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16 Enabling Sharing in Auctions for
Short-term Spectrum Licenses
Ian A. Kash, Rohan Murty, and David C. Parkes

Wireless spectrum is a valuable and scarce resource that currently suffers from under-
use because of the dominant paradigm of exclusive-use licensing. We propose the SATYA
auction (Sanskrit for truth), which allows short-term leases to be auctioned and sup-
ports diverse bidder types, including those willing to share access and those who require
exclusive-use access. Thus, unlike unlicensed spectrum such as Wi-Fi, which can be
shared by any device, and exclusive-use licensed spectrum, where sharing is precluded,
SATYA improves efficiency through supporting sharing alongside quality-of-service pro-
tections. The auction is designed to be scalable, and also strategyproof, so that simple
bidding protocols are optimal. The primary challenge is to handle the externalities cre-
ated by allocating shared-use alongside exclusive-use bidders. Using realistic Longley-
Rice based propagation modeling and data from the FCC’s CDBS database, we conduct
extensive simulations that demonstrate SATYA’s ability to handle heterogeneous bidders
involving different transmit powers and spectrum needs.

16.1 Introduction

Currently, spectrum is licensed by governments in units covering large areas at high
prices and for long periods of time, which creates a large barrier to entry for new appli-
cations. The main alternative, unlicensed bands such as Wi-Fi, has offered tremendous
benefit, but is subject to a “tragedy of the commons” where these bands become con-
gested and performance suffers [6].

Many researchers and firms (e.g., [4, 18, 35]) have proposed creating a secondary
market for dynamic spectrum access to provide a new way to access spectrum. The
idea is that primary spectrum owners would be able to sell short-term leases. The same
technology could also be used by the government to provide a new approach to the
licensing of government owned spectrum, by selling short-term licenses in a primary
market. This is made possible by recent advances in building spectrum registries [18,
29].

Rather than just sell exclusive-use access to spectrum, we advocate the adoption
of auction technology to allocate spectrum to both exclusive-use and shared-use. An
exclusive-use license guarantees a winner no interference but can be inefficient. For
example, devices such as wireless microphones are only used occasionally, and other
devices can use the same spectrum when the wireless microphone is not in use. This
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heterogeneity of devices and demand patterns presents an opportunity for sharing. In
addition, many devices are capable of using a medium access controller (MAC) to share
spectrum when there is contention.

Auctions generate revenue and also enable efficient spectrum use through the dy-
namic reprovisioning of spectrum. Auctions improve efficiency relative to fixed price
schemes by allowing prices to adapt dynamically in response to varying demand. In
addition, auctions provide incentives for different users to describe through bids their
access requirements, for example specifying exclusive-use or allowing sharing.

We describe the SATYA auction, which is designed to allocate short-term spectrum
access across a wide range of scenarios, embracing different access technologies and
different types of users, including individuals and service providers. This makes SATYA
well suited to handle the mixture of users found today in settings such as Wi-Fi while
still providing a better service than unlicensed spectrum. In determining the allocation
of spectrum, SATYA considers the effect of interference on the value of the allocation
to different bidders. Because of the possibility of sharing spectrum, bidders in SATYA
care about how spectrum is allocated to other bidders, along with the dynamic access
patterns of those bidders. Most existing auction designs for wireless spectrum either fail
to allow sharing, or fail to scale to realistic problem sizes.

In order to make the algorithms for winner determination and determining payments
scalable we impose structure on the bidding language with which bidders describe the
effect of allocation to others on their value. The language allows bidders to express
their value for different allocations, given probabilistic activation patterns, an inter-
ference model, and under different requirements expressed by bidders for shared vs
exclusive-access spectrum. In determining the the value of an allocation, the auction
must determine the fraction of each bidder’s demand that is satisfied in expectation,
considering sharing and interference patterns. For this purpose, we adopt a model for
resolving contention by devices and assume knowledge of which devices will interfere
with each other given allocation (based on device location), and represented through a
conflict graph.

The SATYA auction is strategyproof, which is a property that makes simple bidding
protocols optimal for users or the devices representing users. In particular, the utility-
maximizing (the utility to a user is modeled as the difference between the user’s value
and the price) strategy is to bid truthfully, regardless of the bids, and regardless of the
kinds of activation patterns and sharing or exclusive-use preferences of other users.

Strategyproofness is a property that is desirable for large-scale, distributed systems
involving self-interested parties because it promotes stability— the optimal bid is in-
variant to changes in bids from other users. In comparison, bidders would need to keep
changing their bids in a non-strategyproof auction in order to maximize utility. This
continual churn in bids imposes an overhead on system infrastructure as well as partic-
ipants.

Even without sharing, the problem of finding a value-maximizing (and thus efficient)
allocation of spectrum is NP-hard [19]. In obtaining scalability, we adopt a greedy algo-
rithm for determining the winners and the spectrum allocation. A crucial difficulty that
arises because of externalities is that a straightforward greedy approach to allocation
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fails to be monotonic. What this means is that a user can submit a larger bid but receive
less spectrum (in expectation, given the interference, sharing and activation patterns).
Monotonicity is sufficient, and essentially necessary, for strategyproof auctions [30].
This leads to a significant design challenge.

In recovering monotonicity, SATYA modifies the greedy algorithm through a novel
combination of bucketing bids into value intervals in which they are treated equally
(this idea was employed in Ghosh and Mahdian [12]), along with a “computational
ironing” procedure that is used to validate the monotonicity of an allocation and perturb
the outcome as necessary to ensure monotonicity (this idea was introduced by Parkes
and Duong [31]). These techniques prevent cases in which an increase in bid can change
the decision of the greedy algorithm to something that looks just as good given decisions
made so far, but turns out to be worse for the bidder because of interference with other
bids that are subsequently allocated.

In evaluating SATYA, we use real-world data sources to determine participants in the
auction, along with the Longley-Rice propagation model [3] and high-resolution terrain
information, to generate conflict graphs. We compare the performance of SATYA against
other auction algorithms and baselines. Our results show that, when spectrum is scarce,
allowing sharing through the SATYA auction increases efficiency by 40% over previous
approaches while generating revenue for spectrum owners. The baseline also serves to
provide an upper bound on the potential cost of requiring strategyproofness relative to
a protocol that is designed to be efficient, but where participants in any case choose to
behave in a way that is approximately truthful.

16.1.1 Related Work

Most proposed auction designs for the sale of short-term spectrum licenses preclude
sharing amongst auction participants [5, 10, 23, 33, 35, 36]. From amongst these, VERI-
TAS [35] was the first strategyproof design. However, VERITAS does not support shar-
ing. We compare SATYA to VERITAS in the empirical analysis.

Ileri et al. [16, 17] consider models where users have exclusive access but only for
short time periods, which effectively permits some amount of sharing. Kasbekar and
Sarkar [24] propose a strategyproof auction and allow for sharing amongst winners. But
the winner determination algorithm in their proposed auction is not scaleable because
bids are explicitly represented on different joint spectrum allocations, which requires
considering an exponential (in the number of participants) number of allocations. In
contrast, our use of a structured bidding language allows us to achieve good efficiency
while considering a polynomial number of allocations. Huang et al. [15] propose an
auction design where bidders bid to share a single channel, but their design is not strat-
egyproof and they do not address the issue of how to assign channels when multiple are
available.

Gandhi et al. [11] propose an auction that allows sharing amongst winners, but dif-
fers from our approach in that it does not provide strategyproofness (and thus lacks an
equilibrium analysis and is otherwise hard to evaluate), and precludes sharing between
users who want exclusive-use when active but are only intermittently active (e.g., wire-
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less microphone devices) and other users. Externalities have also been considered in
auction theory [21, 22], but without the combinatorial aspect of our allocation problem
and the difficulties this implies for achieving strategyproofness. A number of papers
have considered externalities in online advertising [8,12,13,25,32]. However, this work
(and similarly that of Krysta et al. [26] on the problem of externalities in general combi-
natorial auctions) is not directly relevant, as the externalities in spectrum auctions have
a special structure, of which SATYA takes advantage in order to achieve compact bid
representations and scalable winner determination.

16.2 Challenges in Auction Design

In this section we describe in some more detail the challenges that arise when designing
a spectrum auction that permits sharing. First, we discuss the general form of an auction
and define strategyproofness. Second, we present a cenreal result due to Myerson [30]
that provides a general framework for designing strategyproof auctions through the use
of a monotone allocation rule. Finally, we introduce reserve prices, which are a standard
approach to increasing the revenue from an auction.

In the simplest type of auction, a single item is for sale. Each bidder i has private
information about his value Vi > 0. Let Bi ≥ 0 denote the bid from bidder i. Each bidder
receives an allocation Ai ∈ {0, 1}, where Ai = 1 if the bidder gets the item and 0 other-
wise. Feasibility insists that

�
i Ai ≤ 1. Writing B = (B1, . . . , Bn) for bids from n bid-

ders, then we can write the allocation selected as a function A(B) = (A1(B), . . . , An(B)).
Finally, each bidder makes some payment Pi ≥ 0, that depends on the bids, so we write
Pi(B).

In a standard model, a bidder’s utility, which captures his preference for the outcome
of an auction, is

Ui(B) = ViAi(B) − Pi(B), (16.1)

and represents the true value for the allocation minus the payment. There are many ways
such an auction can be run.

One approach, known as a first-price auction, is that each bidder names a price and
the bidder who bids the most wins the item and pays their bid with Pi(B) = Bi for the
winner. With perfect knowledge, a bidder should bid slightly more than the highest bid
of other bidders (to a maximum of Vi), in order to pay as little as possible. Thus bidders
try to anticipate how much others will bid, and bid accordingly. This gives a first-price
auction high strategic complexity.

Another approach, due to Vickrey [34], is a second-price auction, where each bidder
names a price and the bidder who bids the most wins the item. However, instead of
paying the bid price, the payment is equal to the bid of the second highest bidder. In
such an auction, a bidder has a simple strategy that is (weakly) optimal no matter what:
bid true value Bi = Vi. The Vickrey auction is strategyproof.

definition 16.1 An auction defined with allocation rule A and payment rule P is



Enabling Sharing in Auctions for Short-term Spectrum Licenses 473

strategyproof if

Ui(Vi, B−i) ≥ Ui(B�i , B−i) (16.2)

for all bid profiles B, all agents i, and all alternate bids B�i , where B−i = (B1, . . . , Bi−1, Bi+1, . . . , Bn)
is the bid profile without agent i.

As explained in the introduction, a strategyproof auction is desirable because of the
effect it has in simplifying bidding strategies and because of the overhead it removes
from the infrastructure by precluding the need for bids to be continually updated as bids
from others change.

But how to design such an auction in our setting? One thing to recognize is that the
allocation will be much more complicated: analogous to an item is a channel × location
(where the location depends on the location of the bidder’s device and the channel is
a range of frequencies) In addition to there being multiple items to allocate, there will
be interference such that the value of an item depends on the other bidders allocated
similar items. In particular, bidders that are geographically close to each other and are
allocated the same channel will interfere with each other.

Part of the challenge is to describe a concise language to represent a bidder’s value
for different possible allocations. Another part of the challenge is to ensure that the
allocation can be computed in polynomial time. The NP-hardness of the winner de-
termination problem precludes a general auction design due to Vickrey, Clarke, and
Groves [7, 14, 34], that would be strategyproof and efficient in our domain.

In achieving strategyproofness, an important property is that an allocation algorithm
be monotone, which requires that Ai(Bi, B−i), where B−i = (B1, . . . , Bi−1, Bi+1, . . . , Bn),
is weakly increasing in the bid of bidder i, fixing the bids of others, so that Ai(Bi, B−i) ≥
Ai(B�i , B−i) for Bi ≥ B�i .

Theorem 16.2.1 (Myerson [30]) An auction is strategyproof if and only if for all bid-
ders i, and fixed bids of other bidders B−i,

1 Ai(B) is a monotone function of Bi (increasing Bi does not decrease Ai(B)), and
2 Pi(B) = BiAi(B) −

� Bi

z=0 Ai(z, B−i)dz.

Even beyond strategyproofness, monotonicity is still a worthwhile goal because it
guarantees that participants attempting to optimize their bid will only increase the
amount they receive and the amount they pay when they increase their bid.

In the case of an auction for a single good, the nature of monotonicity is simple: a
bidder must continue to win the good when bidding a higher price. However, in our
setting, winning a channel alone is not sufficient to make a bidder happy. In particular,
if the channel is heavily used by others in a bidder’s neighborhood it may have little
value. Thus, a bidder cares not only about whether or not he is allocated a channel,
but also who else is allocated the same channel. The effects of the allocations of other
bidders on the value of winning a good are known as externalities. This complicates
the auction design because the allocation rule must be monotone not only in whether a
bidder gets a channel, but also the amount of sharing that occurs on that channel. But



474 I. A. Kash, R. Murty, and D. C. Parkes

once an allocation rule has been developed that is monotone in this sense, the auction
can be made strategyproof through standard methods.

While determining the prices bidders pay requires computing an integral, in many
cases this integral has a simple form. For example, in the (deterministic) single good
case the allocation to a bidder, Ai, only takes on two values: 0 when the bidder does not
get the good and 1 when he does. Since the allocation must be monotone, it is entirely
determined by the critical value where it changes from 0 to 1. Thus, computing the
integral reduces to the problem of determining the minimum bid that the bidder could
have made and still been allocated.

In addition to strategyproofness, the proposed auction designs for the allocation of
short-term licenses and spectrum sharing can be evaluated in terms of the twin goals of:

• Allocative efficiency: rather than maximize throughput or spectral efficiency, allocate
resources to maximize the total utility from the allocation. Thus, in addition to tra-
ditional metrics we also report the total value from the allocations determined at the
outcome of SATYA.
• Revenue: good revenue properties are important in order to provide an incentive for

spectrum owners to participate in the market.

Efficiency is often held to be of primary importance when designing a marketplace
because it provides a competitive advantage over other markets, and encourages partic-
ipation by buyers. Maximizing revenue can be at odds with efficiency because it can
be useful to create scarcity in order to boost revenue. One way to do this is to adopt a
reserve price. We will examine the tradeoff between efficiency and revenue that can be
achieved by adjusting the reserve price in SATYA.

16.3 The Model of Shared Spectrum and Externalities

16.3.1 User Model

In order to find opportunities to share among heterogeneous users (e.g., a user with a
wireless device, or a TV station), we need a language to describe the requirements of
each possible type of user.

Our model uses discrete intervals of time (called epochs), with auctions clearing peri-
odically and granting the right to users to contend for access to particular channels over
multiple epochs. Thus our approach models participants who regularly want spectrum
in a particular location over a period of time. Participants who wish to enter or leave
need to wait until the next time the auction is run. The ultimate allocation of spectrum
arises through random activation patterns of users and interference effects, and depends
on specifics of the medium-access control (MAC) contention protocol. The effect of this
MAC protocol is modeled within SATYA in determining the allocation.

The interference between users and their associated devices is modeled through a
conflict graph, G = (V, E), such that each user i is associated with a vertex (i ∈ V) and
an edge, e = (i, j) ∈ E exists whenever users i and j would interfere with each other if
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they are both active in the same epoch and on the same channel. Note that, for service
providers such as TV stations, defining the conflict graph may be complex as it requires
making decisions about the acceptability of interference over some portion of the served
area.

We allow for both exclusive-use and “willing to share” users, where the former must
receive access to a channel without contention from interfering devices whenever they
are active, while the latter can still obtain value through contending for a fraction of the
channel with other interfering devices.

We say that a channel is free, from the perspective of user i in a particular epoch, if no
exclusive-use user j, who interferes with i and is assigned the right to the same channel
as i, is active in the epoch.

Formally, we denote the set of user types T . Each type ti ∈ T is a tuple ti =
(xi, ai, di, pi,Ci, vi), where:

• xi ∈ {0, 1} denotes whether the user requires exclusive-use of a channel in order to
make use of it (xi = 1) or willing to share with another user while both are active on
the channel (xi = 0).

• ai ∈ (0, 1] denotes the activation probability of the user: the probability that the user
will want to use the channel, and be active, in an epoch.

• di ∈ (0, 1] is the fractional demand of the channel that a user who is willing to share
access requires in order to achieve full value when active.

• pi ≥ 0 denotes the per-epoch penalty incurred by the user when active and the
assigned channel is not free. Both exclusive-use and non exclusive-use users can
have a penalty.

• Ci ⊆ C = {1, 2, . . .}, where C is the set of channels to allocate, each corresponding to
a particular spectrum frequency, denotes the channels that user i is able to use (the
user is indifferent across any such channel.)

• vi ≥ 0 denotes the per-epoch value received by the user in an epoch in which it
is active, the channel is free, and in the case of non exclusive-use types, the user
receives at least a share di of the available spectrum.

In this model, each user demands a single channel. We discuss an extension to multi-
ple channels in Section 16.4.6.

Some of the parameters that describe a user’s type are a direct implication of the
user’s technology and application domain. For example, whether or not a user requires
exclusive-use when active and is unwilling or unable to share falls into this category.
Users that can use a MAC will tend to be able to share, other users will tend not to be
able to. As we explain below, users operating low-power TV stations or with wireless
microphone devices would likely be in this category. The set of channels Ci on which a
user’s device can legally broadcast will tend to be easy to define.

For parameters such as the activation probability (how often the user makes use of the
channel), and the fractional demand (how much of the channel is used when active), we
assume that these can be estimated by the device, and then monitored by the network
environment upon the outcome of an auction with the user punished if this information
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is mischaracterized. For example, a user could be banned from participating in future
auctions. But certainly, the fractional demand di and activation probability ai may be
difficult to estimate in some cases, and especially when first bidding, due to uncertainty
arising from the effects of interference, anticipated traffic, and propagation.

Examples
• A user who wishes to run a low-power (local) TV station on a channel would be

unable to share it with others when active (xi = 1), would be constantly broadcasting
(ai = 1), and would have a very large penalty pi since it is unacceptable for the
broadcast to be interrupted by someone turning on another (exclusive-use) device.
• A user with a wireless microphone cannot share a channel when active (xi = 1),

but is used only occasionally (ai = 0.05) and has a smaller value of pi since it may
be acceptable if the user is occasionally unable to be used when there is another
exclusive user also trying to use the channel.1

• A bidder may want to run a wireless network. Such a user would have constant traffic
(ai = 1), consume a large portion of the channel (di = 0.9), and might have a large
penalty similar to a TV station for being completely disconnected. However, such a
user is willing to share the channel with other non-exclusive types (xi = 0), and will
pay proportionately less for a smaller fraction of the bandwidth.
• A bidder representing a delay tolerant network [20], who occasionally (ai = 0.2)

would like to send a small amount of information (di = 0.4) if the channel is available.
Such bidders might have a low or even no penalty as their use is opportunistic.

The per-epoch penalty is the cost to a user that is incurred in an epoch when the user
is active (wants to use the network) but the channel is encumbered by an exclusive-use
device. This can represent the known cost of using an alternate network or a contractual
rebate.

The per-epoch value of a user vi represents the dollar value that a user assigns to being
able to access the channel when active, that is, in an epoch when the user wants to use
the network. For an exclusive-use user, it is the per-epoch value for gaining exclusive
access during that epoch. For a user willing to share, it is the per-epoch value for gaining
a fraction di of the channel (as long as the channel is unencumbered by an exclusive-use
device), and the assumption is that the value falls off linearly for a share below di. We
will design a strategy-proof auction in which it is optimal for users to report their true
value of vi when bidding in the auction.

16.3.2 Allocation Model

Let Ai ∈ Ci ∪ {⊥} denote the channel allocated to each user i, where ⊥ indicates the user
has not been assigned a channel. Let A = (A1, . . . , An) denote the joint allocation to n
users. To allocate a channel means that the user has the right to contend for the channel

1 Indeed, it might make sense from an efficiency perspective to have several such devices share a channel if
they interfere with each other sufficiently rarely.
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when active, along with other users that interfere with the user and are allocated the
same channel.

Exclusive-use users take priority over non exclusive-use users, and only experi-
ence interference when multiple exclusive-use users are simultaneously active. Non
exclusive-use users share the channel when active simultaneously, and when the channel
is free of exclusive-use users.

Let Vi(A, t) denote the expected value to user i for allocation A given type profile
t = (t1, . . . , tn). The value also depends on the conflict graph G, since this affects the
interference between users. But we omit this term for notational simplicity.

An efficient allocation of spectrum maximizes the expected total value across the user
population, that is

A∗ ∈ arg max
A

�

i

Vi(A, t) (16.3)

All allocations are feasible in our setting, since the expected value captures the nega-
tive externality due to interference. For this, we define the expected value Vi(A, t) as,

=

�
0 if Ai = ⊥, otherwise
vi · aiPri(F|A, t) EA[S i |F,t]

di
− pi · ai(1 − Pri(F|A, t)).

(16.4)

A user’s value depends first on the expected fraction of the user’s request that can be
satisfied. The user can only use the channel when it is not in use by another exclusive-
use user, so we let Pri(F|A, t) ∈ [0, 1] denote the probability that the channel is free (F),
with no exclusive-use user interfering with the allocated channel. Given that the channel
is free, the user may still have to share with other users. For this, EA[S i|F, t] ∈ [0, 1]
denotes the maximum of the expected fraction of a channel that is available to user i
given an epoch in which the channel is unobstructed by an exclusive-use user, the user
is active, and given user i’s demand. For an exclusive-use user, this amount is always
EA[S i|F, t] = 1, because such a user receives complete access to the channel when active
and the channel is otherwise free.

Thus, the first term in (16.4) takes the expected fraction of channel capacity (nec-
essarily less than di) supplied in an epoch in which the user is active, and in which
the channel is free from exclusive-use users, and multiplies this by the probability the
channel is free and the user is active aiPri(F|A, t), and the user’s value for receiving di

fraction of the channel in an epoch. This assumes that a user’s value is linear in the
available bandwidth (up to max-demand di.) The second term in (16.4) calculates the
expected per-epoch penalty due to the channel not being free when a user is active (the
probability of which is ai · (1 − Pri(F|A, t))).

To complete this, we need to also define the probability that the channel allocated to
user i is free, given allocation A and type profile t. This is given by the expression,

Pri(F|A, t) =
�

j∈Ni s.t. Ai=Aj∧x j=1

(1 − a j), (16.5)

where Ni is the set of neighbors of i in G. This is the joint probability that no exclusive-
use neighbor in the conflict graph, allocated the same channel as i, is active in an epoch.
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Finally, we require an expression for EA[S i|F, t] ≤ di, the expected fraction of a
channel available to a user in an epoch when it is active and the channel is free. For this,
we first consider the effect of a fixed number of active (non exclusive-use) neighbors in
such an epoch.

For this, we assume a Carrier Sense Multiple Access (CSMA) style MAC, in which
bandwidth is shared as equally as possible among active (non-exclusive-use) users, sub-
ject to the constraint that no user i receives more than its demand di. Formally, if Na

is a set containing i and the active neighbors of i with whom i shares a channel in the
allocation, and Nf = { j ∈ Na | d j < f }, then user i receives a share of the available
bandwidth on the channel equal to,

sharei(Na, t) = min
Ç

di, max
f∈[0,1]

1 −� j∈N f
d j

|Na − Nf |

å
(16.6)

The user either gets the full demand di or, failing that, the fair share (which the max
in the equation determines). If all users have the same demand di, this reduces to each
either the full demand being satisfied if di ≤ 1/|Na| or receiving a 1/|Na| share of the
channel capacity otherwise. If some users demand less than their fair share, the remain-
der is split evenly among the others.

In completing an expression for EA[S i|F, t], we adopt νi(A, c) to denote the set of
neighbors of i on conflict graph G that, in allocation A, are allocated channel c. In partic-
ular, νi(A) denotes the set of neighbors allocated the same channel as i. The probability
that a particular set, N� ⊆ νi(A) is active in any epoch is,

activei(N�, t) =

�
�

j∈N�
a j

��
�

�∈νi(A)−N�
(1 − a�)

�

(16.7)

From this, a user’s expected share of the channel, given that the user is active and the
channel is free (where the expectation is computed with respect to random activation
patterns of interfering neighbors) is given by,

EA[S i|F, t] =






0 if Pri(F|A, t) = 0
1 if xi = 1
�

N�⊆νi(A) activei(N�, t)sharei(N�, t) , o.w.

(16.8)

The two special cases cover exclusive-use users (who always receive their full de-
mand when active, conditioned on the channel being otherwise free), and users for
whom the channel is never free (for whom we arbitrarily define it to be 0, because
the value in this case turns out to be irrelevant).

In general, computing EA[S i|F, t] requires time exponential in the number of neigh-
bors νi(A) with which i shares a channel. In making this practical, sharing can be lim-
ited to dmax � n neighbors, and the calculation can be completed in time that scales as
O(2dmax ). Alternatively, it may turn out that dmax is already small due to the nature of the
conflict graph. Indeed, in our experiments for practical models of signal propagation,
and even with hundreds of users participating in the auction, we did not need to impose
such a limitation.
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16.4 Auction Algorithm

Turning to the design of SATYA, we assume that the only component of a user’s type that
can be misreported is vi, which represents the per-epoch value of the user when active.
Designing an auction that is strategy-proof in regard to per-epoch value vi is the focus
of this section.

As explained in Section 16.3.1, it seems reasonable to assume that many of the pa-
rameters of a user’s type can be checked by the network at the outcome of an auction
and enforced through punishment (e.g., kicking out of the auction environment in the
future), or are fundamental to the operation of a user’s device (e.g., whether or not it
can share the channel or needs exclusive-use) and thus not useful to manipulate. mis-
reporting them (for example by remaining active and sending junk data to increase ai),
implementing such manipulations would be costly to users and in many cases would
simply result in higher payments. Thus, for simplicity we ignore this possibility.

There are a number of interpretations of the penalty incurred by a user when a channel
is encumbered by an exclusive-use device under which it seems reasonable to treat it as
known. For example, the penalty could represent the cost to gain access to a fallback
network when this network is unavailable or a contractual payment the spectrum owner
is obligated to make. The exact value may also not be important, as long as it is large. In
practical terms, the value of the penalty controls the level of sharing that is permissible
with exclusive users who are occasionally active, and getting this to the correct order of
magnitude may be sufficient. In the extreme, SATYA works fine taking pi = 1 for all i,
which forbids such sharing.

Even if no users are permitted to share channels, finding an optimal allocation is NP-
Hard [19]. Assigning bidders to channels such that no two neighbors have the same
channel is a graph coloring problem. Therefore we adopt a greedy algorithm for alloca-
tion, modified to achieve monotonicity.

16.4.1 Externalities and Monotonicity

Let us first define monotonicity in our setting. For this, it is convenient to drop the com-
plete type profile t from notation and write Pri(F|A) and EA[S i|F] in place of Pri(F|A, t)
and EA[S i|F, t] respectively. In addition, let b = (b1, . . . , bn) denote the joint bid vector
received from users, with b j ≥ 0 for all j.

Fixing the bids b−i = (b1, . . . , bi−1, bi+1, . . . , bn) of other users, an allocation algorithm
A(b) (defining an allocation for every bid profile) is monotone if,

Pri(F|A(b�i , b−i))EA(b�i ,b−i)[S i|F]

≥Pri(F|A(b))EA(b)[S i|F], (16.9)

for all bids b�i ≥ bi. This insists that the expected share of a channel available to a user,
conditioned on being active, weakly increases as the user’s bid increases.

Figure 16.1 shows how monotonicity can fail for simple greedy algorithms. The
greedy algorithm considers each user in (decreasing) order of bids and allocates the
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A B
Channels 
free: 1, 2

Channels 
free: 1

Figure 16.1 A potential violation of monotonicity. Nodes A and B are in contention range. At
node A’s location channels 1 and 2 are free; at B only channel 1 is free.

user to the best available channel in terms of maximizing value (or no channel if that
is better). If there is a tie, the algorithm uses some tie-breaking rule, such as the lowest
channel number. If user A has a lower bid than user B, the algorithm assigns user B to
channel 1, then user A to channel 2, and both are fully satisfied. If user A raises its bid
above that of user B, user A will be assigned to channel 1. Then, assuming sharing is
better than leaving B unassigned, the algorithm assigns user B to channel 1, and user A
receives less value due to interference.

16.4.2 High level approach

The monotonicity violation from Figure 16.1 would be prevented if the algorithm was
not allowed to assign user B to channel 1 in the second case. We do this for many cases
by assigning each user to a “bucket” based on his bid, such that the more a user bids
the higher the bucket to which he is assigned. Users are not allowed to share with a user
from a higher bucket. Thus, if user B is in a lower bucket than user A, user B will simply
not be assigned a channel. If both users are in the same bucket, we will consider them
in some order independent of their actual bids, and adopt in place of their bid value
the minimal possible value associated with the bucket. The effect is that the allocation
decision is invariant to a user’s bid while the bid is in the same bucket. Since users are
only allowed to share with other users within their buckets, the way buckets are chosen
is an important parameter of our algorithm. Larger buckets create more possibilities for
sharing. However, they also mean that the algorithm pays less attention to user’s bids,
so they may decrease the social welfare (the total value of the allocation) and revenue.

Bucketing prevents many violations of monotonicity, but it is not sufficient to prevent
all of them. In particular, the example from Figure 16.1 can still occur if user A is in
a lower bucket than user B and then raises his bid so they are in the same bucket (if
he raises it to be in a higher bucket there is no problem). To deal with this case we
adapt a technique known as “ironing” [31] to this domain. This is a post-processing
step in which allocations that might violate monotonicity are undone. Given an input (a
set of bids) to an allocation algorithm, the basic idea is to check the sensitivity of the
allocation with respect to unilateral changes in the bid value by each bidder. In Parkes
and Duong [31] this is applied to a problem of stochastic optimization, and a failure
in regard to checking higher bids is addressed by unallocating the bidder at the current
input. In the context of the SATYA auction, sensitivity is checked in regard to lower bids,
and failure is addressed by unallocating other bidders that are sharing a channel with
the user (improving the allocation for the bidder at the current input).
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For each user allocated in the current bucket, we ask the counterfactual question “If
this user were instead in the next lower bucket, is it possible he would be allocated?” If
so, we guarantee that the user is satisfied in the current bucket by canceling (or “iron-
ing”) the allocations of other users with whom he shares. In Figure 16.1, if user A were
in a lower bucket he would be allocated a channel. Therefore, in the ironing step, the
algorithm would change user B’s allocation and not allocate a channel in the current
bucket. It will be important, though, that a channel allocation that is canceled in this
way will be considered unavailable for future allocation. This prevents the need for
nested arguments involving the effect of ironing on future allocations, future ironing of
future allocations, and so on.

In this high level description, we have assumed that any two users who interfere with
each other cannot share a channel without harming each other. In reality, this is not
the case; users capable of using a MAC and sending at sufficiently low rates will have
a negligible effect on each other. Many of the more intricate details of our algorithm
come from adapting the general approach to take advantage of this fact and allow more
efficient use of wireless spectrum.

16.4.3 The SATYA Algorithm

SATYA begins by assigning each user i to a bucket based on the user’s bid value bi. There
are many ways this can be done as long as it is monotone in the user’s bid. For example,
user i with an activity-normalized bid aibi could be assigned to value bucket with bounds
[2�, 2�+1). To be general, we assume that bucketing of values is done according to some
function β(k), such that bucket k contains all users with (normalized) bids aibi in the
range [β(k), β(k + 1)).

Once users are assigned to buckets they are assigned channels greedily, in descend-
ing order of buckets. The order of assignment across users within the same bucket is
determined randomly. Let Ki denote the bucket associated with user i. A channel c is
considered to be available to allocate user i at some step in the algorithm, and given the
intermediate allocation A, if,

• the channel c is in Ci;

• assigning i would not cause an externality to a neighbor from a higher bucket: for
all j ∈ Ni, with Kj < Ki,

�

�∈{ν j(A,c)∪{i}}
d� ≤ 1 (16.10)

• and, the combined demands of i and the neighbors of i from higher buckets assigned
to c are less than 1:

di +
�

j∈νi(A,c),K j>Ki

d j ≤ 1 (16.11)

We refer to the second condition as requiring that the demands of each neighbor of
user i from a higher bucket be satisfied. The third condition requires that the demand of
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user i is satisfied. This does not preclude allocations where some user has E[S i|F, t] < di.
It simply requires that, in such cases, the user is sharing with others in the user’s own
bucket.

Suppose i is the next user to be considered for allocation. SATYA will identify the
channel for which assigning i to the channel has the maximum marginal effect on the
total value of all currently allocated users along with user i itself. To do so, for every
channel c that is available to the user, and including ⊥ (and thus not allocating any
spectrum to the user), SATYA estimates the expected value to some user j after assigning
i to c as

e j(A, b) = β(Kj)Pr j(F|A, b)
EA[S j|F, b]

d j
− a j · p j(1 − Pr j(F|A, b)) (16.12)

This estimate differs from the user’s actual bid by assuming that each user in a given
bucket shares the same value. This is important for achieving monotonicity, because we
need to ensure the decision for a user depends on the bucket associated with a user’s bid
value and not in more detail on a user’s value.

Given this, user i is assigned to the channel that maximizes the sum of the expected
bid values of each user already allocated and including its own value, and without leav-
ing any user with a negative expected value. The optimal greedy decision might allocate
⊥ to user i, and thus no spectrum. In the event of a tie, the user is assigned to the lowest
numbered among the tied channels (including preferring ⊥, all else equal).

After all users in a bucket are assigned channels, there is an ironing step in which
monotonicity of the allocation is verified, and the allocation perturbed if this fails. Re-
call that monotonicity violations occur when the greedy allocation makes a “bad” de-
cision for the user and would make a better one had the user been considered later.
Bucketing prevents users from being able to move themselves later while staying in the
same bucket, but they could still lower their bid enough to drop into the next bucket. To
rule out this possibility, the ironing procedure re-runs the allocation procedure for each
user with the user placed instead in the next lower bucket. If this counterfactual shows
that the final allocation would be better for the user, then there is a potential monotonic-
ity violation, and the provisional allocation is modified by changing the assignments of
the neighbors with whom the user shared a channel to ⊥. Checking only the next bucket
is sufficient because if the user can be assigned in any lower bucket he can be assigned
in the next bucket.

The complete algorithm is specified in pseudocode as Algorithm 5. In the specifica-
tion, we use distinct names to be able to refer to allocations created along the way. The
variable A(k, i, j) denotes the state of the allocation in bucket k after considering the jth
user in the order given by random permutation π on users. Some of these allocations
will be used for the counterfactual questions asked by ironing, so i is the user currently
being omitted (i = 0 if there is no such user).

Lemma 16.4.1 Algorithm 5 is monotone.

The proof of Lemma 16.4.1 is presented in the appendix.


