504. 

44. Bruckner G, Pavlica S, Morawski M, Palacios AG, Reichenbach A (2006) Organization of 
brain extracellular matrix in the Chilean fat-tailed mouse opossum Thylamys elegans 
(Waterhouse, 1839). J Chem Neuroanat 32 (2-4):143-158. 

45. Buki A, Farkas O, Doczi T, Povlishock JT (2003) Preinjury administration of the calpain 
inhibitor MDL-28170 attenuates traumatically induced axonal injury. J Neurotrauma 20 
(3):261-268. 

46. Buki A, Farkas O, Doczi T, Povlishock JT (2003) Preinjury administration of the calpain 
inhibitor MDL-28170 attenuates traumatically induced axonal injury. Journal of 
neurotrauma 20 (3):261-268. 

47. Buki A, Siman R, Trojanowski JQ, Povlishock JT (1999) The role of calpain-mediated 
spectrin proteolysis in traumatically induced axonal injury. J Neuropathol Exp Neurol 58 
(4):365-375. 

48. Burridge K (1981) Are Stress Fibers Contractile. Nature 294 (5843):691-692. 
49. Carulli D, Pizzorusso T, Kwok JCF, Putignano E, Poli A, Forostyak S, Andrews MR, Deepa 

SS, Glant TT, Fawcett JW (2010) Animals lacking link protein have attenuated 
perineuronal nets and persistent plasticity. Brain 133:2331-2347. 

50. Carulli D, Rhodes KE, Brown DJ, Bonnert TP, Pollack SJ, Oliver K, Strata P, Fawcett JW 
(2006) Composition of perineuronal nets in the adult rat cerebellum and the cellular 
origin of their components. J Comp Neurol 494 (4):559-577. 



109 
 

51. Cavaglia M, Dombrowski SM, Drazba J, Vasanji A, Bokesch PM, Janigro D (2001) Regional 
variation in brain capillary density and vascular response to ischemia. Brain Res 910 (1-
2):81-93. 

52. Cernak I (2005) Animal models of head trauma. NeuroRx 2 (3):410-422. 
53. Cernak I, Wang ZG, Jiang JX, Bian XW, Savic J (2001) Ultrastructural and functional 

characteristics of blast injury-induced neurotrauma. Journal of Trauma-Injury Infection 
and Critical Care 50 (4):695-706. 

54. Chan CS, Weeber EJ, Kurup S, Sweatt JD, Davis RL (2003) Integrin requirement for 
hippocampal synaptic plasticity and spatial memory. J Neurosci 23 (18):7107-7116. 

55. Chatelin S, Deck C, Renard F, Kremer S, Heinrich C, Armspach JP, Willinger R (2011) 
Computation of axonal elongation in head trauma finite element simulation. J Mech 
Behav Biomed Mater 4 (8):1905-1919. 

56. Chavis P, Westbrook G (2001) Integrins mediate functional pre- and postsynaptic maturation 
at a hippocampal synapse. Nature 411 (6835):317-321. 

57. Chen BM, Grinnell AD (1995) Integrins and modulation of transmitter release from motor 
nerve terminals by stretch. Science 269 (5230):1578-1580. 

58. Chiquetehrismann R (1990) What Distinguishes Tenascin from Fibronectin. Faseb Journal 4 
(9):2598-2604. 

59. Christman CW, Grady MS, Walker SA, Holloway KL, Povlishock JT (1994) Ultrastructural 
studies of diffuse axonal injury in humans. J Neurotrauma 11 (2):173-186. 

60. Cloots RJ, van Dommelen JA, Kleiven S, Geers MG (2013) Multi-scale mechanics of 
traumatic brain injury: predicting axonal strains from head loads. Biomech Model 
Mechanobiol 12 (1):137-150. 

61. Cloots RJ, van Dommelen JA, Nyberg T, Kleiven S, Geers MG (2011) Micromechanics of 
diffuse axonal injury: influence of axonal orientation and anisotropy. Biomech Model 
Mechanobiol 10 (3):413-422. 

62. Condic ML, Letourneau PC (1997) Ligand-induced changes in integrin expression regulate 
neuronal adhesion and neurite outgrowth. Nature 389 (6653):852-856. 

63. Corsellis JA, Bruton CJ, Freeman-Browne D (1973) The aftermath of boxing. Psychological 
medicine 3 (3):270-303. 

64. Costa C, Tortosa R, Domenech A, Vidal E, Pumarola M, Bassols A (2007) Mapping of 
aggrecan, hyaluronic acid, heparan sulphate proteoglycans and aquaporin 4 in the central 
nervous system of the mouse. J Chem Neuroanat 33 (3):111-123. 

65. Costa E, Davis J, Grayson DR, Guidotti A, Pappas GD, Pesold C (2001) Dendritic spine 
hypoplasticity and downregulation of reelin and GABAergic tone in schizophrenia 
vulnerability. Neurobiol Dis 8 (5):723-742. 

66. Crossin KL, Edelman GM (1986) Mechanisms of cell adhesion in epithelial-mesenchymal 
transformations. Progress in clinical and biological research 226:81-92. 

67. Crossin KL, Hoffman S, Grumet M, Thiery JP, Edelman GM (1986) Site-restricted 
expression of cytotactin during development of the chicken embryo. The Journal of cell 
biology 102 (5):1917-1930. 

68. Crossin KL, Krushel LA (2000) Cellular signaling by neural cell adhesion molecules of the 
immunoglobulin superfamily. Dev Dyn 218 (2):260-279. 

69. Cullen DK, Lessing MC, LaPlaca MC (2007) Collagen-dependent neurite outgrowth and 
response to dynamic deformation in three-dimensional neuronal cultures. Ann Biomed 
Eng 35 (5):835-846. 



110 
 

70. Dabiri BE, Lee H, Parker KK (2012) A potential role for integrin signaling in 
mechanoelectrical feedback. Prog Biophys Mol Biol 110 (2-3):196-203. 

71. Dalva MB, McClelland AC, Kayser MS (2007) Cell adhesion molecules: signalling functions 
at the synapse. Nat Rev Neurosci 8 (3):206-220. 

72. Damsky CH, Werb Z (1992) Signal transduction by integrin receptors for extracellular 
matrix: cooperative processing of extracellular information. Curr Opin Cell Biol 4 
(5):772-781. 

73. DeMali KA, Wennerberg K, Burridge K (2003) Integrin signaling to the actin cytoskeleton. 
Curr Opin Cell Biol 15 (5):572-582. 

74. Dennerll TJ, Lamoureux P, Buxbaum RE, Heidemann SR (1989) The cytomechanics of 
axonal elongation and retraction. The Journal of cell biology 109 (6 Pt 1):3073-3083. 

75. Di Pietro V, Amin D, Pernagallo S, Lazzarino G, Tavazzi B, Vagnozzi R, Pringle A, Belli A 
(2010) Transcriptomics of Traumatic Brain Injury: Gene Expression and Molecular 
Pathways of Different Grades of Insult in a Rat Organotypic Hippocampal Culture 
Model. J Neurotraum 27 (2):349-359. 

76. DiLeonardi AM, Huh JW, Raghupathi R (2009) Impaired axonal transport and neurofilament 
compaction occur in separate populations of injured axons following diffuse brain injury 
in the immature rat. Brain Res 1263:174-182. 

77. Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their 
substrate. Science 310 (5751):1139-1143. 

78. Dityatev A, Schachner M (2003) Extracellular matrix molecules and synaptic plasticity. Nat 
Rev Neurosci 4 (6):456-468. 

79. Dityatev A, Schachner M (2006) The extracellular matrix and synapses. Cell Tissue Res 326 
(2):647-654. 

80. Dityatev A, Schachner M, Sonderegger P (2010) The dual role of the extracellular matrix in 
synaptic plasticity and homeostasis. Nat Rev Neurosci 11 (11):735-746. 

81. Dorries U, Bartsch U, Nolte C, Roth J, Schachner M (1993) Adaptation of a non-radioactive 
in situ hybridization method to electron microscopy: detection of tenascin mRNAs in 
mouse cerebellum with digoxigenin-labelled probes and gold-labelled antibodies. 
Histochemistry 99 (3):251-262. 

82. Dubreuil CI, Marklund N, Deschamps K, McIntosh TK, McKerracher L (2006) Activation of 
Rho after traumatic brain injury and seizure in rats. Exp Neurol 198 (2):361-369. 

83. Dubreuil CI, Winton MJ, McKerracher L (2003) Rho activation patterns after spinal cord 
injury and the role of activated Rho in apoptosis in the central nervous system. J Cell Biol 
162 (2):233-243. 

84. Elder GA, Cristian A (2009) Blast-related mild traumatic brain injury: mechanisms of injury 
and impact on clinical care. Mount Sinai Journal of Medicine: A Journal of Translational 
and Personalized Medicine 76 (2):111-118. 

85. Ellis EF, McKinney JS, Willoughby KA, Liang S, Povlishock JT (1995) A new model for 
rapid stretch-induced injury of cells in culture: characterization of the model using 
astrocytes. J Neurotrauma 12 (3):325-339. 

86. Erb DE, Povlishock JT (1991) Neuroplasticity following traumatic brain injury: a study of 
GABAergic terminal loss and recovery in the cat dorsal lateral vestibular nucleus. Exp 
Brain Res 83 (2):253-267. 



111 
 

87. Fabry B, Maksym GN, Hubmayr RD, Butler JP, Fredberg JJ (1999) Implications of 
heterogeneous bead behavior on cell mechanical properties measured with magnetic 
twisting cytometry. J Magn Magn Mater 194 (1-3):120-125. 

88. Fahrig R, Nikolov H, Fox AJ, Holdsworth DW (1999) A three-dimensional cerebrovascular 
flow phantom. Med Phys 26 (8):1589-1599. 

89. Fallenstein GT, Hulce VD, Melvin JW (1969) Dynamic mechanical properties of human 
brain tissue. J Biomech 2 (3):217-226. 

90. Farkas O, Lifshitz J, Povlishock JT (2006) Mechanoporation induced by diffuse traumatic 
brain injury: an irreversible or reversible response to injury? J Neurosci 26 (12):3130-
3140. 

91. Farkas O, Povlishock JT (2007) Cellular and subcellular change evoked by diffuse traumatic 
brain injury: a complex web of change extending far beyond focal damage. Prog Brain 
Res 161:43-59. 

92. Faul M, Xu L, Wald M, Coronado V (2010) Traumatic brain injury in the United States: 
Emergency department visits, hospitalizations and deaths 2002–2006. Atlanta, GA: 
Centers for Disease Control and Prevention, National Center for Injury Prevention and 
Control. 

93. Ferhat L, Chevassus au Louis N, Jorquera I, Niquet J, Khrestchatisky M, Ben-Ari Y, Represa 
A (1996) Transient increase of tenascin-C in immature hippocampus: astroglial and 
neuronal expression. J Neurocytol 25 (1):53-66. 

94. Fletcher DA, Mullins RD (2010) Cell mechanics and the cytoskeleton. Nature 463 
(7280):485-492. 

95. Franze K, Gerdelmann J, Weick M, Betz T, Pawlizak S, Lakadamyali M, Bayer J, Rillich K, 
Gogler M, Lu YB, Reichenbach A, Janmey P, Kas J (2009) Neurite branch retraction is 
caused by a threshold-dependent mechanical impact. Biophys J 97 (7):1883-1890. 

96. Frischknecht R, Heine M, Perrais D, Seidenbecher CI, Choquet D, Gundelfinger ED (2009) 
Brain extracellular matrix affects AMPA receptor lateral mobility and short-term synaptic 
plasticity. Nat Neurosci 12 (7):897-904. 

97. Frischknecht R, Seidenbecher CI (2008) The crosstalk of hyaluronan-based extracellular 
matrix and synapses. Neuron Glia Biol 4:249-257. 

98. Frotscher M (2010) Role for Reelin in stabilizing cortical architecture. Trends in 
neurosciences 33 (9):407-414. 

99. Galtrey CM, Kwok JC, Carulli D, Rhodes KE, Fawcett JW (2008) Distribution and synthesis 
of extracellular matrix proteoglycans, hyaluronan, link proteins and tenascin-R in the rat 
spinal cord. Eur J Neurosci 27 (6):1373-1390. 

100. Garland P, Broom LJ, Quraishe S, Dalton PD, Skipp P, Newman TA, Perry VH (2012) 
Soluble axoplasm enriched from injured CNS axons reveals the early modulation of the 
actin cytoskeleton. Plos One 7 (10):e47552. 

101. Gates MA, Thomas LB, Howard EM, Laywell ED, Sajin B, Faissner A, Gotz B, Silver J, 
Steindler DA (1995) Cell and molecular analysis of the developing and adult mouse 
subventricular zone of the cerebral hemispheres. J Comp Neurol 361 (2):249-266. 

102. Gavett BE, Stern RA, McKee AC (2011) Chronic traumatic encephalopathy: a potential late 
effect of sport-related concussive and subconcussive head trauma. Clin Sports Med 30 
(1):179-188, xi. 



112 
 

103. Geddes-Klein DM, Serbest G, Mesfin MN, Cohen AS, Meaney DF (2006) 
Pharmacologically induced calcium oscillations protect neurons from increases in 
cytosolic calcium after trauma. Journal of neurochemistry 97 (2):462-474. 

104. Geddes DM, Cargill RS, 2nd, LaPlaca MC (2003) Mechanical stretch to neurons results in a 
strain rate and magnitude-dependent increase in plasma membrane permeability. J 
Neurotrauma 20 (10):1039-1049. 

105. Gennarelli TA (1993) Mechanisms of brain injury. J Emerg Med 11 Suppl 1:5-11. 
106. Gennarelli TA (1996) The spectrum of traumatic axonal injury. Neuropath Appl Neuro 22 

(6):509-513. 
107. Gennarelli TA, Thibault LE, Adams JH, Graham DI, Thompson CJ, Marcincin RP (1982) 

Diffuse axonal injury and traumatic coma in the primate. Annals of Neurology 12 
(6):564-574. 

108. Gennarelli TA, Thibault LE, Adams JH, Graham DI, Thompson CJ, Marcincin RP (1982) 
Diffuse axonal injury and traumatic coma in the primate. Ann Neurol 12 (6):564-574. 

109. Giagtzoglou N, Ly CV, Bellen HJ (2009) Cell adhesion, the backbone of the synapse: 
"vertebrate" and "invertebrate" perspectives. Cold Spring Harb Perspect Biol 1 
(4):a003079. 

110. Giancotti FG, Ruoslahti E (1999) Integrin signaling. Science 285 (5430):1028-1032. 
111. Girault JA, Peles E (2002) Development of nodes of Ranvier. Curr Opin Neurobiol 12 

(5):476-485. 
112. Giza CC, Hovda DA (2001) The Neurometabolic Cascade of Concussion. J Athl Train 36 

(3):228-235. 
113. Golding EM (2002) Sequelae following traumatic brain injury. The cerebrovascular 

perspective. Brain Res Brain Res Rev 38 (3):377-388. 
114. Goldstein LE, Fisher AM, Tagge CA, Zhang XL, Velisek L, Sullivan JA, Upreti C, Kracht 

JM, Ericsson M, Wojnarowicz MW, Goletiani CJ, Maglakelidze GM, Casey N, 
Moncaster JA, Minaeva O, Moir RD, Nowinski CJ, Stern RA, Cantu RC, Geiling J, 
Blusztajn JK, Wolozin BL, Ikezu T, Stein TD, Budson AE, Kowall NW, Chargin D, 
Sharon A, Saman S, Hall GF, Moss WC, Cleveland RO, Tanzi RE, Stanton PK, McKee 
AC (2012) Chronic traumatic encephalopathy in blast-exposed military veterans and a 
blast neurotrauma mouse model. Sci Transl Med 4 (134):134ra160. 

115. Goodison S, Urquidi V, Tarin D (1999) CD44 cell adhesion molecules. Mol Pathol 52 
(4):189-196. 

116. Graham DI, McLellan D, Adams JH, Doyle D, Kerr A, Murray LS (1983) The 
neuropathology of the vegetative state and severe disability after non-missile head injury. 
Acta Neurochir Suppl (Wien) 32:65-67. 

117. Gu L, Li J, Feng DF, Cheng ET, Li DC, Yang XQ, Wang BC (2013) Detection of white 
matter lesions in the acute stage of diffuse axonal injury predicts long-term cognitive 
impairments: a clinical diffusion tensor imaging study. J Trauma Acute Care Surg 74 
(1):242-247. 

118. Gumbiner BM (1993) Breaking through the tight junction barrier. Journal of Cell Biology 
123 (6 Pt 2):1631-1633. 

119. Gumbiner BM (1993) Proteins associated with the cytoplasmic surface of adhesion 
molecules. Neuron 11 (4):551-564. 

120. Gumbiner BM (1996) Cell adhesion: the molecular basis of tissue architecture and 
morphogenesis. Cell 84 (3):345-357. 



113 
 

121. Gumbiner BM, McCrea PD (1993) Catenins as mediators of the cytoplasmic functions of 
cadherins. J Cell Sci Suppl 17:155-158. 

122. Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279 (5350):509-514. 
123. Hamill OP, Martinac B (2001) Molecular basis of mechanotransduction in living cells. 

Physiol Rev 81 (2):685-740. 
124. Hartig W, Derouiche A, Welt K, Brauer K, Grosche J, Mader M, Reichenbach A, Bruckner 

G (1999) Cortical neurons immunoreactive for the potassium channel Kv3.1b subunit are 
predominantly surrounded by perineuronal nets presumed as a buffering system for 
cations. Brain Res 842 (1):15-29. 

125. Hashimoto R, Nakamura Y, Goto H, Wada Y, Sakoda S, Kaibuchi K, Inagaki M, Takeda M 
(1998) Domain- and Site-Specific Phosphorylation of Bovine NF-L by Rho-Associated 
Kinase. Biochemical and Biophysical Research Communications 245 (2):407-411. 

126. Hemphill MA, Dabiri BE, Gabriele S, Kerscher L, Franck C, Goss JA, Alford PW, Parker 
KK (2011) A Possible Role for Integrin Signaling in Diffuse Axonal Injury. Plos One 6 
(7). 

127. Herrmann H, Bar H, Kreplak L, Strelkov SV, Aebi U (2007) Intermediate filaments: from 
cell architecture to nanomechanics. Nat Rev Mol Cell Biol 8 (7):562-573. 

128. Hoang B, Chiba A (1998) Genetic analysis on the role of integrin during axon guidance in 
Drosophila. J Neurosci 18 (19):7847-7855. 

129. Hoge CW, McGurk D, Thomas JL, Cox AL, Engel CC, Castro CA (2008) Mild traumatic 
brain injury in U.S. Soldiers returning from Iraq. N Engl J Med 358 (5):453-463. 

130. Holbourn AHS (1944) Mechanics of Head Injuries. The Lancet 243 (6293):483. 
131. Huang H, Kamm RD, Lee RT (2004) Cell mechanics and mechanotransduction: pathways, 

probes, and physiology. Am J Physiol Cell Physiol 287 (1):C1-11. 
132. Huveneers S, Danen EHJ (2009) Adhesion signaling - crosstalk between integrins, Src and 

Rho. J Cell Sci 122 (8):1059-1069. 
133. Hynes RO (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69 

(1):11-25. 
134. Hynes RO (1999) Cell adhesion: old and new questions. Trends Cell Biol 9 (12):M33-37. 
135. Iadecola C, Nedergaard M (2007) Glial regulation of the cerebral microvasculature. Nat 

Neurosci 10 (11):1369-1376. 
136. Impagnatiello F, Guidotti AR, Pesold C, Dwivedi Y, Caruncho H, Pisu MG, Uzunov DP, 

Smalheiser NR, Davis JM, Pandey GN, Pappas GD, Tueting P, Sharma RP, Costa E 
(1998) A decrease of reelin expression as a putative vulnerability factor in schizophrenia. 
Proc Natl Acad Sci U S A 95 (26):15718-15723. 

137. Inglese M, Makani S, Johnson G, Cohen BA, Silver JA, Gonen O, Grossman RI (2005) 
Diffuse axonal injury in mild traumatic brain injury: a diffusion tensor imaging study. J 
Neurosurg 103 (2):298-303. 

138. Iwata A, Stys PK, Wolf JA, Chen XH, Taylor AG, Meaney DF, Smith DH (2004) 
Traumatic axonal injury induces proteolytic cleavage of the voltage-gated sodium 
channels modulated by tetrodotoxin and protease inhibitors. J Neurosci 24 (19):4605-
4613. 

139. Jaalouk DE, Lammerding J (2009) Mechanotransduction gone awry. Nat Rev Mol Cell Bio 
10 (1):63-73. 

140. Jaalouk DE, Lammerding J (2009) Mechanotransduction gone awry. Nat Rev Mol Cell Biol 
10 (1):63-73. 



114 
 

141. Jaffe AB, Hall A (2005) Rho GTPases: Biochemistry and biology. Annual review of cell 
and developmental biology 21:247-269. 

142. Jager C, Lendvai D, Seeger G, Bruckner G, Matthews RT, Arendt T, Alpar A, Morawski M 
(2013) Perineuronal and perisynaptic extracellular matrix in the human spinal cord. 
Neuroscience. 

143. Jalink K, van Corven EJ, Hengeveld T, Morii N, Narumiya S, Moolenaar WH (1994) 
Inhibition of lysophosphatidate- and thrombin-induced neurite retraction and neuronal 
cell rounding by ADP ribosylation of the small GTP-binding protein Rho. J Cell Biol 126 
(3):801-810. 

144. Janmey PA, McCulloch CA (2007) Cell mechanics: integrating cell responses to 
mechanical stimuli. Annu Rev Biomed Eng 9:1-34. 

145. Janowitz T, Menon DK (2010) Exploring new routes for neuroprotective drug development 
in traumatic brain injury. Sci Transl Med 2 (27):27rv21. 

146. Jenkins A, Teasdale G, Hadley MD, Macpherson P, Rowan JO (1986) Brain lesions 
detected by magnetic resonance imaging in mild and severe head injuries. Lancet 2 
(8504):445-446. 

147. Johansson S, Svineng G, Wennerberg K, Armulik A, Lohikangas L (1997) Fibronectin-
integrin interactions. Front Biosci 2:d126-146. 

148. Juliano RL (2002) Signal transduction by cell adhesion receptors and the cytoskeleton: 
functions of integrins, cadherins, selectins, and immunoglobulin-superfamily members. 
Annu Rev Pharmacol Toxicol 42:283-323. 

149. Kam Z, Zamir E, Geiger B (2001) Probing molecular processes in live cells by quantitative 
multidimensional microscopy. TRENDS in Cell Biology 11 (8):329-334. 

150. Kandel ER, Schwartz JH, Jessell TM (2000) Principles of neural science. 4th edn. McGraw-
Hill, Health Professions Division, New York. 

151. Kilinc D, Gallo G, Barbee KA (2008) Mechanically-induced membrane poration causes 
axonal beading and localized cytoskeletal damage. Experimental Neurology 212 (2):422-
430. 

152. Kilinc D, Gallo G, Barbee KA (2008) Mechanically-induced membrane poration causes 
axonal beading and localized cytoskeletal damage. Exp Neurol 212 (2):422-430. 

153. Kilinc D, Gallo G, Barbee KA (2009) Mechanical membrane injury induces axonal beading 
through localized activation of calpain. Exp Neurol 219 (2):553-561. 

154. Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, 
Nakano T, Okawa K, Iwamatsu A, Kaibuchi K (1996) Regulation of Myosin Phosphatase 
by Rho and Rho-Associated Kinase (Rho- Kinase). Science 273 (5272):245-248. 

155. Kiryushko D, Berezin V, Bock E (2004) Regulators of neurite outgrowth: role of cell 
adhesion molecules. Ann N Y Acad Sci 1014:140-154. 

156. Kis A, Kasas S, Babic B, Kulik AJ, Benoit W, Briggs GA, Schonenberger C, Catsicas S, 
Forro L (2002) Nanomechanics of microtubules. Physical review letters 89 (24):248101. 

157. Kochlamazashvili G, Henneberger C, Bukalo O, Dvoretskova E, Senkov O, Lievens PMJ, 
Westenbroek R, Engel AK, Catterall WA, Rusakov DA, Schachner M, Dityatev A (2010) 
The Extracellular Matrix Molecule Hyaluronic Acid Regulates Hippocampal Synaptic 
Plasticity by Modulating Postsynaptic L-Type Ca2+ Channels. Neuron 67 (1):116-128. 

158. Kreplak L, Bar H, Leterrier JF, Herrmann H, Aebi U (2005) Exploring the mechanical 
behavior of single intermediate filaments. J Mol Biol 354 (3):569-577. 

159. Kritikou E (2007) The complexity of adhesion. Nat Rev Mol Cell Bio 8 (9):674-674. 



115 
 

160. Kruse SA, Rose GH, Glaser KJ, Manduca A, Felmlee JP, Jack CR, Ehman RL (2008) 
Magnetic resonance elastography of the brain. Neuroimage 39 (1):231-237. 

161. Kupina NC, Nath R, Bernath EE, Inoue J, Mitsuyoshi A, Yuen PW, Wang KK, Hall ED 
(2001) The novel calpain inhibitor SJA6017 improves functional outcome after delayed 
administration in a mouse model of diffuse brain injury. J Neurotrauma 18 (11):1229-
1240. 

162. Kwok JC, Dick G, Wang D, Fawcett JW (2011) Extracellular matrix and perineuronal nets 
in CNS repair. Dev Neurobiol 71 (11):1073-1089. 

163. Langanger G, Moeremans M, Daneels G, Sobieszek A, De Brabander M, De Mey J (1986) 
The molecular organization of myosin in stress fibers of cultured cells. Journal of Cell 
Biology 102 (1):200-209. 

164. LaPlaca MC, Simon CM, Prado GR, Cullen DK (2007) CNS injury biomechanics and 
experimental models. Prog Brain Res 161:13-26. 

165. Larsen M, Artym VV, Green JA, Yamada KM (2006) The matrix reorganized: extracellular 
matrix remodeling and integrin signaling. Curr Opin Cell Biol 18 (5):463-471. 

166. Lauret C, Hrapko M, van Dommelen JA, Peters GW, Wismans JS (2009) Optical 
characterization of acceleration-induced strain fields in inhomogeneous brain slices. Med 
Eng Phys 31 (3):392-399. 

167. Lee H, Wintermark M, Gean AD, Ghajar J, Manley GT, Mukherjee P (2008) Focal lesions 
in acute mild traumatic brain injury and neurocognitive outcome: CT versus 3T MRI. J 
Neurotrauma 25 (9):1049-1056. 

168. Lele TP, Thodeti CK, Ingber DE (2006) Force meets chemistry: Analysis of 
mechanochemical conversion in focal adhesions using fluorescence recovery after 
photobleaching. J Cell Biochem 97 (6):1175-1183. 

169. Lemons ML, Condic ML (2006) Combined integrin activation and intracellular cAMP 
cause Rho GTPase dependent growth cone collapse on laminin-1. Exp Neurol 202 
(2):324-335. 

170. Lendvai D, Morawski M, Bruckner G, Negyessy L, Baksa G, Glasz T, Patonay L, Matthews 
RT, Arendt T, Alpar A (2012) Perisynaptic aggrecan-based extracellular matrix coats in 
the human lateral geniculate body devoid of perineuronal nets. J Neurosci Res 90 
(2):376-387. 

171. Lendvai D, Morawski M, Negyessy L, Gati G, Jager C, Baksa G, Glasz T, Attems J, Tanila 
H, Arendt T, Harkany T, Alpar A (2013) Neurochemical mapping of the human 
hippocampus reveals perisynaptic matrix around functional synapses in Alzheimer's 
disease. Acta Neuropathol 125 (2):215-229. 

172. Liao H, Huang W, Schachner M, Guan Y, Guo J, Yan J, Qin J, Bai X, Zhang L (2008) Beta 
1 integrin-mediated effects of tenascin-R domains EGFL and FN6-8 on neural 
stem/progenitor cell proliferation and differentiation in vitro. J Biol Chem 283 
(41):27927-27936. 

173. Lin CY, Hilgenberg LG, Smith MA, Lynch G, Gall CM (2008) Integrin regulation of 
cytoplasmic calcium in excitatory neurons depends upon glutamate receptors and release 
from intracellular stores. Mol Cell Neurosci 37 (4):770-780. 

174. Lin YW, Cheng CM, Leduc PR, Chen CC (2009) Understanding Sensory Nerve 
Mechanotransduction through Localized Elastomeric Matrix Control. Plos One 4 (1). 

175. Liu S, Calderwood DA, Ginsberg MH (2000) Integrin cytoplasmic domain-binding 
proteins. J Cell Sci 113 ( Pt 20):3563-3571. 



116 
 

176. Lo CM, Wang HB, Dembo M, Wang YL (2000) Cell movement is guided by the rigidity of 
the substrate. Biophys J 79 (1):144-152. 

177. Lu YB, Franze K, Seifert G, Steinhauser C, Kirchhoff F, Wolburg H, Guck J, Janmey P, 
Wei EQ, Kas J, Reichenbach A (2006) Viscoelastic properties of individual glial cells 
and neurons in the CNS. Proc Natl Acad Sci U S A 103 (47):17759-17764. 

178. Luo L, O'Leary DD (2005) Axon retraction and degeneration in development and disease. 
Annu Rev Neurosci 28:127-156. 

179. Mac Donald CL, Dikranian K, Song SK, Bayly PV, Holtzman DM, Brody DL (2007) 
Detection of traumatic axonal injury with diffusion tensor imaging in a mouse model of 
traumatic brain injury. Experimental Neurology 205 (1):116-131. 

180. Mac Donald CL, Dikranian K, Song SK, Bayly PV, Holtzman DM, Brody DL (2007) 
Detection of traumatic axonal injury with diffusion tensor imaging in a mouse model of 
traumatic brain injury. Exp Neurol 205 (1):116-131. 

181. Mac Donald CL, Johnson AM, Cooper D, Nelson EC, Werner NJ, Shimony JS, Snyder AZ, 
Raichle ME, Witherow JR, Fang R, Flaherty SF, Brody DL (2011) Detection of blast-
related traumatic brain injury in U.S. military personnel. N Engl J Med 364 (22):2091-
2100. 

182. Mace E, Cohen I, Montaldo G, Miles R, Fink M, Tanter M (2011) In vivo mapping of brain 
elasticity in small animals using shear wave imaging. IEEE Trans Med Imaging 30 
(3):550-558. 

183. Main AL, Harvey TS, Baron M, Boyd J, Campbell ID (1992) The three-dimensional 
structure of the tenth type III module of fibronectin: an insight into RGD-mediated 
interactions. Cell 71 (4):671-678. 

184. Maloku E, Covelo IR, Hanbauer I, Guidotti A, Kadriu B, Hu Q, Davis JM, Costa E (2010) 
Lower number of cerebellar Purkinje neurons in psychosis is associated with reduced 
reelin expression. Proc Natl Acad Sci U S A 107 (9):4407-4411. 

185. Mammoto A, Mammoto T, Ingber DE (2008) Rho signaling and mechanical control of 
vascular development. Curr Opin Hematol 15 (3):228-234. 

186. Marmarou CR, Walker SA, Davis CL, Povlishock JT (2005) Quantitative analysis of the 
relationship between intra-axonal neurofilament compaction and impaired axonal 
transport following diffuse traumatic brain injury. Journal of neurotrauma 22 (10):1066-
1080. 

187. Matthews BD, Overby DR, Mannix R, Ingber DE (2006) Cellular adaptation to mechanical 
stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels. J 
Cell Sci 119 (3):508-518. 

188. Matthews BD, Overby DR, Mannix R, Ingber DE (2006) Cellular adaptation to mechanical 
stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels. J 
Cell Sci 119 (Pt 3):508-518. 

189. McKee AC, Cantu RC, Nowinski CJ, Hedley-Whyte ET, Gavett BE, Budson AE, Santini 
VE, Lee HS, Kubilus CA, Stern RA (2009) Chronic traumatic encephalopathy in athletes: 
progressive tauopathy after repetitive head injury. J Neuropathol Exp Neurol 68 (7):709-
735. 

190. McKee AC, Stern RA, Nowinski CJ, Stein TD, Alvarez VE, Daneshvar DH, Lee HS, 
Wojtowicz SM, Hall G, Baugh CM, Riley DO, Kubilus CA, Cormier KA, Jacobs MA, 
Martin BR, Abraham CR, Ikezu T, Reichard RR, Wolozin BL, Budson AE, Goldstein 



117 
 

LE, Kowall NW, Cantu RC (2013) The spectrum of disease in chronic traumatic 
encephalopathy. Brain 136 (Pt 1):43-64. 

191. McRae PA, Rocco MM, Kelly G, Brumberg JC, Matthews RT (2007) Sensory deprivation 
alters aggrecan and perineuronal net expression in the mouse barrel cortex. J Neurosci 27 
(20):5405-5413. 

192. Mercier F, Arikawa-Hirasawa E (2012) Heparan sulfate niche for cell proliferation in the 
adult brain. Neuroscience letters 510 (2):67-72. 

193. Meyer-Puttlitz B, Junker E, Margolis RU, Margolis RK (1996) Chondroitin sulfate 
proteoglycans in the developing central nervous system. II. Immunocytochemical 
localization of neurocan and phosphacan. J Comp Neurol 366 (1):44-54. 

194. Meyer CJ, Alenghat FJ, Rim P, Fong JH, Fabry B, Ingber DE (2000) Mechanical control of 
cyclic AMP signalling and gene transcription through integrins. Nat Cell Biol 2 (9):666-
668. 

195. Meyer K, Linker A, Rapport MM (1951) The production of monosaccharides from 
hyaluronic acid by beta-glucuronidase. J Biol Chem 192 (1):275-281. 

196. Mijailovich SM, Kojic M, Zivkovic M, Fabry B, Fredberg JJ (2002) A finite element model 
of cell deformation during magnetic bead twisting. J Appl Physiol 93 (4):1429-1436. 

197. Miller B, Sheppard AM, Bicknese AR, Pearlman AL (1995) Chondroitin sulfate 
proteoglycans in the developing cerebral cortex: the distribution of neurocan 
distinguishes forming afferent and efferent axonal pathways. J Comp Neurol 355 (4):615-
628. 

198. Milner R, Campbell IL (2002) The integrin family of cell adhesion molecules has multiple 
functions within the CNS. J Neurosci Res 69 (3):286-291. 

199. Mitra S, Hanson D, Schlaepfer D (2005) Focal adhesion kinase: in command and control of 
cell motility. Nature Reviews Molecular Cell Biology 6 (1):56-68. 

200. Monson KL, Goldsmith W, Barbaro NM, Manley GT (2003) Axial mechanical properties 
of fresh human cerebral blood vessels. J Biomech Eng 125 (2):288-294. 

201. Morales DM, Marklund N, Lebold D, Thompson HJ, Pitkanen A, Maxwell WL, Longhi L, 
Laurer H, Maegele M, Neugebauer E, Graham DI, Stocchetti N, McIntosh TK (2005) 
Experimental models of traumatic brain injury: Do we really need to build a better 
mousetrap? Neuroscience 136 (4):971-989. 

202. Morawski M, Bruckner G, Arendt T, Matthews RT (2012) Aggrecan: Beyond cartilage and 
into the brain. The international journal of biochemistry & cell biology 44 (5):690-693. 

203. Morawski M, Bruckner G, Jager C, Seeger G, Arendt T (2010) Neurons associated with 
aggrecan-based perineuronal nets are protected against tau pathology in subcortical 
regions in Alzheimer's disease. Neuroscience 169 (3):1347-1363. 

204. Morawski M, Bruckner G, Jager C, Seeger G, Kunzle H, Arendt T (2010) Aggrecan-based 
extracellular matrix shows unique cortical features and conserved subcortical principles 
of mammalian brain organization in the Madagascan lesser hedgehog tenrec (Echinops 
telfairi Martin, 1838). Neuroscience 165 (3):831-849. 

205. Morris NP, Henderson Z (2000) Perineuronal nets ensheath fast spiking, parvalbumin-
immunoreactive neurons in the medial septum/diagonal band complex. Eur J Neurosci 12 
(3):828-838. 

206. Mueller B, Mack H, Teusch N (2005) Rho kinase, a promising drug target for neurological 
disorders. Nature Reviews Drug Discovery 4 (5):387-398. 



118 
 

207. Mukhina IV, Korotchenko SA, Dityatev AE (2012) Extracellular matrix molecules, their 
receptors, and extracellular proteases as synaptic plasticity modulators. Neurochem J+ 6 
(2):89-99. 

208. Na S, Collin O, Chowdhury F, Tay B, Ouyang M, Wang Y, Wang N (2008) Rapid signal 
transduction in living cells is a unique feature of mechanotransduction. Proc Natl Acad 
Sci U S A 105 (18):6626-6631. 

209. Na S, Collin O, Chowdhury F, Tay B, Ouyang MX, Wang YX, Wang N (2008) Rapid 
signal transduction in living cells is a unique feature of mechanotransduction. Proc Natl 
Acad Sci U S A 105 (18):6626-6631. 

210. Na SS, Wang N (2008) Application of Fluorescence Resonance Energy Transfer and 
Magnetic Twisting Cytometry to Quantify Mechanochemical Signaling Activities in a 
Living Cell. Sci Signal 1 (34). 

211. Nakayama K, Ohkawara T, Hiratochi M, Koh CS, Nagase H (2008) The intracellular 
domain of amyloid precursor protein induces neuron-specific apoptosis. Neuroscience 
letters 444 (2):127-131. 

212. Nelson WJ, Nusse R (2004) Convergence of Wnt, beta-catenin, and cadherin pathways. 
Science 303 (5663):1483-1487. 

213. Nishimura SL, Boylen KP, Einheber S, Milner TA, Ramos DM, Pytela R (1998) Synaptic 
and glial localization of the integrin alphavbeta8 in mouse and rat brain. Brain Res 791 
(1-2):271-282. 

214. Nowinski WL, Puspitasari F, Volkau I, Orrison WW, Jr., Knopp MV (2013) Quantification 
of the Human Cerebrovasculature: A 7Tesla and 320-Row CT In Vivo Study. J Comput 
Assist Tomogr 37 (1):117-122. 

215. O'Meara RW, Michalski JP, Kothary R (2011) Integrin signaling in oligodendrocytes and 
its importance in CNS myelination. Journal of signal transduction 2011:354091. 

216. Ochs S, Pourmand R, Jersild RA, Friedman RN (1997) The origin and nature of beading: A 
reversible transformation of the shape of nerve fibers. Prog Neurobiol 52 (5):391-426. 

217. Ohashi K, Nagata K, Maekawa M, Ishizaki T, Narumiya S, Mizuno K (2000) Rho-
associated Kinase ROCK Activates LIM-kinase 1 by Phosphorylation at Threonine 508 
within the Activation Loop. Journal of Biological Chemistry 275 (5):3577-3582. 

218. Omalu BI, Hamilton RL, Kamboh MI, DeKosky ST, Bailes J (2010) Chronic traumatic 
encephalopathy (CTE) in a National Football League Player: Case report and emerging 
medicolegal practice questions. J Forensic Nurs 6 (1):40-46. 

219. Ommaya AK, Gennarelli TA (1974) Cerebral concussion and traumatic unconsciousness. 
Correlation of experimental and clinical observations of blunt head injuries. Brain 97 
(4):633-654. 

220. Ommaya AK, Goldsmith W, Thibault L (2002) Biomechanics and neuropathology of adult 
and paediatric head injury. Br J Neurosurg 16 (3):220-242. 

221. Ommaya AK, Grubb RL, Jr., Naumann RA (1971) Coup and contre-coup injury: 
observations on the mechanics of visible brain injuries in the rhesus monkey. J Neurosurg 
35 (5):503-516. 

222. Palazzo AF, Eng CH, Schlaepfer DD, Marcantonio EE, Gundersen GG (2004) Localized 
stabilization of microtubules by integrin- and FAK-facilitated Rho signaling. Science 303 
(5659):836-839. 

223. Panicker AK, Buhusi M, Thelen K, Maness PF (2003) Cellular signalling mechanisms of 
neural cell adhesion molecules. Front Biosci 8:D900-D911. 



119 
 

224. Pantazopoulos H, Murray EA, Berretta S (2008) Total number, distribution, and phenotype 
of cells expressing chondroitin sulfate proteoglycans in the normal human amygdala. 
Brain Res 1207:84-95. 

225. Pantazopoulos H, Woo TU, Lim MP, Lange N, Berretta S (2010) Extracellular matrix-glial 
abnormalities in the amygdala and entorhinal cortex of subjects diagnosed with 
schizophrenia. Archives of general psychiatry 67 (2):155-166. 

226. Pinkstaff JK, Detterich J, Lynch G, Gall C (1999) Integrin subunit gene expression is 
regionally differentiated in adult brain. J Neurosci 19 (5):1541-1556. 

227. Pizzorusso T, Medini P, Berardi N, Chierzi S, Fawcett JW, Maffei L (2002) Reactivation of 
ocular dominance plasticity in the adult visual cortex. Science 298 (5596):1248-1251. 

228. Plow EF, Haas TA, Zhang L, Loftus J, Smith JW (2000) Ligand binding to integrins. J Biol 
Chem 275 (29):21785-21788. 

229. Poliak S, Peles E (2003) The local differentiation of myelinated axons at nodes of Ranvier. 
Nat Rev Neurosci 4 (12):968-980. 

230. Popp S, Andersen JS, Maurel P, Margolis RU (2003) Localization of aggrecan and versican 
in the developing rat central nervous system. Dev Dyn 227 (1):143-149. 

231. Posmantur R, Kampfl A, Siman R, Liu J, Zhao X, Clifton GL, Hayes RL (1997) A calpain 
inhibitor attenuates cortical cytoskeletal protein loss after experimental traumatic brain 
injury in the rat. Neuroscience 77 (3):875-888. 

232. Povlishock J, Christman C (1995) The pathobiology of traumatically induced axonal injury 
in animals and humans: a review of current thoughts. Journal of neurotrauma 12 (4):555-
564. 

233. Povlishock JT (1992) Traumatically induced axonal injury: pathogenesis and 
pathobiological implications. Brain Pathol 2 (1):1-12. 

234. Povlishock JT, Becker DP, Cheng CL, Vaughan GW (1983) Axonal change in minor head 
injury. J Neuropathol Exp Neurol 42 (3):225-242. 

235. Povlishock JT, Katz DI (2005) Update of neuropathology and neurological recovery after 
traumatic brain injury. J Head Trauma Rehabil 20 (1):76-94. 

236. Prange MT, Margulies SS (2002) Regional, directional, and age-dependent properties of the 
brain undergoing large deformation. J Biomech Eng 124 (2):244-252. 

237. Prieto AL, Jones FS, Cunningham BA, Crossin KL, Edelman GM (1990) Localization 
during development of alternatively spliced forms of cytotactin mRNA by in situ 
hybridization. The Journal of cell biology 111 (2):685-698. 

238. Raghupathi R, Graham DI, McIntosh TK (2000) Apoptosis after traumatic brain injury. J 
Neurotrauma 17 (10):927-938. 

239. Rajkowska G, Goldman-Rakic PS (1995) Cytoarchitectonic definition of prefrontal areas in 
the normal human cortex: I. Remapping of areas 9 and 46 using quantitative criteria. 
Cereb Cortex 5 (4):307-322. 

240. Reeves TM, Greer JE, Vanderveer AS, Phillips LL (2010) Proteolysis of submembrane 
cytoskeletal proteins ankyrin-G and alphaII-spectrin following diffuse brain injury: a role 
in white matter vulnerability at Nodes of Ranvier. Brain Pathol 20 (6):1055-1068. 

241. Reeves TM, Phillips LL, Povlishock JT (2005) Myelinated and unmyelinated axons of the 
corpus callosum differ in vulnerability and functional recovery following traumatic brain 
injury. Exp Neurol 196 (1):126-137. 

242. Robles E, Gomez TM (2006) Focal adhesion kinase signaling at sites of integrin-mediated 
adhesion controls axon pathfinding. Nat Neurosci 9 (10):1274-1283. 



120 
 

243. Rodriguez MA, Pesold C, Liu WS, Kriho V, Guidotti A, Pappas GD, Costa E (2000) 
Colocalization of integrin receptors and reelin in dendritic spine postsynaptic densities of 
adult nonhuman primate cortex. Proc Natl Acad Sci U S A 97 (7):3550-3555. 

244. Ruoslahti E (1996) Brain extracellular matrix. Glycobiology 6 (5):489-492. 
245. Saatman KE, Creed J, Raghupathi R (2010) Calpain as a therapeutic target in traumatic 

brain injury. Neurotherapeutics 7 (1):31-42. 
246. Saatman KE, Murai H, Bartus RT, Smith DH, Hayward NJ, Perri BR, McIntosh TK (1996) 

Calpain inhibitor AK295 attenuates motor and cognitive deficits following experimental 
brain injury in the rat. Proc Natl Acad Sci U S A 93 (8):3428-3433. 

247. Schmid RS, Anton ES (2003) Role of integrins in the development of the cerebral cortex. 
Cereb Cortex 13 (3):219-224. 

248. Schmidt CE, Dai J, Lauffenburger DA, Sheetz MP, Horwitz AF (1995) Integrin-
cytoskeletal interactions in neuronal growth cones. J Neurosci 15 (5 Pt 1):3400-3407. 

249. Schmidt E, Wolski TP, Jr., Kulesza RJ, Jr. (2010) Distribution of perineuronal nets in the 
human superior olivary complex. Hear Res 265 (1-2):15-24. 

250. Schwartz MA, Schaller MD, Ginsberg MH (1995) Integrins: emerging paradigms of signal 
transduction. Annual review of cell and developmental biology 11:549-599. 

251. Seeger G, Luth HJ, Winkelmann E, Brauer K (1996) Distribution patterns of Wisteria 
floribunda agglutinin binding sites and parvalbumin-immunoreactive neurons in the 
human visual cortex: a double-labelling study. Journal fur Hirnforschung 37 (3):351-366. 

252. Sekeljic V, Andjus PR (2012) Tenascin-C and its functions in neuronal plasticity. The 
international journal of biochemistry & cell biology 44 (6):825-829. 

253. Seong J, Lu SY, Wang YX (2011) Live Cell Imaging of Src/FAK Signaling by FRET. Cell 
Mol Bioeng 4 (2):138-147. 

254. Serbest G, Horwitz J, Jost M, Barbee KA (2005) Mechanisms of cell death and 
neuroprotection by poloxamer 188 after mechanical trauma. Faseb Journal 19 (14):308-+. 

255. Shi Y, Ethell IM (2006) Integrins control dendritic spine plasticity in hippocampal neurons 
through NMDA receptor and Ca2+/calmodulin-dependent protein kinase II-mediated 
actin reorganization. Journal of Neuroscience 26 (6):1813-1822. 

256. Shuck LZ, Advani SH (1972) Rheological Response of Human Brain-Tissue in Shear. J 
Basic Eng-T Asme 94 (4):905-911. 

257. Siechen S, Yang S, Chiba A, Saif T (2009) Mechanical tension contributes to clustering of 
neurotransmitter vesicles at presynaptic terminals. Proc Natl Acad Sci U S A 106 
(31):12611-12616. 

258. Smith DH, Chen XH, Xu BN, McIntosh TK, Gennarelli TA, Meaney DF (1997) 
Characterization of diffuse axonal pathology and selective hippocampal damage 
following inertial brain trauma in the pig. J Neuropathol Exp Neurol 56 (7):822-834. 

259. Smith DH, Meaney DF (2000) Axonal damage in traumatic brain injury. Neuroscientist 6 
(6):483-495. 

260. Smith DH, Wolf JA, Lusardi TA, Lee VM, Meaney DF (1999) High tolerance and delayed 
elastic response of cultured axons to dynamic stretch injury. J Neurosci 19 (11):4263-
4269. 

261. Smith SJ (1988) Neuronal cytomechanics: the actin-based motility of growth cones. Science 
242 (4879):708-715. 



121 
 

262. Spaethling JM, Klein DM, Singh P, Meaney DF (2008) Calcium-permeable AMPA 
receptors appear in cortical neurons after traumatic mechanical injury and contribute to 
neuronal fate. J Neurotrauma 25 (10):1207-1216. 

263. Sponheim SR, McGuire KA, Kang SS, Davenport ND, Aviyente S, Bernat EM, Lim KO 
(2011) Evidence of disrupted functional connectivity in the brain after combat-related 
blast injury. NeuroImage 54 (Supplement 1):S21-S29. 

264. Staubli U, Chun D, Lynch G (1998) Time-dependent reversal of long-term potentiation by 
an integrin antagonist. J Neurosci 18 (9):3460-3469. 

265. Stern RA, Riley DO, Daneshvar DH, Nowinski CJ, Cantu RC, McKee AC (2011) Long-
term consequences of repetitive brain trauma: chronic traumatic encephalopathy. PM R 3 
(10 Suppl 2):S460-467. 

266. Stevens GR, Zhang C, Berg MM, Lambert MP, Barber K, Cantallops I, Routtenberg A, 
Klein WL (1996) CNS neuronal focal adhesion kinase forms clusters that co-localize 
with vinculin. J Neurosci Res 46 (4):445-455. 

267. Stone JR, Okonkwo DO, Dialo AO, Rubin DG, Mutlu LK, Povlishock JT, Helm GA (2004) 
Impaired axonal transport and altered axolemmal permeability occur in distinct 
populations of damaged axons following traumatic brain injury. Exp Neurol 190 (1):59-
69. 

268. Stone JR, Okonkwo DO, Dialo AO, Rubin DG, Mutlu LK, Povlishock JT, Helm GA (2004) 
Impaired axonal transport and altered axolemmal permeability occur in distinct 
populations of damaged axons following traumatic brain injury. Experimental Neurology 
190 (1):59-69. 

269. Strich SJ (1956) Diffuse degeneration of the cerebral white matter in severe dementia 
following head injury. J Neurol Neurosurg Psychiatry 19 (3):163-185. 

270. Su L, Lv X, Miao J (2008) Integrin beta 4 in neural cells. Neuromolecular Med 10 (4):316-
321. 

271. Sudhof TC (2008) Neuroligins and neurexins link synaptic function to cognitive disease. 
Nature 455 (7215):903-911. 

272. Susuki K, Rasband MN (2008) Molecular mechanisms of node of Ranvier formation. Curr 
Opin Cell Biol 20 (6):616-623. 

273. Sykova E, Nicholson C (2008) Diffusion in brain extracellular space. Physiol Rev 88 
(4):1277-1340. 

274. Tagliaferri F, Compagnone C, Korsic M, Servadei F, Kraus J (2006) A systematic review of 
brain injury epidemiology in Europe. Acta Neurochir (Wien) 148 (3):255-268; discussion 
268. 

275. Tang-Schomer MD, Patel AR, Baas PW, Smith DH (2010) Mechanical breaking of 
microtubules in axons during dynamic stretch injury underlies delayed elasticity, 
microtubule disassembly, and axon degeneration. FASEB J 24 (5):1401-1410. 

276. Thibault KL, Margulies SS (1998) Age-dependent material properties of the porcine 
cerebrum: effect on pediatric inertial head injury criteria. J Biomech 31 (12):1119-1126. 

277. Tomaselli KJ, Neugebauer KM, Bixby JL, Lilien J, Reichardt LF (1988) N-cadherin and 
integrins: two receptor systems that mediate neuronal process outgrowth on astrocyte 
surfaces. Neuron 1 (1):33-43. 

278. Toole BP (2004) Hyaluronan: from extracellular glue to pericellular cue. Nature reviews 
Cancer 4 (7):528-539. 



122 
 

279. Tucker RP, Chiquet-Ehrismann R (2009) The regulation of tenascin expression by tissue 
microenvironments. Biochim Biophys Acta 1793 (5):888-892. 

280. Turley EA, Noble PW, Bourguignon LY (2002) Signaling properties of hyaluronan 
receptors. J Biol Chem 277 (7):4589-4592. 

281. Tyler WJ (2012) The mechanobiology of brain function. Nat Rev Neurosci 13 (12):867-
878. 

282. Tzima E (2006) Role of small GTPases in endothelial cytoskeletal dynamics and the shear 
stress response. Circ Res 98 (2):176-185. 

283. Tzima E, del Pozo MA, Shattil SJ, Chien S, Schwartz MA (2001) Activation of integrins in 
endothelial cells by fluid shear stress mediates Rho-dependent cytoskeletal alignment. 
EMBO J 20 (17):4639-4647. 

284. Uchida N, Honjo Y, Johnson KR, Wheelock MJ, Takeichi M (1996) The catenin/cadherin 
adhesion system is localized in synaptic junctions bordering transmitter release zones. 
Journal of Cell Biology 135 (3):767-779. 

285. Underhill C (1992) CD44: the hyaluronan receptor. J Cell Sci 103 ( Pt 2):293-298. 
286. Vappou J, Breton E, Choquet P, Willinger R, Constantinesco A (2008) Assessment of in 

vivo and post-mortem mechanical behavior of brain tissue using magnetic resonance 
elastography. J Biomech 41 (14):2954-2959. 

287. Virgintino D, Perissinotto D, Girolamo F, Mucignat MT, Montanini L, Errede M, Kaneiwa 
T, Yamada S, Sugahara K, Roncali L, Perris R (2009) Differential distribution of 
aggrecan isoforms in perineuronal nets of the human cerebral cortex. J Cell Mol Med 13 
(9B):3151-3173. 

288. Vitellaro-Zuccarello L, Meroni A, Amadeo A, De Biasi S (2001) Chondroitin sulfate 
proteoglycans in the rat thalamus: expression during postnatal development and 
correlation with calcium-binding proteins in adults. Cell Tissue Res 306 (1):15-26. 

289. Vogel V, Sheetz M (2006) Local force and geometry sensing regulate cell functions. Nat 
Rev Mol Cell Biol 7 (4):265-275. 

290. Walsh FS, Doherty P (1997) Neural cell adhesion molecules of the immunoglobulin 
superfamily: role in axon growth and guidance. Annual review of cell and developmental 
biology 13:425-456. 

291. Wang JH, Thampatty BP (2006) An introductory review of cell mechanobiology. Biomech 
Model Mechanobiol 5 (1):1-16. 

292. Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the Cell-Surface and 
through the Cytoskeleton. Science 260 (5111):1124-1127. 

293. Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and 
through the cytoskeleton. Science 260 (5111):1124-1127. 

294. Wang N, Ingber DE (1994) Control of Cytoskeletal Mechanics by Extracellular-Matrix, 
Cell-Shape, and Mechanical Tension. Biophysical Journal 66 (6):2181-2189. 

295. Wang N, Ingber DE (1995) Probing transmembrane mechanical coupling and 
cytomechanics using magnetic twisting cytometry. Biochemistry and cell biology = 
Biochimie et biologie cellulaire 73 (7-8):327-335. 

296. Wang N, Naruse K, Stamenovic D, Fredberg JJ, Mijailovich SM, Tolic-Norrelykke IM, 
Polte T, Mannix R, Ingber DE (2001) Mechanical behavior in living cells consistent with 
the tensegrity model. Proc Natl Acad Sci U S A 98 (14):7765-7770. 



123 
 

297. Wang N, Planus E, Pouchelet M, Fredberg JJ, Barlovatz-Meimon G (1995) Urokinase 
receptor mediates mechanical force transfer across the cell surface. Am J Physiol 268 (4 
Pt 1):C1062-1066. 

298. Wang N, Tytell JD, Ingber DE (2009) Mechanotransduction at a distance: mechanically 
coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol 10 (1):75-82. 

299. Wang Y, Botvinick EL, Zhao Y, Berns MW, Usami S, Tsien RY, Chien S (2005) 
Visualizing the mechanical activation of Src. Nature 434 (7036):1040-1045. 

300. Watson PM, Humphries MJ, Relton J, Rothwell NJ, Verkhratsky A, Gibson RM (2007) 
Integrin-binding RGD peptides induce rapid intracellular calcium increases and MAPK 
signaling in cortical neurons. Mol Cell Neurosci 34 (2):147-154. 

301. Webb DJ, Zhang H, Majumdar D, Horwitz AF (2007) alpha5 integrin signaling regulates 
the formation of spines and synapses in hippocampal neurons. J Biol Chem 282 
(10):6929-6935. 

302. Wernig F, Mayr M, Xu QB (2003) Mechanical stretch-induced apoptosis in smooth muscle 
cells is mediated by beta(1)-integrin signaling pathways. Hypertension 41 (4):903-911. 

303. Wheelock MJ, Johnson KR (2003) Cadherin-mediated cellular signaling. Curr Opin Cell 
Biol 15 (5):509-514. 

304. Wilbur JL, Kumar A, Kim E, Whitesides GM (1994) Microfabrication by Microcontact 
Printing of Self-Assembled Monolayers. Adv Mater 6 (7-8):600-604. 

305. Wolf JA, Stys PK, Lusardi T, Meaney D, Smith DH (2001) Traumatic axonal injury induces 
calcium influx modulated by tetrodotoxin-sensitive sodium channels. J Neurosci 21 
(6):1923-1930. 

306. Wright RM, Post A, Hoshizaki B, Ramesh KT (2013) A Multiscale Computational 
Approach to Estimating Axonal Damage under Inertial Loading of the Head. J 
Neurotrauma 30 (2):102-118. 

307. Wu C, Dedhar S (2001) Integrin-linked kinase (ILK) and its interactors: a new paradigm for 
the coupling of extracellular matrix to actin cytoskeleton and signaling complexes. The 
Journal of cell biology 155 (4):505-510. 

308. Yakovlev AG, Faden AI (2004) Mechanisms of neural cell death: implications for 
development of neuroprotective treatment strategies. NeuroRx 1 (1):5-16. 

309. Yamada H, Fredette B, Shitara K, Hagihara K, Miura R, Ranscht B, Stallcup WB, 
Yamaguchi Y (1997) The brain chondroitin sulfate proteoglycan brevican associates with 
astrocytes ensheathing cerebellar glomeruli and inhibits neurite outgrowth from granule 
neurons. J Neurosci 17 (20):7784-7795. 

310. Yamada H, Watanabe K, Shimonaka M, Yamaguchi Y (1994) Molecular cloning of 
brevican, a novel brain proteoglycan of the aggrecan/versican family. J Biol Chem 269 
(13):10119-10126. 

311. Yasuda R, Murakoshi H (2011) The mechanisms underlying the spatial spreading of 
signaling activity. Current Opinion in Neurobiology 21 (2):313-321. 

312. Yasuhara O, Akiyama H, McGeer EG, McGeer PL (1994) Immunohistochemical 
localization of hyaluronic acid in rat and human brain. Brain Res 635 (1-2):269-282. 

313. Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M, Zahir N, Ming WY, 
Weaver V, Janmey PA (2005) Effects of substrate stiffness on cell morphology, 
cytoskeletal structure, and adhesion. Cell Motil Cytoskel 60 (1):24-34. 



124 
 

314. Yoshino A, Hovda DA, Katayama Y, Kawamata T, Becker DP (1992) Hippocampal CA3 
lesion prevents postconcussive metabolic dysfunction in CA1. J Cereb Blood Flow Metab 
12 (6):996-1006. 

315. Yuen TJ, Browne KD, Iwata A, Smith DH (2009) Sodium channelopathy induced by mild 
axonal trauma worsens outcome after a repeat injury. J Neurosci Res 87 (16):3620-3625. 

316. Zaidel-Bar R, Kam Z, Geiger B (2005) Polarized downregulation of the paxillin-
p130(CAS)-Rac1 pathway induced by shear flow. J Cell Sci 118 (17):3997-4007. 

317. Zamir E, Katz B, Aota S, Yamada K, Geiger B, Kam Z (1999) Molecular diversity of cell-
matrix adhesions. Journal of Cell Science 112 (11):1655-1670. 

318. Zhang LY, Yang KH, King AI (2001) Comparison of brain responses between frontal and 
lateral impacts by finite element modeling. J Neurotraum 18 (1):21-30. 

319. Zhao XH, Laschinger C, Arora P, Szaszi K, Kapus A, McCulloch CA (2007) Force 
activates smooth muscle alpha-actin promoter activity through the Rho signaling 
pathway. J Cell Sci 120 (10):1801-1809. 

320. Zimmermann DR, Dours-Zimmermann MT (2008) Extracellular matrix of the central 
nervous system: from neglect to challenge. Histochem Cell Biol 130 (4):635-653. 

321. Zlokovic BV (2008) The blood-brain barrier in health and chronic neurodegenerative 
disorders. Neuron 57 (2):178-201. 

322. Zouridakis G, Patidar U, Situ N, Rezaie R, Castillo EM, Levin HS, Papanicolaou AC (2012) 
Functional Connectivity Changes in Mild Traumatic Brain Injury Assessed Using 
Magnetoencephalography. J Mech Med Biol 12 (2). 

323. Zuber B, Nikonenko I, Klauser P, Muller D, Dubochet J (2005) The mammalian central 
nervous synaptic cleft contains a high density of periodically organized complexes. Proc 
Natl Acad Sci U S A 102 (52):19192-19197. 

 
 


