Two-photon fluorescence imaging of intracellular hydrogen peroxide with chemoselective fluorescent probes

Hengchang Guo
Hossein Aleyasin
Scott S. Howard
Bryan C. Dickinson
Vivian S. Lin
Renee E. Haskew-Layton
Chris Xu
Yu Chen
Rajiv R. Ratan
Two-photon fluorescence imaging of intracellular hydrogen peroxide with chemoselective fluorescent probes

Abstract. We present the application of two-photon fluorescence (TPF) imaging to monitor intracellular hydrogen peroxide (H$_{2}$O$_{2}$) production in brain cells. For selective imaging of H$_{2}$O$_{2}$ over other reactive oxygen species, we employed small-molecule fluorescent probes that utilize a chemoselective boronate deprotection mechanism. Peroxyfluor-6 acetoxymethyl ester detects global cellular H$_{2}$O$_{2}$ and mitochondria peroxo yellow 1 detects mitochondrial H$_{2}$O$_{2}$. Two-photon absorption cross sections for these H$_{2}$O$_{2}$ probes are measured with a mode-locked Ti:sapphire laser in the wavelength range of 720 to 1040 nm. TPF imaging is demonstrated in the HT22 cell line to monitor both cytoplasmic H$_{2}$O$_{2}$ and localized H$_{2}$O$_{2}$ production in mitochondria. Endogenous cytoplasmic H$_{2}$O$_{2}$ production is detected with TPF imaging in rat astrocytes modified with D-amino acid oxidase. The TPF H$_{2}$O$_{2}$ imaging demonstrated that these chemoselective probes are powerful tools for the detection of intracellular H$_{2}$O$_{2}$. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JBO.18.10.106002]

Keywords: two-photon fluorescence imaging; hydrogen peroxide; reactive oxygen species; fluorescent probe; oxidative stress; molecular imaging.

Paper 130259R received Apr. 17, 2013; revised manuscript received Aug. 16, 2013; accepted for publication Aug. 28, 2013; published online Oct. 1, 2013.

1 Introduction

Hydrogen peroxide (H$_{2}$O$_{2}$), a common reactive oxygen species (ROS) found in biological systems, is now recognized as an intracellular second messenger for cellular signaling that exerts diverse physiological and pathological effects. The aberrant production or accumulation of H$_{2}$O$_{2}$ within cellular mitochondria over time due to oxidative stress or genetic mutation is connected to serious pathological conditions including cancer, diabetes, and neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and Huntington’s diseases, as well as stroke. In addition, H$_{2}$O$_{2}$ is involved in therapeutic processes such as wound healing, stem cell proliferation, and an adaptive response in astrocytes leading to neuronal protection.

A substantial challenge in elucidating the diverse roles of H$_{2}$O$_{2}$ in complex biological environments is the lack of methods to determine the spatial and temporal dynamics of this reactive oxygen metabolite in living systems. For the detection of ROS production in vitro, several fluorescent probes have been developed based on small molecules, fluorescent proteins, and nanoparticles. Among these technologies, small molecule probes offer an attractive approach to ROS detection due to their general compatibility with an array of biological systems without external activating enzymes and genetic manipulation. However, traditional small molecule probes such as dichlorofluorescein (DCF) derivatives detect multiple types of reactive small molecules, including other ROS such as superoxide radical (O$_{2}^{-}$), hydroperoxyl radical (HO$_{2}^{-}$), singlet oxygen (O$_{2}$), peroxyl radical (RO$_{2}^{-}$), and reactive nitrogen species; they are not specific for H$_{2}$O$_{2}$. In addition, DCF derivatives cannot be targeted to specific intracellular compartments. To overcome the disadvantages of existing methods for detecting ROS, new chemoselective fluorescent indicators featuring a boronate-based molecular detection mechanism have been developed, which provide improved selectivity for H$_{2}$O$_{2}$ over related ROS, particularly superoxide, nitric oxide, and hydroxyl radical. These probes include peroxyfluor-2 (PF2), peroxy yellow 1 (PY1), peroxy orange 1 (PO1), peroxyfluor-6 acetoxymethyl ester (PF6-AM), mitochondria peroxo yellow 1 (MitoPY1), etc.

However, conventional confocal microscopy has limitations for use in real time in vivo H$_{2}$O$_{2}$ imaging, including photodamage, photobleaching, and limited imaging depth. Furthermore, prolonged visible light exposure can result in artificial ROS generation and signal amplification. Therefore, two-photon imaging of H$_{2}$O$_{2}$ offers an attractive alternative to overcome many of these limitations. We report two-photon fluorescence (TPF) imaging for the detection of intracellular cytoplasmic...
and mitochondrial H$_2$O$_2$ production in live cells using a variety of next-generation boronate-based probes such as PF6-AM and MitoPY1. Two-photon absorption (TPA) cross sections of these probes were measured with a Ti:sapphire laser by comparison with the TPA cross section of fluorescein. To our knowledge, this is the first two-photon characterization of these particular chemoselective probes and provides a clear example for the detection of intracellular H$_2$O$_2$ production with TPF imaging.

2 Materials and Methods

2.1 Chemoselective Fluorescent Probes

We characterized a series of previously reported chemoselective probes with three useful colors: green (PF2 and PF6-AM), yellow (PY1 and MitoPY1), and orange (PO1). Figure 1 illustrates reaction of H$_2$O$_2$ with these probes, which are based on fluorescein/rhodamine derivatives. The aryl boronate to phenol chemical switch is utilized for selective detection of H$_2$O$_2$ over other ROS. Upon reaction with H$_2$O$_2$, a highly fluorescent product is released and can be assayed by fluorescence imaging. To improve the cell membrane permeability and trap the probe in the cytosol, PF6-AM was modified from PF6 with acetoxy-methyl ester groups. Upon penetration of the cell membrane, PF6-AM is deprotected by intracellular esterases, releasing the dianionic PF6 that is then trapped in the cytosol [Fig. 1(e)]. MitoPY1 [Fig. 1(d)] was derived from PY1 to include a combination of a boronate-based switch and a mitochondrial-targeting phosphonium moiety for the detection of H$_2$O$_2$ localized to cellular mitochondria.

2.2 TPA Measurement

A basic parameter to characterize a fluorophore for TPF imaging is the TPA cross section. TPA spectra were measured using a Ti:sapphire laser (Spectra Physics Mai Tai HP) operating at 720 to 1040 nm, 100 fs pulse width, and 80 MHz repetition rate. The scheme of experimental setup was described in Xu and Webb. Before the measurement, we verified that the TPF intensity increases with the square of the excitation power.

TPF intensity is related to spatial dependence and temporal dependence such as laser parameters and system collection condition. A direct measurement of TPA cross section is difficult. Therefore, absolute TPA cross section values of fluorescent probes (δ_P) were calculated by comparison with the TPF intensity of fluorescein (δ_F) in Eq. (1):

$$\delta_P = \frac{\delta_F F_P \Phi_P c_P \Phi_{P-PMT}}{F_F \Phi_F c_F \Phi_{F-PMT}},$$

where F_P and F_F are the fluorescence intensity measured with a photon counting photomultiplier tube (PMT) at the same laser power excitation, Φ_P and Φ_F are the two-photon-excited fluorescence quantum yields of the probes assumed to be same to that of single-photon excited, c_P and c_F are the concentrations of the probes, Φ_{P-PMT} and Φ_{F-PMT} are the quantum efficiency of the PMT (Hamamatsu R7600U-200) obtained from the manufacturer’s data. The system collection efficiency, estimated to be the same for the probes, are based on its fluorescence emission spectrum, the measured numerical aperture (NA) and transmission of the objective lens, and the transmission of the filters. The fluorescent probes were measured with the same measurement conditions as fluorescein, therefore these

![Fig. 1 Chemoselective fluorescent probes for H$_2$O$_2$ detection. (a) PF2, (b) PY1, (c) PO1, (d) MitoPY1, and (e) PF6-AM.](image-url)
The two-photon activation times, single-photon absorption and emission peaks, and quantum yields of the probes were measured and are shown in Table 1. Activation time refers to the average time when the TPF intensity increases to $1/e$ of the saturation intensity. This activation time is related to the deprotection efficiency. Compared with the commonly used nonspecific probe DCF, the chemoselective probes demonstrated much faster responses to H_2O_2.

3 Results and Discussions

3.1 TPA Spectrum

The two-photon activation times, single-photon absorption and emission peaks, and quantum yields of the probes were measured and are shown in Table 1. Activation time refers to the average time when the TPF intensity increases to $1/e$ of the saturation intensity. This activation time is related to the deprotection efficiency. Compared with the commonly used nonspecific probe DCF, the chemoselective probes demonstrated much faster responses to H_2O_2.

Figure 2 shows single-photon absorption and fluorescence emission spectra, and absolute values of TPA cross sections for the H_2O_2 probes PF2, PY1, PO1, MitoPY1, and PF6-AM. As a comparison, Fig. 2(f) shows the TPA cross section of DCF. The peak cross section values of chemoselective probes are comparable to that of fluorescein, which is sufficiently large for two-photon imaging in vitro or in vivo. To ensure that H_2O_2 has deprotected the boronate, the TPF spectra were measured at least 1 h after H_2O_2 addition. Then, the TPA cross section was calculated based on the above Eq. (1) and the parameter in Table 1.

We measured several color probes here so that multicolor imaging can be performed with minimum fluorescence bleed-through with other co-staining dyes. Figure 2 helps us to select co-staining dyes for single excitation wavelength two-photon multicolor imaging.

3.2 TPF Imaging of Intracellular H_2O_2

Figure 3 shows intracellular TPF imaging of H_2O_2 in HT22 cells stained with PF6-AM. The cells were incubated in PF6-AM solution for 20 min and the nuclei were stained with Hoechst 33342. Figures 3(a) and 3(b) show the H_2O_2 concentration increasing in cells after the addition of exogenous H_2O_2. This result demonstrates that PF6-AM is capable of detecting cytoplasmic H_2O_2. Figures 3(c) and 3(d) demonstrate

<table>
<thead>
<tr>
<th>Probes</th>
<th>Absorption peak (nm)</th>
<th>Emission peak (nm)</th>
<th>Quantum yields</th>
<th>Activation time [min]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF2</td>
<td>455</td>
<td>515</td>
<td>0.27</td>
<td>3 ± 1</td>
</tr>
<tr>
<td>PY1</td>
<td>520</td>
<td>550</td>
<td>0.12</td>
<td>3 ± 3</td>
</tr>
<tr>
<td>PO1</td>
<td>540</td>
<td>570</td>
<td>0.46</td>
<td>3 ± 3</td>
</tr>
<tr>
<td>MitoPY1</td>
<td>510</td>
<td>530</td>
<td>0.405</td>
<td>24 ± 5</td>
</tr>
<tr>
<td>PF6-AM</td>
<td>460</td>
<td>520</td>
<td>0.94</td>
<td>14 ± 1</td>
</tr>
<tr>
<td>DCF</td>
<td>500</td>
<td>525</td>
<td>0.9 to 0.95</td>
<td>48 ± 1</td>
</tr>
</tbody>
</table>

*Activation time τ is obtained from the simulation of this equation $sat = (sat \text{ int}) \times \exp(-x/\tau)$ using Qtiplot software.
endogenous H$_2$O$_2$ production induced by rotenone, which resulted in bright punctate staining patterns that are likely the sources of H$_2$O$_2$ production.

To improve the signal-to-background ratio and target mitochondrial H$_2$O$_2$ production, we used MitoPY1 for mitochondrial labeling and detection of localized H$_2$O$_2$ production. Figure 4 shows an overlay of TPF imaging of MitoPY1 labeled mitochondrial H$_2$O$_2$ production and MitoTracker Red labeled mitochondria. Rotenone was added to the HT22 cells after they were incubated with 5 μM MitoPY1 for 25 min. Then, MitoTracker Red was added after another 60 min to ensure that MitoPY1 was targeted to the mitochondria in HT22 cells.

Figure 5 shows TPF imaging of cytoplasmic H$_2$O$_2$ production induced by DAAO in astrocytes. PF6-AM and Hoechst 33342 were co-excited with 770-nm laser pulses. The TPA cross section of FAD at 770 nm is only $\times 10^{-3}$ that of PF6AM. Therefore, the fluorescence of FAD is only a weak background signal. The fluorescence intensity in Fig. 5 shows cytoplasmic H$_2$O$_2$ increasing from the time (a) 1 min, (b) 6 min, and (c) 25 min after the addition of d-alanine and FAD.

3.3 Discussion

The involvement of H$_2$O$_2$ in cellular signaling related to cancer and neurodegenerative diseases has motivated the development of imaging technologies for measuring intracellular H$_2$O$_2$ concentration and dynamics in cellular compartments. Previous studies have relied on a horseradish peroxidase/Amplex Red substrate system to measure extracellular H$_2$O$_2$ production using a spectrophotometer (Spectramax Plus 384; Molecular Devices). However, DAAO derived H$_2$O$_2$ production provides a controllable scale ideal for intracellular H$_2$O$_2$ measurements. TPF signal intensity is linearly related to the fluorophore concentration. Therefore, TPF imaging provides the possibility for quantification of localized intracellular H$_2$O$_2$ production.
The real-time visualization of H2O2 production is another challenging issue that required a fast response of the fluorescent probes. Here, the chemoselective H2O2 probes showed much faster activation time compared with commercial probes such as DCF. It provides a more accurate technique for flow cytometric analysis of isolated cells or mitochondria and allows for the detection of changes such as cell activation, oxidative status, and cell death. Some probes have been successfully used to study ROS in a variety of biological systems with confocal microscopy.31–34 Therefore, the combination of new fluorescent probes for H2O2 and the deep tissue imaging capability of two-photon microscopy may allow direct visualization of in vivo H2O2 dynamics in cells in their natural environment as well as their response to systematic manipulations.

4 Conclusions
This study introduces chemoselective probes for TPF imaging intracellular H2O2 production. TPA spectra were measured and TPF imaging was successfully demonstrated for cytoplasmic

![Fig. 3](image1.png)

Fig. 3 Two-photon fluorescence (TPF) imaging of extra additional H2O2 and endogenous H2O2 in HT22 cells. TPF imaging in (a) 1 min and (b) 38 min after extra 50 μM H2O2 was added. TPF imaging in (c) 1 min and (d) 38 min after rotenone was added. The nuclei (blue), stained with Hoechst 33342, were co-excited with 770-nm wavelength laser pulses. Scale bar: 50 μm.

![Fig. 4](image2.png)

Fig. 4 TPF imaging of localized mitochondrial H2O2 in HT22 cells with MitoPY1. (a) TPF imaging of HT22 cells after MitoPY1 was incubated for 10 min. (b) TPF imaging of the cells after rotenone was added for 10 min. (c) TPF imaging shows the overlay of co-localization mitochondrial H2O2 production and cellular mitochondria after rotenone was added for 80 min. The green channel shows MitoPY1 signal (d) and the red channel shows MitoTracker Red signal (e). Both the MitoPY1 and MitoTracker Red dyes were co-excited with 770-nm wavelength laser pulses. Scale bar: 10 μm.
and mitochondrial H2O2 production in brain cells using PF6-AM and MitoPY1 probes. The probes showed high sensitivity and fast response to H2O2 detection. With the advantages of chemoselective probes, TFP imaging provides a novel opportunity for real-time monitoring of H2O2 detection and oxidative stress evaluation in live cells and in vivo.

Acknowledgments
This work is supported by the National Institutes of Health (NIH) Grant Nos. 2P01AG014930, 3R01 CA133148, R21AG042700, R21DK088066, R21EB012215, Dr. Miriam and Sheldon G. Adelson Medical Research Foundation. B.C.D. is a Fellow of the Jane Coffin Childs Memorial Fund for Medical Research. We acknowledge Christopher J. Chang, Demirhan Kobat, David Rivera, Anthony Fouad, Li Barie, Jian Zhong, and Jimmy B. Payappill for technical support and helpful comments.

References