Temporal and Spatial Expression Patterns of Bone Morphogenetic Protein 3 in Developing Zebrafish

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation

Published Version
doi:10.2174/1874312901408010069

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:13347483

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Temporal and Spatial Expression Patterns of Bone Morphogenetic Protein 3 in Developing Zebrafish

Midori Ito-Amani, Yukio Nakamura, Masaori Hayashi, Ramida Watanapokasin and Hiroyuki Kato

1 Department of Orthopaedic Surgery, Shinshu University School of Medicine, Asahi 3-1-1, Matsumoto 390-8621, Japan
2 Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA
3 Department of Biochemistry, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand

Abstract: Bone morphogenetic proteins (BMPs) are important elements in bone biology. We herein report the expression profiles of zebrafish bmp3 (zbmp3) as demonstrated by real-time PCR and in situ hybridization. The expression of zbmp3 was highly detectable by real-time PCR from 1 day post-fertilization (1 dpf) to 2 weeks post-fertilization (2 wpf) and peaked at 1 wpf. For in situ hybridization experiments, zbmp3 was expressed in the otic vesicle at 1 dpf, 2 dpf, 3 dpf, and 5 dpf. It was also expressed in the pharyngeal arches, including the opercle, branchiostegal ray, and pectoral fins, at 2 dpf. Our results suggest that zbmp3 may play an important role in the skeletal biology of developing zebrafish.

Keywords: Bmp3, Expression patterns, Zebrafish.

INTRODUCTION

Bone morphogenetic proteins (BMPs) are members of the transforming growth factor-beta (TGF-beta) superfamily. Although most BMPs are positive regulators of bone biology, BMP3 is an antagonist of osteogenic BMPs [1]. The BMP3 gene is highly conserved across species, suggesting that it is evolutionarily important for development in mammals [2]. A previous study uncovered that murine Bmp3 was expressed in the cartilaginous cells of otic capsule sections using in situ hybridization [3]. However, as there have been few reports on the temporal and spatial expression profiles of Bmp3 in whole animals, we examined the expression patterns of bmp3 in developing vertebrates using a zebrafish model system.

MATERIALS AND METHODS

Extraction of Total RNA from Zebrafish Embryos and Cloning of Zebrafish bmp3 (zbmp3)

Total RNA from zebrafish embryos and larvae was extracted at selected time points using an Isogen extraction kit (Wako Co., Japan). Full-length zbmp3 (GenBank accession no. NM_001077765) was cloned into a pCR-Blunt2-TOPO vector (Invitrogen, Japan) between EcoRI sites. The primers used to amplify the zbmp3 full-length cDNA were 5'-ATGGATCGCTGTAGCCCTGTTCCTCC-3' (forward) and 5'-TTACGGCAGGCGGAGATTAC-3' (reverse). The PCR product size was 1359 bp.

Real-Time Polymerase Chain Reaction (PCR)

The primers used to amplify the zbmp3 cDNA for real-time PCR experiments were 5'-AGGATCCATTTGGGAAACCAT-3' (forward) and 5'-TGGCGCTTGTTTGGAAGA-3' (reverse) The PCR product size was 130 bp. Real-time PCR using Sso Advanced SYBR Green supermix (BioRad, Japan) with 1-cell stage embryos (1 cell) and at 3 hours post-fertilization (hpf), 8-9 hpf, 1 day post-fertilization (dpf), 2 dpf, 3 dpf, 1 week post-fertilization (wpf), and 2 wpf were performed as described previously [4].

In Situ Hybridization

In situ hybridization was performed as earlier described [5] on 1, 2, 3, and 5 dpf embryos and larvae using full-length zbmp3. Digoxigenin-labeled RNA probes were generated using an Sp6 labeling kit (Roche, USA) according to the manufacturer’s instructions. Signals were detected with an ALP-conjugated anti-digoxigenin antibody (Roche) and visualized using 4-nitro blue tetrazolium and 5-bromo-4-chloro-3-indoly-phosphate. The reaction was stopped by replacing the substrate with several rinses of PBT (PBS plus 0.1% Tween 20). Embryos were stored in the dark at 4°C in PBS containing 0.02% sodium azide until they were photographed.

RESULTS

As shown in Fig. 1, the real-time PCR expression level of zbmp3 was very low at 1 cell, 3 hpf, and 8-9 hpf time points. However, zbmp3 expression was dramatically increased from 1 dpf to 2 wpf and peaked at 1 wpf.
For *in situ* hybridization experiments, *zbmp3* was not detectable before 1 dpf, but was specifically expressed in the otic vesicle at 1 dpf (Fig. 2a; black arrows), 2 dpf (Fig. 2b, c; black arrows), 3 dpf (Fig. 2d, e; black arrows), and 5 dpf (Fig. 2f, g; black arrows). In addition, as Cheah *et al.* have reported previously, *zbmp3* was also expressed in the opercle (op) and branchiostegal ray (bsr) (Fig. 2c; black arrowhead) and pectoral fins (Fig. 2c; white arrowhead) at 2 dpf. Each experiment was repeated at least twice. A sense (forward) probe of *zbmp3* was used as a control, for which no specific signal was detected.

DISCUSSION

We observed increased and localized expression of *zbmp3* at specific time points in the present zebrafish development model study. Our results suggest that *bmp3* may be a key player in skeletogenesis in vertebrates.

Schoenebeck *et al.* have reported that *zbmp3* was expressed in the pharyngeal arches and pectoral fins of zebrafish at 48-72 hpf. However, *zbmp3* expression in the otic vesicle was not remarkable in their study as it was in ours (Fig. 2a-g) [6]. The reason for this disparity is not clear.

![Fig. (1). Expression study of *zbmp3* by real-time PCR using samples from 1 cell, 3 hpf, 8-9 hpf, 1 dpf, 2 dpf, 3 dpf, 1 wpf, and 2 wpf time points.](image)

![Fig. (2). *In situ* hybridization of *zbmp3* in developing zebrafish. (a) Lateral view of a 1 dpf zebrafish. Arrow indicates otic vesicle. (b) Dorsal view of a 2 dpf zebrafish. Arrows indicate otic vesicles and arrowheads show pectoral fins. (c) Lateral view of a 2 dpf zebrafish. Arrow indicates otic vesicle, black arrowhead shows opercle and branchiostegal ray, and white arrowhead shows pectoral fin. (d) Lateral view of a 3 dpf zebrafish. Arrow indicates otic vesicle. (e) Dorsal view of a 3 dpf zebrafish. Arrows indicate otic vesicles. (f) Lateral view of a 5 dpf zebrafish. Arrow indicates otic vesicle. (g) Dorsal view of a 5 dpf zebrafish. Arrows indicate otic vesicles.](image)
Temporal and Spatial Expression Patterns of Bone Morphogenetic Protein 3

The vertebrate inner ear has two major functions: 1) maintenance of body balance and 2) auditory perception. The otic vesicle plays a role in the development of ear interaction with the hindbrain [7]. Since zbmp3 was strongly expressed in the otic vesicle in zebrafish, it may influence the development of the zebrafish ear.

Runx2 is a transcriptional factor required for osteoblastic differentiation and the development of hypertrophic chondrocytes. In zebrafish, there are 2 orthologs of Runx2, runx2a and runx2b [8]. These genes were found to be expressed in the developing zebrafish skeleton, including the pharyngeal arch, op, and pectoral fins, which coincided with zbmp3 expression patterns in the present study. These results suggest a functional overlap among runx2a, runx2b, and bmp3 in zebrafish.

To our knowledge, there have been no reports on the relationship between BMP3 and rheumatological diseases. However, other BMP family members, such as BMP4, BMP6, and Runx2, are possible biomarkers of bone metabolism in several forms of arthritis since their expression patterns are different in OA and RA groups from those in controls [9]. Based on our findings, further studies are warranted on the role of BMP3 in patients with rheumatic disease.

CONCLUSION

Our results suggest that zbmp3 plays a role in the arch skeletal system in developing zebrafish. Functional analyses using genetically modified zebrafish are needed to better understand the in vivo biological functions of zbmp3. The relationship of BMP3 with OA and RA may also require further analysis.

AUTHOR CONTRIBUTIONS

Y.N. directed this study; M.I.A. and M.M. performed experiments and drafted the article; X.H., M.H., M.M., R.W. and H.K. contributed to conception and design, interpreted the data, and revised the article. All authors approved the final version.

CONFLICT OF INTEREST

The authors confirm that this article content has no conflict of interest.

ACKNOWLEDGEMENTS

Declared none.

REFERENCES

