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Abstract

We model spatial clusters of similar �rms. Our model highlights how agglomerative
forces lead to localized, individual connections among �rms, while interaction costs generate
a de�ned distance over which attraction forces operate. Overlapping �rm interactions
yield agglomeration clusters that are much larger than the underlying agglomerative forces
themselves. Empirically, we demonstrate that our model�s assumptions are present in the
structure of technology and labor �ows within Silicon Valley and its surrounding areas. Our
model further identi�es how the lengths over which agglomerative forces operate in�uence
the shapes and sizes of industrial clusters; we con�rm these predictions using variations
across patent technology clusters.
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1 Introduction

Agglomeration� industrial clustering� is a key feature of economic geography. A vast body of
research now documents the prevalence of agglomeration in many industries and countries, and
a number of studies have established its particular importance for �rm and worker productivity.
Duranton and Puga (2004) and Rosenthal and Strange (2004) provide theoretical and empirical
reviews, respectively. Moving from these measurements, researchers have recently sought to
identify the economic rationales for �rm collocation and thereby the sources of the associated
productivity gains. While the list of potential suspects dates back to Marshall (1920)� most
notably labor market pooling, customer-supplier interactions, and knowledge �ows� we are just
beginning to separate the relative importance of these forces.
Research on the spatial horizons over which di¤erent agglomerative forces act often takes one

of two approaches. A �rst approach considers �regional�evidence. Examples include Rosenthal
and Strange (2001, 2004), Duranton and Overman (2005, 2008), and Ellison et al. (2010). This
approach begins by measuring the degree to which each industry is agglomerated across a chosen
spatial horizon (e.g., counties, cities, states). A second step then correlates di¤erences in observed
agglomeration to the traits of the industries. For example, we might observe that industries
intensive in R&D e¤orts are more agglomerated when using counties or cities as a spatial unit
than industries that do not depend upon R&D. Similarly, we might observe that industries with
strong customer-supplier linkages are agglomerated at the regional level. A common inference
from these patterns, as one example, is that knowledge �ows act over a shorter spatial distance
than input-output interactions, as the knowledge-intensive industries are more heavily grouped
together at the county level.
In parallel, a second strand of work considers �local�evidence on agglomerative interactions.

Rather than discerning agglomerative forces from region-industry data, this line of research
attempts to measure productivity gains directly at the establishment level. Prominent examples
include Rosenthal and Strange (2003, 2008) and Arzaghi and Henderson (2008). A common
approach is to estimate a plant-level production function that includes as explanatory variables
the count of plants in the same industry observed within �ve miles of the focal plant, within ten
miles, and so on (or within the same county, city, and state). These studies often conclude that
spillover e¤ects decay sharply with distance, with the forces being orders of magnitude stronger
over the �rst few city blocks than they are when �rms are 2-5 miles apart. These productivity
studies are just the tip of the iceberg, however, with many related research strands measuring
directly the distances over which humans or �rms interact (e.g., patent citations, commuting,
etc.). As agglomerative forces depend upon these interactions, these studies also describe the
local interactions that give rise to the clusters that we observe.
There is a substantial gap between these two approaches. Despite their individual progress,

we have very little understanding of how the �local� interactions aggregate up into �regional�
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shapes and sizes of industries we observe in the data. The easiest way to observe this gap is
to consider the spatial distances discussed by the two approaches. The regional literature often
concludes that technology spillovers have a shorter spatial horizon than labor market pooling by
comparing county- and city-level data. But counties have over 75,000 people in population on
average, and the spatial size of counties is much greater than what �local�interactions suggest is
the relevant range. If studies �nd that knowledge �ows decrease sharply within a single building
(e.g., Olson and Olson 2003), why would we believe that we can infer useful comparisons of
knowledge spillovers and labor pooling from regional data when the spatial scales of our data
swamp the micro-interactions by orders of magnitude?
This project examines these issues theoretically and empirically. The core of our work is a

location choice model that connects limited, localized agglomerative forces with the formation
of spatial clusters of similar �rms. Agglomerative forces in our model are localized because �rms
face interaction costs. Spillover bene�ts exceed these interaction costs at short distances, and
thus �rms choose to interact. Beyond some distance, however, interaction becomes unpro�table
and �rms no longer engage with each other. For example: while a �rm could learn useful
technologies from another �rm 20 miles away, the costs of doing so may be too great to justify
the e¤ort. Clusters are then the product of many small, overlapping regions of interaction.
By building the cluster up from the micro-interactions, we obtain additional insights into the
structure of clusters and the regional data we observe.
Silicon Valley is the world�s most famous cluster, and many observers credit its success to

technology spillovers. Figure 1 illustrates the foundations of our theoretical framework using
technology �ows in Silicon Valley. Downtown San Francisco and Oakland are to the north and
o¤ of the map. The triangle in the bottom right corner of the map is the core of Silicon Valley.
This core contains 76% of industrial patents �led from the San Francisco Bay area and 18 of the
top 25 zip codes in terms of patenting.
To introduce our model, we describe the primary technology sourcing zones for three of the

four largest zip codes for patenting in the San Francisco area that are outside of the core. Each
focal zip code is marked with a star, and the other points of the shape are the three zip codes
that �rms in the focal zip code cite most in their work. The orange zone (also labelled with
a �1�) for Menlo Park extends deepest into the core. The green zone for Redwood City (�2�)
shifts up and encompasses Menlo Park and Palo Alto but less of the core. The black zone for
South San Francisco (�3�) further shifts out and brushes the core.
These technology zones are characterized by small, overlapping regions. None of the technol-

ogy sourcing zones transverse the whole core, much less the whole cluster, and only the closest
zip code (Menlo Park) even reaches far enough into the core to include the area of Silicon Valley
where the greatest number of patents occur. While technology sourcing for individual �rms is
localized, the resulting cluster extends over a larger expanse of land.1

1The empirical appendix of our NBER working paper contains additional maps that show these small, over-
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Our model replicates these features and makes explicit that empirical observation of cluster
size in the data does not indicate the length of the micro-interactions that produce the cluster.
We show, however, that cluster shape and size does depend systematically on whether the
localized interactions for �rms in an industry are longer or shorter in length. We demonstrate
that a longer e¤ective spillover region, either due to weaker decay in bene�ts or lower interaction
costs, yields a macro-structure with fewer, larger, and less-dense clusters. These regularities
allow researchers to use cluster dimensions to rank-order spillover lengths even though micro-
interactions are not observed. This connection helps bring together the diverse literature strands
described earlier.
After deriving our theoretical predictions, we empirically illustrate the model using US patent

data to describe di¤erences across technology clusters. Patent citations allow us to measure
e¤ective spillover regions by technology. Di¤erences in these spillover regions relate to cluster
shapes and sizes as predicted by the model. Technologies with very short distances over which
�rms interact exhibit clusters that are smaller and denser than technologies that allow for longer
distances. This empirical work primarily employs agglomeration metrics that are continuous,
like in the metric of Duranton and Overman (2005), and we use traits of industries in the United
Kingdom to con�rm the causal direction of these relationships (e.g., Ellison et al. 2010).
Our work makes several contributions to the literature on industrial agglomeration. Most

importantly, we provide a theoretical connection between observable cluster shapes and the
underlying agglomerative forces that cause them. Early �island�models of agglomeration� in
which agglomerative forces act only within sites� implicitly feature maximal radius of interaction
0 (e.g., Krugman 1991, Fujita and Thisse 1996, Ellison and Glaeser 1997). More recently,
maximal radii also have been observed in more continuous models (e.g., Arzaghi and Henderson
2008, Duranton and Overman 2005). However, to our knowledge, our framework is the �rst
to identify how variations in the maximal radius govern the shapes and sizes of clusters. At
the core of this contribution is the simple mechanism of interaction costs among �rms. The
resulting framework provides a theoretical foundation for inferring properties of agglomerative
forces through observed spatial concentrations of industries. We identify settings in which such
inference is appropriate, as well as key properties of agglomeration in such settings.2

Our central empirical contribution is a framework, motivated by our theoretical model, for
meaningful analysis of agglomerative forces with continuous distance horizons. Previous work

lapping regions are also evident in the core itself and in other parts of the San Francisco region. These properties
are also evident in labor commuting patterns in the region. Arzaghi and Henderson (2008) and Carlino et al.
(2012) provide related visual displays.

2An additional contribution of our work, discussed in greater detail later, is to provide a micro-foundation
for using continuous spatial density measurements that center on bilateral distances between �rms. This class of
metrics includes the popular Duranton and Overman (2005) metric.
Studies of agglomeration metrics include Ellison and Glaeser (1997), Maurel and Sédillot (1999), Marcon and

Puech (2003), Mori et al. (2005), Barlet et al. (2012), Ellison et al. (2010), Billings and Johnson (2011), and
Carlino et al. (2012). Recent related work on cities includes Rozenfeld et al. (2012) and Helsley and Strange
(2012).
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considers how agglomerative forces a¤ect spatial concentration over di¤erent distance horizons,
for example up to 75 or 250 miles (e.g., Rosenthal and Strange 2001, Ellison et al. 2010). Our
framework is an important step towards jointly considering agglomeration at di¤erent distances
(25, 75, and 250 miles) simultaneously. We hope that future research can similarly analyze other
factors that govern clusters�shapes and sizes.
In addition to the related work already mentioned, our empirical work with patents relates to

two other recent studies also considering continuous density measurements. Carlino et al. (2012)
develop a multiscale core-cluster approach to measure the agglomeration of R&D laboratories
across continuous space. In many respects, their metric�s nesting approach parallels our theo-
retical focus on overlapping radii of interaction that build to a larger cluster. Likewise, some of
their empirical results (e.g., clustering at local scales and at about 40 miles of distance) are also
evident under our measures. Similarly, Murata et al. (2012) use continuous density estimations
with patent citations to address the question of how localized are knowledge �ows. Their careful
metric design allows them to bridge the well-known debate between Ja¤e et al. (1993, 2005)
and Thompson and Fox-Kean (2005) and parse the underlying assumptions embedded in each
study. Our work di¤ers from these studies in several ways, but the most important di¤erence
is the theoretical focus and hypothesis testing about how di¤erent forms of interaction produce
observable changes in cluster shapes and sizes.3

Section 2 presents our theoretical model. Section 3 describes our empirical strategy and data
and provides initial evidence for our model�s building blocks using �rst- and later-generations of
patent citations. Section 4 then undertakes speci�c measurements of technology-level spillover
radii and tests our model�s predictions one at a time. Section 5 then introduces our continuous
density measurements and tests the model predictions. The last section concludes.

2 Theoretical Framework

We now introduce a model of �rm location choice that generates large agglomeration clusters
from smaller, overlapping spillover zones. To maintain consistency with previous work, we use
the notation of Duranton and Overman (2005) whenever possible. We keep this initial exposition
as simple as possible, and we conclude this section with a discussion of richer frameworks and
extensions.

3Other related studies not previously mentioned include Audretsch and Feldman (1996), Head and Mayer
(2004), Hanson (2005), Greenstone et al. (2010), Delgado et al. (2009), Holmes and Lee (2012), Fallick et
al. (2006), Glaeser and Kerr (2009), Menon (2009), Bleakley and Lin (2012), Alcacer and Chung (2007), Pe�er
and Vertinsky (2009), Alfaro and Chen (2010), Dauth (2010), Marx and Singh (2012), and Dempwolf (2012).
Our work also connects to studies of the shapes of cities (e.g., Lucas and Rossi-Hansberg 2002, Baum-Snow 2007,
2010, Glaeser 2008, and Saiz 2010) and of agglomeration and productivity di¤erences across cities and regions
(e.g., Ciccone and Hall 1996, Partridge et al. 2009, Behrens et al. 2010, Sarvimäki 2010, Fu and Ross 2012).
Jackson (2008) outlines a complementary literature on economic networks.
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2.1 Basic Framework

There are N �rms indexed by i. These �rms i sequentially select their locations, denoted j(i),
from a �xed set Z � R2 of potential sites, each of which can hold at most one �rm.4 Sites are
drawn at random according to a uniform distribution in advance of any �rms�location decision
and are �xed. There are many more possible sites than �rms, i.e. jZj � N . To focus on
agglomeration economies, we assume that �rms compete in broad product markets. Location
choice thus a¤ects the productivity of a �rm, but not its competitive environment.
The speci�c bene�ts of location j to a �rm are driven by intra-industry Marshallian forces

representing productivity spillovers that �rms generate by being in proximity to each other.
Three common examples are customer-supplier interactions (e.g., reducing transportation costs
for intermediate goods), labor pooling, and knowledge exchanges.
We denote by dj1;j2 the spatial distance between j1 2 R2 and j2 2 R2. We assume that the

deterministic bene�t of site j 2 Z to a �rm i is given by

gj(i) �
X
i0 6=i

G(dj;j(i0));

for some continuous, decreasing functionG. The value gj represents the degree to which spillovers
from other sites make site j speci�cally attractive to �rms. We assume the standard comparative
static that G is decreasing, so that agglomerative forces decline over space. Additionally, for
simplicity, we assume that agglomerative forces act across all distances. That is, G(d) > 0 for
all d � 0.
We assume that a �rm chooses randomly among sites j1; : : : ; j` over which that �rm would

be indi¤erent if forced to choose purely on the basis of spatial attraction.5 We also assume that
�rms are not forward-looking, so that the n-th �rm to enter, in (1 � n � N), chooses its location
j = j(in) 2 Z to maximize gj(in) conditional upon the location choices of the �rst n� 1 �rms.

2.2 Maximal Radius of Interaction

So far, our model has more or less followed a standard structure: proximity to resources and
other �rms generates bene�ts, and these bene�ts decay continuously over distance. However, we
now depart from this standard approach via a simple and natural additional assumption.

Assumption. A �rm must pay cost c to interact with another �rm.

These �xed costs c relate to the costs of transporting goods, people, or ideas across �rms.
Opportunity costs and search costs are the simplest examples, and these costs can be speci�c

4In Section 2.4, we discuss the possibility that multiple �rms may occupy (and congest) the same site.
5The exact speci�cation of the distribution of random site choice does not matter for our theoretical results

and may be conditioned upon the set of sites already occupied, but we do require that it is identical across �rms.
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to industries and spillover types. For example, accessing and understanding codi�ed technolo-
gies likely requires a lower �xed cost of establishing interactions than that required for tacit
technologies.6

Firms invest in establishing contacts when the bene�ts of doing so equal or exceed the
associated costs of interaction. Speci�cally, �rm i only invests in contact with a �rm i0 if
G(dj(i);j(i0)) � c. This de�nes a strict distance over which �rm i �nds interactions pro�table,

dj(i);j(i0) � � � maxfd : G(d) � cg:

Therefore, we immediately observe the following result.

Proposition 1. Firms at sites further than distance � from a �rm i cannot pro�tably interact
with i. That is, �rm i derives no direct bene�ts from the presence of �rms at locations j with
dj;j(i) > �.

Proof: Immediate from text.

The key consequence of Proposition 1 is that agglomerative forces in practice act only over
�nite distances. We call � the maximal radius of interaction (or just the maximal radius). The
maximal radius is (weakly) decreasing in the cost c and increasing in the levels of the decay
function G. In other words, lower costs or weaker attenuation of bene�ts lead to larger maximal
radii.
Our assumption that interaction costs are �xed is only to simplify the discussion below. One

might naturally assume that interaction costs rise with distance; such an assumption would
also generate the maximal radius described in Proposition 1. The ultimate technical condition
required is that interaction costs exceed interaction bene�ts at some distance with a single
crossing.

2.3 A Cluster-Based Theory of Agglomeration

We next examine how clusters form in our model and illustrate clusters�properties. Figures
2a-2d provide a graphical presentation of the theory to build intuition. In these graphs, lightly
colored circles are potential �rm locations, while �lled-in circles represent sites populated by
�rms. Throughout this paper, we use these graphs to explain the model�s structure and depict
the behavior of marginal entrants.

2.3.1 Basic De�nitions and Structure

We de�ne an agglomeration cluster to be a group of �rms located in sites interconnected by
bilateral interactions. Each �rm does not necessarily interact with every other �rm in its cluster,

6Arzaghi and Henderson (2008) utilize a similar foundation in their model of location choice for ad agencies
in Manhattan.
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but all �rms in a cluster are interconnected. Our measure of agglomeration counts the number
of these clusters that are expected to arise; we say that �rms exhibit agglomeration if they
typically occupy few distinct clusters. (The use of an expectation is necessary because �rms
choose randomly when indi¤erent among sites.)
More formally: For j 2 R2, we denote by Bd(j) � fj0 2 R2 : dj;j0 � dg the closed ball of

radius d about j. For j 2 Z, we set

B0�(j) � B�(j) \ Z:

This formula has a simple interpretation: B0�(j) is the set of potential �rm locations that can
pro�tably interact with j under maximal radius �.
In Figure 2a, we draw for each populated site a representative maximal radius within which

the bene�ts of interaction exceed the costs for �rms. For this example, B0� for site B includes
sites A and C. Sites A and C are the only locations within the maximal radius for Marshallian
conditions �.
We next expand our focus to consider sites that are outside of the pro�table spillover range

of site j, but can be connected to j via a single interconnection. We de�ne B1�(j) to be the
set of sites that can pro�tably interact with the sites in B0�(j) through one additional step. In
Figure 2a, B1�(B) further includes the four additional sites within distance � from site C that are
outside of the spillover range of site B. We continue to iterate this process, successively adding
additional sites that are more spatially distant to site j but still connected to site j by increasing
numbers of interconnections (B��(j) for � = 1; 2; : : :). Formally, for any j 2 Z,

B��(j) �
[

j02B��1� (j)

B0�(j0):

Iterating this construction of clusters to its conclusion, B�(j) is the �-cluster containing j 2 Z,
de�ned by

B�(j) �
1[
�=0

B��(j):

The �-cluster containing site j is the largest cluster of sites that 1) contains j and 2) is connected
by a chain of �hops�between sites j0 2 Z which can pro�tably interact. The complete set of
�lled locations in Figure 2a constitute the �-cluster for site B in our example. The use of an
in�nite index in the union de�ning B�(j) is ultimately unnecessary, as the �nitude of the set of
sites implies that B��(j) = B�+1� (j) = � � � for some �nite �.
When the maximal radius � is small, clusters are generally small. For two precise examples,

de�ne the lower and upper bounds on distances between sites as d � minj1 6=j22Z dj1;j2 and
�d � maxj1 6=j22Z dj1;j2. When � < d, B�(j) = fjg for each j 2 Z. In other words, a maximal
radius that is shorter than the shortest distance between two sites results in each cluster only

7



containing a single �rm. By contrast, when � > d, B�(j) = Z for all j 2 Z. A maximal radius
longer than the maximal distance between sites results in a single cluster for an industry.
If the maximal radius is � and the �rst �rm locates at site j, and the cluster around j

contains available locations (i.e., B�(j) 6= fjg), then there is some site j0 2 B�(j) which delivers
positive deterministic utility �ows to the next entrant. It follows that if Marshallian forces are
su¢ ciently strong, then �rms select sites in the cluster B�(j) until B�(j) is �lled. Iterating this
analysis shows that when Marshallian forces are strong, �rms �ll clusters sequentially.
The sequential �lling of clusters explains how large-area clustering may arise in an industry

even if agglomerative forces act only over short distances. Cluster sizes associated with a given
maximal radius can be much larger than the underlying radius itself. Clusters may span large
regions even if each �rm derives bene�ts only from its immediate neighbors.
A consequence of the maximal radius, however, is that clusters can reach their capacity, at

which point the next entrant for the industry will locate elsewhere. In Figure 2a, the closest
remaining site to the existing cluster is site X, but this location is beyond the spillover ranges
of any of the populated sites in the cluster. As the marginal entrant cannot pro�tably interact
with the cluster, it is indi¤erent among sites X, Y, Z, and any other unoccupied site. It will
choose its location at random or based upon idiosyncratic preferences.
These observations suggest a natural notion of agglomeration. We say that �rms are (weakly)

more agglomerated with respect to maximal radius �1 than they are with respect to radius �2 if,
holding N �xed, fewer clusters of �rms form when the maximal radius is �1 than when it is �2.
Formally:

De�nition 1. The level of agglomeration for maximal radius � is jZj � ��, where �� is the
expected number of distinct �-clusters B�(j) about sites j 2 Z occupied by �rms.

Note that under this de�nition, agglomeration increases as the expected number of clusters
decreases. Holding industry size constant, increased agglomeration therefore also corresponds
to increased cluster size. The additive term jZj is a normalization that guarantees that the
level of agglomeration is always a positive number. We could equally well de�ne the level of
agglomeration for maximal radius � to just be ���.
Our discussion of the marginal entry decision also highlights the core di¤erence between

our structure and prior work. Without considering interaction costs, strictly positive spillover
bene�ts exist at all distances due to the decay function G. Industries may di¤er in how fast or
slow Marshallian bene�ts decay, but these di¤erences in Marshallian forces do not impact the
number of clusters. Regardless of whether the potential spillover bene�t is large or miniscule,
marginal entrants always select sites closest to the developing cluster regardless of distance (i.e.,
site X next in Figure 2a). As a consequence, each industry always forms a single cluster, and
entrants generically select sites in a �xed order. This is equivalent to the case in which �!1
in our model. Once a �rst entrant picks a location, the set of sites �lled by the remaining N � 1
�rms is exactly determined.
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Thus, the simplest framework does not provide a foundation for relating di¤erences in spatial
concentration for industries to their underlying agglomerative forces. Yet, our intuitive addi-
tion of interaction costs provides additional traction by establishing a spatial range over which
interactions are relevant. This localization in turn provides meaningful di¤erences in cluster
formation. We now turn to these comparative statics.

2.3.2 Agglomeration due to Marshallian Advantages

Figure 2b illustrates the consequences of a longer maximal radius for cluster formation. Under
the larger maximal radius, the marginal entrant is no longer indi¤erent over sites, but would
instead choose site X. Thus, a longer maximal radius is (weakly) associated with greater industry
agglomeration as fewer clusters form in expectation.
More formally, recall that � is the maximal radius for intra-industry spillovers, � � maxfd :

G(d) � cg: Since Z is �nite, small changes in � do not a¤ect location choices. Larger increases
in �, either due to weaker attenuation in spillover bene�ts or lower interaction costs, can lead
�rms to organize into fewer clusters. In fact, we may sign this change: �rms become (weakly)
more agglomerated when � increases.

Proposition 2. A longer maximal radius of intra-industry spillovers � leads to a (weak) increase
in agglomeration.

Proof: See Appendix.

The idea behind the proof of Proposition 2 is intuitive. A �rm i that is indi¤erent across
sites chooses its location j(i) 2 Z randomly. But until the sites in cluster B�(j(i)) are �lled,
they are more attractive to �rms than are un�lled sites outside of B�(j(i)). If � grows to �̂, a
radius large enough to cause some cluster B�(j) to merge with another cluster (i.e. such that
B�̂(j) = B�(j) [ B�(j0) for some site j0 =2 B�(j)), then the expected number of clusters occupied
by �rms shrinks. Indeed, whenever a �rm locates in either B�(j) or B�(j0), subsequent �rms �ll
all of B�̂(j) before locating in or starting another cluster.
Three empirical implications of this analysis are evident in Figure 2b. First, industries with

a longer maximal radius have larger clusters in the sense of having more �rms and covering a
greater spatial area. Intuitively, a longer spillover radius makes sites at the edges of clusters
attractive that are not attractive with a shorter radius. This induces marginal entrants into
choosing these sites rather than starting new clusters. A longer radius can be due to weaker
decay of spillover bene�ts or lower interaction costs.
The second and third predictions are closely related. A longer spillover radius yields fewer

clusters for a given industry size. As clusters grow in size, fewer clusters are needed to house
the N �rms in the industry. Finally, clusters are less dense. The longer radius activates sites at
the edges of a cluster that are too spatially distant to pro�tably interact with previous entrants
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if the radius is shorter. Thus, growth in cluster size is simultaneous with reduction in cluster
density.
Our result that clusters due to a longer maximal radius are less dense is the same as saying

that average bilateral distances among �rms within the clusters increase. The model�s structure,
however, contains a much more powerful implication regarding spillover lengths and the complete
distribution of bilateral distances within clusters. We draw out this implication in Section 2.3.4.

2.3.3 Ordering and Characterizing Agglomerative Forces

The theory suggests that longer maximal spillover radii are associated with fewer, larger, and
less-dense clusters. It is feasible to use these observed traits in di¤erent industries to rank-
order the radii associated with di¤erent spillovers. In empirical analyses below, for example,
we provide suggestive evidence for the model by plotting an estimate of the maximal radii for
di¤erent technologies against a measure of technology cluster density. This section introduces
terminology and conditions required to jointly test these predictions using the continuous density
estimation techniques employed in Section 5.
It is impossible to measure directly theG functions that determine the value of �rm clustering.

However, observed spatial location patterns allow us to partially model the behavior of the
unobserved functions G in a continuous manner.

Proposition 3. Holding � �xed, and assuming that the G is di¤erentiable, an increase in jG0j
leads to a (weak) increase in the number of �rms clustered at small distances.

Proof: Immediate from text.

The decay of agglomerative forces across space correlates with observed distances between
clustered �rms. Thus, we may understand the speed at which the bene�ts of localization decay by
measuring the degree of localization at di¤erent distances. For an extreme example, if localization
of �rms is constant across space, then we must have jG0j = 0. If localization gradients are very
sharp at short distances, then Proposition 3 implies that the underlying G function sharply
attenuates. Note that intercept value G(0) is not held �xed in Proposition 3. An implication of
our framework is that, holding � �xed, G(0) impacts the gradient jG0j, but does not a¤ect the
overall level of agglomeration.
Proposition 3 allows us to use the Duranton and Overman (2005) density estimations in

Section 5 to characterize distributions continuously. Adding this more continuous structure to
our model, we can compare the full distributions of industries to assess how longer maximal
radii a¤ect the shapes of clusters. The predictions that clusters become larger and less dense
become jointly visible. Moreover, we can observe this e¤ect�s in�uence using regular step sizes
in distance.
Let S denote the set of sites occupied by �rms in equilibrium, with many industries present

in the economy. The null hypothesis is that neither localization nor dispersion occurs when
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the maximal radius is �, i.e. gj = 0� �rms locate randomly� when the maximal radius is �.
We empirically proxy the set of potential sites Z with the observed set of actual sites S for
all businesses. With this assumption, density measures can quantify localization by comparing
observed localization levels to counterfactuals representing the underlying distribution of eco-
nomic activity typical for a bilateral distance. The null hypothesis is rejected if the localized
density of �rms is a substantial departure from counterfactuals having (the same number of)
�rms occupying sites randomly sampled from S.7

2.3.4 Bilateral Distance Gradients in Agglomeration Clusters

There is an additional bene�t to connecting our model to these continuous structures. We
earlier noted that our empirical implication of smaller, denser clusters for a shorter maximal
radius is equivalent to saying that the mean bilateral density for clusters declines. The model,
however, has a stronger implication for how spillover length in�uences the distribution of bilateral
distances within clusters.

Proposition 4. There is some �� > d so that whenever � and �0 are such that d < � < �0 < ��,
then the mean intra-cluster �rm distance is (weakly) smaller when the maximal radius is � than
when it is �0.

Proof: See Appendix.

This result describes a key comparative static across spillover lengths. When comparing
two industries, we earlier established that the industry with the shorter maximal radius should
exhibit denser clusters such that very close bilateral distances are common. This proposition
further identi�es that this greater representation should be at its highest at the shortest bilateral
distances possible (i.e., among locations very near to each other). This higher frequency should
then (weakly) decline as one considers bilateral distances further from the shortest possible
connections.8

To provide intuition, �rst consider the impact of the marginal entrant on the bilateral dis-
tances in Figure 2c. As site X becomes part of the cluster, the set of bilateral distances grows
to incorporate the bilateral distance from site X to every other populated site in the cluster into
the spatial description. Some of the added bilateral distances are shorter than those that already
existed in the cluster, with the distance between sites X and B, for example, being less than the
distance between sites A and D. Yet, all of the additional bilateral distances are longer than the
closest connections possible (e.g., those surrounding site C). Thus, as the cluster expands and
becomes less dense, the relative impact on densities is most at the shortest possible connections
and proceeds (weakly) outwards for some distance.

7As discussed in the empirical appendix of our NBER working paper and in the paper of Barlet et al. (2012),
this approach is slightly strained for the largest industries but is a reasonable baseline for most industries.

8The conditions of Proposition 4 indicate that this e¤ect may disappear when the maximal radius is very
large. This is a natural consequence of approaching a limit where the maximal radius is so large as to no longer
in�uence cluster formation.
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An empirical example can also help. Assume that the premium for proximity is higher for
investment bankers than it is for accountants. We predict that clusters of investment bankers
should exhibit shorter mean bilateral distances among �rms than clusters of accountants do.
When comparing the spatial distributions of their clusters, Proposition 4 further indicates that
the greater density for investment banking should be at its highest at the spatial level of being
in the same building or on the same city block. When looking at �rms being �ve blocks away
from each other, the spatial density for investment bankers can still exceed that of accountants,
but the di¤erence should not be higher than it is when looking at being next door to each other.
This requirement micro-founds use of continuous density metrics like that of Duranton and

Overman (2005) in assessing whether di¤erences in agglomerative forces across industries yield
meaningful deviations in agglomeration behavior. To summarize, we should empirically see that
the greater density associated with a shorter maximal radius is at its maximum at the closest
possible distance on the spatial scale and (weakly) declines thereafter for some distance. Even-
tually, a distance is reached where the bilateral densities are the same even with the di¤erences
in maximal radius. Continuing with our earlier example, the o¢ ces of investment bankers and
accountants may be equally represented when looking at �rms that are ten city blocks apart.
After this point, a distance interval follows with relative under-representation for the cluster

associated with the shorter maximal radius. Finally, once spatial distances are reached that rep-
resent distances between agglomeration clusters for Marshallian industries, the relative densities
again converge. In our example, accounting �rms should be more represented than investment
bankers when looking at businesses 15-20 blocks from each other. This higher representation
of accountants should then decline as we consider progressively longer distances that start to
exceed the sizes of cities.
By contrast, our model generally does not make predictions for bilateral distances across

Marshallian industries beyond the spatial horizons of individual clusters. The behavior of longer
horizons depends upon the underlying distribution of cluster sites and it is thus ambiguous in our
present framework. The median bilateral distance for all �rms within an industry, for example,
can increase or decrease with a longer maximal radius depending upon the spatial distances
among the multiple, growing clusters and the newly activated sites surrounding them.

2.4 Discussion

We now discuss potential enrichments of the model. We �rst note that this model is a simpli�ed
version of the one contained in our NBER working paper. The present version assumes that
all �rms belong to the same industry. We also abstract away from the possibility of clustering
due to �xed, location-speci�c natural advantages (e.g., coal mines, universities). The extended
theoretical framework relaxes both of these simpli�cations, and shows that they do not materially
a¤ect the predictions for Marshallian clusters that we develop and test here. Our NBER working
paper also outlines some basic spatial dynamics for clusters.
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For simplicity, our base model only allows at most one �rm per site. Our results are unchanged
if we allow multiple �rms to locate at each site, and assume that collocated �rms �congest�
each other. Speci�cally, we may extend our model by assuming that each site j 2 Z has
a maximum capacity �j � 1, and that the set I(j) of �rms located at j must always have
jI(j)j � �j. Congestion is modeled by assuming that �rms i 2 I(j) 6= ; receive spillover bene�ts
of ĝj(i) � (1=jI(j)j) � gj(i): That is, spillovers to location j are divided equally among �rms
collocated at j. With these notations, our base model corresponds to the case that �j = 1 for
all sites j 2 Z. Even with congestion, the sequential location choice model is justi�ed: A �rm i

entering site j(i) has the potential to �crowd�its closest neighbors. But that �rm i can never
crowd out another �rm i0 2 I(j(i)). Indeed, if �rm i0 2 I(j(i)) were to exit j(i0) = j(i) and
relocate after the entrance of �rm i, then upon relocation, i0 would face the same location choice
problem previously faced by �rm i. The ex ante optimality of j(i) for i would then show that
j(i) is the ex post optimal choice for i0.
Second, the micro-interactions across sites that are built into the model are readily gen-

eralized. Our discussion and proofs focus on the simple case where spillover bene�ts do not
transfer through the cluster. Interaction costs are incurred on a bilateral basis, and �rms at
the periphery of a cluster only receive bene�ts from their immediate neighbors. More generally,
our predictions hold for any structure of bene�t transmission through the cluster so long as � is
constant, as the spillover radius at the cluster�s edge is what determines the marginal entrant�s
decision. We might also assume that with some probability p(d) < 1 �rms invest in contact with
�rms of distance d away, with p declining in d (i.e. p0(d) < 0). With our model�s structure, we
can handle this case by simply replacing the function G(d) with G(d) � p(d). Alternatively, if
there is always some (possibly small) �xed probability that a �rm chooses its location randomly,
as in the model of Ellison and Glaeser (1997), then our qualitative conclusions are maintained:
an upwards shift in p leads to a fewer, larger, and less dense clusters.
Finally, the model does not include property prices. One way to introduce property prices to

the model is to consider them as the consequence of wanting to be near a �xed feature (e.g., the
city center). The version of the model in our NBER working paper shows that this extension does
not materially a¤ect our predictions for Marshallian agglomeration so long as feature attraction
e¤ects are not too strong.

3 Patent Technology Clusters

3.1 Overview of Empirical Strategy

We illustrate the model�s predictions empirically in this section using variation across patent
clusters. We proceed in three steps that closely follow the model�s structure. We �rst use
patent citation data to illustrate how knowledge �ows within US technology clusters resemble
the model�s maximal radius construct. Patent citations provide a rare window into the distances

13



over which knowledge interactions and technology �ows are occurring within clusters. In a
generalization of the Silicon Valley case study in the paper�s introduction, we demonstrate how
these knowledge �ows are limited in distance even within a single cluster. We also show how
bilateral interactions form overlapping regions of interaction that cover a larger spatial area than
the individual interactions of �rms do.
After establishing these properties generally, we use the patent data to calculate di¤erences

in the lengths of maximal radii across technology groups. Some technology areas like semicon-
ductors have very localized citation patterns where knowledge �ows decay rapidly with distance.
Knowledge �ows in other technology areas operate e¤ectively over longer distances. After mea-
suring these di¤erences across technologies, we turn to our basic model predictions that a longer
radius of interaction generates larger and less-dense clusters (Propositions 1 and 2), showing
that each of these basic predictions holds when considered independently. We do not investigate
the number of clusters prediction as it is substantially more sensitive to empirical choices than
the properties of clusters are.
Our �nal exercises present a uni�ed empirical framework for analyzing how technology cluster

shapes and sizes di¤er across technologies in relation to their maximal radii of interaction. This
framework brings to bear the joint nature of our three main predictions and the more subtle
predictions of Propositions 3 and 4 with respect to rates of relative decay. These tests require
that we depict the whole distribution of distances within a cluster and analyze the di¤erences
in these shapes across technologies. We conduct these tests using a mixture of non-structured
plots and the continuous spatial density metrics developed by Duranton and Overman (2005).
These depictions provide greater insights into how observable cluster shapes provide information
about the underlying agglomeration force.9

3.2 Patent Citations and Knowledge Flows

We employ individual records of patents granted by the United States Patent and Trademark
O¢ ce (USPTO) from January 1975 to May 2009. Each patent record provides information
about the invention (e.g., technology classi�cation, �rm or institution) and the inventors sub-
mitting the application (e.g., name, address). Hall et al. (2001) provide extensive details about
these data, and Griliches (1990) surveys the use of patents as economic indicators of technology
advancement. The data are extensive, with over eight million inventors and four million granted
patents during this period.
A long literature exploits patent citations to measure knowledge di¤usion or spillovers. A

9This section�s investigation most closely relates to knowledge �ows as a rationale for agglomeration and
cluster formation. Section 4 of our NBER working paper provides additional empirical evidence for the model�s
structure when comparing the distances over which knowledge �ows occur to distances over which agglomeration
is driven by labor pooling or natural advantages. These supplementary exercises have the advantage of covering
many industries and sectors in the US economy, but the broader approach means that we no longer identify the
micro-interactions among �rms as we do in patent data. What we show is that the ordering of industries by these
various agglomeration rationales produces patterns in line with our model.
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number of studies examine the importance of local proximity for scienti�c exchanges, generally
�nding that spatial proximity is an important determinant of knowledge �ows.10 Additional work
links these local exchanges and economic clusters. Carlino et al. (2007) �nd that higher urban
employment density is correlated with greater patenting per capita within cities. Rosenthal
and Strange (2003) and Ellison et al. (2010) �nd that intellectual spillovers are strongest at the
very local levels of proximity. These empirical patterns closely link to ethnographic accounts of
economic activity within clusters (e.g., Saxenian 1994).11

Patent citations thus o¤er us a unique opportunity to quantify di¤erences in spillover radii
and cluster shapes. It is important, however, to recall several boundaries of this approach.
First, patent citations can reasonably proxy for technology exchanges, but there are many other
forms of knowledge spillovers that may behave di¤erently (e.g., Glaeser and Kahn 2001, Arzaghi
and Henderson 2008). Second, several studies �nd that patent citations re�ect Marshallian
spillovers among �rms other than pure knowledge exchange. Breschi and Lissoni (2009) closely
link citations to inventor mobility across neighboring �rms in their sample, and Porter (1990)
emphasizes how technologies embodied in products and machinery can be transferred directly
through customer-supplier exchanges. Our measurements below may encompass these e¤ects to
the extent that they operate.

3.3 Patent Data Construction

Inventors are required to cite the prior work on which their current patent builds. The total
count of citations made by USPTO domestic and foreign patents granted after 1975 is about 41
million citations. We �rst restrict this sample to citations where the citing and cited patents are
both applied for after 1975. This restriction is necessary for collecting inventor addresses. Our
second restriction is that both patents have inventors resident in the United States at the time of
the invention with identi�able cities or zip codes. About 15 million citations remain after these
restrictions. Our primary dataset further focuses on the 4.3 million citations that are made in a
geographical radius of 250 miles or shorter from the citing patent.
To identify these distances, we extract zip codes from addresses given for inventors. This

dataset combines both zip codes listed directly on patents and representative zip codes taken
from city addresses where zip codes are not listed. Where multiple inventors exist for a patent,
we take the most frequent zip code; ties are further broken using the order of inventors listed
on the patent. The spatial radius is de�ned using geographic centroids of zip codes and the
Haversine �at earth formula. We assign a distance of less than one mile to cases where the citing
and cited patents are in the same zip code.
10See Ja¤e et al. (1993, 2000), Thompson and Fox-Kean (2005), Thompson (2006), and Lychagin et al. (2010).

Murata et al. (2012) measure the continuous density of patent citations.
11Recent theoretical and empirical work further ties innovation breakthroughs to the clustering of activity

around the discovery location, suggestive of very short spillover ranges (e.g., Zucker et al. 1998, Duranton 2007,
Kerr 2010). These concepts are central to endogenous growth theory (e.g., Romer 1986), and Desmet and
Rossi-Hansberg (2010) presents a recent model of spatial endogenous growth.
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Our analyses below consider how distances between zip codes in�uence patent citation rates.
Several issues with using inventor zip codes should be noted. A small concern is that our
approach does not consider all of the zip codes associated with inventors for some patents, and
this may lead to mismeasurement in our distance measure over short spatial scales (speci�cally,
an upward bias on the minimum distance). As a check against this concern, we �nd very similar
results when instead employing only patents with single inventors. More substantively, listed
addresses can represent either home or work addresses. It would be nice to model both distances
between work locations and distances between inventor home locations. Both of these distances
can in�uence technology di¤usion, and it is not clear which is more important. The patent data
do not let us separate these two, however, and this measurement error biases us against �nding
shorter spillover e¤ects.
To ensure that our results are not overly dependent upon this approach� especially with

respect to the maximum radii that we calculate by technology� we also calculate a parallel set
of distances using a match of USPTO patents to �rms in the Census Bureau (Balasubramanian
and Sivadasan 2011, Akcigit and Kerr 2010). The Census Bureau data records identify the
zip codes of each �rm�s establishments in a city. We thus take the patents identi�ed to be in
Chicago for a particular �rm, for example, and assign them the zip codes of the �rm�s records.
Unreported analyses con�rm the spillover radii that we identify with our primary dataset.12

3.4 Knowledge Flows within Clusters

Our �rst analysis characterizes how knowledge �ows within technology clusters. To do so, we
examine patent citation patterns, speci�cally di¤erences in spatial scope within clusters for �rst-
generation citations compared to later generations of citations. This analysis is useful because
it provides evidence for the interconnections among �rms built into our model�s structure. It
also introduces the empirical framework that we use to calculate the maximal radius for each
technology.
To introduce and clarify terminology, consider a sequence of patents where patent A cites

patent B, patent B cites patent C, and patent C cites patent D. Using an arrow to indicate a
citation, our sequence is A!B!C!D. Note that in this example the citations are moving from
patent A to patent D, while knowledge moves in the opposite direction. That is, patent A is
building on patent B, and that is why patent A cites patent B.
We term a �rst-generation citation as a direct citation of prior work. In our example, these

12The primary advantage of the work using the Census Bureau�s data is to verify robustness with a second
data source. There are two disadvantages. First, we must disclose any results that we wish to report using the
Census Bureau�s data. Basing our primary estimations on inventor address data allows us much more �exibility
for generating graphs of continuous density estimates. Second, the Silicon Valley case study in the introduction
(where we manually identi�ed zip codes for work locations) was attractive in that single �rm locations typically
house both corporate headquarters and innovation facilities. This collocation is much less prevalent in the New
York City region, for example, where major �rms frequently have o¢ ces in Manhattan and in surrounding areas.
These multiple o¢ ces even within 250 mile circles limit the gain from using establishment-based identi�ers versus
simply using known inventor addresses.
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would be A!B, B!C, and C!D. When we discuss the distances over which �rst-generation
citations occur, we are measuring the bilateral distances between these three pairs. We next
de�ne a second-generation citation as the culmination of two steps in the citation chain: A!!C
and B!!D. When we discuss the distances over which second-generation citations occur, we are
measuring the bilateral distances between these end points, removing the intermediate step (i.e.,
A and C, B and D). Our simple example also has a single third-generation citation, A!!!D,
and we would measure this distance as the bilateral distance between patents A and D.
Figure 2d continues with Figure 2a�s example to describe our empirical strategy. We place

into this graph the A!B!C!D citation sequence just described. We contrived this example
to show a pattern where patent A would never have cited patent D directly according to our
model. The distance from A to D is too great for the indicated maximal radius, but the distance
can be bridged with the intermediate hops through patents B and C.
In reality, some measure of citations occur at distances that stretch across the full cluster

(just as academics cite others at distances that span the globe). In fact, even if knowledge travels
as in our model from patent D to patent A via sites B and C, we might still observe a patent A
citing directly patent D (just as academics cite papers directly that they learned about through
other papers). So, the model�s structure cannot be taken so strictly as to say that we should
never observe citations at distances of the length between A and D. Nevertheless, we can learn a
lot about relative distance of knowledge �ows by estimating the relative frequencies of citations
by distance. Our model suggests that we should observe a higher frequency of �rst-generation
citations when evaluating the shorter distances within clusters, as direct contact can occur at
close proximities. Across longer spans, we should observe both fewer �rst-generation citations
and more later-generation citations� indicative of knowledge transmission through a sequence
of overlapping interactions.13

We demonstrate this pattern through some simple estimations illustrated in Figures 3a and
3b. For Figure 3a, we prepare a dataset that contains bilateral pairs of all zip codes that patent
during the post-1975 period. To focus on local exchanges, we restrict these zip code pairs to
those that are within 150 miles of each other. For each zip code z1, we then identify the number
of citations that it makes to the other paired zip code z2. To be conservative in our approach,
we do not examine interactions within the same zip code, and we exclude citations that �rms
make internally among their inventions across zip codes.
With this dataset, we empirically model the count of citations that patents in zip code z1

make of patents in a second zip code z2 using the general form:

Citationsz1!z2 = exp
��dz1;z2 (Patentsz1 � Patentsz2);

where as before dz1;z2 denotes the distance from z1 to z2. This expression suggests that citations

13The one exception to this would be if knowledge �ows are fully transmissible through the cluster such that
any site connected to the cluster receives complete e¤ortless access to the knowledge housed at any site in the
cluster. The evidence below suggests that this potential exception is not empirically relevant in this setting.
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depend upon the interacted stock of patents in the two zip codes and upon the distance between
the two zip codes, dz1;z2. We would anticipate � < 0 if knowledge �ows are declining with dis-
tance, and  > 0 if a greater number of patents in the two zip codes provides more opportunities
for citations. Rearranging this expression gives

ln(Citationsz1!z2) = � � dz1;z2 +  � ln(Patentsz1 � Patentsz2);

which is the starting point for our �rst estimating equation. We make three further modi�cations.
First, beginning with the citations outcome variable, zero citations may be observed even where
patents exist (and this lack of exchange is important information). Our base estimation thus
takes ln(1+Citationsz1!z2) to be the citations outcome variable, and we model other variations
below to test the sensitivity of the ln(X) 7! ln(1 +X) transformation.
Second, there are multiple ways that one might de�ne distance to potentially allow for non-

linear e¤ects that our model emphasizes. Our �rst approach is to estimate distance�s role in a
non-parametric format using a series of indicator variables I(�) for distance bands between zip
codes. We de�ne a vector of distance bands as within one mile (but not the same zip code), (1,3]
miles, (3,5] miles, (5,10] miles, (10,15] miles, . . . , (95,100] miles, and (100,150] miles. We denote
the set of distance rings as DR, and we include separate indicator variables for each distance
band up to zip codes being (95,100] miles apart. Our �dr coe¢ cients will thus measure the
di¤erence in citation rates observed for a distance interval compared to the reference category
of being more than 100 miles apart in the technology cluster.
Finally, the ln(Patentsz1�Patentsz2) control is important, but it is also weak. Our initial tests

include all patents, and the patents in the two zip codes may be from very di¤erent �elds. Thus,
while raw citation counts display excessive localization, they may appear localized simply because
di¤erent types of patenting �rms are clustered together. To model this underlying landscape in
the most �exible way possible, we generate random citation pairs comparable to our observed
sample. For every patent that is actually cited, we randomly draw a counterfactual patent from
the pool of all patents with the same technology class and application year as the true citation.
This method has been used extensively in the literature, and we make two modi�cations that
re�ect our sample design. First, we exclude other patents of the citing �rm from the pool of
potential draws, just as we exclude within-�rm citations in the primary sample. Second, we
build the pool of potential patents using only patents within a 250-mile radius of the citing
patent. We do not exclude the original cited patent from the random draws, and thus we use the
original citation if there are no other patents with the same technology and application year in
the de�ned spatial radius. Relative to simple patent counts, this counterfactual distribution has
the advantage of very closely matching the underlying properties of local inventions and their
technological foundations; it is a much stronger control, for example, than using simple patent
counts.
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With these three adjustments, our core estimating equation for Figure 3a becomes,

ln(1 + Citationsz1!z2) = �+
X
dr2DR

�dr � I(dz1;z2 = dr) +  � ln(Patentsz1 � Patentsz2)

+ � � ln(1 + Expected Citationsz1!z2) + "z1!z2 : (1)

The solid line in Figure 3a plots the �dr coe¢ cients for �rst-generation citations like the A!B
example discussed in Figure 2d. First-generation citations are quite concentrated at short dis-
tances and decline almost monotonically with increasing distance. The citation premium loses
half of its strength by (15,20] miles, and zip codes that are 40 miles or more apart are very
similar to those in the reference category of being 100-150 miles apart. This substantial decay
echoes very closely the localized networking results of Arzaghi and Henderson (2008) and the
spillover estimations of Rosenthal and Strange (2003, 2008). It is important to recall that we
have excluded interactions within the same zip code, in order to be conservative. The within-
zip code citation premium is larger in magnitude than that observed for neighboring zip codes
within one mile of each other.
The dashed line in Figure 3a graphs the spatial patterns of second and third generations of

patent citations, equivalent to the A!!C and A!!!D example. To construct the second-
generation citation pro�le for zip code z1, we start with the patents that were cited directly by
�rms in zip code z1 within a 250-mile radius around zip code z1. We then collect the citations
that those patents made to other patents within 250 miles of their zip code. We then calculate
the distances from the focal zip code z1 to these citations, and we will focus again on the
second-generation citations that fall within 150 miles of zip code z1. We take this approach to
provide very �exible local distances. Note, for example, that the distance from zip code z1 to
a given second-generation citation can be closer than the �rst-generation citation that links it.
We repeat the same process for third-generation citations. The speci�cation (1) is again used to
compare rates in local distances to the rates that exist over 100-150 miles.
The results are intuitive and agree with the developed model. At very small distances,

later-generation citations are substantially less frequent than �rst-generation citations. This
gap quickly closes, and from distances of 10-25 miles, the relative frequencies are very similar.
After 25 miles or so, there follows a distance interval where later-generation citations have a
greater relative frequency than �rst-generation citations. These relative di¤erences slowly decay
thereafter, and at longer distances, the spatial overlaps become very similar across generations.
Figure 3b plots comparable evidence from a second approach. Rather than utilize bilateral

zip code pairs, we sum the activity of zip codes that falls into the distance rings utilized above.
This approach renders our analysis less sensitive to vagaries of zip code mappings and the issues
that one encounters with zero citations; the corresponding disadvantage is that we sacri�ce some
of the granularity that the bilateral estimations allow. The consolidated empirical framework
also allows us to include in the estimations a vector of �xed e¤ects �z1 for citing zip codes. These

19



�xed e¤ects remove persistent di¤erences that exist across zip codes in citation counts such that
we are exploiting only variation in how much zip code z1 cites other zip codes in its technology
cluster more or less than typical for zip code z1. The second estimating equation takes the form

ln(1 + CitationsRingz1!dr) =
X
dr2DR

�dr � I(dz1;z2 = dr) +  � ln(PatentsRingdr )

+ � � ln(1 + Expected CitationsRingz1!dr) + �z1 + "z1!dr: (2)

These regressions measure the �dr coe¢ cients relative to the activity observed in excluded dis-
tance ring of 100-150 miles apart. The solid and dashed lines in Figure 3b again plot the �rst-
and later-generation citations, respectively. At very short distances, �rst-generation citations
show greater relative frequency compared to later-generation citations. The di¤erences reverse
at moderate distance ranges.
Appendix Tables 1, 2a, and 2b provide complete details on these estimations and descriptive

statistics. Appendix Tables 2a and 2b report very similar results to Figures 3a and 3b, respec-
tively, when zero-citation cells are excluded, when we drop the expected citations controls, and
when we include own-zip code citations.
These di¤erences across citation generations suggest that knowledge �ows are not fully trans-

missible through a cluster, but instead follow a pattern indicated by the Silicon Valley example
and our model�s structure. In Figure 2d, the chain of interconnected hops A!B!C!D aids
site A�s access to knowledge from sites around sites C and D. Moreover, the extra strength for
�rst-generation citations over very short distances o¤ers an approach to identifying maximal
radii of interactions� we investigate this next. While it is important to note that other models
may be able to generate these patterns, this framework does provide suggestive evidence on how
knowledge movements through clusters conform to our model�s structure.

4 Maximal Radii and Spatial Cluster Patterns

Our theory connects the maximal radius of �rm interactions with cluster structure. We illustrate
these predictions by looking at di¤erences across 36 technologies using the sub-category level
of the USPTO system. Hall et al. (2001) describe these technology groups, and examples
include Semiconductors, Optics, and Resins. Similar to the analysis conducted in Figures 3a and
3b using all patents, we exploit patent citations separately within these individual technology
�elds so as to measure their radii of interaction. We then examine whether patterns across
technologies�cluster shapes and sizes and our measured radii conform to our model�s predictions.
This section analyzes predictions individually, and the next section models the predictions jointly
using continuous density measurement techniques.
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4.1 US-Based Maximal Radii

We proxy the maximal radius of interaction for each technology through the citation localization
patterns evident among patents within that technology. One technology, for example, may show
that most of the citations that exist within local areas occur across �rms with a bilateral distance
of ten miles or less. On the other hand, a second technology�s local citations could occur more
evenly over distances 0-70 miles. In the context of Figures 3a and 3b, this second technology
would have a much �atter citation premium for short distances. While we cannot put an exact
distance on each technology�s maximal radius, we can use the di¤erences across technologies in
these observable citation patterns to proxy relative di¤erences in their maximal radii.
Our sample preparation for these estimations is similar to that used for the above graphs.

The sample is again restricted to zip codes that are observed to patent in a technology. We
again consider citations that are outside of the same zip code to be conservative, excluding self-
citations for �rms. We also exclude cases where we believe that an inventor has moved and is
self-citing his or her prior work. There are several ways that one can attempt to measure these
spillover radii from the data, and we consider three di¤erent formats below. These approaches
are all simpler than the �exible estimations undertaken in (1) and (2), but similar in spirit. These
simpler formats are necessary given the substantial reduction in data points when estimating
citation patterns on a technology-by-technology basis (especially when extended to the United
Kingdom as noted below). Table 1 lists by technology the radii measured.
Our �rst technique considers each technology j in isolation, measuring its citation decay with

distance in a log-linear form,

ln(1 + Citationsj;z1!z2) = �j ln(dz1;z2) + j � ln(Patentsj;z2) + �j;z1 + "j;z1!z2 for all j: (3)

Thus, we estimate a single �j parameter for how the rate of citations declines with distance. By
estimating only one parameter for distance�s role, we greatly increase our empirical power for
these technology-level estimations. As we are only looking at patents and patent citations within
a single technology, we no longer calculate the random citation counterfactual as the patents
themselves capture the underlying technology landscape. These estimations are weighted by
an interaction of patent counts in the two zip codes. With this technique, Semiconductor and
Electrical Devices show the greatest citation localization (most negative �), while Heating and
Apparel & Textiles show the weakest role for distance (� in the neighborhood of 0).
Our second technique makes several changes to (3) to ensure robustness of technique. We

estimate

ln(1 + Citationsj;z1!z2) =
X
j

�j;0�10 � I(dz1;z2 � 10) +
X
j

�j;10�30 � I(10 < dz1;z2 � 30) (4)

+ � ln(Patentsj;z1 � Patentsj;z2) + �j + "j;z1!z2 :

The core di¤erences between this approach and (3) are: 1) we estimate all of the citation declines
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jointly so that  is restricted to be the same across technologies, 2) we return to our indicator
variable approach for estimating distances role in a more �exible manner, and 3) we include a
vector of �xed e¤ects for technologies instead of zip codes. We do not have the data to estimate
distance rings as �nely grained as those considered in the preceding exercises, so we only include
indicator variables for bilateral distances of (0,10] miles and (10,30] miles. Thus, the reference
group is bilateral zip code pairs of distances between 30-150 miles. Our second measure of
technology spillover horizons is the observed premium �j;0�10 over the �rst ten miles compared
to the reference group. With this technique, Information Storage and Semiconductors show
the greatest citation localization (most positive �), while Furniture and Receptacles show the
weakest role for distance (� in the neighborhood of zero). This measure has a 0.7 correlation
with that calculated through the (3) measure.
Finally, our third approach is completely non-parametric and relies on the relative prevalence

of �rst- versus later-generation citations by distance for technologies (using up to six generations).
All technologies start with �rst-generation citations having the highest relative prevalence, and
all technologies eventually at some distance have later-generation citations more prevalent. For
each technology, we identify the distance at which this crossing point occurs in two-mile incre-
ments. The series can be jumpy, especially for smaller technologies, so we make the speci�c
requirement that one of two conditions be met: 1) the relative frequency of later-generation
citations exceeds �rst-generation citations by 2% or more, or 2) that the relative frequency of
later-generation citations exceeds �rst-generation citations for three consecutive distances. Many
technologies show crossing points at 10 miles or less, while Receptacles and Pipes & Joints show
the longest crossings at more than 20 miles. Overall, this measure is less correlated with the
�rst two metrics at 0.2-0.3.

4.2 UK-Based Maximal Radii

We �nd evidence of a strong correlation between lengths of micro-interactions among �rms
(within technologies) and their associated cluster shapes and sizes. It is natural to worry in this
setting about reverse causality. Existing cluster shapes and economic geography likely in�uence
citation behavior. Moreover, technology clusters may have their spatial locations for unmodeled
reasons (e.g., historical accidents, �xed university locations). The length of patent citations
could then be determined by the geographical features of these locations.
To address this, we calculate citation premia similar to our �rst two metrics using patent

data from the United Kingdom. Ellison et al. (2010) introduce this technique and discuss its
strengths and limitations. The central idea behind this identi�cation strategy can be illustrated
with the semiconductors technology. Many semiconductor �rms are located in Silicon Valley, and
as the map in Figure 1 illustrates, Silicon Valley is circled by water, mountains, and protected
land. It could be that the cluster density and short citation ranges that we observed are due
to this industry having developed in a location with natural features that pushed it towards

22



density and tight connections. Perhaps if the semiconductors industry had instead grown up
in Houston, the industry would not display citation localization. If so, the data would describe
features like our model�s predictions but the connection would be spurious.
We can provide a safeguard against these concerns by measuring citation premia in the United

Kingdom, which are not in�uenced by the local terrain of the United States or similar factors.
This test does not solve every potential endogeneity concern, but it certain provides traction
against some of the most worrisome endogeneity. To implement this strategy, we geocode all
city names and postal codes associated with UK inventors. To provide more accurate city
assignments, we also manually search for addresses of �rms in the United Kingdom with more
than �fty USPTO patents. Calculating bilateral distances among pairwise city combinations,
we then estimate a second set of technology-level citation regressions that parallels our US
estimations.
The UK calculations face several important limitations relative to the US calculations. First,

and most importantly, there are signi�cantly fewer data points to estimate these citation premia
(the UK sample is less than a tenth of the US sample size). Second, the geocoding has greater
measurement error, perhaps most concentrated around London, and is coarser than in the United
States. As a consequence, we do not attempt to exclude same-region citations as we do for the
United States data. We also do not attempt to implement our third approach of measuring
the crossing point of citation generations, as the data are too sparse with respect to later-
generations citations. While these limitations restrict our analysis somewhat, the UK results in
this section and the next provide important con�rmation of our model�s predictions in a manner
that addresses some reverse causality concerns.
Table 1 lists the UK metrics. The correlation between the US and UK metrics using our

�rst speci�cation (3) is 0.4. The correlation between the US and UK metrics using our second
speci�cation (4) is 0.2. The two UK metrics have a 0.5 correlation among themselves.

4.3 Analyses of Single Predictions

Figure 4a provides a cross-sectional plot of cluster density and our �rst proxy for maximal
radius by technology that uses log-linear decay rates. Density is measured by the share of
bilateral distances among patents for a technology over 0-50 miles divided by the share of 0-150
miles. Shares range from 30% to over 80%, with a very high share indicating that patents in
the technology are very densely packed in one cluster and then mostly absent until the next
cluster. There is a visible association between longer spillover horizons (weaker decay rates
that approach zero) and less patent density. On the other hand, technologies that display very
rapid decay rates and short technology spillover horizons are very tightly clustered. Recall that
citation decay rates are calculated controlling for the underlying spatial patent distribution, so
this relationship is not mechanical. The slope of the trend line is -1.336 (0.226). Very clearly,
some of the industries in information technology show exceptional densities. The slope of the
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trend line is -0.612 (0.082) when capping the density ratio at 50%.
Figure 4b provides a cross-sectional plot of US cluster density against UK citation decay

rates. The vertical axis is the same as Figure 4a, but we substitute the UK citation decay rates
for the horizontal axis�s measure of technology spillover ranges. The UK has an outlier, raw
decay rate of -0.507 (Earth Working & Wells); we cap this rate at the second-highest decay rate.
There are some material adjustments among some information technology industries in Figure
4b compared to Figure 4a, with most noticeably semiconductors�decay rate not being as steep
as we measured in the US. Nevertheless, a close connection exists between the decay rates for
technologies in the UK and associated cluster density in the United States. The slope of the
trend line is -0.979 (0.293); it is even sharper at -0.466 (0.115) when capping the US density ratio
at 50%. The slope of the trend line is -0.745 (0.158) without the cap for Earth Working & Wells.
These patterns provide con�dence that these relationships are not being solely determined by
unmodeled factors.
Table 2 continues these analyses of single predictions regarding the size and shape of clusters.

Each entry in the table is from a separate regression where the outcome variable is indicated in the
column header, and the �ve panel headers indicate the metric used to model the maximal radius
of interaction. Panels A and D consider the log-linear citation decay rates estimated through
technique (3) measured in the US and UK, respectively. Panels B and E similarly consider the
US�and UK�s citation premium observed over 10 miles from estimation (4). Finally, Panel C
models spillover lengths through the crossing points observed for technologies between �rst- and
later-generation citation frequencies.
To make our estimates easily comparable to each other, we transform variables to have unit

standard deviation. We also multiply the raw �j;0�10 coe¢ cient for Panels B and E by �1 so that
the predicted signs for Table 2�s regressions are aligned in the same direction. These regressions
exploit variation across the 36 technologies, and we control for the size of the technology using
its patent count during the 1975-2009 period. Regressions are unweighted and report robust
standard errors. We �nd very similar patterns when weighting technologies by size.
The �rst three columns examine the size of clusters, where we have the prediction that a

longer maximal spillover radius produces a larger cluster. We take metropolitan statistical areas
(MSAs) as the unit of observation, measuring the patenting that occurs within the zip codes of
each MSA. In the next section we consider more �exible techniques that do not depend upon
MSA de�nitions, as technology clusters may extend past MSA boundaries or across MSAs. This
simple starting point is attractive, however, as it does not depend upon the structure of the
continuous density techniques.
We identify the leading or dominant zip code per MSA in terms of patent counts by technol-

ogy. Columns 1 and 2 describe the mean and median distance, respectively, from the dominant
zip code to other patents in the MSA by technology. These distances are calculated as the
weighted averages of the distances from the dominant zip code using zip code centroids. There
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is a positive relationship in Columns 1 and 2, such that a one standard-deviation increase in
the estimated maximal radius of a technology is associated with a 0.24-0.58 standard-deviation
increase in these mean and median distances when using US-based radii in Panels A-C. The
estimated elasticity is 0.11-0.43 when using UK-based radii in Panels D and E. Overall, with
the exception of weaker performance in Panel E, these results highlight that a greater spillover
range for a technology is associated with longer mean and median distances within MSAs for
the technology�s patents.
Column C evaluates an alternative metric where we calculate the normalized Her�ndahl index

of patents over the zip codes in a given MSA by technology. A second way that we might observe
a greater size of technology clusters within a given MSA is if the patents for the technology are
spread out over more zip codes (a weaker Her�ndahl index). This prediction connects with our
radii as measured in Panels A and B, with very strong elasticities of about -0.63 to -0.73, and
with the UK log-linear decay function in Panel D, with a strong elasticity of -0.36. On the other
hand, the support in Panels C and E is weak. The coe¢ cient elasticity retains the predicted
sign, but the results are not statistically signi�cant.
Columns 4-6 shift the focus towards the prediction that clusters with longer spillover radii will

be less dense. Column 4 continues with the density metric examined in Figures 4a and 4b, where
we measure the fraction of bilateral distances between patents that are 150 miles or less apart that
are in fact 50 miles or less apart (i.e., count of patents with bilateral distances of 50 miles or less
/ count of patents with bilateral distances of 150 miles or less). This prediction �nds support
with all of our metrics. After controlling for the size of technology, the estimated elasticity
using US-based radii is 0.25-0.85; the UK-based elasticities are 0.30-0.48. These elasticities are
precisely measured. Column 5 shows comparable results when capping density at 50%, and
Column 6 shows similar patterns when we instead consider the density among patents that are
50 miles or less apart by looking at the fraction of these patents that are 25 miles or less apart.

5 Continuous Density Estimations

Overall, these regressions in Table 2 suggest that a longer spillover radius for a technology is
associated with larger and less-dense clusters. To some degree, of course, the di¤erent outcome
measures that we model in Table 2 are variations on a similar theme. Our six outcomes are also
ad hoc in their design, in that we do not have any particular reason to examine, for example, the
density over 50 miles compared to the density over 43 or 72 miles. This section provides a joint
test of our model�s predictions in a more rigorous manner using continuous density estimations.
We �rst introduce the Duranton and Overman (2005) methodology that we utilize, and then we
show how the shapes of local technology clusters relate to technology spillover horizons.
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5.1 Duranton and Overman (2005)

Our empirical work in large part uses a slight variant of the Duranton and Overman (2005,
hereafter DO) metric or its underlying smoothed kernel density. This discussion summarizes the
DO methodology to show the connection to our theory. The empirical appendix in our NBER
working paper further describes the DO metric and the empirical modi�cations required for our
speci�c datasets.
The DOmetric considers bilateral distances among establishments in an industry. The central

calculation is the spatial density of an industry A through a continuous function:

K̂A(d) =
1

hNA(NA � 1)

NA�1X
i=1

NAX
i0=i+1

f

�
d� dj(i);j(i0)

h

�
: (5)

Here, as in our basic model set-up, dj(i);j(i0) is the Euclidean distance between the spatial lo-
cations of establishments j(i) and j(i0) within industry A. The double summation considers
every pairwise bilateral distance within the industry analyzed (i.e., NA(NA � 1)=2 distances).
Establishments receive equal weight, and the function f is a Gaussian kernel density function
with bandwidth h that smooths the series.
The resulting density function provides a distribution of bilateral distances for establishments

within an industry. Across all potential distances� ranging from �rms being next door to each
other to being across the country from each other� this distribution sums to 1. Smoothed density
functions are calculated separately for each technology or industry analyzed. Industries where
establishments tend to pack together tightly in cities, for example, are measured to have higher
densities K̂A(d) at short distance ranges.
While the density function is of direct interest, it is also important to compare the observed

distributions of bilateral distances to general activity in the underlying economy. This compari-
son provides a basis for saying whether an industry�s spatial concentration at a given distance is
abnormal or not. Because the density functions for small industries with fewer plants are natu-
rally more lumpy, these comparisons are speci�c to industry size. Operationally, comparisons are
calculated through 1000 random draws of hypothetical industries of equivalent size to the focal
industry A and repeating the density estimation. This procedure, which is further discussed in
the working paper�s empirical appendix, provides 5%/95% con�dence bands for each industry
and distance that we designate as KLCI�U

A (d) and KLCI�L
A (d).

Industry localization A and dispersion  A at distance d are de�ned using the DO formulae:

A(d) � max
h
K̂A(d)�KLCI�U

A (d); 0
i

(6)

 A(d) � max
h
KLCI�L
A (d)� K̂A(d); 0

i
if A(d) = 0

and 0 otherwise.

Positive localization is observed when the kernel density exceeds the upper con�dence band;
similarly, positive dispersion occurs when the kernel density is below the lower con�dence band.
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In between, an industry is said to be neither localized nor dispersed, and both metrics have a
zero value. To allow for consistent and simple graphical presentation, we present a combined
measure of localization and dispersion:

CA(d) � A(d)�  A(d): (7)

An industry is neither localized nor dispersed at a given distance if its density is within the
5%/95% con�dence bands. In such cases, CA(d) has a value of zero. Excess density at distance
d has a positive value, while abnormally low density carries a negative value. Our estimations
analyze these local departures in a systematic manner across industries.

5.2 Descriptive Statistics

For each technology, we estimate the continuous DO spatial density metric described above using
patent data from 1990-1999.14 Distances are calculated using zip code centroids. Figures 5a and
5b provide descriptive evidence on patent cluster shapes. We group our 36 technologies into three
broad buckets based upon the categories of the USPTO system following Hall et al. (2001):
Chemicals, Pharmaceuticals, and Medical (categories 1 and 3), Computers, Communications,
Electrical, and Electronics (2 and 4), and Mechanical and Miscellaneous (5 and 6).
Figure 5a simply provides the average kernel density (5) by distance for the technologies

that are contained within each grouping. The technologies within the Computers/Electronics
grouping show high spatial concentration over the �rst 30 miles, but then exhibit very low density
at moderate to long distances. The Chemicals/Medical grouping has lower average density levels
at short ranges, but then exhibits the highest average spatial densities over medium distances.
By contrast, the Mechanical/Miscellaneous grouping does not exhibit very strong patterns.
Figure 5b uses the localization metric (6), plotting the fraction of technologies within each

group that are localized. Every technology within the Computers/Electronics grouping shows
abnormally high spatial concentration over the �rst 30 miles. After 35 miles, however, local-
ization within this group decays rapidly and is mostly gone by 70 miles. On the other hand,
the Chemicals/Medical grouping shows abnormally high spatial concentration over 30-60 miles,
with a much slower decay rate thereafter. Finally, there is little material variation by distance
in the number of technologies localized for the Mechanical/Miscellaneous grouping.
These patterns roughly conform with our predictions, as our measures of technology spillover

radii in Table 1 tend to be smaller for Computers/Electronics than for Chemicals/Medical or
Mechanical/Miscellaneous. Greater requirements for very close knowledge exchange are visibly
associated with shorter, denser spatial clusters across these broad groups. This description,

14Computational limitations, primarily around constructing the counterfactuals, require that we calculate these
densities using patents from 1990-1999. We calculate very similar densities for a few smaller technologies when
instead considering 1975-2009.
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however, does not take advantage of the heterogeneity within groups or the intensity of agglom-
eration, to which we turn next.15

5.3 Complete Density Plots

While transparent, Table 2�s analyses are incomplete in that they do not describe the full distri-
bution of �rm localization behavior. They also do not account for di¤erences in technology size,
which can have a mechanical e¤ect on density estimates. We now use the DO methodology to
describe these patterns more completely.
We begin with the kernel density K̂A(d) de�ned in (5) for a technology A. The process of

assigning localization (6) involves non-monotonic transformations of the data, and it is thus
useful to view the simpler density functions �rst. With some abuse of notation, we de�ne K̂A;d

as the sum of the kernel density over �ve-mile increments starting from zero to �ve miles and
extending to 245-250 miles. We again index distance rings with dr and denote the set of distance
rings as DR, although the distance rings are di¤erent from the citations analysis.
Figures 6a and 6b present coe¢ cients from empirical speci�cations of the form

K̂A;d =
X
dr2DR

�dr � I(d = dr) � SpilloverRadiusA + �d + "A;d: (8)

These estimations provide a continuous description of how technology cluster shapes vary with
technology horizons. SpilloverRadiusA is the technology spillover radius for industryA calculated
through through our �ve techniques and listed in Table 1. Greater values of SpilloverRadiusA
correspond to longer maximal radii in our model, and we thus anticipate �nding larger and
less-dense clusters for these technologies. We transform K̂A;d and SpilloverRadiusA to have unit
standard deviation to aid interpretation, and we evaluate �dr at each distance ring.
A vector of distance �xed e¤ects �d controls for typical agglomeration densities by distance.

They thus directly account for the overall spatial density of patenting so that our estimations
consider di¤erences across technologies. As the vector of distances fully contains the support of
distances, we do not include a main e¤ect for SpilloverRadiusA. Higher values of �dr indicate
that technologies with longer spillover radii show greater spatial density at that distance. The
cross of 51 distances and 36 technologies yields 1836 observations per estimation.
Figures 6a and 6b present these density estimations using the US and UK measures of

SpilloverRadiusA, respectively, estimated with the log-linear decay rates. Triangles report �dr
coe¢ cients. The dashed lines provide 90% con�dence bands with standard errors clustered by
technology.

15At �rst it may appear odd that a majority of technologies are deemed localized when the con�dence bands
are selected such that only 5% of the counterfactuals reach them. This is to be expected if agglomerative forces
exist, however, as the counterfactuals build upon all patent locations. The counterfactuals are not selected such
that only 5% of technologies will be deemed agglomerated. This levels e¤ect for localization, along with its overall
decline with distance, is predicted by our model if sites are distributed uniformly but agglomerative forces exist
in nearly all technologies.
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Technologies with greater SpilloverRadiusA (i.e. longer maximal radii) are substantially less
agglomerated at very short distance horizons. A standard deviation increase in SpilloverRadiusA
is associated with a 1.5 standard deviation decrease in the density of activity conducted at �ve
miles or closer using the US measure; the UK-based estimate is 0.9 standard deviations. By
60-75 miles, the abnormal spatial concentration is no longer statistically di¤erent from zero.
Looking further, technologies with longer SpilloverRadiusA are over-represented after 75 miles

or thereabouts. Using the US estimate of citation density, these clusters show an abnormal
density from 80 to 185 miles that is statistically di¤erent from zero at every �ve-mile increment.
The UK estimation shows a similar pattern, although its point estimates are statistically di¤erent
from zero for a shorter distance range. In both cases, the point estimates converge to zero as
distances approach 250 miles. At the edge of this spatial scale, di¤erences in maximal radius are
not systematically associated with di¤erent agglomeration intensities.
These patterns closely match our model and the predictions given in Section 2.3.4 regarding

maximal radii and cluster shapes. Note that the patterns of under-representation followed by
over-representation are not mechanical. Other attributes, for example, could predict higher
spatial concentration for a technology at all spatial distances to 250 miles.16

Figures 7a and 7b take the next step of calculating localized deviations from technology-
speci�c con�dence intervals using (7). The patterns are very similar to Figures 6a and 6b. The
lack of density at very short spatial horizons is robustly di¤erent from the random counterfactuals
and very similar to the kernel plots. The abnormally high spatial concentration at moderate
spatial horizons is weaker than in the raw kernel density plots, with the US and UK estimators
both exhibiting a narrower range where they are statistically di¤erent from zero.
Overall, these �gures jointly illustrate our central model predictions. A longer maximal

radius, or weaker spillover density, is very strongly associated with reduced agglomeration at
very short spatial horizons (i.e., the cluster is less dense). These same technologies tend to be
over-represented at moderate spatial horizons (i.e., the clusters are larger). The latter result is
very strong in the raw US data, and it is mostly con�rmed with the UK estimator. Moreover, in
all cases the initial decline in bilateral densities from the closest feasible values that is predicted
by Proposition 4 is robustly supported.

5.4 Robustness Checks and Extensions

Tables 3 and 4 provide robustness checks on these results. Panel A provides estimates using the
kernel densities of technologies, and Panel B provides estimates using patent localization. To
facilitate reporting, we estimate a single parameter per 25-mile distance interval, with spatial
densities at 225-250 miles serving as the reference group. Column 1 in Table 3 repeats Figures
6a and 7a under this approach.

16The kernel density functions (5) sum to one over the support of all bilateral distances in US, stretching from
next door to several thousand miles. This does not materially in�uence the cluster descriptions we develop here
over the �rst 250 miles.
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Column 2 shows very similar results if weighting technologies by their size, with somewhat
greater persistence evident for the abnormal densities observed at moderate distances. Column
3 shows slightly stronger patterns when excluding the �ve technology groups that are de�ned
as residuals (e.g., Miscellaneous Drugs), where consistent clustering concepts may not apply.
Finally, Column 4 reports bootstrapped standard errors, showing them to be smaller than the
clustered standard errors that we otherwise report.
Columns 5-8 show the results with our four maximal radius metrics. While the patterns and

levels can be di¤erent, we discern three key features from this work. First, all �ve approaches
exhibit the basic joint patterns predicted by the model of a longer technology spillover radius
being associated with larger and less-dense clusters. Second, the reduced-density prediction
is robustly con�rmed with results holding and precisely measured over the �rst 50 miles or
thereabouts. Finally, the longer prediction �nds more moderate support. It is evident in the
patterns of all �ve measures, but it is not statistically di¤erent from zero across any distance
range in Column 8. In addition, the exact distance intervals at which the increased density
is evident varies somewhat by measure. Thus, we �nd good con�rmation of the longer-cluster
prediction, but it is generally just directional in nature.
Similar results are found using three additional speci�cation variants. The �rst employs the

density function (5) and introduces the con�dence bands KLCI�U
A (d) and KLCI�L

A (d) as precision
controls. The second calculates a global index similar to DO�s main metric and then evaluates
the gradient of this concentration measure across distances. Finally, the DO con�dence bands
can be adjusted to a 1%/99% signi�cance level.
Table 4 next provides some sample splits that consider features not emphasized in our model

and baseline empirics. We seek to establish the robustness of our results by looking at variations
within each subsample to see if similar results hold. The �rst two columns split the sample by
the degree to which patents in the technology cite other patents in the same zip code. We have
excluded these own-zip code citations in our maximal radius calculations, and so this sample split
utilizes independent data. Our model�s structure does not emphasize the intensity of very local
interactions (i.e., the G(0) intercepts) but instead the maximum radii. This sample split tests
this feature. The empirical patterns that we emphasize are present in both samples, con�rming
robustness, with the interesting �nding that these patterns are more accentuated in industries
with very intense local interactions.
Second, our model and baseline empirics only consider technology �ows within the same

industry, while the development of new patents often draws from several technology areas.17 To
test the robustness to cross-fertilization of technologies, we split technologies by the share of

17The view stressing industrial concentration is most often associated with Marshall, Arrow, and Romer (MAR).
The MAR model emphasizes the bene�ts of concentrated industrial centers, particularly citing the gains in
increasing returns and learning-by-doing that occur within industries. The second view, often associated with
Jacobs (1970), argues that major innovations come when the ideas of one industry are brought into a new
industrial sector. This perspective stresses that a wealth of industrial diversity is needed to create the cross-
fertilization that leads to new ideas and entrepreneurial success. Duranton and Puga (2001) formalize theoretical
foundations for this model.
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their patents that go to other technology areas. The relationships that we emphasize in this
paper look quite similar in the two halves.
Third, our baseline estimations do not restrict patent citations to be within a speci�ed time

interval, but di¤usion occurs with time that makes knowledge widely available in a local area
and beyond. We anticipate our model�s predictions to be more important in industries where
access to very recent knowledge is critical. To test this feature, we calculate the share of citations
nationally by technology area that occur to patents within the prior �ve years. The patterns
are substantially stronger in the sample of technologies that rely on very recent knowledge, with
only the less dense part of the prediction holding in the lower half of the distribution.
Fourth, our model does not include input prices that can generate further sorting across

locations by �rms. We test this feature by calculating from the 1990 Census of Populations a
weighted average of expected scientists and engineering wages using the top 10 cities for each
technology in terms of patent counts. Science and engineering wages are re�ective of the wages
to be paid to inventors. The patterns are present in both parts of the distribution, with some
emphasis towards the technologies developed in areas with above median input costs.18

Finally, Tables 5 and 6 provide broader robustness checks on the technique of using continuous
density estimation. Rather than undertaking the DO transformations, we simply group observed
bilateral distances between patents in technologies that are within 250 miles of each other into a
set of distance bins. We then calculate for each technology the fraction of the bilateral distances
that fall within each bin. The top of Table 5 provides the mean and standard deviation of these
shares. The �rst four columns provide break-outs for the �rst 20 miles at �ve-mile intervals,
while Columns 5-12 consider 20-mile increments across the full range to 140 miles.
Table 5 conducts a set of point-by-point regressions on the shares of patents by technology

that fall within each distance bin. Similar to the structure of Table 2, the �ve panels of Table
5 provide a simple set of regressions with each of our techniques for measuring spillover radii.
Radius measures are normalized to have unit standard deviation, and we control for the number
of patents in the technology. Unlike Table 2, however, we leave the outcome variables in their
raw shares since these shares are easy to interpret.
The results in Table 5 show that our conclusions are not being driven by the construction

of continuous density metrics.19 With all �ve radius measures, we again see evidence that a
longer spillover radius is associated with larger and less-dense clusters. For example, Column 1
�nds that a one standard-deviation increase in the spillover radius lowers the share of patenting
within [0,5) miles by 1.7%-4.1% compared to a base of 4.4%. Similarly, Column 5 shows that
this same radius increase lowers the [0,20) share by 4%-12% compared to a base of 16.5%. On

18In addition to these four sample splits, we �nd very similar results to our baseline estimations when include
four single control variables for these dimensions.
19There are several key di¤erences of the point-by-point regressions compared to the DO estimations. These

raw shares are not smoothed, and they are not being measured relative to con�dence intervals. The shares are
also constrained to sum to 100% over the 250-mile range, which is not imposed upon the continuous density
estimates.
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the other hand, the later columns show an increase in shares at longer ranges. There are several
advantages of employing the DO technique, but these estimates show that our conclusions are
robust to variations on this approach.
On a related note, Table 6 reports similar point-by-point regressions where we consider each

patent assignee as a single observation. Unassigned patents, which represent about a quarter
of all patents, are also retained. Our baseline estimations consider bilateral distances between
patents, similar to the employment-weighted estimations of DO. Table 6 shows quite similar
patterns when instead considering bilateral distances among unweighted assignees and individual
inventors.

6 Conclusion

This paper introduces a new model of location choice and agglomeration behavior. From a simple
and general framework, we show that agglomeration clusters generally cover a substantially
larger area than the micro-interactions upon which they build. In turn, agglomerative forces
with longer micro-interactions are associated with fewer, larger, and less-dense clusters. The
theory thereby provides a basis for the use of continuous agglomeration metrics that build upon
bilateral distances among �rms. The theory also rationalizes the use of observable cluster shapes
and sizes to rank-order the lengths of underlying agglomerative forces. We �nd con�rmation of
our theoretical predictions using variation across patent technology clusters.
We hope that our theoretical framework proves an attractive model for incorporating ad-

ditional factors that in�uence �rm location and agglomeration behavior. Important extensions
include: modelling the dynamics of industry life-cycles, incorporating interactions across �rms
in di¤erent industries, and incorporating the development of new sites. We likewise believe our
setting is an attractive laboratory for structural modelling that would allow recovery of the
underlying lengths of micro-interactions. These parameters could in turn be useful for under-
standing spillover transmissions in networks and for studying spatial propagation of economic
shocks.
We have applied our framework to describing patent technology clusters, but we believe

that many more applications in industrial agglomeration are possible. For example, future work
could look to price the marginal sites of clusters or identify spillover lengths by examining the
location decisions of marginal entrants. Our framework highlights the important information
that is contained in those agents�indi¤erence conditions if properly identi�ed. As important,
we believe our framework describes interactions in many other contexts as well. For example,
studies �nd that knowledge �ows within �rms or universities are substantially shaped by the
physical layout of facilities (e.g., Liu 2010). We hope that future work similarly analyzes parallel
situations where costs of interaction generate maximal radii.
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Theoretical Appendix

Proof of Proposition 2
We assume a generic distribution of sites.
We order the �rms by entry period i = 1; : : : ; N , and let Zi be the set of sites occupied at

the stage in which �rm i chooses its location. Since sites are generically distributed and only
Marshallian forces a¤ect the location decision of �rm i, we see that i is indi¤erent between sites
if and only if B�(j(i � 1)) n Zi = ;. In that case, i chooses locations randomly. Otherwise, i
chooses the unique site j(i) 2 B�(j(i� 1)) n Zi which maximizes gj(i), and Zi+1 = Zi [ fj(i)g.
The preceding discussion implies that the set of locations occupied by �rms following all

�rms�entries is completely determined by an instantiation of the random cluster selection which
occurs whenever �rms are forced to choose sites randomly because of indi¤erence. We may
represent such a sequence of random draws by an ordering � � �1 � � ��B(�) of the B(�) disjoint
�-clusters B�(j�b). (Here, Z 3 j�b 2 B�(j�b) is a representative site in the �-cluster assigned
index b in the ordering �.) We denote the set of possible orderings of �-clusters by �.
The number of �-clusters actually occupied by �rms if the random entry sequence is drawn

as � 2 � is given by

#�(�) � min
(
b 2 N : N �

bX
b0=1

���B�(j�b0 )���
)
:

Denoting the probability of draw � 2 � by Prob(�),20 we compute that E�[#�(�)], the expected
level of agglomeration, is given by

E�[#�(�)] =
X
�2�

#�(�) � Prob(�):

We suppose that � increases to �0 > �. If B�(j) = B�0(j) for all j 2 Z, then clearly agglom-
eration behavior is unchanged. Thus, we may assume that

B�(j) 6= B�0(j) (9)

for at least one j 2 Z. Moreover, since the distribution of sites is generic, we may assume without
loss of generality that B(�0) = B(�) � 1, so that there is some j0 2 Z such that (9) holds for
exactly the sites j 2 B�0(j0). Iterating our arguments for that case (over successive expansions
of �) show the proposition in general.
Now, we let � and �0 denote the two �-clusters which are merged when the maximal radius

expands to �0, so that B�0(j�) = B�0(j�0) but B�(j�) 6= B�(j�0). Abusing notation slightly, for
� 3 � = �1 � � ��B(�), we let �(�) denote the index b such that �b = �. We de�ne �0(�)
analogously.
We may again associate the possible �rm location patterns to the orders of possible �-cluster

selection � 2 �, with the understanding that the �0-clusters are occupied in the order

B�0(j�1); : : : ;B�0(j��(�)); : : : ;B�0(j��0(�)�1);B�0(j��0(�)+1); : : : ;B�0(j�B(�))

until all N �rms have entered. The actual number of clusters occupied by �rms, denoted #�0(�),
will not in general be equal to #�(�). There are two cases to consider: �

0(�) � #�(�) and
�0(�) > #�(�). In each case, we have that #�0(�) � #�(�).
As the probability that cluster B�0(j��) is selected by a �rm choosing randomly among avail-

able sites Z n Zi is equal to the sum of the probability of choosing B�(j��) and that of choosing
20Here, we do not specify the actual distribution of draws, since it is not needed for the proposition.
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B�(j��0 ), direct computation shows that the level of agglomeration expected when the maximal
radius is �0 is equal to E�[#�0(�)]. Since we have shown that #�0(�) � #�(�) for all � 2 �, we
have

E�[#�0(�)] =
X
�2�

#�0(�) � Prob(�) �
X
�2�

#�(�) � Prob(�) = E�[#�(�)];

which proves the desired result.

Proof of Proposition 4
The result is trivial for the case in which � is such that jB�(j)j > 1 for only two j 2 Z (i.e. the
case in which only one cluster contains more than one site), as in that case expansion to �0 either
does not change the composition of clusters or increases mean bilateral distances between sites
in clusters.21 Thus, the existence of the desired �� is immediate.

21Note that for �� su¢ ciently small, if B�0(j) ) B�(j), then the mean bilateral distance between sites in B�0(j)
is larger than that between sites in B�(j).
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Fig. 1: Technology Sourcing from Silicon Valley 
Top patenting zip codes outside of core and their sourcing zones 

Notes: Figure characterizes technology flows for the San Francisco area.  The core of Silicon Valley is depicted with 
the shaded triangle.  The Silicon Valley core contains 76% of the patenting for the San Francisco region.  This map 
describes the technology sourcing for three of the four largest zip codes for patenting not included in the core itself.  
Technology sourcing zones are determined through patent citations.   

The stars indicate the focal zip codes, and the shape of each technology sourcing zone is determined by the three 
zip codes that firms in the focal zip code cite most in their work.  The orange zone (1) for Menlo Park extends 
deepest into the core.  The green zone (2) for Redwood City shifts up and encompasses Palo Alto but less of the 
core.  The black zone (3) for South San Francisco further shifts out and brushes the core. 

These technology zones are characterized by small, overlapping regions.  None of the technology sourcing zones 
transverse the whole core, and only the technology zone of the closest zip code (Menlo Park) reaches far enough 
into the core to include the area of the core where the greatest number of patents occur.  Transportation routes 
and geographic features influence the shapes and lengths of these sourcing zones. 

The empirical appendix contains additional maps that show these small, overlapping regions are also evident in the 
core itself and in other areas outside of the core. 
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Notes:  Image illustrates a cluster for an agglomeration force with a longer maximal radius.  The larger dashed 
circles show that a longer maximal radius would induce the marginal entrant into the cluster at site X over the other 
sites, resulting in (weakly) larger and less dense clusters.  An additional prediction is that there should be fewer 
clusters for a technology given a fixed number of firms.  

Fig. 2a: Marshallian Clusters 
Agglomeration due to interactions among firms 

Fig. 2b: Clusters with Longer Spillover Radius 
Longer radius results in larger and less dense clusters 

Notes:  Image illustrates a Marshallian cluster.  Entry is sequential, without foresight, and potential sites are fixed.  
Black dots are chosen sites, and circles represent maximal spillover radii.  Spillover radii are limited due to fixed 
costs of interaction.  Large area clustering is due to small, contained interaction effects that overlap each other.  
The next entrant is indifferent among available sites, including sites X, Y, and Z.   



A

C

X

D

Considering bilateral distance 
densities, raising the maximal 
radius does not impact on the 

density of short distances in the 
cluster but increases the density 

at moderate to long distances

B

A

B

C

D

An A->B->C->D example 
of patent citations in 

the cluster, where 
patents in location A 

cite patents in location 
B, those in B cite 

location C, and those in 
C cite location D

Notes:  Image provides an example of knowledge flows within a cluster discussed in the text.  Knowledge is flowing 
from site D to site C to site B to site A, and we thus observe patent citations in the reverse order.  This example is 
contrived so that site A will only interact with site D under the given maximal radius via interconnections provided 
by other sites.  

Fig. 2c: Bilateral Distances and Radius Length 
A longer radius raises density the most among longer  distances 

Fig. 2d: Patent Citation Example 
Illustration of knowledge flows in clusters by distance 

Notes:  Image illustrates bilateral distances within clusters.  The light grey lines show bilateral connections for the 
cluster formed under the shorter maximal radius in Figure 2a.  The large, red, dashed lines show the additional 
bilateral connections formed when the cluster grows due to the longer maximal radius of interaction in Figure 2b.  
The length of the bilateral connections from the induced entry at site X will be longer than the shortest existing 
bilateral connections. 



Notes:  See Figure 3a.  This figure plots coefficients from regressions of log patent citation counts that employ 
consolidated distance rings around citing zip codes rather than pairwise combinations of zip codes.  Explanatory 
variables are indicator variables for distance rings with effects measured relative to zip codes 100-150 miles 
(unreported bands for 75-100 miles resemble 70-75 miles).  Regressions control log patenting in the distance ring, 
log expected citations based upon random counterfactuals that have the same technologies and years as true 
citations, and citing zip code fixed effects.  Citations within the same zip code are excluded. 

Fig. 3a: Local Patent Technology Horizons  
Pairwise zip code citations compared to 100-150 miles apart 

Fig. 3b: Local Patent Technology Horizons  
Citations by consolidated rings compared to 100-150 miles apart 

Notes:  Figure plots coefficients from regressions of log patent citation counts between pairwise citing and cited zip 
codes within 150 miles of each other. Explanatory variables are indicator variables for distance bands with effects 
measured relative to zip codes 100-150 miles apart (unreported bands for 75-100 miles resemble 70-75 miles). 
Regressions control for an interaction of log patenting in the pairwise zip codes and log expected citations based 
upon random counterfactuals that have the same technologies and years as true citations.  Citations within the 
same zip code are excluded. 
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Notes:  See Figure 4a.  Estimates use technology spillover lengths in the UK to address potential reverse causality 
where US cluster shapes determine spillover lengths.  The outlier, raw decay rate of -0.507 for Earth Working & 
Wells is capped at the second-highest decay rate.  The slope of the trend line  is -0.979 (0.293). The slope of the 
trend line  is -0.745 (0.158) without the cap. 

Fig. 4a: Patent Cluster Density & Spillover Radius 
Cross-section of invention density and tech. spillover lengths 

Fig. 4b: Patent Cluster Density & Spillover Radius 
Using UK tech. spillover lengths to predict US density levels 

Notes:  Figure provides a cross-sectional plot of cluster density and technology spillover lengths.  Cluster density is 
measured through bilateral patent distances in each technology.  It is the share of patenting that occurs within 50 
miles relative to the share within 150 miles.  The horizontal axis measures by technology the log rate of citation 
decay by distance, controlling for underlying patenting and citing zip codes fixed effects.  Longer spillover horizons 
(i.e., weak decay rates) are associated with less dense clusters.  The slope of the trend line is -1.336 (0.226). 
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Notes:  See Figure 5a.  Localization is calculated through a comparison of the kernel density estimations for 
technologies with Monte Carlo confidence bands under the Duranton and Overman (2005) technique.  Technologies 
are considered localized at a distance if they exhibit abnormal density compared to 1000 random draws of US 
inventors of a similar size to the technology.  Local confidence bands are set at 5%/95% for this determination.  
Localization looks very similar with 1%/99% confidence bands. 

Fig. 5a: Patent Kernel Densities 
Mean density of sub-technologies in indicated group by distance 

Fig. 5b: Patent Localization Measures 
Share of sub-technologies in indicated group localized by distance 

Notes:  Figure plots the mean kernel density of technologies by each distance (x1000 for scale).  The sample 
includes 36 sub-categories of the USPTO system organized into three simple divisions.  Kernel density is calculated 
using pairwise distances among inventors in a technology. 
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Notes:  See Figure 6a.  Estimates use technology spillover lengths in the UK to address potential reverse causality 
where US cluster shapes determine spillover lengths.  Technology decay rates are measured as in Figure 4b by the 
log rate of citation decay by distance in the UK, controlling for underlying patenting and citing zip codes fixed 
effects.  

Fig. 6a: Patent Cluster Shape & Spillover Radius 
Kernel estimations of cluster shape and tech. spillover lengths 

Fig. 6b: Patent Cluster Shape & Spillover Radius 
Using UK tech. spillover lengths to predict US cluster shapes 

Notes:  Figure plots coefficients from regressions of kernel densities by distance for 36  technologies.  Technology 
decay rates are measured as in Figure 4a by the log rate of citation decay by distance, controlling for underlying 
patenting and citing zip codes fixed effects.  Regressions include fixed effects for each distance.  Dashed lines are 
90% confidence bands.  Technologies with longer spillover ranges (i.e., weaker decay functions) show lower density 
at short distances and increased activity over medium distances (i.e., larger and less dense clusters). 
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Notes:  See Figure 7a.  Estimates use technology spillover lengths in the UK to address potential reverse causality 
where US cluster shapes determine spillover lengths. 

Fig. 7a: Patent Localization & Spillover Radius 
Localization estimations and technology spillover lengths 

Fig. 7b: Patent Localization & Spillover Radius 
Using UK tech. spillover lengths to predict US localization 

Notes:  See Figure 6a.  The dependent variable is updated from the kernel density in Figure 6a to be the 
measurement of localization developed by Duranton and Overman (2005).  Technologies are considered localized at 
a distance if they exhibit abnormal density compared to 1000 random draws of US inventors of a similar size to the 
technology.  Local confidence bands are set at 5%/95% for this determination.  Technologies with longer spillover 
ranges again exhibit larger and less dense clusters with this technique. 



Technology

USPTO 

code

US parametric 

citation decays

US non-

parametric 

citation decays

US first- vs. 

later-gen. 

citations

UK parametric 

citation decays

UK non-param. 

citation decays

(1) (2) (3) (4) (5) (6) (7)

Category 1: Chemicals -0.090 0.544 8 -0.084 0.510

Agriculture, Food, Textiles 11 -0.035 0.373 13 -0.033 0.365

Coating 12 -0.081 0.771 5 -0.079 0.757

Gas 13 -0.031 0.303 1 -0.028 0.288

Organic Compounds 14 -0.034 0.291 7 -0.028 0.258

Resins 15 -0.171 0.784 19 -0.162 0.731

Miscellaneous Chemical 19 -0.185 0.742 5 -0.177 0.659

Category 2: Computers & Communications -0.183 1.944 4 -0.143 0.102

Communications 21 -0.188 1.127 5 -0.129 0.107

Computer Hardware & Software 22 -0.199 1.784 3 -0.186 0.132

Computer Peripherals 23 -0.194 1.420 3 -0.161 0.082

Information Storage 24 -0.152 3.447 3 -0.097 0.088

Category 3: Drugs and Medical -0.138 0.668 7 -0.191 0.140

Drugs 31 -0.114 0.387 15 -0.196 0.243

Surgery & Medical Instruments 32 -0.224 1.385 3 -0.239 0.121

Biotechnology 33 -0.133 0.470 3 -0.250 0.117

Miscellaneous Drug & Medical 39 -0.081 0.431 5 -0.080 0.079

Category 4: Electrical and Electronic -0.167 1.080 6 -0.097 0.120

Electrical Devices 41 -0.244 1.272 3 -0.048 0.032

Electrical Lighting 42 -0.097 0.731 3 -0.037 0.129

Measuring & Testing 43 -0.146 0.936 15 -0.134 0.113

Nuclear & X-rays 44 -0.136 0.876 5 -0.087 0.160

Power Systems 45 -0.129 0.798 3 -0.037 0.077

Semiconductor Devices 46 -0.304 2.262 3 -0.210 0.230

Miscellaneous Electrical 49 -0.111 0.688 9 -0.128 0.096

Category 5: Mechanical -0.133 0.567 6 -0.086 0.121

Materials Processing & Handling 51 -0.091 0.372 3 -0.091 0.072

Metal Working 52 -0.064 0.212 5 -0.047 0.053

Motors, Engines & Parts 53 -0.176 0.590 7 -0.098 0.158

Optics 54 -0.224 1.455 5 -0.112 0.168

Transportation 55 -0.188 0.570 11 -0.092 0.145

Miscellaneous Mechanical 59 -0.058 0.204 3 -0.073 0.129

Category 6: Other -0.059 0.325 9 -0.138 0.129

Agriculture, Husbandry, Food 61 -0.044 0.198 1 -0.129 0.232

Amusement Devices 62 -0.068 0.502 3 -0.262 0.116

Apparel & Textile 63 -0.027 0.148 7 -0.074 0.081

Earth Working & Wells 64 -0.179 1.001 1 -0.262 0.252

Furniture, House Fixtures 65 -0.035 0.061 9 -0.167 0.083

Heating 66 -0.016 0.125 1 -0.020 0.031

Pipes & Joints 67 -0.053 0.515 21 -0.084 0.193

Receptacles 68 -0.036 0.139 31 -0.137 0.125

Miscellaneous Others 69 -0.073 0.235 5 -0.109 0.052

Raw value from technique (more negative values in columns 3 and 6 are steeper 

decays, more positive values in columns 4 and 7 are steeper decays):

Table 1: Estimations of maximal spillover radius by technology



Mean distance Median distance Herfindahl Share of patents Column 4's Share of patents

to other patents to other patents index of patent that occur within measure with that occur within

in MSA from in MSA from distribution over 150 miles of each the maximum 50 miles of each

the dominant zip the dominant zip zip codes within other that occur density capped other that occur

code per tech. code per tech. MSA for tech. within 50 miles at 50% within 25 miles

Prediction: Prediction: Prediction: Prediction: Prediction: Prediction:

Longer distance Longer distance Weaker HHI Less dense Less dense Less dense

(1) (2) (3) (4) (5) (6)

Maximal radius of 0.416 0.392 -0.631 -0.776 -0.758 -0.818

interaction (0.151) (0.172) (0.176) (0.134) (0.109) (0.098)

Maximal radius of 0.579 0.566 -0.721 -0.851 -0.689 -0.858

interaction (0.107) (0.111) (0.148) (0.154) (0.185) (0.171)

Maximal radius of 0.241 0.257 -0.151 -0.253 -0.177 -0.238

interaction (0.093) (0.104) (0.132) (0.113) (0.112) (0.099)

Maximal radius of 0.427 0.363 -0.361 -0.484 -0.505 -0.390

interaction (0.103) (0.121) (0.179) (0.160) (0.137) (0.162)

Maximal radius of 0.163 0.110 -0.229 -0.301 -0.229 -0.254

interaction (0.148) (0.158) (0.181) (0.193) (0.173) (0.187)

Density of clusters

Variables are in unit standard deviations, regressions control for patent count by technology

Table 2: Basic cluster traits and maximal radius estimations

Size of clusters

A. Measuring radius through log-linear patent citation decay functions

B. Measuring radius through non-parametric patent citation decay functions

C. Measuring radius through comparing first- vs. later-generation citation distributions

E. Measuring radius through non-parametric patent citation decay functions in United Kingdom

Notes:  Table quantifies the relationship between traits of technology clusters and the maximal radius of interactions for technologies.  Dependent variables are 

indicated by column headers, and panel titles indicate the technique employed to measure the maximal radius.  A longer maximal radius is predicted to have 

larger and less dense clusters.  Cluster traits are measured during the 1990-1999 period.  Sample includes 36 technologies at the sub-category level of the 

USPTO classification system.  Variables are transformed to have unit standard deviation for interpretation.  Estimations are unweighted, control for the 

number of US patents in the technology, and report robust standard errors. 

D. Measuring radius through log-linear patent citation decay functions in United Kingdom



Distance 

interval

[0,25] -1.338 (0.310) -1.364 (0.353) -1.354 (0.313) -1.338 (0.139) -1.773 (0.206) -0.430 (0.209) -0.754 (0.297) -0.599 (0.370)

(25,50] -0.469 (0.120) -0.423 (0.119) -0.470 (0.123) -0.469 (0.080) -0.623 (0.074) -0.107 (0.095) -0.286 (0.107) -0.244 (0.145)

(50,75] 0.032 (0.053) 0.062 (0.062) 0.043 (0.057) 0.032 (0.030) 0.023 (0.050) 0.073 (0.063) 0.016 (0.057) -0.017 (0.078)

(75,100] 0.146 (0.047) 0.169 (0.057) 0.159 (0.050) 0.146 (0.022) 0.163 (0.060) 0.128 (0.076) 0.103 (0.068) 0.036 (0.091)

(100,125] 0.159 (0.048) 0.184 (0.049) 0.171 (0.050) 0.159 (0.020) 0.193 (0.058) 0.133 (0.073) 0.135 (0.057) 0.044 (0.079)

(125,150] 0.144 (0.048) 0.147 (0.044) 0.156 (0.050) 0.144 (0.021) 0.209 (0.038) 0.116 (0.063) 0.146 (0.042) 0.045 (0.064)

(150, 175] 0.130 (0.043) 0.128 (0.042) 0.144 (0.044) 0.130 (0.019) 0.217 (0.027) 0.097 (0.061) 0.121 (0.043) 0.018 (0.062)

(175,200] 0.091 (0.045) 0.110 (0.047) 0.107 (0.046) 0.091 (0.022) 0.202 (0.031) 0.080 (0.067) 0.070 (0.060) -0.051 (0.067)

(200,225] 0.050 (0.081) 0.119 (0.071) 0.071 (0.082) 0.050 (0.037) 0.214 (0.059) 0.076 (0.072) 0.064 (0.096) -0.113 (0.090)

[0,25] -1.359 (0.332) -1.382 (0.376) -1.375 (0.333) -1.359 (0.149) -1.838 (0.213) -0.444 (0.216) -0.761 (0.307) -0.631 (0.387)

(25,50] -0.476 (0.126) -0.426 (0.127) -0.478 (0.128) -0.476 (0.084) -0.642 (0.078) -0.116 (0.098) -0.289 (0.111) -0.250 (0.150)

(50,75] 0.010 (0.052) 0.044 (0.057) 0.020 (0.055) 0.010 (0.029) 0.016 (0.045) 0.068 (0.066) 0.000 (0.058) -0.013 (0.082)

(75,100] 0.121 (0.049) 0.147 (0.055) 0.133 (0.051) 0.121 (0.022) 0.153 (0.055) 0.122 (0.077) 0.085 (0.069) 0.041 (0.094)

(100,125] 0.137 (0.049) 0.164 (0.047) 0.148 (0.050) 0.137 (0.021) 0.184 (0.054) 0.126 (0.072) 0.115 (0.057) 0.044 (0.081)

(125,150] 0.123 (0.050) 0.128 (0.047) 0.133 (0.051) 0.123 (0.022) 0.201 (0.036) 0.108 (0.060) 0.121 (0.043) 0.043 (0.064)

(150, 175] 0.098 (0.046) 0.102 (0.045) 0.109 (0.046) 0.098 (0.019) 0.205 (0.028) 0.088 (0.058) 0.093 (0.042) 0.015 (0.062)

(175,200] 0.054 (0.044) 0.079 (0.044) 0.067 (0.044) 0.054 (0.021) 0.189 (0.036) 0.073 (0.066) 0.045 (0.055) -0.050 (0.067)

(200,225] 0.019 (0.079) 0.086 (0.071) 0.039 (0.079) 0.019 (0.036) 0.206 (0.063) 0.070 (0.071) 0.043 (0.090) -0.105 (0.088)

Column 1 with 

weights for 

technology size

Column 1 

excluding 

miscellaneous 

categories

Column 1 with 

bootstrapped 

standard errors

Measuring 

radius using US 

non-parametric 

citation decays

Measuring 

radius using 

first- vs. later-

gen. citations

Notes:  Table quantifies the relationship between the density of technology clusters by distance intervals and the technology's maximal radius of interaction.  Panel A 

considers the kernel density estimates for technologies, and Panel B considers the localization metric of Duranton and Overman (2005).  The explanatory variables are 

interactions of indicator variables for distance bands with technology-level spillover lengths.  Technologies with longer spillover ranges are predicted to show lower 

density at short distances and increased activity over medium distances (i.e., larger and less dense clusters).  For columns 1-4, technology spillover lengths are measured 

as in Figure 4a by the log rate of citation decay by distance, controlling for underlying patenting and citing zip codes fixed effects.  Variations on technology spillover 

lengths are employed in Columns 5-8 similar to Table 2.  Sample includes 36 technologies at the sub-category level of the USPTO classification system.  Variables are 

transformed to have unit standard deviation for interpretation.  Except where noted, estimations are unweighted, control for fixed effects by distance, and report robust 

standard errors. 

Table 3: Extensions on continuous density estimations

(8)

Measuring 

radius using 

UK non-param. 

citation decays

(4) (7)

B. Dependent variable is localization metric using 5%/95% confidence bands by distance in unit standard deviations

A. Dependent variable is kernel density by distance in unit standard deviations

(5) (6)(1) (2) (3)

Measuring 

radius using 

UK parametric 

citation decays

Measuring 

radius using US 

parametric 

citation decays



[0,25] -1.825 (0.289) -0.837 (0.277) -1.483 (0.570) -1.254 (0.369) -1.542 (0.420) -0.695 (0.340) -1.829 (0.436) -1.081 (0.453)

(25,50] -0.630 (0.139) -0.315 (0.109) -0.615 (0.276) -0.413 (0.118) -0.509 (0.149) -0.312 (0.174) -0.712 (0.182) -0.346 (0.156)

(50,75] 0.049 (0.089) -0.002 (0.041) -0.028 (0.125) 0.038 (0.041) 0.046 (0.052) -0.027 (0.115) -0.058 (0.068) 0.070 (0.069)

(75,100] 0.185 (0.081) 0.088 (0.035) 0.165 (0.102) 0.122 (0.050) 0.158 (0.039) 0.008 (0.145) 0.104 (0.062) 0.157 (0.067)

(100,125] 0.190 (0.081) 0.113 (0.047) 0.227 (0.100) 0.119 (0.053) 0.173 (0.044) -0.029 (0.141) 0.138 (0.078) 0.162 (0.063)

(125,150] 0.181 (0.080) 0.095 (0.048) 0.238 (0.089) 0.097 (0.057) 0.163 (0.051) -0.056 (0.127) 0.114 (0.089) 0.155 (0.060)

(150, 175] 0.155 (0.074) 0.096 (0.045) 0.218 (0.074) 0.088 (0.055) 0.153 (0.047) -0.077 (0.108) 0.076 (0.080) 0.152 (0.052)

(175,200] 0.065 (0.082) 0.111 (0.049) 0.146 (0.096) 0.062 (0.053) 0.118 (0.050) -0.173 (0.098) -0.031 (0.085) 0.147 (0.045)

(200,225] -0.039 (0.156) 0.134 (0.063) 0.004 (0.190) 0.051 (0.078) 0.091 (0.096) -0.362 (0.131) -0.212 (0.160) 0.180 (0.051)

[0,25] -1.898 (0.306) -0.804 (0.279) -1.554 (0.609) -1.257 (0.398) -1.565 (0.452) -0.663 (0.383) -1.858 (0.480) -1.101 (0.482)

(25,50] -0.655 (0.144) -0.303 (0.113) -0.642 (0.288) -0.412 (0.125) -0.519 (0.158) -0.306 (0.183) -0.724 (0.197) -0.352 (0.164)

(50,75] 0.033 (0.090) -0.028 (0.033) -0.034 (0.123) 0.014 (0.043) 0.012 (0.046) -0.057 (0.118) -0.076 (0.052) 0.047 (0.070)

(75,100] 0.167 (0.084) 0.057 (0.030) 0.144 (0.106) 0.101 (0.054) 0.129 (0.041) -0.026 (0.149) 0.079 (0.060) 0.134 (0.071)

(100,125] 0.178 (0.083) 0.082 (0.042) 0.213 (0.105) 0.099 (0.057) 0.148 (0.046) -0.061 (0.141) 0.114 (0.079) 0.143 (0.066)

(125,150] 0.167 (0.082) 0.068 (0.043) 0.218 (0.095) 0.078 (0.060) 0.139 (0.052) -0.089 (0.124) 0.088 (0.093) 0.137 (0.061)

(150, 175] 0.132 (0.076) 0.055 (0.043) 0.191 (0.081) 0.058 (0.058) 0.115 (0.049) -0.120 (0.104) 0.044 (0.083) 0.122 (0.056)

(175,200] 0.042 (0.081) 0.061 (0.048) 0.127 (0.098) 0.023 (0.053) 0.067 (0.045) -0.216 (0.086) -0.060 (0.076) 0.108 (0.047)

(200,225] -0.050 (0.153) 0.085 (0.066) 0.003 (0.185) 0.013 (0.081) 0.048 (0.090) -0.402 (0.113) -0.247 (0.141) 0.154 (0.051)

Table 4: Extensions on continuous density estimations, continued

Above median Below median Below median

Notes:  See Table 3. Estimations measure radius using US parametric citation decays.

(1) (2) (3) (4) (5) (7)

Distance 

interval

(8)

A. Dependent variable is kernel density by distance in unit standard deviations

B. Dependent variable is localization metric using 5%/95% confidence bands by distance in unit standard deviations

(6)

Splitting technologies by rates 

of citations to patents within the 

same zip code

Splitting technologies by rates 

of citations to patents in other 

technology areas

Splitting technologies by rates 

of citations to very recent 

patents (last five years)

Splitting technologies by 

average wage costs of MSAs 

where patenting conducted

Above median Below median Above median Below median Above median



Distance range [0,5) [5,10) [10,15) [15,20) [0,20) [20,40) [40,60) [60,80) [80,100) [100,120) [120,140) [140,250]

Mean 0.044 0.041 0.044 0.036 0.165 0.106 0.062 0.059 0.061 0.064 0.064 0.420

Standard deviation (0.047) (0.037) (0.035) (0.016) (0.130) (0.027) (0.016) (0.014) (0.016) (0.016) (0.018) (0.090)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Maximal radius of -0.032 -0.026 -0.024 -0.012 -0.093 -0.013 0.008 0.009 0.011 0.012 0.011 0.056

interaction (0.010) (0.005) (0.005) (0.002) (0.021) (0.005) (0.003) (0.002) (0.002) (0.002) (0.003) (0.012)

Maximal radius of -0.041 -0.032 -0.033 -0.014 -0.120 -0.017 0.010 0.011 0.011 0.011 0.013 0.080

interaction (0.006) (0.004) (0.003) (0.001) (0.014) (0.004) (0.002) (0.002) (0.003) (0.003) (0.002) (0.007)

Maximal radius of -0.014 -0.011 -0.010 -0.005 -0.040 -0.003 0.006 0.005 0.006 0.004 0.005 0.017

interaction (0.007) (0.004) (0.005) (0.002) (0.017) (0.004) (0.002) (0.002) (0.003) (0.002) (0.002) (0.012)

Maximal radius of -0.021 -0.015 -0.014 -0.010 -0.059 -0.018 0.002 0.005 0.005 0.008 0.009 0.050

interaction (0.010) (0.007) (0.007) (0.002) (0.025) (0.004) (0.004) (0.003) (0.004) (0.003) (0.002) (0.015)

Maximal radius of -0.017 -0.009 -0.008 -0.006 -0.040 -0.008 0.001 0.004 0.004 0.006 0.006 0.026

interaction (0.013) (0.008) (0.008) (0.003) (0.032) (0.005) (0.004) (0.004) (0.005) (0.004) (0.003) (0.018)

D. Measuring radius through log-linear patent citation decay functions in United Kingdom

E. Measuring radius through non-parametric patent citation decay functions in United Kingdom

Notes:  Table quantifies the point-by-point relationship between spatial distributions for technology clusters and the maximal radius of interactions for technologies.  

Dependent variables are shares of bilateral distances between patents for each technology that fall within the indicated distance band.  Shares are calculated relative to all 

bilateral distances observed for the technology over the distances of zero miles to 250 miles.  The table header provides the raw descriptive statistics.  Panel titles indicate 

the technique employed to measure the maximal radius.  A longer maximal radius is predicted to have larger and less dense clusters.  Cluster traits are measured during 

the 1990-1999 period.  Sample includes 36 technologies at the sub-category level of the USPTO classification system.  Radius measures are transformed to have unit 

standard deviation for interpretation.  Estimations are unweighted, control for the number of US patents in the technology, and report robust standard errors. 

Table 5: Point-by-point regressions of density functions for technologies

Raw share of patent counts by bilateral distance in miles between patents

Radius measures are in unit standard deviations, regressions control for patent count by technology

A. Measuring radius through log-linear patent citation decay functions

B. Measuring radius through non-parametric patent citation decay functions

C. Measuring radius through comparing first- vs. later-generation citation distributions



Distance range [0,5) [5,10) [10,15) [15,20) [0,20) [20,40) [40,60) [60,80) [80,100) [100,120) [120,140) [140,250]

Mean 0.024 0.032 0.038 0.035 0.128 0.117 0.074 0.064 0.066 0.067 0.066 0.419

Standard deviation (0.018) (0.026) (0.029) (0.016) (0.086) (0.032) (0.011) (0.011) (0.011) (0.012) (0.013) (0.080)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Maximal radius of -0.010 -0.015 -0.016 -0.009 -0.050 -0.020 0.001 0.005 0.007 0.008 0.007 0.042

interaction (0.003) (0.004) (0.004) (0.002) (0.012) (0.004) (0.002) (0.002) (0.002) (0.001) (0.002) (0.010)

Maximal radius of -0.015 -0.022 -0.025 -0.014 -0.076 -0.028 0.002 0.008 0.009 0.011 0.010 0.063

interaction (0.001) (0.002) (0.003) (0.001) (0.007) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.006)

Maximal radius of -0.005 -0.006 -0.007 -0.004 -0.022 -0.005 0.004 0.004 0.004 0.004 0.004 0.008

interaction (0.002) (0.003) (0.004) (0.002) (0.011) (0.004) (0.001) (0.001) (0.002) (0.002) (0.002) (0.010)

Maximal radius of -0.008 -0.009 -0.009 -0.006 -0.033 -0.015 0.000 0.004 0.004 0.006 0.007 0.028

interaction (0.003) (0.004) (0.005) (0.002) (0.014) (0.005) (0.002) (0.002) (0.002) (0.002) (0.002) (0.012)

Maximal radius of -0.004 -0.005 -0.004 -0.003 -0.016 -0.007 0.000 0.002 0.003 0.003 0.003 0.012

interaction (0.004) (0.006) (0.006) (0.003) (0.018) (0.006) (0.002) (0.003) (0.003) (0.003) (0.002) (0.015)

D. Measuring radius through log-linear patent citation decay functions in United Kingdom

E. Measuring radius through non-parametric patent citation decay functions in United Kingdom

Notes:  See Table 5. Estimations treat each assignee or individual location as a single observation independent of patent levels.

Table 6: Point-by-point regressions of density functions for technologies using unweighted assignees

Raw share of patent assignee counts by bilateral distance in miles between patent assignees

Radius measures are in unit standard deviations, regressions control for patent count by technology

A. Measuring radius through log-linear patent citation decay functions

B. Measuring radius through non-parametric patent citation decay functions

C. Measuring radius through comparing first- vs. later-generation citation distributions



Distance interval 

between zip code 

centroids

First-   

generation 

citations

Later-

generation 

citations

Random 

citation 

distribution

First-   

generation 

citations

Later-

generation 

citations

Random 

citation 

distribution

First-   

generation 

citations

Later-

generation 

citations

(1) (2) (3) (4) (5) (6) (7) (8)

[0,1] miles 314,381 214,049 368,653 15.4% 10.3% 11.6% 1.331 0.887

(1,3] miles 22,911 21,846 23,329 1.1% 1.1% 0.7% 1.533 1.430

(3,5] miles 69,206 72,998 103,219 3.4% 3.5% 3.2% 1.046 1.080

(5,10] miles 229,207 255,767 338,860 11.3% 12.3% 10.7% 1.056 1.153

(10,15] miles 222,620 254,700 328,497 10.9% 12.2% 10.3% 1.058 1.184

(15,20] miles 167,916 181,016 233,941 8.3% 8.7% 7.4% 1.120 1.182

(20,25] miles 132,951 148,024 195,444 6.5% 7.1% 6.2% 1.062 1.157

(25,30] miles 105,913 124,996 165,891 5.2% 6.0% 5.2% 0.996 1.151

(30,35] miles 76,287 85,113 116,435 3.7% 4.1% 3.7% 1.023 1.117

(35,40] miles 68,753 82,777 108,620 3.4% 4.0% 3.4% 0.988 1.164

(40,45] miles 42,987 48,086 70,882 2.1% 2.3% 2.2% 0.947 1.036

(45,50] miles 37,897 42,108 61,927 1.9% 2.0% 1.9% 0.955 1.039

(50,55] miles 29,463 32,373 54,897 1.4% 1.6% 1.7% 0.838 0.901

(55,60] miles 28,818 30,639 49,035 1.4% 1.5% 1.5% 0.917 0.954

(60,65] miles 26,359 27,749 52,351 1.3% 1.3% 1.6% 0.786 0.810

(65,70] miles 27,160 30,065 56,252 1.3% 1.4% 1.8% 0.754 0.816

(70,75] miles 25,380 25,991 49,427 1.2% 1.2% 1.6% 0.801 0.803

(75,80] miles 25,105 25,230 49,988 1.2% 1.2% 1.6% 0.784 0.771

(80,85] miles 26,738 28,086 49,023 1.3% 1.4% 1.5% 0.851 0.875

(85,90] miles 26,633 27,292 48,432 1.3% 1.3% 1.5% 0.858 0.861

(90,95] miles 25,599 25,739 47,810 1.3% 1.2% 1.5% 0.836 0.822

(95,100] miles 25,554 25,950 50,480 1.3% 1.2% 1.6% 0.790 0.785

(100,150] miles 277,289 268,946 552,915 13.6% 12.9% 17.4% 0.783 0.743

App. Table 1: Descriptive tabulations on citation distribution

Notes:  Table provides descriptive statistics on citations sample.  The sample builds off of pairwise citing and cited zip codes within 150 miles of each other.  First-

generation citations are citations made directly between patents.  Later-generation citations are second- and third-generation citations (patent A cites patent B that 

cites patent C).  Random citation counterfactuals are drawn with the same technologies and years as true citations within a 250-mile distance interval to model the 

underlying technology landscape.  Columns 1-3 count citations by distance interval between zip codes, with the levels driven in part by the spatial distribution of 

zip codes in the US.  The specific levels of random citations in Column 3 does not have meaning.  Columns 4-6 provide these distributions as shares that sum to 

100% over 0-150 miles.  Columns 7-8 divide the shares for first- and later-generation citations by the random baseline distribution.  These columns show the 

higher concentration of direct citations between inventors at local distances compared to the random counterfactuals.  They also show the more localized nature of 

first-generation citations compared to later-generation citations.

Raw citation counts Citation share distribution over 0-150 mile Shares relative to random



[0,1] miles 0.843 (0.008) 0.209 (0.019) 1.054 (0.026) 0.455 (0.036) 1.217 (0.021) 0.603 (0.026) 1.040 (0.089) 0.555 (0.182)

(1,3] miles 0.756 (0.037) 0.574 (0.074) 0.946 (0.016) 0.836 (0.034) 1.570 (0.116) 1.428 (0.143) 0.760 (0.036) 0.572 (0.072)

(3,5] miles 0.660 (0.064) 0.585 (0.125) 0.830 (0.040) 0.824 (0.087) 1.850 (0.206) 1.836 (0.254) 0.667 (0.063) 0.585 (0.123)

(5,10] miles 0.595 (0.062) 0.538 (0.122) 0.759 (0.040) 0.771 (0.086) 1.724 (0.201) 1.724 (0.248) 0.601 (0.061) 0.537 (0.119)

(10,15] miles 0.529 (0.054) 0.511 (0.105) 0.680 (0.035) 0.721 (0.075) 1.441 (0.176) 1.470 (0.217) 0.534 (0.053) 0.510 (0.103)

(15,20] miles 0.399 (0.034) 0.374 (0.066) 0.545 (0.016) 0.584 (0.035) 0.994 (0.111) 0.999 (0.136) 0.402 (0.034) 0.373 (0.065)

(20,25] miles 0.273 (0.024) 0.261 (0.047) 0.392 (0.009) 0.441 (0.018) 0.669 (0.080) 0.677 (0.099) 0.275 (0.024) 0.261 (0.047)

(25,30] miles 0.243 (0.024) 0.289 (0.045) 0.359 (0.010) 0.459 (0.021) 0.560 (0.078) 0.622 (0.097) 0.245 (0.023) 0.288 (0.044)

(30,35] miles 0.185 (0.017) 0.241 (0.032) 0.289 (0.006) 0.400 (0.012) 0.360 (0.058) 0.424 (0.071) 0.186 (0.017) 0.240 (0.031)

(35,40] miles 0.182 (0.023) 0.287 (0.042) 0.285 (0.016) 0.442 (0.033) 0.403 (0.078) 0.519 (0.096) 0.183 (0.023) 0.285 (0.042)

(40,45] miles 0.060 (0.004) 0.148 (0.007) 0.127 (0.006) 0.280 (0.012) 0.060 (0.015) 0.148 (0.019) 0.060 (0.004) 0.147 (0.007)

(45,50] miles 0.076 (0.003) 0.130 (0.005) 0.138 (0.005) 0.231 (0.009) 0.049 (0.013) 0.103 (0.016) 0.076 (0.003) 0.130 (0.006)

(50,55] miles 0.029 (0.002) 0.095 (0.004) 0.062 (0.010) 0.184 (0.021) -0.046 (0.005) 0.016 (0.006) 0.029 (0.002) 0.095 (0.004)

(55,60] miles 0.032 (0.001) 0.079 (0.003) 0.075 (0.007) 0.133 (0.016) -0.056 (0.002) -0.013 (0.003) 0.031 (0.001) 0.079 (0.003)

(60,65] miles -0.014 (0.001) 0.039 (0.003) -0.011 (0.006) 0.074 (0.013) -0.091 (0.002) -0.042 (0.002) -0.015 (0.001) 0.038 (0.003)

(65,70] miles -0.019 (0.002) 0.018 (0.003) -0.027 (0.002) 0.037 (0.005) -0.049 (0.007) -0.014 (0.008) -0.019 (0.002) 0.018 (0.003)

(70,75] miles 0.001 (0.001) 0.028 (0.003) 0.032 (0.005) 0.066 (0.011) -0.041 (0.004) -0.015 (0.005) 0.000 (0.001) 0.028 (0.003)

(75,80] miles 0.004 (0.002) 0.037 (0.003) 0.006 (0.002) 0.041 (0.003) -0.018 (0.007) 0.014 (0.009) 0.004 (0.002) 0.037 (0.003)

(80,85] miles 0.022 (0.002) 0.077 (0.002) 0.023 (0.001) 0.093 (0.001) -0.017 (0.007) 0.036 (0.008) 0.022 (0.002) 0.077 (0.002)

(85,90] miles 0.035 (0.002) 0.066 (0.004) 0.039 (0.003) 0.062 (0.005) 0.013 (0.009) 0.044 (0.011) 0.035 (0.002) 0.066 (0.004)

(90,95] miles 0.002 (0.001) 0.018 (0.002) -0.005 (0.001) 0.017 (0.004) -0.024 (0.003) -0.009 (0.004) 0.002 (0.001) 0.018 (0.002)

(95,100] miles -0.023 (0.000) -0.011 (0.000) -0.044 (0.000) -0.031 (0.000) -0.025 (0.001) -0.013 (0.001) -0.023 (0.000) -0.011 (0.000)

Patent interaction 0.043 (0.016) 0.031 (0.017) 0.209 (0.035) 0.265 (0.055) 0.706 (0.062) 0.728 (0.077) 0.045 (0.017) 0.034 (0.019)

Expected citations 0.842 (0.008) 0.885 (0.021) 0.672 (0.016) 0.667 (0.019) 0.838 (0.009) 0.882 (0.020)

Observations 228,000

App. Table 2a: Coefficients for Figure 3a's pairwise approach

Column 1 

including own 

zip code

Column 2 

including own 

zip code

Column 1 with-

out expected 

citations

Column 2 with-

out expected 

citations

First-   

generation 

citations

Later-

generation 

citations

Column 1 with 

non-zero 

citations

Column 2 with 

non-zero 

citations

(5)

Notes:  Table provides coefficient estimates and standard errors for Figure 3a.  The sample builds off of pairwise citing and cited zip codes within 150 miles of each other. 

Explanatory variables are indicator variables for distance bands with effects measured relative to zip codes 100-150 miles apart. Regressions control for an interaction of log 

patenting in the pairwise zip codes and log expected citations based upon random counterfactuals that have the same technologies and years as true citations.  Citations within the 

same zip code are excluded.  Regressions are weighted by the log interaction of patenting in the two zip codes and report standard errors clustered by distance interval.

12,803,952

(6)

12,779,214

(7) (8)

12,779,214 12,779,214 12,803,952

(3) (4)

12,779,214

(1) (2)

268,417



[0,1] miles 1.220 (0.027) 0.834 (0.052) 1.406 (0.032) 0.993 (0.049) 1.719 (0.044) 1.348 (0.055) 1.240 (0.045) 0.976 (0.064)

(1,3] miles 1.014 (0.033) 0.880 (0.058) 1.145 (0.041) 1.078 (0.075) 1.510 (0.024) 1.390 (0.047) 0.961 (0.055) 0.866 (0.056)

(3,5] miles 0.914 (0.042) 0.828 (0.060) 1.021 (0.051) 0.996 (0.076) 1.419 (0.034) 1.348 (0.047) 0.886 (0.044) 0.821 (0.057)

(5,10] miles 0.878 (0.035) 0.814 (0.048) 0.964 (0.041) 0.944 (0.058) 1.356 (0.029) 1.305 (0.038) 0.862 (0.033) 0.811 (0.047)

(10,15] miles 0.757 (0.029) 0.723 (0.044) 0.832 (0.034) 0.833 (0.053) 1.154 (0.023) 1.131 (0.034) 0.740 (0.028) 0.719 (0.043)

(15,20] miles 0.648 (0.018) 0.630 (0.032) 0.711 (0.022) 0.724 (0.039) 0.962 (0.012) 0.953 (0.023) 0.623 (0.026) 0.625 (0.031)

(20,25] miles 0.509 (0.015) 0.521 (0.029) 0.563 (0.018) 0.604 (0.035) 0.764 (0.012) 0.784 (0.024) 0.481 (0.027) 0.515 (0.028)

(25,30] miles 0.429 (0.015) 0.493 (0.028) 0.478 (0.018) 0.564 (0.035) 0.630 (0.015) 0.701 (0.027) 0.400 (0.027) 0.489 (0.026)

(30,35] miles 0.333 (0.013) 0.415 (0.025) 0.377 (0.017) 0.480 (0.032) 0.466 (0.017) 0.552 (0.029) 0.302 (0.029) 0.410 (0.024)

(35,40] miles 0.268 (0.013) 0.367 (0.025) 0.306 (0.017) 0.422 (0.032) 0.377 (0.017) 0.479 (0.029) 0.241 (0.026) 0.364 (0.022)

(40,45] miles 0.171 (0.012) 0.302 (0.021) 0.202 (0.015) 0.350 (0.026) 0.232 (0.016) 0.364 (0.028) 0.137 (0.032) 0.297 (0.019)

(45,50] miles 0.138 (0.010) 0.256 (0.019) 0.165 (0.014) 0.297 (0.023) 0.162 (0.014) 0.280 (0.025) 0.104 (0.032) 0.250 (0.018)

(50,55] miles 0.088 (0.012) 0.221 (0.022) 0.116 (0.016) 0.260 (0.030) 0.096 (0.018) 0.230 (0.030) 0.052 (0.033) 0.216 (0.020)

(55,60] miles 0.065 (0.012) 0.203 (0.020) 0.090 (0.017) 0.238 (0.026) 0.047 (0.018) 0.185 (0.027) 0.031 (0.033) 0.199 (0.018)

(60,65] miles 0.011 (0.012) 0.136 (0.019) 0.032 (0.017) 0.165 (0.026) -0.018 (0.018) 0.106 (0.027) -0.024 (0.033) 0.132 (0.018)

(65,70] miles 0.001 (0.012) 0.168 (0.018) 0.022 (0.018) 0.195 (0.026) -0.023 (0.018) 0.144 (0.026) -0.033 (0.031) 0.165 (0.017)

(70,75] miles 0.008 (0.012) 0.152 (0.018) 0.038 (0.016) 0.190 (0.027) -0.016 (0.016) 0.127 (0.025) -0.027 (0.033) 0.147 (0.017)

(75,80] miles -0.011 (0.012) 0.099 (0.019) 0.018 (0.017) 0.127 (0.032) -0.050 (0.017) 0.060 (0.028) -0.046 (0.032) 0.095 (0.018)

(80,85] miles -0.002 (0.011) 0.140 (0.021) 0.018 (0.016) 0.159 (0.033) -0.045 (0.015) 0.096 (0.029) -0.038 (0.033) 0.136 (0.019)

(85,90] miles 0.019 (0.012) 0.131 (0.021) 0.041 (0.018) 0.150 (0.036) -0.033 (0.016) 0.078 (0.030) -0.016 (0.033) 0.127 (0.020)

(90,95] miles -0.027 (0.011) 0.105 (0.021) -0.005 (0.016) 0.136 (0.035) -0.073 (0.014) 0.057 (0.030) -0.062 (0.034) 0.100 (0.019)

(95,100] miles -0.038 (0.009) 0.106 (0.020) -0.016 (0.016) 0.125 (0.035) -0.087 (0.012) 0.056 (0.028) -0.074 (0.033) 0.100 (0.019)

Patent interaction 0.335 (0.027) 0.348 (0.036) 0.423 (0.028) 0.497 (0.040) 0.893 (0.005) 0.922 (0.009) 0.315 (0.030) 0.340 (0.036)

Expected citations 0.610 (0.030) 0.628 (0.036) 0.525 (0.030) 0.502 (0.036) 0.615 (0.029) 0.633 (0.036)

Observations

Citing zip code FE

Notes:  See App. Table 2a. Table provides coefficient estimates and standard errors for Figure 3b. 

Yes YesYes Yes Yes Yes Yes Yes

547,197 547,197522,459 522,459 87,280 67,559 522,459 522,459

(7) (8)(1) (2) (3) (4) (5) (6)

Column 1 

including own 

zip code

Column 2 

including own 

zip code

App. Table 2b: Coefficients for Figure 3b's distance ring with fixed effects approach
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generation 

citations
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Column 2 with-

out expected 

citations


