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Abstract

Post-transcriptional regulation by miRNAs is a widespread and highly conserved phenomenon in metazoans, with several
hundreds to thousands of conserved binding sites for each miRNA, and up to two thirds of all genes under miRNA
regulation. At the same time, the effect of miRNA regulation on mRNA and protein levels is usually quite modest and
associated phenotypes are often weak or subtle. This has given rise to the notion that the highly interconnected miRNA
regulatory network exerts its function less through any individual link and more via collective effects that lead to a
functional interdependence of network links. We present a Bayesian framework to quantify conservation of miRNA target
sites using vertebrate whole-genome alignments. The increased statistical power of our phylogenetic model allows
detection of evolutionary correlation in the conservation patterns of site pairs. Such correlations could result from collective
functions in the regulatory network. For instance, co-conservation of target site pairs supports a selective benefit of
combinatorial regulation by multiple miRNAs. We find that some miRNA families are under pronounced co-targeting
constraints, indicating a high connectivity in the regulatory network, while others appear to function in a more isolated way.
By analyzing coordinated targeting of different curated gene sets, we observe distinct evolutionary signatures for protein
complexes and signaling pathways that could reflect differences in control strategies. Our method is easily scalable to
analyze upcoming larger data sets, and readily adaptable to detect high-level selective constraints between other genomic
loci. We thus provide a proof-of-principle method to understand regulatory networks from an evolutionary perspective.
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Introduction

In the last two decades, micro-RNAs (miRNAs) have emerged

as key players in post-transcriptional gene regulation [1,2]. These

noncoding RNAs have been implicated in many important

pathways from development and physiology to diseases such as

cancer [3–5]. The repertoire of miRNA genes has undergone a

significant expansion in higher eukaryotes [6], in concordance

with major developmental innovations along the vertebrate

lineage [7]. After transcription, primary processing, and nuclear

export, miRNAs are further processed by the endonuclease Dicer.

The resulting 22 nt mature miRNA is loaded into the RNA

induced silencing complex (RISC), which contains (among other

factors) Argonaute (AGO) proteins [8].

miRNAs guide RISC to target sites in mRNA transcripts,

residing mostly but not exclusively in 39UTRs. These sites are

defined predominantly via base pair complementarity to a short

,7nt ‘‘seed’’ region at the miRNA 59 end [1]. A conserved seed

match is by far the most informative indicator of a regulatory

interaction, but many other determinants of miRNA targeting are

known, such as the sequence context in the 39UTR, the

accessibility of the site within the mRNA secondary structure,

and the proximity to the stop codon or the polyadenylation site

[9]. These general trends were first inferred using indirect

evidence from transcriptome and proteome profiling [10,11],

and were recently corroborated by experimental advances

allowing transcriptome-wide mapping of Argonaute binding sites

[12–16], although non-canonical sites without perfect comple-

mentarity in the seed region abound [15–18]. Since the binding

sites are short and 39UTRs are large, typical miRNAs have

potentially very large numbers of target sites across the genome.

Many of these sites are evolutionarily conserved, and a major part

of the transcriptome is thought to be under miRNA regulation

[19].

The regulatory effect of miRNA targeting is quite diverse: the

associated decrease of target mRNA levels is attributed to

deadenylation followed by degradation or sequestration into P-

bodies, but additional effects on protein expression result from the

inhibition of translation initiation [20]. Repression of miRNA

targets is usually relatively modest: typically, protein levels change

by less than 2-fold [10,11]. While the first miRNAs were identified

due to their distinct function as developmental switches (let-7 and

lin-4 in the nematode C. elegans) [21,22], it has proven much

harder to ascertain clear physiological or developmental roles for
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many of the hundreds of miRNAs discovered ever since [23–25].

In the known cases where miRNAs take a central and unique role

in the regulatory network, the associated phenotype often seems to

be conveyed by just a few out of the many predicted targets

[21,26]. In contrast to these ‘‘relevant’’ targets, the remaining

targeting relationships appear to be either non-functional,

redundant or connected to weak or subtle phenotypes. Alterna-

tively, they could have an auxiliary role in indirectly reinforcing

the functionality of the relevant target sites [27,28]. However,

distinguishing these functions by experimental or computational

means has so far remained elusive [23]. In a very broad sense,

miRNA regulation has been perceived mostly as an additional

regulatory layer adding to the redundancy and robustness of gene

expression programs [29].

With the advent of systems-level studies of gene regulation and

the availability of large datasets, collective ‘‘network-level’’

functions of gene regulatory programs have come to be

appreciated. In these cases, the function of any specific link

between a regulator and its target cannot be understood without

considering the regulatory context. For instance, combinatorial

binding is a pervasive feature for miRNAs [30–32]: many genes

are targeted by more than one miRNA, and often miRNAs have

multiple binding sites in the same transcript. Also, since miRNAs

target RNA transcripts rather than genomic DNA, the stoichi-

ometry between regulators and targets plays an important role: the

level of free miRNA is regulated by the expression of its targets,

potentially leading to competitive inhibition [27,33–35]. Finally,

miRNAs have been implicated in coordinated regulation of entire

modules of genes, such as proteins in the same complex [36] or in

the same signaling pathway [37].

The best-studied examples of collective regulatory functions

come from transcriptional regulation, where binding sites for

entire sets of transcription factors are often clustered in cis-
regulatory modules to integrate input from multiple regulators.

While such combinatorial regulation seems to be essential for

precise spatio-temporal gene expression control, it was found that

transcription factor binding sites are often not strongly conserved

but exhibit frequent gain and loss between species [38–40], with

clustered binding sites evolving in a coordinated manner [41].

Since regulatory evolution was recognized as a major driving force

for phenotypic change [42,43], these particular evolutionary

dynamics were intensely analyzed for signatures of adaptation

[38,44,45]. However, alternative non-adaptive explanations are

not easily ruled out [46,47].

Here, we use covariation techniques to analyze evolutionary

signatures of collective functions in the miRNA regulatory

network. Generally, miRNAs have many conserved target sites,

but the miRNA genes themselves, especially within the seed

region, are far more conserved than these sites [2]. This has

inspired the notion of an extensive rewiring of the miRNA

regulatory network [2,23,48]. Importantly, network-level functions

conveyed by more than one single target site constrain this

rewiring, leading to evolutionary correlations between the gain

and loss of different target sites, which means that the presence or

absence of one site is correlated with the presence or absence of

another site when comparing across different species. Similar

techniques to utilize comparative sequence information have been

employed on various genomic scales: on a small scale, compen-

satory mutations in homologous DNA sequences that preserve

base pairing indicate evolutionary constraints due to RNA

secondary structure [49]. Similarly, covariation patterns in protein

sequence alignments are indicative of structural constraints [50–

52]. On a large scale, correlations in the presence or absence of

orthologous genes are attributed to common biological function

[53,54]. We hypothesized that on intermediate scales such as given

by miRNA target sites, covariation patterns should offer a chance

to learn features of the regulatory network from observed

evolutionary correlations.

Results

Model
Existing methods for miRNA target prediction using conserva-

tion signatures are based on measuring the conserved branch

length along the phylogeny for each site [55–57], or on comparing

the conservation of actual seed matches against the full empirical

distribution of conservation patterns for background sites [58].

Here, our focus is not on improving target prediction but on the

higher-order problem of detecting correlations in the conservation

patterns of two sites. We developed a systematic, quantitative,

versatile, and scalable Bayesian strategy to evaluate preferential

conservation of a target site and evolutionary correlations between

two target sites. Our approach, which is summarized in Fig. 1, has

three essential ingredients. First, we develop a background model

for the conservation of Kmers along the vertebrate lineage, and

use it to evaluate the conservation of real miRNA target sites

above this background (Fig. 1C). Second, for each pair of sites

(real or control) we calculate a pair correlation score, which

measures the likelihood that the two sites evolved in a correlated

rather than independent fashion (Fig. 1D). Finally, for different

subsets of miRNAs or target genes of interest we compare the

correlations among target sites with those of control sites that are

matched in their conservation level (Fig. 1E–G). Hence, we can

unambiguously attribute an excess of observed correlations to non-

independent evolution specifically for miRNA seed matches.

In the analysis below we define a miRNA target site as any

perfect seed match of length K~7 or K~8 in a human 39UTR,

and record its conservation pattern in the whole-genome

alignment of 46 vertebrates as a binary vector, cf. Fig. 1A,B.

Restricting our analysis to 7mer and 8mer sites with perfect

complementarity (and ignoring sites of smaller or partial seed

match) lets us focus on the sites known to have relatively large

conservation signal-to-noise ratios [58]. Notably, we neglect other

target site features known to improve prediction algorithms [1]

that would imply that site presence or absence could not be treated

as a simple binary variable and require a much more complex

background model. Also, we note that miRNA genes come in

families defined as sets of miRNAs with the same seed sequence.

Even though different family members can be expressed indepen-

dently from different genomic loci and are not always functionally

Author Summary

Sequence conservation patterns can be used to assess the
functional importance of a genomic locus, e.g. a binding
site of a regulatory factor. If one locus is functionally
coupled with another, they do not evolve independently
and their conservation patterns are correlated. We used
evolutionary correlations to study the vertebrate miRNA
regulatory network, which is densely connected and shows
rapid evolutionary rewiring. Using a Bayesian framework,
we identify topological features of this network that are
under weak but significant selection, such as combinatorial
regulation of one gene by multiple miRNAs, or the
coordinated targeting of protein complexes and signaling
pathways. Our method is easily scalable to include more
genomes as they are being sequenced and can be used to
study correlations between other kinds of loci.

Evolutionary Correlations in the miRNA Regulatory Network
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redundant, they have largely overlapping target sites [18]. In our

simplified target site definition, we therefore do not distinguish

different members of the same family. As described above, our

method relies heavily on an appropriate choice of control seeds.

We choose the control seeds to be as statistically similar to real

seeds as possible [59]. See Methods for details.

Background model for Kmer conservation statistics in
39UTRs

Scoring conservation of miRNA seed matches requires an

appropriate background model of Kmer conservation in 39UTRs

across vertebrate genomes. As a starting point towards such a

model we measured the average conservation of Kmers in human

39UTRs in the vertebrate alignment (Fig. 1B). As expected, the

average conservation of a Kmer seen in human decreases with

phylogenetic distance. However, this decrease is not only due to

the sequence evolution of this site but is also influenced by other

indirect features. For example, different 39UTRs have different

overall conservation levels and may even be missing or only

partially alignable in some species, possibly only due to a low-

coverage genome assembly. We therefore aimed to develop refined

species- and gene-specific background models, by averaging the

Kmer conservation statistics over all Kmers in a given 39UTR and

over 39UTRs with similar conservation patterns.

Another requirement from an effective background model is to

explicitly account for the phylogenetic relationships between

different vertebrates. Since the existence of a site in two closely

related species is more likely than in two distantly related ones, the

conservation patters of two unrelated sites may seem correlated

simply because they both reflect these phylogenetic (‘‘historical’’)

relations. To accurately distinguish genuine evolutionary correla-

tions from historical accidents, we designed the background model

to account for phylogeny. We use a generalized phylogenetic

model on the vertebrate phylogeny that not only reproduces the

average frequency with which Kmers in a human 39UTR are

conserved in each of the other 45 species, but also how often these

Kmers are simultaneously present in pairs of two other species.

The pair frequencies account for the phylogenetic relationships

between different species and correspond to the total branch

length connecting two leaves on the tree. While as a graphical

model our model is formally equivalent to a standard time-

reversible phylogenetic Markov model with independent loci [60],

we use a variant known as Markov random field. Its parameters

correspond to branch lengths and equilibrium frequencies of a

standard Markov model, with the difference that the equilibrium

probability of target site occurrence is not constant along the

phylogeny but decreases according to the typical pattern observed

for background Kmers. This complication is required to handle

correctly several types of hidden or missing data. First, alignment

gaps are believed to contain evidence against site conservation,

and cannot be simply discounted as missing data. Second, since we

only measure the conservation of sites present in the human

genome (which is used as reference for the alignment), sites that

are present in other species but not in human are artificially

missing from our data. Finally, the global expansion of 39UTR

length in mammals implies an apparent reduction of site

conservation in other clades exceeding what is expected from

neutral divergence. See Text S1 for details.

Quantifying preferential conservation of miRNA target
sites

Our background model gives the expected probability of a site’s

pattern of presence or absence across homologous 39UTR

positions. Functional sites are defined as those sites that are

specifically conserved beyond this background. Using a maximum

likelihood approach, we quantify this deviation by a conservation

score dhi for each site i. This parameter can be seen as a

generalized log-odds ratio, and is conceptually related to an

effective selective pressure against losing a specific miRNA target

site, on top of non-miRNA-specific negative selection in this

39UTR (see Discussion). We only consider genes with 39UTRs

alignable over a wide phylogenetic distance (from human to

zebrafish), and a set of miRNA families annotated over the same

distance. This restriction lets us focus on a set of presumably

conserved miRNA-mRNA targeting relationships.

Fig. 2 shows results for site conservation and correlation using

background models of different complexity. A simple species-

specific 7mer background model suffices to detect conserved sites

above background, and a gene-specific background boosts the

signal-to-noise ratio for individual sites. However, the signal-to-

noise ratio for site detection reaches appreciable levels only when

phylogenetic relationships between species are properly included.

While we neglected other factors important for target site

prediction, our method performs comparably to previous

approaches in using conservation signatures [48,58] (Fig. 2C).

Since the signal-to-noise ratio is indeed quite modest for short

(6mer) seed matches (Figure S1), we omitted these and other

imperfect sites from further analysis.

Notably, the inferred values of dhi are generally not much larger

than the conservation scores for the control seeds, consistent with

the notion that miRNA target sites are typically not under strong

selection. Of course this does not necessarily mean that these sites

are not used or not functional. Low signal-to-noise ratios may be

the result of weak selective pressure on the sites, unrelated selection

on the 39UTR background, or both. More interestingly, it could

indicate changing evolutionary constraints due to variability in the

genomic background, such as the gain or loss of other links in the

regulatory network. Target sites with less isolated regulatory

function or those with a supporting role would be particularly

prone to reflect these events in their conservation patterns.

Figure 1. Overview of the method. (A) Given the 46-species vertebrate whole-genome alignment, we search for seed matches to conserved
miRNA in human 39UTRs (here the beginning of the FXR1 39UTR is shown). (B) From the vertebrate phylogeny and the average Kmer conservation
statistics we construct a background model to serve as a gene- and species-specific prior on site conservation. Conservation patterns of miRNA seed
matches (blue/white) and control seed matches (gray/white) are recorded as binary vectors (here 20 randomly distributed sites in the first 2kb of the
FXR1 39UTR are shown). These binary vectors are then used to evaluate conservation of sites and correlations between site pairs. (C) The background
model is formulated as a Markov random field on a tree with unobserved interior nodes (black) to reproduce the average Kmer conservation
statistics in each species and 39UTR while accounting for the phylogeny. Site conservation is measured by comparing a model that includes a global
site conservation score to the background model. (D) Correlations between site pairs are evaluated by comparing models with dependent or
independent site pair evolution, where conservation patterns from two sites are combined into composite variables. (E) Conservation scores are
compared to those of control seeds with a similar number of sites in human 39UTRs. (F) Pair correlation scores for site pairs are found to depend
weakly but significantly on the average conservation of the two sites. To avoid confounding effects from differential conservation of miRNA and
control seed matches, we sample control site pairs to match miRNA sites conservation in a two-tiered strategy. (G) Comparing correlation scores for
miRNA site pairs relative to these control site pairs, we detect enrichment of correlated site pairs for miRNA seeds.
doi:10.1371/journal.pcbi.1003860.g001

Evolutionary Correlations in the miRNA Regulatory Network

PLOS Computational Biology | www.ploscompbiol.org 4 October 2014 | Volume 10 | Issue 10 | e1003860



Different from the effects of constant but weak selection, these

conservation patterns would be correlated to those of other

network links. To test this possibility, we analyze the correlation

patterns within smaller subsets of sites with biologically plausible

regulatory interactions.

Measuring evolutionary correlations between target site
pairs

By using composite variables, the phylogenetic background

model can be extended in a straightforward way to model the

coupled conservation statistics of two Kmers along the vertebrate

lineage. Testing for correlations between pairs of miRNA target

sites is equivalent to asking what is the likelihood that two sites did

not evolve independently. To answer this question, we estimate a

coupling dhij between sites i and j by maximizing the joint

probability of observing the two conservation patterns in the

coupled model. We then compare the resulting likelihood with

that of an independent model where the individual likelihoods for

the two conservation patterns are simply multiplied. This

procedure gives the log-likelihood ratio Dij between these two

models. In what follows we define two sites as correlated if Dijw5,

and define them as positively or negatively correlated depending

on the sign of dhij . We verified that our results are not sensitive to

the choice of the cutoff value (see Figure S2). We limit our analysis

to sites with dhiw0; for most human 39UTRs, this baseline

corresponds to conservation across primates.

Correlations between conservation-matched control
seeds

Conservation analysis needs to carefully account for signatures

of evolutionary processes unrelated to the one of interest [46]. In

addition to the background model, which reproduces the average

conservation statistics of Kmers in each 39UTR, we therefore used

appropriately chosen control seeds (see Methods) to estimate the

extent of additional variability not captured by the model. When

scoring correlations between miRNA target site pairs, we found

Figure 2. Results for different background models. To quantify conservation of miRNA target sites and correlation of site pairs we compare
different background models: (A) species-specific (no account for phylogeny), (B) gene- and species-specific (no phylogeny), (C) full phylogenetic
model with a Kmer-specific background. Panels (1) show histograms of inferred values dh for all 7mer and 8mer seed matches (blue) vs. control
seeds (gray). The peak near dhi&{3:5 in (C) comes from human-specific sites. (2) The estimated signal-to-noise ratio at a log-likelihood cutoff of
D~10 to define conserved sites increases for complex background models. (3) and (4) show histograms of inferred pair correlations dhij and log-
likelihood ratios D for site pairs in the same 39UTR for miRNA target site pairs (blue) vs. matched control pairs (gray). (5) Only the phylogenetic
background model detects a significant enrichment of evolutionary correlations among miRNA target sites at a log-likelihood cutoff of D~5 to
define correlated site pairs.
doi:10.1371/journal.pcbi.1003860.g002

Evolutionary Correlations in the miRNA Regulatory Network
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that correlation scores Dij depended weakly but significantly on

the average site conservation (dhizdhj)=2 (Pearson’s r~0:18),

meaning that more conserved sites were more likely to appear

correlated. We therefore compare the correlation between pairs of

target sites with the correlations between control sites with

matched conservation scores, i.e., control sites that evolve a priori
under equally strong selective constraint. Including this control is

of utmost importance when studying evolutionary correlations,

since a small but non-negligible fraction of control seeds in the

same 39UTR appear correlated, especially over short distances

(Figure S3). This is likely a consequence of the block structure of

the multiple species alignments we used (see, e.g., Fig. 1), which is

not easily incorporated into a model but implies that two Kmers in

the same conservation neighborhood will often have similar

conservation patterns.

The phylogenetic background model detects
evolutionary correlations

Fig. 2 shows results for the correlations between sites in the

same 39UTR. Background models that do not account for

phylogeny fail to detect any correlations between such site pairs

above the ones seen in the control, even though a gene-specific

model helps to remove spurious positive correlations arising when

39UTRs of target genes are gained or lost entirely in certain

lineages. Only the full background model is able to reliably reject

false positive correlations due to shared ancestry and thus to

unmask evolutionary correlations between miRNA target sites that

exceed the control. Naturally, the effect is small, since conservation

of the sites themselves does not strongly exceed background and

contributions from pair correlations are diluted between all

interaction partners. However, the highly significant excess of

correlated pairs among actual miRNA seeds is thus confirmed as a

miRNA-specific effect (see Methods for details on significance

testing).

Evolutionary constraints indicate conservation of
combinatorial regulation

Collective functions in miRNA-mediated regulation are high-

lighted by the striking trend for target mRNAs to harbor more

than one site for more than one miRNA [30–32]. Considering the

often cell-type- or developmental-stage-specific expression of the

miRNAs themselves [61], this strongly suggests combinatorial

regulation. While the pronounced enrichment in the co-occur-

rence of sites for the same miRNAs compared to control sites is

well-known [32], it is not clear to what extent such sites are co-

conserved as an ensemble rather than independently.

We analyzed pairs of sites in the same 39UTR and scored the

number of significantly correlated pairs compared to those of

control seeds (Fig. 3A). If two miRNAs act at the same time,

cooperative effects of closely spaced sites (i.e., less than about

100 nt apart [9,62]), which confer stronger repression than more

distant sites, could also come under selection, although coopera-

tivity is not necessary for additional selective benefits. We find that

the correlation between close site pairs exceeds the background

only if the sites are targeted by the same miRNA family. In this

case, we also find that the average correlation strength dhij of these

correlated site pairs substantially exceeds the control, indicating

that regulatory links in the network are frequently strengthened via

site multiplicity. The majority of the excess correlations are

positive, meaning that these site pairs indeed appear simulta-

neously more often than expected.

While a seed match is the most informative criterion for a

functional miRNA target site, various other contributing factors

have been identified. Importantly, about half of Argonaute

Figure 3. Combinatorial regulation. (A) The number of correlated site pairs (top) and mean correlation strength dhij averaged over significantly
correlated pairs (bottom), for close sites (distancev100 nt) and distant sites. Control denotes pairs of control seeds with comparable conservation,
error bars (s.e.m.) from 100 bootstrap samples. Significant enrichment over control is assessed using a Poisson distribution (���: pv0:001). Significant
excess of positive or negative (hatched) correlations is tested with a Skellam distribution (zzz: pv0:001 for excess positive correlations). (B) pair
correlations with one or both sites within AGO footprints [12] have better signal-to-noise ratio (indicated on top of bars) and are more strongly
correlated. (C) network of miRNAs with correlated target sites in the same 39UTR; only the top 200 edges are displayed. Edge color indicates the
number of correlated site pairs for two miRNAs, and the node size is proportional to connectivity (total number of correlated site pairs) for each
miRNA.
doi:10.1371/journal.pcbi.1003860.g003

Evolutionary Correlations in the miRNA Regulatory Network
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footprints detected in crosslinking assays lack a canonical seed

match [12–16]. Also, they generally only cover a small fraction of

conserved seed matches found in 39UTRs, meaning that some

conserved sites could appear so for other reasons than miRNA

targeting or be used only in specific circumstances. To filter for

high-confidence sites that are likely to be functional, we used data

from Argonaute PAR-CLIP experiments [12]. As shown in

Fig. 3B, site pairs that overlap with 40 nt AGO footprints

(crosslink-centered regions) have higher signal-to-noise ratio and

are generally more strongly correlated. We note in passing that this

cross-check with orthogonal information provides further confi-

dence that our method picks up genuine signals of evolutionary

constraint.

Next, we asked whether a characterization of miRNA families

could be achieved by means of interdependencies mediated

through correlated target sites. We thus created a network of

miRNA families by linking any two miRNAs whose target sites in

the same gene are correlated. The resulting network is shown in

Fig. 3C (Table S4). Naturally, we see a tendency for miRNA

families with overlapping seeds to share more correlated site pairs

(p~3:10{4 by a Mann-Whitney U test for miRNA seeds that

share 6 nt). Also, correlated sites belong preferentially to miRNAs

with many conserved target sites, and these miRNAs thus have an

overall higher connectivity in the miRNA-miRNA correlation

network. This is especially pronounced for the miRNAs with low

serial number, i.e., those that were discovered early, presumably

because they are more highly and more ubiquitiously expressed

and have more severe phenotypic consequences. Some interesting

examples of miRNA with high connectivity include the neuronal

miRNA family miR-124 [63], which is strongly connected to the

similarly expressed miR-9, or the oncogenic miR-27 and miR-17.

However, we also find many correlations between sites for the

seemingly unrelated miR-203 and miR-144 families. On the other

hand, miRNA families with relatively isolated functions include

miR-126 and miR-451, which have distinct expression patterns

that qualify them for use as biomarkers [61].

In line with these observations, we find that our correlation

network shares significantly more edges than expected by chance

with a network linking miRNAs co-expressed across different

tissues [61] (pv10{15 by a Fisher test; Methods), meaning that co-

expressed miRNAs are more likely to have correlated target sites.

Likewise, the sites of co-expressed miRNAs are enriched for pair

correlations (p~7:10{20, Mann-Whitney U test). We also

compared our correlation network to a published miRNA network

linking miRNAs that target the same gene sets (such as protein

complexes or signaling pathways) [37]. These two networks have

more common edges than expected by chance (p~8:10{4), and

site pairs for co-targeting miRNAs are more often correlated

(p~1:8:10{7). While combinatorial regulation is already evident

from the co-occurrence of seed matches in the same 39UTR, we

also find that our correlation network is similar to the co-

expression or co-targeting networks (pv10{9 and p~0:02,

respectively) when edges are defined through the fraction of such

co-occurring pairs that are positively correlated. Similarly, the

fraction of correlated site pairs is higher for co-expressed or co-

targeting miRNAs (p~3:10{10 and p~0:014, respectively).

Finally, we repeated this analysis using only high-confidence

miRNA target sites within AGO footprints [12]. The resulting

network is highly similar to the one obtained using all correlated

site pairs (pv10{89 for edge overlap by a Fisher test), and

accordingly we also find that co-expressed or co-targeting miRNAs

are more likely to have correlated target sites (p~5:2:10{6 and

p~0:005 by Mann-Whitney U tests, respectively). Together, the

strong correspondence between experimentally and computation-

ally observed functional links between miRNAs and the selective

constraints detected by our method provide an evolutionary

perspective into the functionality of the miRNA regulatory

network.

Different strategies for coordinated regulation of protein
complexes or pathways

Due to their large numbers of targets, miRNAs have long been

considered as regulators of entire target fields, for instance by

defining tissue-specific gene expression [63] or orchestrating the

maternal-to-zygotic transition [64]. Associations between miRNA

targets and various annotated gene sets (such as signaling

pathways, protein complexes, or gene ontology categories) have

been found computationally [36,37,58], but only very few

miRNAs can be categorized uniquely in this manner [37,58],

indicating that the function of most miRNAs is less exclusive.

Conversely, it has been observed that multiple components of a

protein complex or a gene set are often coordinately targeted by

individual or co-expressed miRNAs [36,37].

If this coordinated regulation is indeed under selection we

expect it to be reflected in evolutionary correlations. Moreover, we

hypothesize that the structure of these correlations may point to an

underlying regulatory strategy. For example, simultaneous target-

ing of the same gene by multiple miRNAs could indicate a

requirement for strong repression in contrast to a fine-tuning, and

would give rise to positive correlations between sites in the same

gene. In contrast, a preference for simultaneous targeting of

multiple genes could imply a need for a global regulatory effect

and would give rise to positive correlations between sites on

different genes. Finally, excess negative correlations between sites

on different genes could result from a preference for a focused and

local regulatory logic.

We thus tested for correlations between site pairs in the 39UTRs

of genes that are members of 1878 different curated gene sets

(Table S3): protein complexes from the CORUM database, and

pathway sets from the KEGG, REACTOME, and BIOCARTA

databases. Fig. 4A shows that the regulation of protein complexes

is characterized by an excess of positive correlations between sites

in the same gene (for the same or different miRNAs), but also by

an excess of negative correlations between sites in different genes.

The signaling pathways, on the other hand, show an overall excess

of positive correlations in both cases (Fig. 4B). Hence, protein

complexes and signaling pathways show the same pattern when it

comes to correlations between site pairs targeting the same gene.

However, the correlation signatures are different for site pairs

targeting different genes: protein complexes tend to have excess

negative correlations, possibly implying that their regulation is

often implemented with a focused or local strategy. In contrast,

signaling pathways have excess positive correlations, which could

suggest a preference for simultaneous or global regulation of

multiple members in these larger gene sets.

Since these overall trends are derived by aggregating site pairs

from all gene sets, we repeated this analysis for the different gene

sets individually. Sets from the four databases were tested for an

excess of positive or negative correlations between sites in the same

and sites of different genes (Table S5). Fig. 4C shows the

distributions of the associated p-values in box plots, where data

above the dotted midline indicates a preference for positive

correlations and data below an excess of negative correlations. In

line with our previous observations, the majority of gene sets from

all categories displays an excess of positively correlated site pairs

targeting the same gene, with higher significance for the signaling

pathways probably because more genes are involved. However,

Evolutionary Correlations in the miRNA Regulatory Network
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more than half of the protein complexes show an excess of

negative correlations between sites on different genes (the median

is below the dotted line), while the majority of signaling pathways

has excess positive correlations. Trends for individual gene sets

thus confirm the global results above.

No excess correlations between target sites for the same
miRNA family

Next, we turn from a target-centric to a regulator-focused view

of the miRNA regulatory network and ask if the set of target sites

for the same miRNA family undergoes correlated evolution. This

might be helpful to address the highly debated question to what

extent miRNA-mediated regulation is influenced by competitive

inhibition between different targets of the same miRNA [27,33–

35,65]. Presumably, if this effect came under selection, it would

lead to negative correlations between target sites on competing

mRNAs. However, evolutionary signatures due to competition

would be intertwined with those from global changes in miRNA

functionality. For example, the loss of an entire miRNA family (or

changes in its seed sequence) in a certain lineage is expected to result

in global changes in selection pressure on a large set of sites of that

miRNA family, lead to an accelerated turnover of these sites [58],

and result in positive correlations between them. While we only

considered in our analysis miRNA families conserved over large

evolutionary distances, because such events clearly violate our

assumption of constant selection across vertebrates, we cannot rule

out more subtle changes in miRNA functionality (see also Ref. [58]).

To test for evolutionary signatures of global competition effects

we analyzed correlation patterns of target sites of each miRNA

family. As described above, target sites for the same miRNA in

genes that encode a single functional unit show clear enrichment

of correlations (Fig. 4). In contrast, a global analysis does not show

such an enrichment for either positive or negative correlations,

and remains inconclusive (Figure S4A). A more comprehensive

future study, perhaps focusing on evolutionary correlations

involving specific transcripts with putative sponge functionality

[34,35,66,67], could help to gain a better understanding of this

issue.

In order to test for signatures of changes in miRNA

functionality, we stratified these results by plotting the number

of positively or negatively correlated site pairs for each miRNA

against the number of species where this miRNA has an annotated

family member in mirBase. As shown in Figure S4B, there is no

detectable correlation between these two quantities. Very

ubiquitiously annotated miRNAs generally have more target sites

and hence possibly more correlated site pairs, but we do not see

the associated positive correlation in the plot. In contrast, a

negative correlation would be expected if change in miRNA

functionality occurred preferentially for the miRNA families that

are annotated in only few species. In addition, we also chose for

each miRNA a set of control seeds with equally many and

similarly conserved seed matches, tested the same number of pairs

for correlation, and scored the number of correlated pairs against

this control. Again, we do not detect any correlation between

enrichment of positive or negative pairs and the number of

annotated species (Figure S4C). We conclude that given the

limited statistical power of the available data, we cannot detect

global signatures of correlated evolution between target sites of the

same miRNA.

Discussion

Conceptual interpretation of conservation scores
Our Markov random field model for the background conser-

vation statistics, that takes phylogeny into account, does not allow

a direct interpretation of associated parameters (branch lengths) in

terms of substitution rates. However, it offers an appealing

correspondence to statistical physics, where similar models (known

as Ising models) have previously been used to describe evolution-

ary processes [68,69]. Notably, deep correspondences between

statistical physics and evolutionary theory [70–72] have recently

been uncovered. These approaches use Kimura’s theory [73] for

the fixation probability of independent rare mutations with

selective advantage DF in a population of effective size N. Then

the expected steady-state distribution of fixed genotypes is shown

to be the product of a neutral background distribution and an

exponential factor for selection and drift. These two factors

correspond to entropy and energy in statistical mechanics.

Assuming an appropriate neutral background can be estimated,

selection coefficients can be inferred by averaging over different

representative samples of a population.

Our inference of a conservation score dh is based on the same

notion of a background distribution (Kmer conservation in

Figure 4. Coordinated regulation. The number of correlated site
pairs in genes that encode for members of (A) the same protein
complex (data from the CORUM database), or (B) the same signaling
pathway (KEGG, BIOCARTA and REACTOME). Statistical significance is
tested as in Fig. 3 (���: pv0:001, ��: pv0:01, � : pv0:05; + and 2 for
excess positive and negative correlations, respectively, with the same p-
value designation). (C) Regulatory strategies for individual gene sets.
Enrichment for positive or negative correlations between sites in the
same (left panel) or in different genes (right panel) is tested and p-
values are plotted (log-scale). Significant differences between these
groups are assessed by a Mann-Whitney U test.
doi:10.1371/journal.pcbi.1003860.g004
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39UTRs) that is modulated by an exponential selection factor. Our

estimate for dh results from averaging over different species. Since

genome sequences from different species do not represent

independent samples, as they share a common evolutionary

history, we obtain a maximum-likelihood estimate for a parameter

from a set of samples by means of a phylogenetic method that

accounts for this non-independence. However, the identification of

our conservation score dh with a difference NDF in selection

between site presence and absence is strictly justified only in the

limit of uncorrelated samples.

Consistency check using orthologous sites
In the method presented here the estimate of dh for different

sites is calculated as an average over different species while

accounting for their phylogenetic relationships. This average

assumes that effective selection is constant along the phylogeny.

Since we essentially model the outcome of complex long-term

evolutionary processes including the gain and loss of entire genes,

it is also required that our results should be insensitive to the

specific choice of the reference species (just as unrooted trees are

used for time-reversible phylogenetic Markov models). As a

conceptual as well as quantitative test on these assumptions, we

used the same method on a 60-way multiple species alignment to

the mouse genome. We then compared inferred values for dh
using human or mouse as reference species for more than 80000

sites at orthologous positions in the 39UTRs of orthologous genes.

The rather strong correlation in Figure S5 (Pearson’s r2~0:56)

confirms that our estimates are generally robust. The slope

a~0:67 of the regression line is different from unity, probably

because the baseline of background conservation (dh&0) is

different in mouse, where fewer very closely related genomes

have been sequenced. With human as the reference species, dh&0
corresponds to conservation across primates. When mouse is the

reference species, this baseline corresponds to conservation across

rodents, i.e. over an almost 1.7-fold larger evolutionary distance

than what separates primates (cf. Fig. 1B).

Statistical power
The restricted available dataset of whole-genome alignments

limits the obtainable statistical power. As a result, our analysis at

this time could only identify global regulatory trends. However,

our method is easily scalable once more vertebrate genome

sequences are available, e.g., within the Genome 10K project [74].

This would significantly boost the predictive power and allow to

describe the regulatory network in more detail. As a first step in

this direction, we compared results obtained with a 46-species

alignment to human to those obtained with a 60-species alignment

to mouse (Figure S6). Naturally, the increased number of species

leads to a concomitant increase in the signal-to-noise ratio, both

for site conservation as well as for site pair correlations. However,

this increase is yet far too modest to allow prediction of individual
correlations. We caution that this currently suffers from a high

false-positive rate, and conclusions regarding specific examples

therefore warrant a more detailed analysis.

Correlation patterns and regulatory strategies
The pattern of evolutionary correlations between sites within a

functional unit may be indicative of the strategy employed in its

regulation. Our data suggest that two different strategies are used

in the regulation of protein complexes and signaling pathways.

Excess negative correlations among target sites in different genes

suggest that the control of protein complexes is focused towards a

subset of the constitutive genes. In contrast, overall positive

correlations among target sites in genes encoding a signaling

pathway indicate that inhibition of a pathway generally requires

simultaneous targeting of multiple members. Such differing trends

between regulatory strategies for protein complexes and signaling

pathways may reflect different functional necessities: due to their

more stringent stoichiometry, downregulation of a protein

complex could be achieved (perhaps even more efficiently) by

strongly targeting just a few of its members: for instance, non-

targeted and hence relatively more abundant members could be

rapidly degraded if they are not stabilized or protected by

integration into a functional complex. On the other hand, the

more complicated topology and built-in redundancy of signaling

pathways, which also typically contain a larger number of genes,

would require inhibition at multiple control points. Otherwise,

regulatory coupling between different members of a pathway

could easily compensate for the downregulation of a small number

of genes.

Direct vs. indirect correlations
We point out that our method infers evolutionary correlations

between pairs of target sites, which can be indicative of direct

physical or functional interactions, or of indirect effects involving

additional sites. Methods to disentangle the former from the latter

have become very popular for aiding computational protein

folding by inferring residue pairs in spatial proximity from direct

contributions to the observed evolutionary correlations [51,52].

Our approach can readily be extended towards this type of global

inference, but of course this would require much larger sample

sizes.

Other regulatory factors
Our method can be straighforwardly extended to model binding

sites of other regulatory factors. Interesting directions include

target sites for RNA binding proteins such as Pumilio, Dnd1 or

HuR which have been found to interact with miRNA targeting

[75–77]. These sites could thus also show evolutionary correla-

tions. Further, it has been proposed that post-transcriptional and

transcriptional regulation are integrated via specific network

motifs [78,79], such that target sites of miRNAs and transcription

factors would also undergo correlated evolution.

Conclusion
The miRNA regulatory network is generally perceived as a

densely connected web of relatively weak links with fast

evolutionary rewiring dynamics. We reasoned that collective

regulatory functions of this network constrain the rewiring

patterns, and that therefore topological and functional features

of the network can be inferred from the resulting evolutionary

correlations. By means of a systematic, quantitative, versatile, and

scalable algorithm we detect such correlations between conserva-

tion patterns of target site pairs in a specific regulatory context.

Importantly, these correlations need to be distinguished from

various confounding factors, among them the phylogenetic

correlations between different species. Our approach achieves a

reliable separation of the signal from these noise sources by means

of a generalized phylogenetic model and carefully chosen controls.

Our results put well-known ideas about the miRNA regulatory

network, such as combinatorial regulation, on a solid evolutionary

basis, and independent experimental evidence [12,61] corrobo-

rates the functional links detected computationally. Further, we

show that correlations among sites for genes in the same pathway

or the same protein complex exhibit distinct trends that could

reflect different control strategies. Our method serves as a proof of

principle for the use of evolutionary correlations to understand
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regulatory networks, since it can be adapted to many different

genomic loci. Notably, our generalized phylogenetic approach is

an efficient coarse-grained model for the evolution of larger

genomic regions, e.g., binding sites for transcription factors or

RNA binding proteins, which are poorly described by explicit

Markov models for individual nucleotide or amino acid substitu-

tions. As more genome sequences become available, we expect

that our approach becomes widely applicable and will be very

useful to address similar questions in related fields.

Methods

Sequence data and annotation
Gene models of refseq genes were downloaded from the UCSC

genome browser (hg19, April 9, 2013), as well as repeat masked

multiple species alignments (for human: 46way alignment, Jan 17,

2012; for mouse: 60way alignment, Oct 16, 2012). For each

protein-coding gene, coordinates of the longest 39UTR isoform

were extracted, and MAF blocks were extracted (‘‘stitched’’) using

GALAXY tools and custom code [80,81]. Only 7723 genes that

had an annotated 39UTR in human and zebrafish were used (see

Table S1). Orthologous sites in mouse were obtained by using

liftOver to map human 39UTR coordinates to mouse.

Sequence data for miRNAs (mature.fa) and family annotations

(miFam.dat) were downloaded from mirBase (Release 17) [82]. 77

conserved miRNA families with unique seeds were defined by

requiring an annotated family member in human and zebrafish;

seeds were extracted as the letters at position 2–8 of the mature

sequences that appeared in human and the largest number of

other species (see Table S2). Inconsistencies with the family set

used for TargetScan [57] were resolved manually.

Members of protein complexes were obtained from the

CORUM database (mips.helmholtz-muenchen.de/genre/proj/

corum), and members of signaling pathways from the KEGG

(www.genome.jp/kegg), REACTOME (www.reactome.org) and

BIOCARTA (www.biocarta.com) databases, respectively.

Site detection
39UTRs of our set of genes for the reference species were

searched for seed matches of 5 distinct types (oriented at the

TargetScan classification [31,57]: 8mer (or better), 7merA1,

7merm8, 6mer and offset 6mer in this order). Sites were classified

as conserved in other species in the multiple alignment if the seed

match was conserved identically and at orthologous positions in

the alignment (see Fig. 1A). Site positions were recorded with

respect to the 39UTR start in the reference species. For later

analysis, 7mer sites included 7merm8 and 7merA1 sites and 6mer

sites included 6mer and offset 6mer sites. The data is summarized

in a binary matrix ŝs such that ŝsis~1 if the site i is present in a

homologous 39UTR position of species s, and ŝsis~0 otherwise

(Fig. 1B). We view this matrix as a sub-matrix of a larger matrix,

s, which includes not only the observed species but also their

ancestors.

Quantifying conservation of miRNA target sites
At the core of our method is the inference of site and pair

conservation from sequence alignment data. The phylogenetic

model gives the expected joint probability P0(ŝsi)!T̂Tre{H0(si) of a

pattern of presence and absence across all vertebrate species (cf.

Fig. 1B,C). Here, e{H0(si) denotes the statistical weight of the

given conservation pattern si under the phylogenetic model

specified through H0. The partial trace T̂Tr indicates that

unobserved states at ancestral species are integrated out (such

that P0 only depends on observed values ŝsi; see Text S1).

Functional target sites are those that are specifically conserved

beyond this background. This deviation is quantified by an

additional conservation score dhi which is the same for all species

but different among target sites. The optimal estimate for this

parameter is found by maximizing L(dhi)!P(ŝsi Ddhi), the likeli-

hood of dhi given the observed data, which in a Bayesian

framework is proportional to the probability of the data given the

model with parameter dhi. Within our formalism, this probability

can be expressed as

P(ŝsi Ddhi)!T̂Tre{H0(si )zdhi

P
ssi,s , ð1Þ

where the sum in the exponent includes unobserved ancestral

nodes.

Measuring correlations
Given the conservation patterns ŝsi and ŝsj of two sites assumed

to have evolved independently with respective parameters dhi and

dhj , their joint probability factorizes as P(ŝsi)P(ŝsj)!T̂Tr e{H(si ,sj )

with H(si,sj)~H0(si)zH0(sj){dhi

P
s si,s{dhj

P
s sj,s (cf. Eq.

(1)). We now ask if these two patterns are better described by a

joint probability that contains a coupling term dhij :

P(ŝsi,ŝsj Ddhi,dhj ,dhij)!T̂Tr e{H(si ,sj )zdhij

P
ssi,ssj,s : ð2Þ

The joint likelihood L(dh’i,dh’j ,dhij)!P(ŝsi,ŝsj Ddh’i,dh’j ,dhij) is

maximized with respect to all three arguments, where the log-

likelihood ratioDij~2½lnL(dh’i,dh’j ,dhij){ ln Li(dhi){ ln Lj(dhj)�
measures the significance of the observed correlation. Note that the

old value dhi potentially contained a contribution from the coupling

term that is removed in the new value dh’i (see also Text S1). Hence,

we mostly ignore the fitted values and focus preferentially on

whether a site pair is correlated (choosing a cutoff of Dw5; see

Figure S2 for a more stringent choice), where correlations are

positive if dhijw0 and negative otherwise. To improve the signal-to-

noise ratio, we only tested pairs within much smaller subsets of sites

with biologically plausible regulatory interactions (e.g., sites in

mRNAs coding for members of the same protein complex). When

testing all pairs of sites in a subset with more than 200 sites, we

performed our analysis on 5 random subsets of 200 sites to keep the

computation time manageable.

Generation of control seeds and selection of control sites
and site pairs

To generate control seeds, we first measured the dinucleotide

frequencies and the histogram of the information content of the

seeds of conserved miRNA families. Next we generated candidates

for control seeds according to the measured dinucleotide

distribution. A candidate was kept if (1) it was distinct from the

set of seed sequences of any other vertebrate miRNA; (2) its

reverse complement did not correspond to any of about 100 in
vitro derived motifs for RNA binding proteins [83]; and (3) its

information content I~{
P

x fx ln fx with fx the frequency of

nucleotide x[fA, C, G, Ug was larger than 0.4. A candidate that

passed these tests was then added to the list of control seeds with

probability proportional the empirical distribution of information

content. We repeated this procedure to obtain a list of 5000

control seeds.

Conserved sites of real miRNAs or control seeds in Figs. 2 and

S1 are defined as sites with a log-likelihood ratio of Dw10.

Estimating the signal-to-noise ratio is done by dividing the number
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of conserved sites of a real miRNA by the average number of

conserved sites of a corresponding subset of control seeds. This

corresponding subset is obtained by selecting from the list of 5000

control seeds only those that have a similar number of seed

matches as the real miRNA (615%) in human 39UTRs [32]. This

was done separately for each site type (6mer, 7mer, 8mer).

As control for the pair correlations observed in the genes of a

functional unit, we select conservation-matched control sites in

those genes. For each miRNA that has a target site in this

functional unit we choose a set of control seeds with a similar

number of sites, and a similar distribution of conservation scores.

More specifically, for each targeting miRNA we generate the

histogram of the dhi-values of its 7mer and 8mer target sites using

10 equipopulated bins. We then select the NF~20 control seeds

that have the most similar histogram for target sites in these genes

(using the relative squared difference of the bin counts), after

removing control sites that overlap any real site. The ordering of

these control seeds is randomized to avoid creating a hierarchy in

the sets of control sites. All sites associated with the selected control

seeds are then used for pair correlation analysis.

In a second step, we use a biased bootstrap approach to make

the ensemble of control site pairs even more similar to the real site

pairs. For the sites in each category (e.g., all site pairs, or site pairs

for the same miRNA), we collect the mean values d�hh~(dhiz
dhj)=2 of the sites in each pair, lumping together pairs from all the

NF sets of control sites. We then create a histogram of d�hh-values

for pairs in each category using 10 equipopulated bins. Pairs of

control sites are re-sampled into NS~100 bootstrap samples with

a probability that is proportional to the ratio of bin counts of the

real vs. control site pairs. Because this does not always give strictly

equal numbers of real and control site pairs, we re-scale the

number of significant control site pairs according to the size of the

bootstrap samples. Figure S7 shows that this method gives very

similar distributions of average site pair conservation, while the

pairs with Dw5 are shifted towards stronger conservation. Here

we also compare to an unbiased bootstrap using a uniform

probability in the re-sampling step.

In the cases where there are more than 200 sites in the set under

consideration, we randomly choose 5 sets of 200 sites each,

because calculating dhij for all ,20000 pairs is computationally

very expensive. The analysis is done for each set independently,

and results are averaged at the end. All p-values are reported as

the median over the 5 sets.

Significance estimation
We observed that the statistics of significantly correlated site

pairs (with D exceeding the cutoff) for the control seeds is

compatible with a Poisson distribution, because the variance over

the bootstrap samples is strongly correlated and scales linearly with

the mean (see Figure S8A). Hence, we used the Poisson

distribution to test the significance of an enrichment of correlated

pairs relative to the mean of the bootstrap samples in the control.

For detecting an excess of positive or negative correlations, we

found that the numbers of significantly correlated pairs with

positive or negative correlations, respectively, were entirely

uncorrelated when comparing across bootstrap samples (Figure

S8B). Therefore, we treated these values as independent Poisson

variables, and used the Skellam distribution for their difference to

test for an excess of positive or negative correlations compared to

control.

For comparing the miRNA-miRNA correlation network of

Fig. 3C to the co-expression or co-targeting network, we extracted

expression information for members of the miRNA families used

here from 172 different RNA libraries from major organs and cell

types summarized on microRNA.org (based on the expression

atlas of Ref. [61]). Read counts for all family members were

summed up, and overlapping expression between miRNA families

was quantified by a normalized dot product of the expression

values across the different tissues. For our correlation network, we

define an edge between miRNA families if it is in the top 50% of

edges. Similarly, we calculate the fraction of correlated edges by

dividing by the number of site pairs tested, and define edges in this

network from the top 50% of connections. For the co-expression

network, we use a corresponding cutoff on the expression overlap

between two miRNAs. Other percentile cutoffs to define edges

give largely similar results. The co-targeting network was extracted

from Ref. [78] using their significance cutoffs to define edges. We

then test network similarity by means of Fisher’s exact test for the

number of shared vs. distinct edges, and enrichment for

correlations for target sites of co-expressed or co-targeting

miRNAs by means of a Mann-Whitney U test.

Supporting Information

Figure S1 Site conservation statistics. (A) Histogram of

inferred values dh for 6mer, 7mer, and 8mer seed matches with

dhiw0 (solid) vs. control seeds (dashed). (B) Estimated signal-to-

noise ratio (compare shaded area in A) at a log-likelihood ratio

D~10.

(PDF)

Figure S2 Cutoffs on D. Results as in Fig. 3A (panel (A)),
Fig. 4A (panel (B)) and Fig. 4B (panel (C)), but for a cutoff Dw10
to detect significantly correlated pairs. While the number of

correlated pairs decreases, and negative correlations are more

frequent, none of our conclusions is changed, demonstrating the

robustness of our results to the arbitrary choice of the cutoff value.

(PDF)

Figure S3 Correlations between control seeds. Even with

the full phylogenetic Kmer background model, a small fraction of

control seed pairs in the same 39UTR shows distance-dependent,

mostly positive, correlations.

(PDF)

Figure S4 Pairs for the same miRNA. (A) shows that

correlations between site pairs for the same miRNA (but mostly in

different 39UTRs) are not found to exceed the control. However,

this analysis can be used to test for signatures of changes in

miRNA functionality. (B) number of positively (+) and negatively

(6) correlated pairs for each miRNA as a function of the number

of species where this miRNA is annotated. There is no significant

Spearman correlation as indicated below the plot. (C) Scoring

enrichment in the number of positively or negatively correlated

pairs relative to matched control seeds gives similar results.

(PDF)

Figure S5 Conservation of orthologous sites. Comparison

between inferred values for roughly 80000 orthologous sites using

human or mouse as reference species shown as density plot. Solid

line indicates regression (Pearson r2~0:56, slope a~0:67), dashed

line diagonal.

(PDF)

Figure S6 Analysis of statistical power. To assess statistical

power of our method, we compare results for a 46-species

alignment to human to results using a 60-species alignment to

mouse. (A) shows that significantly conserved 7mer and 8mer sites

(at a log-likelihood-ratio of D~10, compare Fig. 2C(2)) for

miRNA seed matches (blue) and control seeds (white). Signal-to-

noise ratio is indicated on top of the bars and increases by 14%
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when the number of species increases by 30%. (B) Significantly

correlated site pairs at a log-likelihood cutoff of D~5 as in

Fig. 2C(5). Signal-to-noise ratio increases by 6% when increasing

the number of species.

(PDF)

Figure S7 Control seeds. Generating pairs of control seed

matches entails selecting control seeds with similar conservation as

miRNA seeds (here for the data shown in Fig. 2C). (A) We

compare the histograms for the average conservation (dhizdhj)=2

of each pair of control seeds (dotted) against pairs of actual

miRNA seeds (solid), and use a biased bootstrap to enrich for pairs

with similar conservation (dashed, on top of solid). Correlated

pairs (red) are on average more conserved than this ensemble. We

also checked that the histograms for the difference in conservation

Ddhi{dhj D=2 (B), and for the site distance (C) are matched.

(PDF)

Figure S8 Statistics of correlated site pair occurrence.
(A) the number of correlated site pairs for control seeds in the same

39UTR behaves like a Poisson variable where the mean equals the

variance (each dot is a 39UTR; linear regression on log values). (B)
the mean numbers of positively or negatively correlated site pairs

per 39UTR are not correlated (each dot is one bootstrap sample).

(PDF)
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