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Abstract

The pathogenesis of complex diseases, such as type 1 diabetes (T1D), derives from interactions between host genetics and
environmental factors. Previous studies have suggested that viral infection plays a significant role in initiation of T1D in
genetically predisposed individuals. T1D susceptibility loci may therefore be enriched in previously uncharacterized genes
functioning in antiviral defense pathways. To identify genes involved in antiviral immunity, we performed an image-based
high-throughput genetic screen using short hairpin RNAs (shRNAs) against 161 genes within T1D susceptibility loci. RAW
264.7 cells transduced with shRNAs were infected with GFP-expressing herpes simplex virus type 1 (HSV-1) and fluorescent
microscopy was performed to assess the viral infectivity by fluorescence reporter activity. Of the 14 candidates identified
with high confidence, two candidates were selected for further investigation, Il27 and Tagap. Administration of recombinant
IL-27 during viral infection was found to act synergistically with interferon gamma (IFN-c) to activate expression of type I
IFNs and proinflammatory cytokines, and to enhance the activities of interferon regulatory factor 3 (IRF3). Consistent with a
role in antiviral immunity, Tagap-deficient macrophages demonstrated increased viral replication, reduced expression of
proinflammatory chemokines and cytokines, and decreased production of IFN-b. Taken together, our unbiased loss-of-
function genetic screen identifies genes that play a role in host antiviral immunity and delineates roles for IL-27 and Tagap
in the production of antiviral cytokines.
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Introduction

Genome-wide association studies (GWAS) have revolutionized

the study of human genetics and uncovered numerous disease

susceptibility genes and loci over the past decade [1–5], although

the mechanism of how these disease-associated loci/genes may

contribute to the pathogenesis of complex diseases remains largely

unknown. Type 1 diabetes (T1D) is a multifactorial disorder

caused by interactions between genetic and environmental factors

[6]. T1D is an autoimmune disorder characterized by destruction

of insulin-producing b cells in the pancreatic islets. Previous studies

have suggested a role for viruses in T1D susceptibility [7]. Loss or

death of b cells can be achieved by direct targeting of cytotoxic T

cells against virally infected b cells, or indirectly by inflammation

from unrestrained innate immunity [8,9]. The latter mechanism

has been well illustrated by the T1D-associated gene melanoma

differentiation-associated gene 5 (MDA5), also known as interfer-

on-induced helicase 1 (IFIH1), which acts in antiviral defense

[10]. The T1D-associated polymorphism in IFIH1, rs1990760 or

Thr946Ala, has been demonstrated in multiple data sets following

an initial report by Smyth et al. [10]. A subsequent study showed

that individuals homozygous for this risk allele had significantly

higher IFIH1 basal expression and as a consequence, upon

infection, cells were highly activated and produced more

inflammatory cytokines and chemokines [11]. A recent study

identified a chemically induced mutation in Ifih1 in mouse, which

results in constitutive activation of Mda5 and continuous

production of type I interferons accompanied by systemic

inflammation [12]. It is currently unclear if additional T1D-

associated genes alter susceptibility to virus infection and antiviral

defense.

Integrity of host immunity, both innate and adaptive, is central

to antiviral defense. Host immunity is first triggered by the

immediate innate response, which usually starts with recognition

of viral cellular components known as pathogen-associated
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molecular patterns (PAMPs) by host pathogen recognition

receptors (PRRs) [13–15]. Macrophages, an innate immune cell

type that responds to infections and regulates cellular responses,

express various PRRs that are specific to PAMPs associated with

different pathogens. Viral PAMPs are recognized by several PRRs

including the Toll-like receptors (TLRs), retinoic acid-inducible

gene I (RIG-I)-like receptors (RLRs), and a number of cytosolic

dsDNA sensors [16–20]. In particular, TLR2, a transmembrane

protein expressed on the cell surface, senses viral surface

glycoproteins [21]. Upon entry, the unmethylated CpG motif,

which is a signature of bacterial and viral genomes, is detected by

intracellular TLR9 [22]. TLR3 recognizes dsRNA longer than

30 bp, which has been suggested to be an erroneous byproduct

during massive viral DNA replication [23]. In addition, another

class of cytoplasmic dsRNA sensors, RIG-I and MDA5, recognizes

lengths of dsRNA and 59-triphosphate ssRNA that are absent from

most cytosolic mammalian RNA [24,25]. RIG-I and MDA5

independently signal downstream to an adaptor molecule named

mitochondrial antiviral signaling (MAVS). MAVS subsequently

activates transcription factors including NF-kB, IRF3, and IRF7,

which translocate to the nucleus and upregulate expression of type

I interferons (IFN-a and IFN-b) and interferon-stimulated genes

(ISGs) [26,27]. Additional evidence has also suggested participa-

tion of recently characterized cytosolic dsDNA sensors, including

RNA polymerase III [28], interferon inducible protein 16 (IFI16)

[29], and DNA-dependent activator of interferon regulatory factor

(DAI) [30] in induction of type I IFNs after viral infection. Type I

IFNs and hundreds of ISGs function synergistically to establish an

active antiviral state in host cells [27,31,32].

Herpes simplex virus type 1 (HSV-1) is a dsDNA virus that

belongs to the herpes virus family Herpesviridae. HSV-1 features

high infectivity of macrophages and is recognized by multiple

innate defense pathways including TLR- and RIG-I/MDA5-

dependent pathways [33]. The broad defense pathways triggered

by HSV-1 as well as its high infectivity of macrophages make it

well suited as a model virus to study antiviral pathways. Here we

report an image-based high-throughput genetic screen to identify

uncharacterized genes controlling cellular antiviral immunity and

characterize roles for IL-27 and Tagap in antiviral defense.

Further investigation holds the promise of finding strategies that

enhance the antiviral activity of these genes and developing novel

effective antiviral drugs that work to combat complex diseases as

well.

Results

IFN-c Activates Cellular Antiviral Response in RAW 264.7
Cells

IFN-c is a type II class of interferon and critical player in innate

and adaptive immunity against viral infection [34,35]. It has also

been shown to play an important role in suppression of HSV-1

infection and reactivation from latency [36,37]. Therefore, we

selected HSV-1 as a model viral pathogen to delineate the role of

cellular genes in IFNc-mediated antiviral immunity. First, we

examined whether IFN-c was capable of activating cellular

antiviral activity in RAW 264.7 cells, a mouse leukaemic

monocyte macrophage cell line, upon HSV-1 infection. RAW

264.7 cells were pre-treated with IFN-c for 16 hours before

infection with recombinant HSV-1 expressing GFP (hereafter

HSV-GFP). The GFP expression cassette was under the control of

the Egr-1 promoter and inserted into the intergenic region

between the viral UL3 and UL4 genes [38]. Previous studies have

demonstrated that the presence of the GFP cassette does not have

an impact on viral growth or viral infectivity in cell culture or

animal models [38]. RAW 264.7 cells were infected with HSV-

GFP and the efficiency of viral infection and replication was

determined by the percentage of GFP-positive cells 16 hours post

infection (Figure S1). Dose-dependent viral infectivity was

confirmed by proportional change in the percentage of GFP-

expressing cells (Figure 1A). A 3- to 4-fold reduction in HSV-GFP

infectivity was observed in IFNc-treated cells compared to

untreated cells (Figure 1A and 1B). These results demonstrate

that IFN-c activates the antiviral machinery in RAW 264.7 cells to

suppress HSV-1 replication.

An Image-based shRNA Screen Identifies Gene
Candidates with anti-HSV Activity

To identify T1D-associated genes that are required for antiviral

immunity, we developed an image-based high-throughput assay to

measure the contribution of individual genes to IFNc-mediated

inhibition of viral infection. First, optimal infectivity of HSV-GFP

was titrated as shown in Figure 1A to limit the infection efficiency

to 5–10% with IFN-c priming. Presence of irrelevant non-

targeting shRNA against lacZ or luciferase did not affect the

IFNc-mediated inhibition of HSV-GFP infection (Figure S2A).

However, in RAW 264.7 cells transduced with positive control

shRNAs to knock down gene expression of IFN-c receptor 1

(Ifngr1), 2 (Ifngr2) or Ticam2, the antiviral control by IFN-c was

greatly compromised and a 3- to 4-fold increase of infection

efficiency was observed (Figure S2A and S2B).

Using the conditions described above, a primary genetic screen

was performed in RAW 264.7 cells in 96-well plate format with in-

plate positive and negative shRNA controls in each plate. A

lentivirus-based shRNA library containing 827 lentivirally encod-

ed shRNAs with an average of 5 independent shRNAs targeting

each of the 161 genes within T1D susceptibility loci (see Materials

and Methods) was obtained from The RNAi Consortium (Table

S1). RAW 264.7 cells were transduced with lentiviruses carrying a

single shRNA and puromycin was added to select for transduc-

tants. The surviving transduced cells were allowed to proliferate

for 96 hours before stimulation with IFN-c before HSV infection

(Figure 2A). 16 hours post infection, the HSV infection efficiency

for each individual shRNA-transduced well was measured on an

automated fluorescent microscope. The percentage of GFP-

expressing cells was normalized based on effect size by scaling

between 0 (median of wells transduced with irrelevant shRNA)

and 1 (median of wells transduced with positive control shRNA)

for each individual plate (Figure 2B). After pooling all range-

normalized data together, a Z score for each well was calculated

from the distribution of wells transduced with irrelevant shRNA.

Individual genes were considered to score as positive regulators if 2

or more different shRNAs achieved a Z score equal or greater than

3 standard deviations from the mean for a given gene. Using these

criteria, 34 genes were identified from the primary screen (Table

S2) after exclusion of shRNAs that caused cytotoxicity or whose

targets were not expressed in RAW 264.7 cells.

The screen was repeated with all shRNAs that scored in the

primary screen, and 14 genes were found to have high

reproducibility: Cdk2, Ciita, Dtx3, Esyt1, Gca, Il27, Plxna3,

Prkd2, Rbm17, Skap2, Tagap, Tyk2, Sult1a1, and Clec2d
(Table 1). Representative images are shown in Figure 2C for

shRNA targeting Tagap and Il27. To further validate the

candidate genes, we measured the level of knockdown by the

shRNAs against the 14 candidates using quantitative real-time

PCR (qRT-PCR). For the majority of the candidates, the targeting

shRNA resulted in more than 60% reduction in mRNA levels

compared to irrelevant nontargeting shRNA (Figure S3). 10 of the

candidate genes displayed a direct correlation between the extent

A Genetic Assay Identifies Cellular Antiviral Genes
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of shRNA knockdown and a corresponding increase in HSV

replication, suggesting a gene dosage effect. The results for all 5

shRNAs targeting Sult1a1 are shown as an example (Figure 3A).

The rest of the candidates did not show a graded response to

shRNA knockdown, suggesting that for these genes there is a

threshold expression level required for the gene to exert its effect

(Figure 3B). These results strongly suggest that the increased HSV

infectivity is the result of reduced gene expression by targeting

shRNAs and that these genes are involved in antiviral immunity of

RAW 264.7 cells.

A Subset of Candidate Genes are Induced by IFN-c
Priming and HSV Infection

Since the antiviral state of host cells is initiated by pre-treatment

with IFN-c, we next sought to determine whether the candidates

identified from the primary screen were also IFNc-induced genes.

The level of gene expression with or without IFN-c priming, and

upon HSV infection, was measured by qRT-PCR. Among all

candidate genes, 9 genes were constitutively expressed and their

expression was not altered by either IFN-c stimulation or HSV

infection. 5 candidate genes were transcriptionally induced by

IFN-c stimulation and potentially belong to the group of ISGs

(Figure 4). Among the 5 genes, expression of Il27, Tagap, Clec2d,

and Gca could also be independently induced by HSV infection

(Figure 4). This result suggests that these genes are responsive to

viral infection and may play a role in viral detection or viral

defense in host cells.

IL-27 and Tagap Positively Regulate Anti-Viral Responses
against HSV Infection

Of the 14 validated candidates, we chose to focus further

investigation on IL-27 and Tagap due to (1) the strong correlation

Figure 1. Dose-dependent HSV-GFP infectivity in untreated and IFNc-treated RAW 264.7 cells. (A) RAW 264.7 cells were seeded in 96-
well glass-bottom plates at a density of 0.36105 cells/well and either left untreated or treated with IFN-c (10 ng/ml) overnight before HSV-GFP
infection at the indicated dilution of viral stock. Note that when the viral stock was diluted 1 to 10, the MOI was 0.5. The average percentage of GFP-
positive cells was calculated from six individual images per treatment condition. Data shown are representative of 3 independent experiments. ***P,
0.001; **P,0.01; *P,0.05 by two-way ANOVA with Bonferroni post-test. (B) Representative images of HSV-GFP infection at 1:25 dilution of the viral
stock. Nuclei stained with Hoechst are shown in blue and HSV-GFP infected cells are shown in green.
doi:10.1371/journal.pone.0108777.g001
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between phenotype and levels of gene expression, (2) the number

of individual shRNAs that led to the desired phenotype, (3)

potential biological interest, and (4) availability of animal models.

IL-27 is a member of the IL-12 family of cytokines and is mainly

secreted by activated antigen-presenting cells (APCs) such as

dendritic cells and macrophages [39]. IL-27 has a well-character-

ized role in T cell differentiation [40] and has been recently

reported to have antiviral properties [41–43]. To directly assess

the antiviral activity of IL-27 against HSV infection, RAW 264.7

cells were treated with recombinant IL-27 (50 ng/ml) either alone

or in combination with IFN-c. 24 hours later, the cells were then

infected with HSV-GFP, fixed, and imaged as described above.

IL-27 treatment alone did not result in an inhibitory effect on viral

infectivity and priming with IFN-c decreased the viral infectivity

by 46% (Figure 5A). Interestingly, the combination of IFN-c and

IL-27 had an additive effect and resulted in the greatest antiviral

activity.

Upon viral infection, host cells sense viral components through

PRRs and activate antiviral signaling cascades, including the NF-

kB pathway and IFN-responsive pathways. IRF3 plays an essential

role in this process. Upon activation, IRF3, along with its binding

partner IRF7, translocates into the nucleus and binds target DNA

through its DNA-binding domain to activate transcription of genes

including IFNa and IFNb [44,45]. Production of IFNs further

stimulates the activity of other interferon-induced and interferon-

stimulated genes in a positive feedback mechanism. Therefore,

activity of NF-kB and IRF3/7 is an indicator of antiviral immunity

in host cells. To determine whether the inhibitory effect of IL-27 to

HSV infection is achieved through NF-kB, IRF3/7, and IFN

pathways, luciferase-based IRF and NF-kB/IRF reporter cells

were generated in RAW 264.7 cells and the effect of IL-27

treatment was measured by luciferase assay. Treatment of IL-27

alone did not activate either IRF or NF-kB/IRF activity

(Figure 5B). However, consistent with the results shown in

Figure 5A, co-stimulation of IFN-c and IL-27 greatly enhanced

the activities of both reporters (Figure 5B). Furthermore, to show

direct evidence of IFN-c and IL-27-induced antiviral activity, we

examined expression of Ifnb1 as well as proinflammatory

chemokines and cytokines in cells infected with HSV in the

presence or absence of IFN-c and IL-27. Pre-treatment of cells

with IFN-c before HSV infection initiates antiviral signaling

cascades that lead to general production of type I interferons,

proinflammatory chemokines and cytokines (Figure 5C). Ifnb1
and Cxcl10, an IFN-induced gene, were highly induced in

unprimed RAW 264.7 cells upon HSV-1 infection. Ccl3, Ccl5,

Tnfa, and Il6 were expressed at modest levels in unprimed RAW

264.7 cells upon infection, whereas pre-treatment of cells with

IFN-c strongly enhanced HSV1-induced gene expression. Impor-

tantly, with the exception of Cxcl10 and Il6, the response of gene

expression was augmented by addition of IL-27. These data

suggest that administration of IL-27 helps initiate an antiviral

signaling cascade and enhances the immunomodulatory activity of

IFN-c in a positive feedback mechanism during viral infection.

To demonstrate the broad antiviral activity of IL-27, we

infected IRF and NF-kB/IRF reporter cells with Sendai virus, a

ssRNA virus recognized by RIG-I-mediated signaling pathways

[46]. IL-27 alone is capable of suppressing Sendai virus infection

by enhancing the activities of IRF3 and NF-kB (Figure S4).

Unlike IL-27, Tagap has no prior link to IFN signaling or

antiviral immunity. GWAS has identified susceptibility loci in

Tagap, highlighting its role in innate immunity and pathogenesis

of autoimmune diseases [47,48]. To investigate the role of Tagap

Figure 2. Loss-of-function genetic screen identifies positive regulators of antiviral responses. (A) Protocol schematic of the primary
genetic screen. (B) Ranked range normalization plot of the 827 shRNA of interest and controls. Range normalized HSV-GFP infection efficiency for
each individual shRNA-transduced well, expressed as percentage within range 0 to 1, is ranked from low to high and displayed. Green bars indicate
normalized irrelevant shRNA controls and red bars indicate normalized positive controls. Grey bars represent normalized shRNA targeting individual
genes within T1D susceptibility loci. Location of shRNAs with a Z score equal or greater than 3 is indicated by the area shaded in blue. (C)
Representative images are shown for two high-scoring shRNAs that target Tagap and Il27 respectively, and one irrelevant shRNA that targets lacZ.
Hoechst nucleic acid stain indicates the total cells per microscopic field and GFP indicates the virally infected cells.
doi:10.1371/journal.pone.0108777.g002
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in antiviral signaling, we generated Tagap-deficient macrophages

by differentiating bone marrow-derived macrophages (BMDMs)

from Tagap-deficient mice in M-CSF-supplemented media.

BMDMs were then infected with two doses of HSV-GFP. After

24 hours, cells were harvested, stained with APC-conjugated GFP

antibody, and analyzed by flow cytometry. Tagap-deficient

Figure 3. The relative expression level of candidate genes is correlated with observed antiviral phenotype. Upper panels: mRNA
expression of Sult1a1 (A) and Il27 (B) in irrelevant shRNA-transduced cells compared to shRNAs against the indicated gene measured by qRT-PCR.
Gapdh was used as internal control for normalization. The results shown are the average from two independent experiments. Lower panels:
percentages of GFP-positive cells after HSV-GFP infection in cells previously transduced with irrelevant shRNA (lacZ and luciferase) or targeting shRNA
for Sult1a1 (A) or Il27 (B). Data shown are representative of 3 independent experiments. ns, not significant; ***P,0.001 compared to negative control
by one-way ANOVA with Dunnett’s post-test.
doi:10.1371/journal.pone.0108777.g003

Table 1. Candidate genes identified from genetic screen.

Symbol NCBI Gene ID Accession number Preferred Gene Name

Cdk2 12566 NM_016756.4 cyclin-dependent kinase 2

Ciita 12265 NM_007575.1 class II transactivator

Dtx3 80904 NM_030714.2 deltex 3

Esyt1 23943 NM_011843.2 extended synaptotagmin-like protein 1

Gca 227960 NM_145523.2 grancalcin

Il27 246779 NM_145636.1 IL27 p28 subunit; interleukin 30

Plxna3 18846 NM_008883.2 plexin 3

Prkd2 101540 NM_178900.2 protein kinase D2

Rbm17 76938 NM_152824.1 RNA binding motif protein 17

Skap2 54353 NM_018773.2 SKAP55 homologue; Srcassociated adaptor protein

Tagap 72536 NM_145968.1 T cell activation Rho GTPase activating protein

Tyk2 54721 NM_018793.2 tyrosine kinase TYK2

Sult1a1 20887 NM_133670.1 Sulfotransferase, 1A, phenol-preferring, member 1

Clec2d 93694 NM_053109.1 osteoclast inhibitory lectin

doi:10.1371/journal.pone.0108777.t001
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(Tagap2/2) BMDMs were more susceptible to HSV infection

(Figure 6A and 6B). To further demonstrate increased HSV-GFP

infectivity in Tagap2/2 BMDMs, intracellular HSV-1 RNA was

measured by qRT-PCR. Infected-cell polypeptide 4 (ICP4) and

ICP27 are two of the five immediate early transcriptional

regulatory proteins that are expressed promptly upon HSV-1

infection [49]. ICP4 and ICP27 function to initiate viral DNA

replication and to stimulate the transcription of early and late viral

genes including UL39, which encodes the large subunit of

ribonucleotide reductase [49]. The levels of all three gene

transcripts were increased in Tagap2/2 BMDMs compared to

WT BMDMs (Figure 6C). Significantly more viral DNA was

detected in Tagap2/2 BMDMs as well (Figure 6D). Additionally,

levels of viral protein products were compared between WT and

Tagap2/2 BMDMs by immunobloting and results were consistent

with the qRT-PCR data (Figure 6E). These findings suggest a role

for Tagap in antiviral response.

To assess the influence of Tagap deficiency on innate immune

signaling cascades, expression profiles of type I IFNs, pro-

inflammatory cytokines and chemokines were measured in WT

and Tagap2/2 BMDMs upon HSV infection. As expected,

Tagap2/2 BMDMs were defective in several key mediators of the

antiviral response, including IFN-b (Figure 6F). Consistent with

reduced Ifnb1 mRNA level, secreted IFN-b also decreased in

Tagap2/2 BMDMs after HSV infection (Figure 6G). These

results suggest that Tagap plays a critical role in antiviral signaling

pathways.

Discussion

A number of studies have suggested a connection between

genetic susceptibility to complex disease and viral infection [50–

53]. However, there are only a handful of reports on specific virus-

gene interactions and it remains unclear how many of the genes

within T1D susceptibility loci are associated with antiviral

immunity [54,55]. Placing T1D genes into the viral defense

pathway could help identify therapeutic entry points for T1D

treatment as well as a more complete understanding of the

environmental factors altering disease susceptibility. From the

screen, we identified 14 candidate genes, the differential expres-

sion of which influences the antiviral activity of HSV-1-infected

macrophage cells. However, whether these gene-virus interactions

are sufficient to cause disease requires further investigation.

In an effort to identify novel host restriction factors against

HSV-1 infection, many previous investigations focused on analysis

of large-scale expression data and characterized the genes that are

differentially regulated by IFNs and HSV-1 [56–58]. While this

strategy was successful at identifying host restriction factors, a

number of identified genes collaborate with IFN-induced genes to

construct the antiviral network in host cells. Among the 14

candidates identified from the screen, only 5 were upregulated by

IFN-c and/or HSV-1. This result suggests that a number of

antiviral host defense genes are constitutively expressed and their

activity is only enhanced in the presence of antiviral cytokines such

as IFN-c. While our screening strategy takes an unbiased

approach, due to the use of IFN-c in the screen, the genes that

function in late stage of viral suppression may be undervalued

because the loss of these genes may be rescued or compensated by

the activity of IFN-c and its effector molecules. Regardless, our

screen preserved the integrity of IFN pathways and thus examined

the role of each candidate in the context of an intact antiviral

response which creates a physiologically relevant system.

IFNs are the major cellular restriction factors fighting against

viral infection. IFNs bind to their receptors and activate the

downstream JAK-STAT signaling pathway that further leads to

augmented antiviral responses. Among the 14 candidate genes

identified from the genetic screen, Tyk2, Ciita and IL-27, are

direct targets of IFN activation. Tyk2 belongs to the family of

Janus kinases (JAKs) and is activated in response to type I IFNs

[59]. Tyk2 phosphorylates the transcription factor Stat1 and leads

to a functional type I IFN response [60]. Ciita, class II

Figure 4. Induction of candidate gene expression by IFN-c and HSV-GFP infection. Cells were seeded and either left untreated or treated
with IFN-c (10 ng/ml) for 16 h. HSV-GFP (MOI = 0.5) was used to infect the cells as indicated above. qRT-PCR was performed to measure the relative
expression of all candidate genes relative to the untreated control. Gapdh was used as internal control for normalization. Data shown are results from
3 independent experiments. ***P,0.001 compared to untreated control by one-way ANOVA with Dunnett’s post-test.
doi:10.1371/journal.pone.0108777.g004
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transactivator, is a well-studied positive regulator for expression of

class II MHC genes upon stimulation, and consistent with our

results, studies have shown that IFN-c induces expression of Ciita

in a Stat1-dependent manner [61]. Given the functional signifi-

cance of MHC class II molecules in initiation and maximization of

the adaptive immune response, Ciita acts as a bridge between

innate and adaptive immunity, thus playing a critical role in

controlling viral infection. Similar to type I IFNs, IL-27 is also

capable of activating the JAK-STAT pathway and inducing

expression of inflammatory cytokine genes in macrophages

[62,63]. These findings suggest that T1D genes within risk loci

function in a common signaling pathway, which is composed of

IFNs/IL-27, JAK/Tyk2, Stat1, Ciita, and the downstream

effectors. Besides the connection with the JAK-STAT signaling

pathway, a subgroup of the candidate genes (Tyk2, Cdk2, Prkd2,

Sult1a1, Rbm17, and Ciita) are enriched based on DAVID

analysis for nucleotide binding, including adenyl nucleotide/

ribonucleotide binding and ATP binding, a pathway important for

antiviral signaling (Table S3). Although many of the candidate

genes identified from the genetic screen do not seem to possess

direct antiviral properties, 12 of them, with the exception of Il27
and Dtx3, have been shown to be differentially expressed in

peripheral blood mononuclear cells isolated from Ebola virus-

infected nonhuman primates [64]. This result suggests that these

genes may play a role in antiviral pathways or virally induced

cellular processes. Further investigation is required to delineate the

function of individual candidate genes in the context of viral

infection.

Previous reports have shown that IL-27 is induced by a variety

of viruses, including HIV, HBV, influenza A virus, murine

Figure 5. IL-27 functions cooperatively with IFN-c to suppress the infection of HSV-GFP. (A) Cells were seeded in 96-well glass-bottom
plates and either left untreated or treated with recombinant IL-27 alone (50 ng/ml), IFN-c alone (10 ng/ml) or IL-27 + IFN-c for 16 h. After infecting
cells with HSV-GFP overnight, cells were fixed, stained with nuclear acid stain and subjected to imaging. Percentage of GFP-positive cells in each
treatment group was calculated and graphed. Data shown are results from 4 independent experiments. (B) NF-kB/IRF and IRF reporter cells were
seeded and treated as in (A). After stimulating with IL-27 and/or IFN-c for 16 h, cells were lysed and luciferase activities measured. The reporter
luciferase activity in untreated cells is normalized to 1. Data shown are results from 3 independent experiments. (C) Cells were seeded and treated as
in (A). After infecting cells with HSV-GFP for 6 h, RNA was isolated and qRT-PCR was performed to examine the relative expression levels of
downstream effector genes. All expression levels are relative to the level of untreated control and Gapdh was used as internal control for
normalization. Data shown are results from 3 independent experiments. ns, not significant; ***P,0.001; *P,0.05 by one-way ANOVA with Bonferroni
post-test.
doi:10.1371/journal.pone.0108777.g005
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gammaherpesvirus 68 (HV-68), and Theiler’s virus [65–68]. In

HIV infection, IL-27 mediates viral suppression in human

macrophages in a mechanism similar to IFN-a, which induces

the expression of downstream antiviral molecules such as the

family of APOBEC cytidine deaminases [42]. In our experimental

system, IL-27 alone is not sufficient to induce antiviral immunity,

suggesting that host restriction factors induced by IFN-c cooperate

with IL-27 to boost antiviral immunity to HSV-1 infection.

Recently, IFN-l1, a type III IFN, was shown to be co-induced

with IL-27 by HBV infection and to cooperate with IL-27 to limit

HBV replication in HepG2 cells [69]. Unfortunately, the IFN-l1

gene is a pseudogene in mice [70] and examination of the other

two members of the type III IFN family, IFN-l2 and -l3,

suggested that the coordinated regulation of IL-27 and IFN-l does

not seem to operate in murine macrophage cells upon HSV-1

infection. Taken together, these data suggest that IL-27 can work

in concert with a variety of IFNs to mediate host defense against a

plethora of viruses.

Single nucleotide polymorphisms (SNPs) within the Tagap locus

have been identified as a shared risk factor for Crohn’s disease and

celiac disease, while other SNPs within this locus have been

associated with protection from rheumatoid arthritis and T1D

[71,72]. Tagap is highly expressed in immune cells, including B

cells, T cells, dendritic cells, natural killer cells, and monocytes;

however, little is known about the function of Tagap in host

defense. Our data suggest that Tagap plays a role in regulating key

antiviral cytokines. However, future studies will be important to

define the mechanism of action of Tagap given its broad

association with complex diseases.

In summary, our unbiased loss-of-function genetic screen

identified genes within T1D susceptibility loci that work in concert

with IFN signaling pathways to protect host cells from detrimental

viral infection, thus preventing improper immune responses

leading to inflammation and autoimmunity. Better understanding

of the mechanisms of the gene-plus-virus interaction will provide

new approaches to design therapies to treat complex diseases.

Materials and Methods

Ethics statement
Mice used in this study were maintained in specific-pathogen-

free facilities at Massachusetts General Hospital (Boston, MA). All

animal studies were conducted under protocols approved by the

Institutional Animal Care and Use Committee (IACUC) at

Massachusetts General Hospital. These mice were bred and

experiments were approved under protocol 2007N000045.

Cells, viruses, mice, and reagents
RAW 264.7 cells (TIB-71) and Vero cells (CCL-81) were obtained

from ATCC and cultured in DMEM (Gibco) supplemented

Figure 6. Tagap deficiency results in increased susceptibility to HSV-GFP infection in macrophages. (A and B) BMDMs derived from WT
or Tagap2/2 mice were infected with HSV-GFP at a MOI of 0.2 (HSV_low) or 0.5 (HSV_high). After 12 h, cells were harvested and stained for GFP.
Experiments were performed with a total of 4 mice per genotype. Representative flow plots are shown in (B). ns, not significant; *P = .0463 for
HSV_low; *P = 0.0370 for HSV_high. (C) BMDMs were infected with HSV-GFP at a MOI of 0.5. After 10 h, relative mRNA levels of three viral genes (ICP4,
ICP27, and UL39) were measured in WT versus Tagap2/2 BMDMs. Gapdh was used as internal control for normalization. n = 2 with a total of 4 mice per
genotype. **P = 0.0032 for ICP4; **P = 0.0013 for ICP27; **P = 0.0014 for UL39. (D) BMDMs were infected with HSV-GFP at a MOI of 0.5. After 16 h, DNA
was isolated and the relative DNA content of ICP27 in WT versus Tagap2/2 BMDMs was measured. Rplp0 DNA content was used as internal control
for normalization. n = 2 with a total of 4 mice per genotype. ***P,0.0001. (E) BMDMs were infected with HSV-GFP at a MOI of 0.5. After 24 h, Western
blotting was performed using antibodies specific to viral proteins ICP4 and ICP27. b-actin was used as loading control. Representative image from
two independent experiments is shown. (F) BMDMs were infected as in C. After 3 or 6 h, RNA was isolated to measure the relative expression of pro-
inflammatory cytokines or chemokines, respectively. n = 2 with a total of 4 mice per genotype. ***P = 0.0006 for Ifna; **P = 0.0052 for Ifnb1;
**P = 0.0063 for Tnfa; *P = 0.0123 for Il6; **P = 0.0014 for Ccl3; **P = 0.0011 for Ccl5; **P = 0.0052 for Cxcl10. (G) BMDMs were infected as in (A). After
12 h, culture supernatant was collected and ELISA was performed to measure the amount of secreted IFN-b. n = 3 with a total of 6 mice per genotype.
ns, not significant; **P = 0.0094 for HSV_low; ***P = 0.0003 for HSV_high. All statistical comparisons were performed by unpaired two-tailed t-tests.
doi:10.1371/journal.pone.0108777.g006
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with 10% fetal bovine serum (FBS) (Hyclone), 1% GlutaMAX (Life

Technologies) and 20 mg/ml gentamycin sulfate (Sigma-Aldrich).

IRF and NF-kB/IRF reporter cells were generated by transducing

RAW 264.7 cells with lentiviral-based firefly luciferase expression

constructs under the control of either IRF consensus sequence

(GAAAACGAAACT) and/or NF-kB consensus sequence

(GGGAAATTCC). Recombinant IL-27 was purchased from

eBioscience and used at a concentration of 50 ng/ml.

The Tagap2/2 mouse was a kind gift from Dr. Bernhard G.

Herrmann [73]. As reported in the original publication by Bauer

et al., the accession number for the gene targeted in this knockout

model is NM_145968, which corresponds to the Tagap gene.

However, Bauer et al. refer to this gene as Tagap1. To clarify the

gene targeted in these mice, we developed a quantitative RT-PCR

method and showed that the targeted mice lacked Tagap mRNA,

consistent with the accession number referenced in the original

publication (Figure S5). See also MGI ID 3615484 for gene

information and MGI ID 3603008 for mouse strain information.

BMDMs were generated by culturing mouse bone marrow cells

in RPMI (Gibco) supplemented with 10% FBS, 1% GlutaMAX,

20 mg/ml gentamycin sulfate and 20 ng/ml M-CSF (Peprotech)

for 6 days.

HSV-GFP were propagated and titrated in Vero cells. Briefly,

Vero cells were infected with HSV-GFP at low multiplicity of

infection (MOI). Culture supernatant was collected when .95%

cytopathic effect observed and cell debris was removed by

centrifugation. The viral stock was aliquoted and stored at

280uC until use. Virus titer was determined by plaque assay

and crystal violet stain. The virus stock contained 36106 plaque-

forming unites (PFU)/ml. In experiments, cells were infected with

HSV-GFP at a MOI of 0.5 or as specified in figure legends.

Sendai virus was purchased from ATCC (VR-105). In

experiments, cells were infected with Sendai virus at a MOI of 1.

Genetic screen
161 genes within T1D susceptibility loci were selected from

genes in T1Dbase (http://www.t1dbase.org). We filtered genes

based on (1) those genes closest to T1D SNPs and (2) expression of

these genes in immune cells based on data from publicly available

databases. The lentivirus-based shRNA library containing 827

shRNA sequences against these 161 genes was obtained from the

RNAi Consortium (Broad Institute). RAW 264.7 cells were seeded

in 96-well flat-bottom plate on day 0 and transduced with

lentiviruses on day 1. On day 2, puromycin (Sigma-Aldrich) was

added to cell culture media at a final concentration of 3 mg/ml.

Cells were fed once with puromycin-containing media on day 5.

On day 6, cells were split and approximately 0.56105 cells per well

were seeded in 96-well glass bottom plates (In Vitro Scientific) and

stimulated with mouse IFN-C (Shenandoah Biotechnology) at a

final concentration of 10 ng/ml. On day 7, cells were infected with

HSV-GFP at a MOI of 0.5 for 16 h before fixing with 4%

paraformaldehyde (PFA) (Santa Cruz Biotechnology). Nuclei were

stained with Hoechst 33342 nucleic acid stain (Life Technologies)

for 10 min. Images were collected with 2 emission wavelengths,

GFP for virus and Hoechst for host cell nuclei, by automated

fluorescent microscopy (Molecular Devices). Images for six

microscopic fields per well were captured and analyzed using a

custom pipeline generated from CellProfiler cell image analysis

software [74]. The total number of cells per field was determined

by the number of Hoechst-labeled nuclei. HSV-GFP infection

efficiency per field was determined by the percentage of GFP-

positive cells. The HSV-GFP infection efficiency for each

individual sample that was transduced with different lentiviral

shRNA was determined by the average percentage of GFP-

positive cells from the six images collected from the same well.

Data obtained from each 96-well plate were range-normalized by

scaling between 0 (0%) (computed by the median of wells

transduced with irrelevant shRNA controls) and 1 (100%)

(computed by median of wells transduced with positive control

shRNA). Range normalization was done on per-plate basis, then

all normalized data (expressed as percentage within the range)

were pooled and Z scores calculated individually from the

distribution of normalized irrelevant shRNA controls. shRNAs

with a Z score equal or greater than 3 was considered a ‘‘hit’’ of

the screen.

RNA and DNA isolation and quantitative real-time PCR
RNA isolation was performed using a NucleoSpin 96 RNA

Isolation Kit (Macherey-Nagel) or RNeasy Mini Kit (Qiagen)

according to the manufacturers’ instructions. cDNA was synthe-

sized using the iScript cDNA synthesis kit (Bio-Rad) and qRT-

PCR was performed using iQSYBRGreen super mix (Bio-Rad)

with 300 nM forward and reverse primers in a CFX386 Real-

Time PCR System (Bio-Rad). Relative levels of target mRNA

were normalized to Gapdh mRNA. Viral genomic DNA was

isolated using QuickExtract DNA Extraction Solution (Epicentre).

ICP27 DNA content was measured by qRT-PCR and normalized

to ribosomal protein large P0 (Rplp0). Primers used are listed in

Table S4.

ELISA
Cell culture supernatants were collected 12 h after stimulation.

The concentration of IFN-b was measured using VeriKine Mouse

Interferon Beta ELISA kit (PBL Assay Science) according to the

manufacturer’s instructions.

Flow cytometry
HSV-infected BMDMs were harvested at 12 h as indicated in

figure legends. Following infection, plates were spun at 5006g and

supernatants collected for ELISA. Cells were washed once with

PBS and stained with Live/Dead fixable stain (Invitrogen, Life

Technologies) according to the manufacturer’s instructions. Cells

were harvested by scraping, blocked with Fc block, and stained

with mouse anti CD11b (eBioscience). Cells were then fixed using

Foxp3/Transcription Factor intracellular staining kit (eBioscience)

according to the manufacturer’s instructions. GFP was detected

using Alexa Fluor 647-conjugated anti-GFP (Life Technologies).

Samples were acquired using an LSR OO flow cytometer (BD

Biosciences) and post-acquisition analysis was performed using

FlowJo software (Tree Star Inc.)

Whole cell extract and Western blotting
Cells were lysed in RIPA buffer (25 mM Tris?HCl pH 7.6,

150 mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS)

supplemented with Protease Inhibitor Cocktail (Roche) and

incubated on ice. The mixture was vortex mixed every 3 min

for 15 min and centrifuged at 13,000 rpm for 10 min at 4uC. The

supernatant was harvested and protein concentration was

measured by BCA Protein Assay Kit (Thermo Scientific Pierce).

After separating on sodium dodecyl sulfate (SDS)–polyacrylamide

gel, proteins were visualized using antibodies specific to HSV-1

ICP4 (H943) and ICP27 (vP-20) (Santa Cruz Biotechnology).

b-actin levels were visualized as a control (Sigma-Aldrich). A

detailed procedure for Western blotting has been described

previously [75].
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Luciferase reporter assay
Cells were stimulated as described in the text. On the day of

experiment, PrestoBlue Cell Viability Reagent (Life Technologies)

was added to cells and incubated for 20 min. Absorbance was

measured in a SpectraMax M5 Microplate Reader (Molecular

Devices). After reading the plate, culture supernatants were

removed and luciferase activity was determined using SteadyLite

plus Reporter Gene Assay System (PerkinElmer) in TopCount

NXT Microplate Luminescence Counter (PerkinElmer). Relative

reporter activity was normalized to cell viability determined earlier

by PrestoBlue viability assay.

Data analysis
All experiments were repeated independently as indicated in the

figure legends. Averaged or representative results from all repeats

are shown. Statistical analyses are described in figure legends;

significance was defined as P,0.05.

Gene ontology enrichment analysis was performed using the

Database for Annotation, Visualization and Integrated Discovery

(DAVID) [76,77].

Supporting Information

Figure S1 Cell Profiler image analysis pipeline identi-
fies GFP-positive nuclei as HSV-1-infected RAW 264.7
cells. RAW 264.7 cells were seeded in 96-well glass bottom plates

at 0.56105 cells/well and infected with HSV-GFP at an MOI of 1.

After 16 h, cells were fixed and stained with Hoechst 33342

nucleic acid stain. Shown are representative images collected by

fluorescent microscopy. A CellProfiler analysis pipeline was

applied to calculate the efficiency of viral infection. Hoechst stain

for dsDNA was used to identify cells and GFP expression indicates

viral infection. The number of GFP-positive nuclei (cells) was

determined for each image.

(PDF)

Figure S2 Knockdown of antiviral genes increases HSV-
GFP infectivity. (A) RAW 264.7 cells were seeded in 96-well flat

bottom plates at low density (0.16105 cells/well) and transduced

with lentivirally encoded shRNAs against three key players

involved in antiviral pathways (Ticam2, Ifngr1, and Ifngr2) or

non-targeting controls (lacZ and luciferase). After four days of

puromycin selection, cells were split, seeded in 96-well glass

bottom plates at approximately 0.36105 cells/well and stimulated

with IFN-c overnight before infecting with HSV-GFP at an MOI

of 0.5. The average percentage of GFP-positive cells was

calculated from six individual images per sample. Data shown

are representative of 3 independent experiments. ***P,0.0001.

Ticam, Ifngr1, and Ifngr2 were each compared to individual

negative controls by t-tests; Fisher’s exact method was used to

combine individual P values and generate an overall P value for

each tested gene. (B) Representative images of cells transduced

with irrelevant control shRNA against lacZ or positive control

shRNA against Ifngr1. The total number of cells per image was

determined by Hoechst nuclei acid stain and number of HSV-

GFP infected cells was determined by GFP expression. Efficiency

of viral infection was then calculated as the percentage of GFP-

positive cells. Knockdown of Ifngr1 in RAW 264.7 cells results in

approximately 3.5 fold increase in viral infectivity.

(PDF)

Figure S3 Relative expression of candidate genes in
RAW 264.7 cells after transduction with lentivirally
encoded shRNA. Cells were seeded and transduced with

different targeting shRNAs as described in Figure S2. After 96 h

of selection in puromycin-containing media, cells were stimulated

with IFN-c (10 ng/ml) for 16 h. After stimulation, cells were

harvested and RNA was isolated. qRT-PCR was performed to

measure the knockdown of individual candidate gene. Expression

of each candidate gene in cells transduced with irrelevant shRNA

is set to 1. Expression of the same gene in cells transduced with

targeting shRNA is calculated as relative to the irrelevant control.

Gapdh was used as an internal control for normalization. Results

were derived from two independent experiments.

(PDF)

Figure S4 IL-27 enhances the activity of NF-kB and
IRF3/7 in Sendai virus-infected RAW 264.7 cells. NF-kB/

IRF and IRF reporter cells were seeded in 96-well clear bottom

plates at 16105 cells per well and either left uninfected or infected

with Sendai virus (SeV) at an MOI of 0.5 in the presence or

absence of recombinant IL-27 (50 ng/ml). After 16 h, cells were

lysed and luciferase activities were measured. The reporter

luciferase activity in untreated cells is normalized to 1. Data

shown are results from 3 independent experiments; error bars

represent standard deviation. ***P,0.0001 by unpaired two-tailed

t-tests.

(PDF)

Figure S5 Tagap and Tagap1 expression in Tagap KO
mice. (A) Primers used for verifying expression of Tagap and

Tagap1 in KO mice. (B–C) Expression of Tagap1 (B) and Tagap
(C) mRNA in total splenocytes from WT, heterozygous (Het), and

KO mice. In (C), expression levels of the WT allele are normalized

to Tagap expression in WT mice; expression levels of the KO

allele are normalized to Tagap expression in KO mice. The

targeted (KO) mice express Tagap1 at levels similar to WT mice,

whereas WT, Het, and KO mice display patterns of expression

consistent with Tagap gene targeting. Thus, the mice described

here lack Tagap expression.

(PDF)

Table S1 List of targeting shRNAs used in the primary
genetic screen. This table includes target sequences, target gene

ID, target gene symbol, region of the gene (CDS, coding sequence;

UTR, untranslated region), and estimated viral titer of lentiviral

particles for each shRNA hairpin.

(XLSX)

Table S2 Percentile rank and Z score of individual
shRNA hairpins that scored in the primary genetic
screen.
(XLSX)

Table S3 Gene ontology enrichment analysis of con-
firmed hits from secondary screens.
(XLSX)

Table S4 List of PCR primer sequences used in this
study.
(XLSX)
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