Superconductor-To-Normal Transition In Finite Nanowires

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th>Citation</th>
<th>Refael, Gil, Eugene Demler, and Yuval Oreg. 2009. Superconductor-to-normal transition in finite nanowires. Physical Review B.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>doi://10.1103/PhysRevB.79.094524</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:13421138</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP</td>
</tr>
</tbody>
</table>
Superconductor-to-normal transition in finite nanowires

GIL REFAEL, EUGENE DEMLER, YUVAL OREG

1 Dept. of Physics, California Institute of Technology, MC 114-36, Pasadena, CA 91125
2 Dept. of Physics, Harvard University, 17 Oxford St., Cambridge MA, 02138
3 Dept. of Condensed Matter, Weizmann Institute of Science, Rehovot, 76100, Israel

In this paper we discuss the interplay of quantum fluctuations and dissipation in uniform superconducting nanowires. We consider a phenomenological model with superconducting and normal components, and a finite equilibration rate between these two-fluids. We find that phase-slip dipoles proliferate in the wire, and decouple the two-fluids within its bulk. This implies that the the normal fluid only couples to the superconductor fluid through the leads at the edges of the wire, and the local dissipation is unimportant. Therefore, while long wires have a superconductor-metal transition tuned by local properties of the superconducting fluid, short wires have a transition when the total resistance is $R_{\text{total}} = R_Q = h/4e^2$.

Quantum phase transitions have long been at the forefront of condensed matter theory. Especially interesting are systems of reduced dimensionality and size, where fluctuations are enhanced, and ordering is illusive, and far from being expalained by mean field theory. Such systems exhibit a surprising degree of universality; for instance, as observed in Refs. [1, 2], a mesoscopic Josephson junction shunted by a resistor R undergoes a (so-called Schmid) transition between a Coulomb-blockade (normal) and superconducting phase when the shunt resistor is $R = R_Q = h/4e^2 = 6.45k\Omega$ [3–5]. Fluctuations of the superconducting phase angle, i.e., phase-slips, induce this transition; they also control the onset of superconductivity in long thin wires and Josephson junction chains [6–10], where the competition between local charging energy, which creates phase-slips, and the superconducting stiffness tunes the transition [11–13].

Our focus is experiments on $\text{Mo}_7\text{Ge}_{21}$ (amorphous) nanowires as narrow as 5nm-15nm. Resistance vs. temperature curves showed a transition between superconducting (resistance decreasing upon cooling) and normal, or weakly insulating, (resistance non-decreasing upon cooling) behavior. A first set of measurements on wires of various diameters, and lengths 100nm $< L < 2000nm$, showed a remarkable result: a transition when the total resistance of the wire was $R_Q = h/4e^2 = 6.45k\Omega$ [14], as if the entire wire was a single shunted junction. But the coherence length of MoGe is $\xi < 10nm$, thus the wire should differ dramatically from a single junction. Indeed, later experiments on longer wires, 200nm $< L < 1000nm$, showed a weak transition that depended on the resistance per length or cross-section of the wires, i.e., on a local quantity, rather than the total resistance [15]. Later experiments [16], could neither prove nor disprove the global nature of the transition in the shorter wires.

In this paper, we describe nanowires using a two-fluid model, which assumes that Cooper pairs couple to a normal electron fluid, which provides local dissipation (Fig. 1). Remarkably, we find that at sufficiently low temperature, the normal and superconducting fluids within a continuous nanowire decouple due to quantum phase fluctuations, thus rendering the local dissipation unimportant. Therefore, the superconducting degrees of freedom can only couple to the dissipative normal fluid at the leads, on the edges of the wire, where they couple to its total normal-state resistance, R_{total}. As a result, we show that indeed short wires may undergo a global dissipative Schmid transition tuned by the total wire resistance, when $R_{\text{total}} = R_Q$. By short, we mean wires with length $L > \xi$, but shorter than both the thermal length, $L < \hbar c/T$ (with c the Mooij-Schön velocity, and T being the lowest temperature in the experiment)[17], and the ‘quantum length’ $A_C R_Q/\rho$, (with ρ the specific resistance, and A_C the largest cross-section area where quantum phase slips are not competitively suppressed)[18]. After our work was completed, this result was verified in MoGe wires with 50nm $< L < 300nm$ [19]. Below we derive the two-fluid model, show how phase-slip dipoles decouple the normal and superconducting fluids, and apply to model to the case of a finite nanowire.

The hint of a Schmid transition, the long resistive tails seen in experiments, and the strong disorder of the MoGe nanowires suggest the presence of local dissipation, which motivates the two-fluid model approach. We assume that charge can flow in the nanowires in two ways: as diffusive normal electrons with resistivity ρ - normal fluid - and as bosonic Cooper pairs - superfluid. The normal fluid...
stems from strong disorder and phase-fluctuations, which suppress the proximity effect and possibly give rise to normal regions and a finite density of states for single electrons at the Fermi level. The two fluids can have a different chemical potential, and can exchange charge with a finite, bare, relaxation time, $\tau_r = \Upsilon^{-1}$, in a bulk system (see Fig. 1, and Fig. 2b for a discrete model). This is related to the branch imbalance relaxation time [20, 21], first measured by Clarke [22] in Sn wires.

Before plunging to the analysis, note that earlier works on similar models considered only the perfect normal-super fluid coupling, $\Upsilon = \infty$ case, and found a superconducting-metal transition tuned by the resistance per length [11–13, 23], as did Refs. [24, 25]. Alternative approaches assumed external dissipation coupled to the leads but not to the bulk of the wire [26], or discussed the onset of superconducting correlations and neglected phase fluctuations [27].

Indeed, in our model as well, sufficiently long but finite wires would exhibit a SC-normal crossover tuned by their cross-section area, which sets the bare fugacity of quantum phase slips [18], as well as their stiffness. But quantum fluctuations in the form of phase-slip dipoles, make the Cooper-pair to normal-electron conversion rate vanish at $T = 0$ in the bulk of the nanowire: $\Upsilon \to 0$. As claimed above, this leads to a true Schmid transition for short wires, which effectively become a short dissipation-less superconducting wire, shunted through the leads by the total normal-state resistance R_f.

The crucial two-fluid decoupling is already evident in a simple two-junction system (Fig. 2a) [28, 29]. When $r = 0$ (i.e. vanishing conversion resistance), the two junctions in the system are independent in the d.c. limit. Phase slips - events where the phase across a Josephson junction tunnels by 2π - create a sudden voltage drop that opposes any supercurrent flowing, and thus induce dissipation. A Schmid transition occurs in each junction when $R_i = R_Q$ ($i = 1, 2$). When $r > 0$, the two junctions become coupled, and phase-slips may form bound dipoles: simultaneous phase-slip and anti-phase-slip in the two junctions. Remarkably, dipoles do not destroy the coherence between the two leads, since they produce equal and opposite voltage drops. Nevertheless, as single phase slips block supercurrents across their Josephson junctions when they proliferate, dipoles block the normal-superfluid conversion channel: a conversion current $2i$ (Fig. 2a) flowing across r, with no lead-to-lead current, implies a current i on both junctions, but in opposite directions. i couples directly to the voltage drop of the dipoles; when proliferated, they block this current mode, and thus decouple the normal and super fluids. Phase slip dipoles proliferate roughly when $r > R_Q$. In this case a global Schmid transition takes place when $R_1 + R_2 = R_Q$.

Next, we generalize the normal-super fluids decoupling to wires, first using a discrete model (Fig. 1b), and then taking its continuum limit. Starting with an infinite chain of mesoscopic two-fluids grains (Fig. 1b) [30], the low-energy action for the chain is given in terms of a 2d gas of phase-slips, with interaction:

$$p_1p_2 \left(K \log \frac{a_x}{\sqrt{\pi^2/c^2 + \tau^2}} + \alpha e^{-|x|/\lambda_Q} \log \frac{a_x}{\tau} \right),$$

where $c = a_x \sqrt{E_J/E_C}/h$ is the Mooij-Schön velocity [31], and $a_x = a_x/c$. $p_i = \pm$ is the phase slip polarity. The first term is the usual isotropic interaction of a 1+1 XY model due to the plasmons in the Josephson junction array; $K = 2\pi \sqrt{E_J/E_C}$, $E_C = (2c/e)^2/C$. The second term is due to the dissipative interaction: $\alpha = \max\left(\frac{R_{\infty}}{\sqrt{R/R_Q}}, \frac{R_{\infty}}{R} \right)$, and $\lambda_Q = \max(\frac{1}{a_x}, \frac{1}{\sqrt{Rr}}) = 1/\sqrt{\tau/\rho}$, is a new length-scale that arises from the two-fluid finite relaxation time. As in the two-junction case, dipoles must be explicitly included in the low-energy description of this model [12, 13, 30]. We denote the fugacity of single phase slips as ζ, and the fugacity of a dipole with moment n as η_n. For completeness, we quote here the explicit field theory for the infinite chain:

$$\int \frac{d\omega d\epsilon}{(2\pi)^2} \left[(ck^2 + \frac{1}{2}\epsilon^2) \frac{\rho_0^2(\omega)}{4\pi R Q} + \frac{1}{4\pi R Q} |\omega|^2 (k^2 + \frac{\epsilon^2}{4}) \psi_i^2(\omega) \right]$$

$$- \int d\tau \sum_i [\zeta \cos(\theta_i + \psi_i) + \eta_i \cos(\Delta_n \theta_i + \Delta_n \psi_i)],$$

with $c = a_x \sqrt{E_J/E_C}/h$, and θ, ψ mediating the plasmon and dissipative interactions, respectively. At high energies $\eta_n \sim \zeta^2$, and $\Delta_n \theta_i = f_{i+n} - f_i$. This is a representation dual to the SC phase representation, hence...
is that dipoles proliferate when: $\frac{R_Q}{R_{\xi}} \left(\frac{\Delta}{\max[\lambda_2, \xi]} \right)^2 < 1$

(3)

Thus a finite continuous wire is effectively described by a chain of Josephson junctions, shunted by the global resistance in the chain. Phase slips now exhibit an interaction due to the plasma waves in the chain, $K \log \frac{\pi}{\sqrt{x^2/c^2 + \tau^2}}$, and also due to the dissipation through the normal resistance, which is couple through the leads: $\frac{R_Q}{R_{\text{total}}} \log \frac{a}{\lambda_1}$. Naively, a transition will now occur when:

$$K + \frac{R_Q}{R_{\text{total}}} \sim 4$$

(4)

(see Fig. 4a). Less naive considerations show that the KTB transition, tuned by K is a cross-over for lengths $L < c/hT$, and an even stronger effect may appear due to the bare fugacity of phase slips being exponentially suppressed with K. The total resistance, however, still drives a Schmid transition when $R_{\text{total}} = R_Q$.

Our conclusions could be easily related to the nanowire experiments [14–16, 32]. In long wires, we expect a SC-Normal crossover tuned by stiffness (as in [11, 23]), but in short wires, we expect a Schmid transition tuned by the total normal-part resistance. In Fig. 4b we recast the diagram of Fig. 4a for the MoGe nanowire experiments, plotting $L/R_{\text{total}} \propto A$ vs. L, with L the length of the wire, and A its cross section area. The diagonal line marks $R_{\text{total}} = R_Q$. Above it we expect $T = 0$ superconductivity. The horizontal line marks the SC-normal cross-over in longer wires. This line most probably arises from the exponential dependence of the bare quantum-phase-slip fugacity on thickness [18], but may also be associated with a KTB transition at $K \sim 4$, or a fermionic T_C suppression mechanism, which also depends on R_{ξ}/R_Q [25]. After completing the analysis described here, Bezryadin and coworkers measured a large number of short samples with $L < 150nm$. These show near perfect fit with our prediction of a universal transition at $R_{\text{total}} = R_Q$ for shorter wires [16, 32, 37].

The application of our simple theory to the nanowire experiments requires several caveats. (1) It is natural to associate the resistance of the nanowire devices at temperatures just below the SC transition of the leads, with the total normal-part nanowire resistance, R_{total}. It is unclear, however, how this resistance is related to the normal-state resistance of the nanowires at temperatures above the bulk critical temperatures for MoGe.

(2) In addition, the origin and precise nature of normal electrons in the wires is unknown. Possibly, phase fluctuations or the strong disorder stifle the proximity

exp$(i\psi_i + i\theta_i)$ is the operator that creates a phase slip on junction i.

It is useful to compare the relatively complicated interaction between phase slips in an infinite chain, with that of phase slips in a single Josephson junction. In a single junction the interaction is: $p_1 p_2 R_{\xi} \log \frac{a}{\lambda_1}$. The Schmid transition, which marks phase-slip proliferation, occurs when the gain in entropy due to separating a phase-slip from an anti phase slip, $S = \log(a_{\xi} T)$ equals the required interaction energy, $\frac{R_Q}{R} \log(a_{\xi} T)$. Employing the same argument for the two-fluid Josephson chain yields the approximate SC-normal phase boundary: $K + \frac{1}{2} a \sim 4$.

This transition is essentially the 1+1 Kosterlitz-Thouless-Berezinski (KTB) transition of the Josephson junction array in accordance with Ref. [11] (for a more refined analysis see Ref. [30]). But this argument, as well as the interactions in (1), ignores phase-slip dipoles. When dipoles are proliferated, the normal- and superfluids decouple, and the superconducting part of the wire exhibits a SC-normal KTB transition when $K \sim 4$. Phase-slip dipoles, we find, proliferate when:

$$\frac{2R_Q}{R} \left(1 - e^{-a_{\xi}/\lambda_Q} \right) < 1.$$

The left-hand side is the strength of dipole interaction, which consists of the self interaction of the slip and anti slip and also their mutual interaction. a_{ξ} is the distance between grains in the model.

In the continuum limit, dipoles always proliferate and cut off the superfluid-normal conversion. The continuum limit implies $a_{\xi} \rightarrow 0$; but this makes a Josephson junction (and therefore also a phase slip on a junction) shrink to length zero. But a phase slip occurring on physical nanowires has a characteristic length ξ (coherence length). To reconcile this we allow phase slips to smoothly spread over $\sim \xi/a_{\xi}$ junctions [30]. Technically, we transform the zeta term in Eq. (2) as $\cos(\psi + \phi)_{(x, r)} \rightarrow \cos \frac{\Delta}{\xi} \sum_r f(r)(\psi + \phi)_{(x+r, r)}$, where $f(r)$ is a smooth, normalized, function centered around 0, with width ξ. We similarly treat the dipole η_r terms. The smearing reflects that in nanowires, phase slips can have an almost arbitrary overlap, $\Delta < \xi$ (Fig. 3), with other phase slips. The continuum generalization of Eq. (3)
The main result of this paper is the divergence of the normal-superfluid relaxation time, \(\tau_r = \frac{1}{\Gamma} \), in continuous uniform nanowires due to quantum fluctuations. Apart from the direct application of our theory to the \(\text{MoGe} \) nanowire experiments, this effect could be directly investigated in meso and nanoscopic systems where quantum fluctuations are apparent at relatively high temperatures. Some early experiments in this direction on nanostructures not uniform enough, but with quantum fluctuations are described in Ref. [36]. In future work we hope to address the issues of the origin and nature of the normal-part in nanowires, and its interplay with phase-slip density, and the diverging relaxation time.

We would like to especially thank D.S. Fisher, who collaborated with us on much of the research reported here. We also thank A. Bezryadin, A. Bollinger, P. Goldbart, B.I. Halperin, D. Meidan, D. Podolsky, D. Shahar for many helpful discussions. G.R. thanks the Technion ITP and the Weizmann institute for their generous hospitality. Y. O. Acknowledges support of the ISF.

\[[1] \text{J. S. Penttilä, Ü. Parts, P. J. Hakonen, M. A. Paalanen, and E. B. Sonin, Phys. Rev. Lett. 82, 1004 (1999).} \\
[2] \text{M. Watanabe and D. B. Haviland, cond-mat/0301340.} \\
The upper bound marks the crossover length where finite spatial-size corrections to the thermodynamic behavior occur. To get a sense for this scale we note that $L_C \approx \hbar c/T \approx \xi \sqrt{N_\perp \Delta_0}/T$, where Δ_0 is the BCS gap, and N_\perp is the number of transverse channels.

The fugacity of quantum phase slips is $\zeta \sim e^{-c R_Q / R} = e^{-c A R_Q / \rho \xi}$, with c of order 1, $R_\xi = R_{\text{total}} \xi / L$ and A the cross-section area [23]). In wires too thick, $A > A_C$, no quantum phase slips would be observed. A_C depends on the prefactor of the exponent in ζ, which could be quite large.

Note that Büchler et al. [26], considered a SC-Metal transition tuned by the resistance in the measuring circuit - this results in similar physical behavior as our model.