Meta-analysis of genome-wide association studies identifies novel loci that influence cupping and the glaucomatous process

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>doi:10.1038/ncomms5883</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:13347568</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA</td>
</tr>
</tbody>
</table>
Meta-analysis of genome-wide association studies identifies novel loci that influence cupping and the glaucomatous process

Henriët Springelkamp1,2,*, René Höhn3,*, Aniket Mishra4,*, Piroo G. Hysy5,*, Chiea-Chuen Khor6,7,*, Stephanie J. Loomis8,*, Jessica N. Cooke Bailey9,10, Jane Gibson11, Godnar Thorleifsson12, Sarah F. Jansen13, Xiayan Luo14, Wishal D. Ramdas1, Eranga Wijetunga15,16, Monisha E. Nongpiur15,16, Grant W. Montgomery17, Liang Xu18,19, Kenny J. Mountain15, Puya Gharakhani10, Yi Lu11, Najaf Amin2, Lennart C. Karssen2, Kar-Seng Sim3, Elisabeth M. van Leeuwen1, Adriana I. Igleisas2, Virginie J.M. Verhoven1,2, Michael A. Hauser21, Seng-Chee Loo3, Dominiek D.G. Despriet1, Abhishek Nag3, Cristina Venturini22, Paul S. Sanfilippo23, Arne Schillert24, Jae H. Kang25, John Landers26, Fridbert Jonasson27,28, Angela J. Cree29, Leonieke M.E. van Koolwijk2, Fernando Rivadeneira23,30,31, Emmanuelle Souzeau26, Vestein Jonsson28, Geeta Menon32, Blue Mountains Eye Study—GWAS group1, Robert N. Weinreb33, Paulus T.V.M. de Jong2,34,35,36, Ben A. Ooster37, André G. Uitterlinden2,30,31, Albert Hofman2,31, Sarah Ennis38, Unnur Thorsteinsdottir12,27, Monisha E. Nongpiur6,15, Grant W. Montgomery17, Liang Xu18,19, Jenny E. Mountain, Boston Massachusetts 02114, USA. 3 Department of Molecular Physiology and Biophysics, Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA. 4 Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio 44106, USA. 5 Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton SO17 1BJ, UK. 6 Beijing Ophthalmology and Visual Science Key Lab, Beijing 100730, China. 7 Department of Epidemiology and Social Medicine, King’s College London, London WC2R 2LS, UK. 8 Department of Twin Research and Genetic Epidemiology, King’s College London, London WC2R 2LS, UK. 9 Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114, USA. 10 Department of Molecular Physiology and Biophysics, Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA. 11 Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio 44106, USA. 12 Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton SO17 1BJ, UK. 13 deCODE/Amgens, Reykjavik 101, Iceland. 14 Department of Clinical and Molecular Ophthalmogenetics, The Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam 1005 BA, the Netherlands. 15 Department of Ophthalmology, Duke University Eye Center, Durham, North Carolina 27710, USA. 16 Singapore Eye Research Institute, Singapore National Eye Centre, Singapore 168751, Singapore. 17 Duke-National University of Singapore, Graduate Medical School, Singapore 169857, Singapore. 18 Department of Genetics and Computational Biology, Molecular Epidemiology Laboratory, QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Brisbane, Queensland 4006, Australia. 19 Department of Twin Research and Genetic Epidemiology, King’s College London, London WC2R 2LS, UK. 20 Department of Ophthalmology, National University of Singapore and National University Health System, Singapore 119077, Singapore. 21 Division of Human Genetics, Genome Institute of Singapore, Singapore 118672, Singapore. 22 Department of Ophthalmology, Harvard Medical School and Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114, USA. 23 Department of Molecular Physiology and Biophysics, Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA. 24 Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio 44106, USA. 25 Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton SO17 1BJ, UK. 26 deCODE/Amgens, Reykjavik 101, Iceland. 27 Beijing Ophthalmology and Visual Science Key Lab, Beijing 100730, China. 28 Department of Ophthalmology and Visual Science, National University of Singapore, Singapore 138672, Singapore. 29 Institute of Ophthalmology, National University of Singapore and National University Health System, Singapore 119077, Singapore. 30 Department of Medicine, Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts 02115, USA. 31 Department of Ophthalmology, Flinders University, Adelaide, South Australia 5042, Australia. 32 Faculty of Medicine, University of Iceland, Reykjavik 101, Iceland. 33 Department of Ophthalmology, Landspitali National University Hospital, Reykjavik 101, Iceland. 34 Centre for Eye Research Australia (CERA), University of Melbourne, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria 3002, Australia. 35 Institute of Medical Biometry and Statistics, University of Lübeck, Lübeck 23562, Germany. 36 Department of Medicine, Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts 02115, USA. 37 Department of Ophthalmology, Flinders University, Adelaide, South Australia 5042, Australia. 38 Human Development and Health, Faculty of Medicine, University of Southampton, Southampton 001781, UK. 39 Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117597, Singapore. 40 Department of Statistics and Applied Probability, National University of Singapore, Singapore 119077, Singapore. 41 Glaucoma Service, The Rotterdam Eye Hospital, Rotterdam 3011 BH, The Netherlands. 42 Department of Medicine, National University of Singapore and National University Health System, Singapore 119077, Singapore. 43 Department of Ophthalmology, Medical University Hamburg, Germany. 44 Department of Ophthalmology, Medical Faculty Mannheim of the Ruprecht-Karls-University of Heidelberg, Seegartenklinik Heidelberg, Heidelberg 69117, Germany. 45 NIH-VR Biomedical Research Center, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London EC1V 9EL, UK. 46 Centre for Glaucoma and Visual Science, Lions Eye Institute, University of Western Australia, Perth, Western Australia 6009, Australia. 47 Department of Clinical Genetics, Academic Medical Center, Amsterdam 1006, The Netherlands. These authors contributed equally to this work. I Membership of the NEIGHBORHOOD Consortium is listed at the end of the paper. || Members of the Eye Disease Case Control Consortium are listed at the end of the paper. } These authors jointly supervised this work. Correspondence and requests for materials should be addressed to C.M.v.d.(email: c.vandijin@erasmusmc.nl)
Optic nerve degeneration caused by glaucoma is the most common cause of irreversible blindness worldwide. Glaucomatous optic neuropathy is recognized by changes in the morphology of the optic nerve head, or optic disc, caused by loss of retinal ganglion cells and thinning of the retinal nerve fibre layer. In glaucoma, the nerve fibre layer typically thins in the superior and inferior regions of the nerve creating a vertically elongated depression (the cup). The ratio of the cup to the overall nerve size (the disc), called the vertical cup-disc ratio (VCDR), is a key factor in the clinical assessment and follow-up of patients with glaucoma. VCDR has been shown to be heritable with h^2 scores ranging between 0.48 and 0.662. At least seven loci have been associated with VCDR in previous genome-wide association studies (GWAS) and three of these were subsequently implicated in primary open-angle glaucoma (POAG)$^8-11$. So far, the explained variance of open-angle glaucoma by age, sex, intraocular pressure and established POAG genes is still small (4–6%)12. As with other complex diseases, large sample sizes are needed to ensure sufficient power to fully define the underlying genetic architecture.

Here, we report the largest genome-wide meta-analysis for VCDR, with data from 14 studies from Europe, the United States, Australia and Asia, as part of the International Glaucoma Genetics Consortium. The aim of the study is to identify loci associated with VCDR, and to determine whether these variants are also associated with glaucoma.

We perform the meta-analysis in four stages. In the first stage, we meta-analyse summary data from 10 populations of European ancestry comprising 21,094 individuals. In the second stage, we test the cross-ancestry transferability of the statistically genome-wide-significant associations from the first stage in 6,784 individuals from four Asian cohorts. In the third stage, we examine whether the associations are independent of disc area and/or spherical equivalent. We also combine the genome-wide-significant effects into a genetic risk score and associate this score with the POAG risk in five populations. Finally, we perform gene-based tests and pathway analysis.

We find 10 new loci associated with VCDR, which together increase the risk on POAG 2.5 times. Our findings will help us to unravel the pathogenesis of glaucoma.

Results

Meta-analysis of GWAS. In stage 1, we analysed \sim2.5 million HapMap stage 2 single-nucleotide polymorphisms (SNPs)—either directly genotyped or imputed in 21,094 subjects of European ancestry (Supplementary Fig. 1; Supplementary Table 1; Supplementary Methods). The inflation factors ($\hat{\lambda}$) varied between 0.98 and 1.12, implying adequate within-study control of population substructure (Supplementary Table 2; Supplementary Figs 2 and 3). The overall $\hat{\lambda}$ was 1.05. This analysis yielded 440 genome-wide-significant SNPs ($P<5.0 \times 10^{-8}$) located across 15 chromosomal regions (Table 1; Supplementary Fig. 4a). In stage 2, we investigated the SNP with the strongest association at each region in the Asian populations and found that eight were nominally significant ($P<0.05$) with an effect in the same direction and generally the same order of magnitude (Table 1; Supplementary Fig. 4b). Five of the seven loci that did not reach nominal significance in those of Asian descent had a similar effect in the same direction. Supplementary Table 3 shows the most significant SNPs in Asians within 100,000 base pairs from the most significant associated SNP in Europeans. Meta-analysis of only the Asian populations did not result in new genome-wide-significant findings. The combined analysis of the European and Asian populations resulted in three additional genome-wide-significant associations on chromosomes 1, 6 and 22 (Table 1; Fig. 1). The level of heterogeneity across the samples are shown in Table 1. Of the 18 genome-wide-significant loci, 10 are novel for the VCDR outcome (COL8A1, DUSP1, EXOC2, PLCG1, ADAMTS8, RPAP3, SALL1, BMP2, HSF2 and CARD10) (Supplementary Fig. 5). There were no significant differences in terms of allele frequencies across the different cohorts (Supplementary Table 4). The effect estimates from the participating cohorts appear not to be influenced by main demographic characteristics, such as mean age and sex ratio (Supplementary Fig. 6).

Adjustment for disc area and spherical equivalent. Four of the 18 genome-wide-significant loci have been previously associated with optic disc area (CDCC7/TGFB3, ATOH7, SALL1 and CARD10)10,13. Because the size of the optic nerve varies between individuals and is correlated to the VCDR14, we adjusted the association to VCDR for optic nerve (disc) area. This resulted in a reduced effect size and significance ($P=3.48 \times 10^{-11}$ to $P=9.00 \times 10^{-3}$) at the CDCC7-TGFB3 locus, suggesting the VCDR association at this locus is explained primarily by its known association with disc area (Supplementary Table 5a–c). A similar reduction in effect was seen for ATOH7. However, for this locus there remains a significant disc-area-independent effect ($P=7.28 \times 10^{-5}$). There was no change in association significance for any of the 10 new loci reported here, suggesting they do not act primarily on disc area.

It is of interest that two genes (SIX6 and BMP2) overlap with those implicated in myopia15, an important risk factor for POAG16. The correlation between VCDR and spherical equivalent is low (Supplementary Table 6), and adjusting for spherical equivalent did not lead to any major changes in the effects for these or other loci in European populations (Supplementary Table 7a), suggesting a joint genetic aetiology for POAG and myopia. In Asian cohorts, the direction of effect on VCDR at the chromosome 11 locus (MIR612-SSSCA1 region) was not consistent with the European populations (Supplementary Table 7b). However, after adjusting for spherical equivalent the direction of effect on VCDR was similar to both populations. At the BMP2 myopia locus, we observed a large difference in allele frequency between those of European and Asian ancestry (Table 1), which may explain the difference in effect direction.

Risk for POAG. The 18 loci, together with age and sex, explain 5.1–5.9% of the VCDR phenotypic variability in Europeans (measured in the Rotterdam Study I, II and III), of which 1.6–1.8% is explained by the new loci. The phenotypic variability explained by all common SNPs is 41–53% in these cohorts, which is in line with the heritability estimates from family-based studies. In addition to confirming the previously published CDKN2BAS and SIX1/6 POAG risk loci, we found nominally significant ($P<0.05$) associations with POAG for six newly identified genetic variants ($P=8.1 \times 10^{-2}$ from binomial test for chance of seeing six or more such nominally significant associations in 16 tests) (Supplementary Table 8), with odds ratios varying between 0.73 and 1.20. In the combined case-control studies, we found that the sum of all effects of these genes increased the risk of POAG 2.5-fold (Supplementary Table 9) for those in the highest quintile compared with those in the lowest quintile.

Gene-based test. To identify new loci not previously found through individual SNP-based tests, we performed gene-based tests using VEGAS software17. Because of the smaller number of tests (17,872 genes tested), our gene-based significance threshold is $P_{\text{gene-based}}<0.05/17,872=2.80 \times 10^{-6}$. In addition to the SNPs
identified as significant \((P < 5 \times 10^{-8})\) in a SNP-based test, we also found two new genes significantly associated with VCDR using the VEGAS gene-based test (Supplementary Table 10). These were REEP5 \((P = 7.48 \times 10^{-7})\) and PITPNB \((P = 4.89 \times 10^{-7})\). PITPNB is \(~ 800\) kb from another gene with a significant SNP association (CHEK2, rs1547014) (Supplementary Fig. 7). Although the association signal centred over CHEK2 extends a long distance towards PITPNB, a separate association peak over PITPNB can be observed, which is unrelated (no linkage disequilibrium (LD)) to the CHEK2 peak. The results we obtained using the specified definition of the gene unit were substantially the same when alternative cutoff points from the transcription initiation and end sites were used (Supplementary Table 11). The REEP5 gene showed no association with POAG.
Caucasians and Asians combined:

\[b \]

Driven by the regulation of cyclin-dependent protein kinase activity' and analysis suggests retardation of cell growth as a major biological effect. This study reports 10 novel loci associated with VCDR, with expression databases or the published literature. Most of these implicated in VCDR by these analyses in human ocular gene expression databases or the published literature. Most of these genes are expressed in eye tissues, including the optic nerve (Supplementary Tables 15 and 16).

Pathway analysis. To test whether gene-based statistics identified were enriched in 4,628 pre-specified Gene Ontology pathways, we performed pathway analysis using Pathway-VEGAS18. We used a pathway-wide significance threshold to be \(1.08 \times 10^{-5} \) \((0.05/4,628) \). The only pathway exceeding the pathway-wide significance level was 'negative regulation of cyclin-dependent protein kinase activity' (Supplementary Table 13). The second top-pathway 'negative regulation of epithelial cell proliferation' is related to the top pathway, both suggesting retardation of cell growth. The 'negative regulation of cyclin-dependent protein kinase activity' finding was driven not only by the result at the CDKN2A locus but also by the result at APC, a gene close to REEPS.

Regulatory elements and expression data. Six of the 18 most associated SNPs are located in DNase I hypersensitivity sites (Supplementary Table 14). The retinal pigment epithelium has the highest signal of all 125 available cell lines in one of these DNase I hypersensitivity sites. Thus, these results are suggesting that some of the SNPs may have their effect on VCDR by altering regulatory functions. We investigated the expression of the genes implicated in VCDR by these analyses in human ocular gene expression databases or the published literature. Most of these genes are expressed in eye tissues, including the optic nerve (Supplementary Tables 15 and 16).

Discussion

This study reports 10 novel loci associated with VCDR, with an additional two loci identified using gene-based testing. Pathway analysis suggests retardation of cell growth as a major biological mechanism. The results for the most associated pathways 'negative regulation of cyclin-dependent protein kinase activity' and 'negative regulation of epithelial cell proliferation' are primarily driven by the CDKN2A and CDKN2B genes, respectively, but in both pathways the gene-based result at APC \((P = 7.20 \times 10^{-5}) \) in Caucasians and \(P = 8.80 \times 10^{-3} \) in Asians also contributes to the pathway result. The APC gene has previously been reported to be a critical gene regulating retinal pigment epithelium proliferation and development19. These results add to our earlier findings on the role of growth and the transforming growth factor beta (TGFβ) pathways in VCDR10. Various new genes fall into these pathways. The protein encoded by the BMP2 (bone morphogenetic protein 2) gene on chromosome 20 belongs to the TGFβ super-family. Two other new genes regulate apoptosis: RPAP3 (RNA polymerase II-associated protein 3) on chromosome 1220 and CARD10, a gene that was previously found to be associated with disc area3. Another new VCDR association previously associated with disc area is SALL10. This gene is implicated in ocular development.

Our findings offer new insights in the aetiology of optic nerve degeneration. COL5A1 (collagen, type VIII, alpha 1) is part of a collagen pathway recently implicated in corneal thickness18, an ocular trait also associated with glaucoma risk. Missense mutations in COL5A2 (collagen, type VIII, alpha 2) were found in POAG patients with a very thin central corneal thickness (CCT)21. The collagen SNP (rs2623325) was not significantly associated with CCT (in Caucasians: \(\beta = -0.044, P = 0.19 \); in Asians: \(\beta = 0.007, P = 0.89 \)) or intraocular pressure (in Caucasians and Asians combined: \(\beta = -0.02, P = 0.73 \)) in largely the same cohorts18,22, suggesting that the collagen involvement in VCDR is not due to the influence by CCT or intraocular pressure. We also found several genes involved in cellular stress response. DUSP1 (dual specificity phosphatase 1) is the nearest gene to the most strongly associated SNP on chromosome 5. This gene, inducible by oxidative stress and heat shock, may play a role in environmental stress response23, and may also participate in the negative regulation of cellular proliferation. HS2 (heat shock transcription factor 2), one of the genes at the chromosome 6 locus, also is part of the cellular stress response pathway. Deficiency of this factor causes various central nervous system defects in mice24,25. Another pathway emerging in this study is that of exocytosis. The SNP on the other chromosome 6 locus is located in EXOC2 (exocyst complex component 2). The encoded protein is one of the eight proteins of the exocyst complex26. This multi-protein complex is important for directing exocytic vesicles to the plasma membrane, a mechanism that also has been implicated in neuronal degeneration in the brain27.

Lipid metabolism emerges as another pathway. The gene on chromosome 10, PLCE1 (phospholipase C, epsilon 1), belongs to the phospholipase C family, which plays a role in the generation of second messengers28. Various processes affecting cell growth, differentiation and gene expression are regulated by these second messengers. From a clinical perspective, the findings on ADAMTS8 are of interest. ADAMTS enzymes have different functions, including the formation and turnover of the extracellular matrix29. Strikingly, a variant in ADAMTS10 has been linked to a form of glaucoma in dogs30,31.

In summary, we have now identified 10 novel loci associated with cupping of the optic nerve, a key determinant of glaucoma. Together, these genetic risk variants increased the risk of POAG in case-control validation studies. Pathway analysis implicated negative regulation of cell growth and cellular response to environmental stress as key pathological pathways in glaucoma, and that novel therapies targeting these pathways may be neuro-protective in glaucoma.

Methods

Study design. We performed a meta-analysis on directly genotyped and imputed SNPs from individuals of European ancestry in 10 studies, with a total of 21,094 individuals. Subsequently, we evaluated significantly associated SNPs in 6,784 subjects of Asian origin including four different studies and performed a meta-analysis on all studies combined.

Subjects and phenotyping. All studies included in this meta-analysis are part of the International Glaucoma Genetics Consortium. The ophthalmological examination of each study included an assessment of the optic nerve head to measure the VCDR (Supplementary Table 17a). Unreliable optic nerve data were excluded.

The meta-analysis of stage 1 was based on 10 studies of European ancestry: Brisbane Adolescent Twin Study, Blue Mountains Eye Study, Erasmus Rucphen Family Study, Gutenberg Health Study (GHS I/GHS II), Glaucoma Genes and Environment (controls only), National Eye Institute Glaucoma Human Genetics Collaboration (NEIGHBOR; controls only), Raine Study, Rotterdam Study (RS-I/RS-II/RS-III), Twins Eye Study in Tasmania and TwinsUK. Stage 2 comprised four Asian studies: Beijing Eye Study, Singapore Chinese Eye Study, Singapore Malay Eye Study and Singapore Indian Eye Study. For each SNP with the strongest association at each locus the association with POAG was tested in five case-control studies: ANZRAG, deCODE, Massachusetts Eye and Ear Infirmary, NEIGHBOR and Southampton.

Information on general methods, demographics, phenotyping and genotyping methods of the study cohorts can be found in Supplementary Tables 1 and 17 and the Supplementary Note. All studies were performed with the approval of their local medical ethics committee, and written informed consent was obtained from all participants in accordance with the Declaration of Helsinki.

Genotyping and imputation. Information on genotyping in each cohort and the particular platforms used to perform genotyping can be found in more detail in Supplementary Table 17b. To produce consistent data sets and enable a meta-analysis of studies across different genotyping platforms, the studies performed...
genomic imputation on available HapMap Phase 2 genotypes with MACH32 or IMPUTE2, using the appropriate ancestry groups as templates. Each study applied stringent quality control procedures before imputation, including minor allele frequency cutoffs, Hardy–Weinberg equilibrium, genotypic success rate, mendelian inconsistencies, exclusion of individuals with >5% shared ancestry (exception made for family-based cohorts in which due adjustment for family relationship was made) and removal of all individuals whose ancestry as determined through genotypic analysis did not match the prevailing ancestry group of the corresponding cohort (Supplementary Note). SNPs with low imputation quality were filtered using metrics specific to the imputation method and thresholds used in previous GWAS analyses. For each cohort, only SNPs with imputation quality scores >0.6 (proper-info of IMPUTE) or R2 ≥ 0.6 (MACH) were included into the meta-analysis.

Statistical analysis. In subjects drawn from their respective populations in which the prevalence of glaucomatous changes is relatively low, the correlation between left and right eye is high. Therefore, we used the mean VCDR of both eyes. In cases of missing or unreliable data for one eye, data of the other eye was taken. Each individual study did a linear regression model between the VCDR and the SNPs under the assumption of an additive model for the effect of the risk allele. Analyses were adjusted for age, sex and the first two principal components (for population-based studies) or family structure (for family-based studies). Secondary analyses were done with adjustments for disc area or spherical equivalent. In the Rotterdam Studies, we calculated the phenotypic variability explained by the new clustered genes was dropped at random when genes were clustered. Pathway-VEGAS analysis. Pathway-VEGAS combines VEGAS gene-based test statistics based on pre-calculated by using the Manhattan, regional and forest plots were made using STATA/SE 12.0 (StataCorp LP, College Station, TX, USA).

Risk-score models. In five case-control studies, a weighted genetic risk score per individual was calculated. Standardized regression coefficients were used as weighting factor. The weighted risk scores were divided into quintiles. Odds ratios were calculated for each quintile, using the first quintile as a reference.

Gene-based test using VEGAS. There are different gene-based tests of which VEGAS is one of the most powerful tests41. We therefore performed gene-based testing using VEGAS2, which combines the test statistics of all SNPs present within and 50 kb upstream/downstream of each gene. LD between the markers is accounted for through simulations from the multivariate normal distribution, based on estimates of LD from reference populations. Since Asian and European ancestry populations show different LD patterns, we performed separate gene-based tests for each population. Hapmap 2 CEU population was used as a reference to calculate LD for European ancestry data, whereas Hapmap 2 JPT and CHB combined population was used as a reference for Asian ancestry data. After calculation of gene-based test statistics for Asian and European ancestry populations separately, meta-analysis was conducted using Fisher’s method for combining P-values. Fisher’s method was applied to the summary data from the full GWAS analysis (as in Table 1) and to three of the POAG data sets: ANZRG, Massachusetts Eye and Ear Infirmary glaucoma clinic and Glaucoma Genes and Environment (Supplementary Note).

Pathway-analysis using pathway-VEGAS. Pre-specified pathways from the Gene Ontology database with size ranging in 5–500 genes were used to perform pathway analysis. Pathway-VEGAS combines VEGAS gene-based test statistics based on pre-specified biological pathways42. Pathway P values were computed by summing z-test statistics derived from VEGAS P values. Empirical “VEGAS-pathway” P values for each pathway were computed by comparing the real-data-summed z-test statistics with 500,000 simulations where the relevant number (as per size of pathway) of randomly drawn z-test statistics was summed. To ensure clusters of genes did not adversely affect results, within each pathway, gene sets were pruned such that each gene was >300 kb from all other genes in the pathway. Where required, all but one of the clusters was dropped at random when genes were clustered. Pathway-VEGAS was performed separately for European and Asian ancestry data sets. Meta-analysis was conducted using Fisher’s method for combining P values.

Regulatory functions. We used the ENCyclopedia Of DNA Elements42 data in the UCSC Genome Browser43 to look at DNase I hypersensitivity sites and other functional elements.

Gene expression in human eye tissue. We examined the expression of genes that reached significance in the individual SNP-based test or gene-based test. We used published literature or human ocular gene expression databases (Supplementary Tables 15 and 16).

References

Acknowledgements

We gratefully thank the invaluable contributions of all study participants and staff at the recruitment centers. Complete funding information and acknowledgements for each individual study can be found in the Supplementary Note.

Author contributions

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing financial interests: G.T., U.T. and K.S. are employees of deCODE genetics/Amgen. The remaining authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Springelkamp, H. et al. Meta-analysis of genome-wide association studies identifies novel loci that influence cupping and the glaucomatous process. Nat. Commun. 5:4883 doi: 10.1038/ncomms5883 (2014).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material.

To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
Data and Analysis Group: Chris C.A. Spencer78, Gavin Band78, Céline Bellenguez78, Colin Freeman78, Garrett Hellenthal78, Eleni Giannoulatou78, Matti Pirinen78, Richard Pearson78, Amy Strange78, Zhan Su78, Damjan Vukcevic78, Peter Donnelly78,79. DNA, Genotyping, Data QC and Informatics Group: Cordelia Langford80, Sarah E. Hunt80, Sarah Edkins80, Rhian Gwilliam80, Hannah Blackburn80, Suzannah J. Bumpstead80, Serge Dronov80, Matthew Gillman80, Emma Gray80, Naomi Hammond80, Alagurevathi Jayakumar80, Owen T. McCann80, Jennifer Liddle80, Simon C. Potter80, Radhi Ravindrarajah80, Michelle Ricketts80, Matthew Waller80, Paul Weston80, Sara Widaa80, Pamela Whittaker80, Ines Barroso80, Panos Deloukas80.

Publications Committee: Christopher G. Mathew (Chair)92, Jenefer M. Blackwell81,82, Matthew A. Brown84, Aiden Corvin86, Chris C.A. Spencer78.