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The stage of evolution is the population of reproducing individuals. The structure of the population is
known to affect the dynamics and outcome of evolutionary processes, but analytical results for generic
random structures have been lacking. The most general result so far, the isothermal theorem, assumes the
propensity for change in each position is exactly the same, but realistic biological structures are always
subject to variation and noise. We consider a finite population under constant selection whose structure is
given by a variety of weighted, directed, random graphs; vertices represent individuals and edges
interactions between individuals. By establishing a robustness result for the isothermal theorem and using
large deviation estimates to understand the typical structure of random graphs, we prove that for a
generalization of the Erdős-Rényi model, the fixation probability of an invading mutant is approximately
the same as that of a mutant of equal fitness in a well-mixed population with high probability. Simulations of
perturbed lattices, small-world networks, and scale-free networks behave similarly. We conjecture that the
fixation probability in a well-mixed population, (1 2 r21)/(1 2 r2n), is universal: for many random graph
models, the fixation probability approaches the above function uniformly as the graphs become large.

I
n physics, a system exhibits universality when its macroscopic behavior is independent of the details of its
microscopic interactions1. Many physical models are conjectured as universal and long programs have been
carried out to establish this mathematically2,3. However such universality conjectures have been lacking in

biological models.
It is well known that population structure can affect the behavior of evolutionary processes under both constant

selection4–10, on which we focus here, and frequency dependent selection11–23. However, so far deterministic and
highly organized population structures have received the most attention24–28; while some populations are accur-
ately modeled in this way29–33, often a random structure is far more appropriate to describe the irregularity of the
real world34–37. Random population structures have been considered numerically, but analytical results have been
lacking7,13,38.

The Moran process considers a population of n individuals, each of which is either wild-type or mutant with
constant fitness 1 or r respectively, undergoing reproduction and death39. At each discrete time step an individual
is chosen randomly for reproduction proportional to its fitness; another individual is chosen uniformly at random
for death and is replaced by a new individual of the same phenotype as the reproducing individual. In the long run,
the process has only two possible outcomes: the mutant fixes and the wild-type dies out or the reverse. When a
single mutant is introduced randomly into a homogenous, wild-type population, we call the probability of the first
eventuality the fixation probability.

Fixation probabilities are of fundamental interest in evolutionary dynamics40. For a well-mixed population as
described above, the fixation probability, denoted

rMn
rð Þ~ 1{r{1

1{r{n
, ð1Þ

depends on r and n41,42. Fixation probabilities also depend on population structure43,44, which is modeled by
running the process on a graph (a collection of n vertices with edges between them) where vertices represent
individuals and edges competition between individuals. Population structure forces reproducing individuals to
replace only individuals with whom they are in competition, as described by the graph, and thus death is no longer
uniformly at random but among only the reproducing individual’s neighbors. See the SI for details.

With this enrichment of the model, the effects of population structure can be understood. Simple one-rooted
population structures are able to suppress selection and reduce evolution to a standstill, while intricate, star-like
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structures can amplify the intensity of selection to all but guarantee
the fixation of mutants with arbitrarily slight fitness advantages7. The
former has been proposed as a model for understanding the necessity
of hierarchical lineages of cells to reduce the likelihood of cancer
initiation45. Some population structures have fixation probabilities
which are given exactly by rMn

rð Þ and a fundamental result, called
the isothermal theorem (stated precisely in Theorem SI.1.1), gives
conditions for this7. As a special case of these conditions are all
symmetric population structures or graphs with undirected edges.
More generally, a graph is called isothermal if the sums of the out-
going and ingoing edge weights are the same for all subsets of the
graph’s vertices (or equivalently if a graph’s weighted adjacency
matrix is doubly stochastic). This is our first hint of universality
but it was not the first time certain quantities were observed as
independent of population structure. Maruyama introduced geo-
graphical population structure by separating reproduction, which
occurs within sub-populations, and migration, which occurs
between sub-populations, and found that the fixation probability
was the same as that of a well-mixed population structure46. In the
framework of evolutionary graph theory, Maruyama’s model would
correspond to a symmetric graph. In this sense his finding is a special
case of the isothermal theorem.

However, the assumptions of the isothermal theorem sit on a
knife edge—when any small perturbation is made to the graph,
the assumptions no longer hold and the original isothermal the-
orem is silent. In particular, it cannot be applied to directed,
random graphs. We address these shortcomings in Section SI.1,
where we strengthen the forward direction of the isothermal

theorem by proving a deterministic statement: we weaken the
theorem’s assumptions to be only approximately true for a graph
G and show that the conclusion is still approximately true, that is,
the fixation probability of a general graph rGn

rð Þ is approxi-
mately equal to rMn

rð Þ. We call this the robust isothermal the-
orem (RIT).

Theorem (Robust isothermal theorem). Fix 0 # e , 1. Let Gn 5

(Vn, Wn ; [wij]) be a connected graph. If for all nonempty S Vn we
have

wO Sð Þ
wI Sð Þ{1

����
����ƒe, ð2Þ

where wO Sð Þ : ~
X

i[S

X
j=[S

wij and wI Sð Þ : ~
X

i=[S

X
j[S

wij are

the sums of the outgoing and ingoing edges respectively, then

sup
rw0

rMn
rð Þ{rGn

rð Þ
�� ��ƒe: ð3Þ

The proof begins by ignoring spacial structure and considering only
the number of mutants. Since rGn

rð Þ depends only on the ratio of the
probability of increasing to the probability of decreasing the number
of mutants for each subset, a bound on these ratios and a coupling
argument establish that rGn

rð Þ is close to rMn
. Finally, the mean value

theorem and smoothness properties of rMn
simplify the bound and

yield the result. We remark that assumption (2) is necessary in the
sense that there are graphs whose fixation probability is far from
rMn

rð Þ but whose weighted adjacency matrix is arbitrarily close to
being doubly stochastic (see (SI.1.10) for an example).

Figure 1 | The robust isothermal theorem guarantees that the fixation probability of each approximately isothermal graph lies in the green region. Each

edge of the 4 3 4, 2-dimensional torus is perturbed by a uniform random value from [2d/2, d/2] where the total of the perturbations for one vertex are

conditioned to sum to 0. As the perturbation strength decreases through d g [0.4, 0] and the graph approaches isothermality, the bound improves and

converges uniformly to the solid black line, rMn
. The figures of square lattices show how random perturbations shift the graphs from isothermality,

as the perturbation strength decreases from left to right; we draw each graph with the directed edges’ thickness proportional to their weight and the

vertices’ color given by the sum of the weights of edges pointing to them. In the bottom row, empirical estimates of the fixation probabilities (small circles)

are plotted against the values predicted by rMn
(solid lines) and, despite the perturbations to the graphs, their fixation probabilities lie close to rMn

.
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The proof verifies something essential for the process: as in phys-
ics, our laws should not depend on arbitrarily small quantities nor
make disparate predictions for small perturbations of a system. The
RIT generalizes the isothermal theorem in this sense; if an isothermal
graph is perturbed with strength e such that the assumption (2)
holds, then its fixation probability is close to that of the original graph
(Figure 1). There are many ways of rigorously perturbing a graph, so
we do not make a precise definition of perturbation here. All we claim
is that any perturbation which changes the assumptions of the RIT

continuously can be controlled. The RIT has many useful applications
and is our first ingredient to universality.

Robustness is essential for the analysis of random graphs. We say a
random graph model exhibits universal Moran-type behavior if its
fixation probability behaves like rMn

rð Þ as the graph becomes large.
That is, as the graphs become large their macroscopic properties,
fixation probabilities, are independent of their microscopic struc-
tures, the distributions of individual edges. Mathematically, we ask
that the random variable sup rw0 rGn

rð Þ{rMn
rð Þ

�� �� converges in
probability to 0, as n goes to infinity. For finite values of n, we can
require finer control over this convergence such that

P sup
rw0

rGn
rð Þ{rM n,rð Þ

�� ��ƒd nð Þ
� �

~1{e nð Þ, ð4Þ

where the functions d(n) 5 o(1) and e(n) 5 o(1) can be specified. For
the generalized Erdős-Rényi model34 where edges are produced inde-
pendently with fixed probability p (see Definitions SI.2.4 and SI.4.1)
we prove universality. In Sections SI.2 and SI.4 we analyze the typical
behavior of random graphs and show that with very high probability
they satisfy the assumptions of the RIT, giving us the paper’s main
result:

Theorem. Let Gnð Þn§1 be a family of random graphs where the
directed edge weights are chosen independently according to some
suitable distribution (the outgoing edges may be normalized to sum
to 1 or not). Then there is a constant C . 0, not dependent on n, such
that the fixation probability of a randomly placed mutant of fitness r
. 0 satisfies

rGn
rð Þ{rMn

rð Þ
�� ��ƒ C log nð ÞCzCjffiffiffi

n
p

uniformly in r with probability greater than 1 2 exp(2n(log n)11j),
for some positive constants j and n.

The proof applies the RIT to random graphs, showing that with
high probability they satisfy assumption (2) with e approximately
order 1

� ffiffiffi
n
p

. This relies on two main results. Using large deviation
estimates, we show that the sum of the ingoing edge weights to each
vertex (its temperature) are within approximately order 1

� ffiffiffi
n
p

of 1

Figure 2 | The fixation probability of the generalized Erdős-Rényi random graphs converge uniformly to rMn
. The three columns from left to

right correspond to Erdős-Rényi random graphs with decreasing connection probabilities p 5 1, p 5 0.6, and p 5 0.3. The representative random graphs

in the top row show both the increasing sparsity and disorder as p decreases and the elimination of degeneracy (rootedness and disconnectedness) and the

increasing uniformity of temperature as the graph sizes increase. In the middle row, empirical estimates of the fixation probabilities (small circles) are

plotted against the values predicted by rMn
(solid lines). When p 5 1 the graphs are isothermal and thus correspond exactly to their predicted values

which can be seen even more clearly in the bottom row, where the difference of the empirical fixation probabilities and their predicted values display as

stochastic fluctuations about 0. For p 5 0.6 and p 5 0.3, the convergence of the empirical values to rMn
as the graphs increase in size is apparent. Smaller

graphs are typically suppressors as illustrated by the clear sign change at r 5 1 in the difference of empirical and predicted values, whereas larger graphs

fluctuate about 0. This phenomenon is due not only to the higher probability of obtaining degenerate graphs—simulations produced strongly connected,

small suppressors. Moreover, the convergence is patently slower in n for smaller values of p.

www.nature.com/scientificreports
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with high probability (Lemma SI.2.7) and that sum of the outgoing
(and ingoing) edge weights of each subset are at least the same order
as the size of the subset or its complement for some uniform constant
with high probability (Lemma SI.2.8).

This theorem isolates the typical behavior of the Moran process on
these random structures. It can be interpreted as stating that random
processes generating population structures where vertices and edges
are treated independently and interchangeably will almost always
produce graphs with Moran-type behavior. While such processes
can generate graphs which do not have Moran-type behavior (for
example one-rooted or disconnected graphs), these graphs are gen-
erated with very low probability as the size of the graphs becomes
large. Moreover, it improves upon diffusion approximation methods
by explicitly controlling the error rates47.

The result holds with high probability but sometimes this prob-
ability becomes close to 1 only as the graphs become large. The
necessary graph size depends on the distribution from which the
random graph’s edge weights are drawn. In particular, it depends
inversely on the parameter p from the generalized Erdős-Rényi
model, which is the probability that there is an edge of some weight
between two directed vertices. The smaller this parameter the more
disordered and sparse the random graphs and the less uniform their
vertices’ temperatures, which all tend to decrease the control over the
graph’s closeness to isothermality, (2). Regardless, our choice of the
parameters j and n guarantees that the bound (SI.2.54) decays to 0
and that it holds with probability approaching 1 as n becomes large.

We investigated the issues of convergence for small values of n
numerically to illustrate our analytical result (Figure 2). For Erdős-
Rényi random graphs (see Section SI.2 with the distribution chosen as
Bernoulli), we generated 10 random graphs according to the proced-
ure outlined in Definition SI.2.4 for fixed values of 0 , p , 1. On each
graph the Moran process was simulated 104 times for various values
of 0 # r # 10 to give the empirical fixation probability, that is, the
proportion of times that the mutant fixed in the simulation.
Degenerate graphs were not excluded from the simulations but
rather than estimating their fixation probabilities, we calculated
them exactly, so that 1-rooted graphs were given fixation probability
1/n and many-rooted and disconnected graphs were given fixation

probability 0. Trivially, such 1-rooted graphs are suppressors—that
is, the fixation probability of a mutant of fitness 0 , r , 1 (and a
mutant of fitness r . 1) is greater than (and less than respectively) the
mutant’s fixation probability in a well-mixed population—but sup-
pressing graphs without these degenerate properties were also
observed. As the graphs become larger their fixation probabilities
match rMn

closely and degeneracy becomes highly improbable as
predicted by our result.

In addition to the generalized Erdős-Rényi random graphs, we
also considered the Watts-Strogatz model and the Barabási-Albert
model. The Watts-Strogatz model35 produces random graphs with
small-world properties, that is, high clustering and short average
path length. The model has three inputs: a parameter 0 # b # 1,
the graph size n, and the mean degree 2k. Typically, the model
produces random, undirected graphs, thus, to escape isothermality,
it was modified slightly to produce weighted, directed graphs. We do
this in the most natural way: we start with a directed 2k-regular graph
where each node is connected to its 2k nearest neighbors if the graph
is arranged on a cycle (Figure 3), and then we rewire each edge to a
new vertex chosen uniformly at random with probability b indepen-
dently. Since the number of edges leaving each vertex is fixed at 2k,
the weight of each edge is exactly 1/(2k). Potentially, there can be
multiple edges for one vertex to another, which we account for by
summing the edge weights. The model may be viewed as an inter-
polation between an isothermal, 2k-regular graph and an Erdős-
Rényi graph by the parameter b.

Moran-type behavior was observed in the Watts-Strogatz model
for all values of the input parameters we simulated (Figure 3). While
mathematical proof of universality in the Watts-Strogatz model is
still needed, there is hope that the techniques of this paper may be
applied in this situation as the in-degrees of the vertices are concen-
trated around 1 for graphs with large degree 2k.

Unlike the Erdős-Rényi and Watts-Strogatz models, scale-free
networks are random graphs where the in-degrees of the vertices
follow a power law. Normally, scale-free networks are undirected
and unweighted. To produce weighted, directed scale-free networks,
we modified the preferential attachment algorithm of Barabási-
Albert48: we start with a connected cycle and then add directed edges

Figure 3 | Small-world networks also show universal behavior. Representative Watts-Strogatz random graphs display increasing disorder as the rewiring

probability b increases from 0 to 1, which may be viewed as an interpolation between an isothermal graph and an Erdős-Rényi random graph. For all

values of b the correspondence to rMn
is striking but mathematical proof is lacking.

www.nature.com/scientificreports
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of equal weight in sequence to a randomly selected vertex where the
destination of each edge is selected proportional to the in-degree of
the current vertices.

Surprisingly, even though there is a sense in which vertices are not
treated interchangeably in the preferential attachment algorithm,
Moran-type behavior was observed in all simulations (Figure 4).
This is in contrast with the results in Lieberman et al. where they
observed some amplification in scale-free networks7. The scale-free
property is emergent and only becomes apparent as the graph
becomes large, thus this increases the running time of the Monte
Carlo method for estimating the fixation probability. More simula-
tions are required here for conclusive findings, and again, there are
currently no mathematical results.

In summary, we have generalized the isothermal theorem to make
it biologically realistic and to increase its technical applicability. The
conclusion of the robust isothermal theorem now depends continu-
ously on its assumptions. With this new tool, we have proved ana-
lytically that fixation probabilities in a generalized Erdős-Rényi
model converge uniformly to the fixation probability of a well-mixed
population. In our proof, we identify the reason for this convergence
and bound its rate. Thus, we confirm observations from many simu-
lations and give a method of approximation with a specified error.
Furthermore, we conjecture that many random graph models exhibit
this universal behavior. However, it is easy to construct simple exam-
ples of random graphs which do not, thus it still remains to deter-

mine the necessary assumptions on the random graph model for it to
exhibit universal behavior.
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