How Robust Standard Errors Expose Methodological Problems They Do Not Fix, and What to Do about It

Citation

Published Version
doi:10.1093/pan/mpu015

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:13572089

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:13572089#OAP

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
How Robust Standard Errors Expose Methodological Problems They Do Not Fix, and What to Do About it∗

Gary King† Margaret E. Roberts‡

May 9, 2014

Abstract

“Robust standard errors” are used in a vast array of scholarship to correct standard errors for model misspecification. However, when misspecification is bad enough to make classical and robust standard errors diverge, assuming that it is nevertheless not so bad as to bias everything else requires considerable optimism. And even if the optimism is warranted, settling for a misspecified model, with or without robust standard errors, will still bias estimators of all but a few quantities of interest. Even though this message is well known to methodologists, it has failed to reach most applied researchers. The resulting cavernous gap between theory and practice suggests that considerable gains in applied statistics may be possible. We seek to help applied researchers realize these gains via an alternative perspective that offers a productive way to use robust standard errors; a new general and easier-to-use “generalized information matrix test” statistic; and practical illustrations via simulations and real examples from published research. Instead of jettisoning this extremely popular tool, as some suggest, we show how robust and classical standard error differences can provide effective clues about model misspecification, likely biases, and a guide to more reliable inferences.

∗Our thanks to Neal Beck, Tim Büthe, Andrew Hall, Helen Milner, Eric Neumayer, Rich Nielsen, and Brandon Stewart for many helpful comments, and David Zhang for expert research assistance.
†Institute for Quantitative Social Science, 1737 Cambridge Street, Harvard University, Cambridge MA 02138; http://GKing.harvard.edu, king@harvard.edu, (617) 500-7570.
‡Department of Government, 1737 Cambridge Street, Harvard University, Cambridge MA 02138; http://scholar.harvard.edu/mroberts/home
1 Introduction

The various “robust” techniques for estimating standard errors under model misspecification are extremely widely used. Among all articles between 2009 and 2012 that used some type of regression analysis published in the *American Political Science Review*, 66% reported robust standard errors. In *International Organization*, the figure is 73%, and in *American Journal of Political Science*, it is 45%. Across all academic fields, Google Scholar finds 72,300 articles using “robust standard errors,” and about 1,000 more each month.¹

Robust standard errors have a crucial role in statistical theory in a world where models are almost never exactly right. They can be used in practice to fix a specific part of model estimation, when special circumstances hold. However, they are often used in applications as a default setting, without justification (sometimes even as an effort to inoculate oneself from criticism), and without regard to the serious consequences their use implies about the likely misspecification in rest of one’s model. Moreover, a model for which robust and classical standard error estimates differ is direct confirmation of misspecification that extends beyond what that the procedure corrects, which means that some estimates drawn from it will be biased — often in a way that can be fixed but not by using robust standard errors. Drawing valid substantive claims from a model that evidence in the data conclusively demonstrates is at least partly misspecified is possible in specialized circumstances, but only with considerable justification.

The problem at hand is not merely a lost opportunity to slightly improve inferences. And this is not an example of the literature failing to live up to the high standards of abstract statistical theory (or the methodological intelligentsia), or where fixing the problem would only occasionally make a practical difference. Instead, it appears that a large fraction of the articles published across fields is based on models that have levels of misspecification that are detectable even in their own data and without new assumptions. For

¹We conducted the search on 5/3/14 with the term “robust standard errors” (with the quotation marks). This figure is an underestimate since it does not count other names such as White, Huber-White, Eicker, Eicker-White, clustered, cluster-robust, panel-corrected, sandwich, heteroskedasticity-consistent, autocorrelation-consistent, etc.
every one of these articles, at least some quantity that could be estimated is biased. Ex-
actly how important the biases are in any one article from a substantive point of view is an
open question, but scholarly articles should be based on evidence rather than optimism.

Consider a simple and well-known example, in the best case for robust standard er-
rors: The maximum likelihood estimator of the coefficients in an assumed homoskedastic
linear-normal regression model can be consistent and unbiased (albeit inefficient) even if
the data generation process is actually heteroskedastic. And although classical standard
errors will be biased in this circumstance, robust standard errors are consistent so long as
the other modeling assumptions are correct (i.e., even if the stochastic component and its
variance function are wrong).

Thus, the promise of this technique is substantial. However, along with the benefits
come some substantial costs. Even if the functional form, independence, and other spec-
ification assumptions of this regression are correct, only certain quantities of interest can
be consistently estimated. For example, if the dependent variable is the Democratic pro-
portion of the two-party vote, we can consistently estimate a regression coefficient, but
not the probability that the Democrat wins, the variation in vote outcome, risk ratios, vote
predictions with confidence intervals, or other quantities. In general, computing quantities
of interest from a model, such as by simulation, requires not only valid point estimates
and a variance matrix, but also the veracity of the model’s complete stochastic component
(King, Tomz and Wittenberg 2000, Imai, King and Lau 2008); if the specified model is
wrong, or if the author has given up the claim to correct specification by using robust
standard errors, valid estimators of these and other quantities become unavailable.

Fortunately, a simple, easy to understand, and more powerful alternative approach to
marshaling robust standard errors for real applications is nevertheless available: If your
robust and classical standard errors differ, follow venerable best practices by using well
known model diagnostics to evaluate and then to respecify your statistical model. If these
procedures are successful, so that the model now fits the data and all available observ-

\[2 \text{The term “consistent standard errors” is technically a misnomer because as } N \to \infty, \text{ the variance}\]
\[\text{converges to zero. However, we follow standard practice in the technical literature by defining a variance}\]
\[\text{estimator to be consistent when the variance of } \sqrt{N}(\hat{\beta} - \beta) \text{ rather than } \hat{\beta} \text{ is statistically consistent.} \]
able implications of the model specification are consistent with the facts, then classical and robust standard error estimates will be approximately the same. If a subsequent comparison indicates that they differ, then revisit the diagnostics, re-specify the model, and try again. Following this advice is straightforward, consistent with longstanding methodological recommendations, and, as we illustrate in real examples from published work, can dramatically change substantive conclusions. It also makes good use of the appropriate theory and practice of robust standard errors.

To be clear, we are not recommending that scholars stop using robust standard errors and switch to classical standard errors. Nor do we offer a set of rules by which one can choose when to present each type of uncertainty estimate. Instead, our recommendation — consistent with best practices in the methodological literature — is to conduct appropriate diagnostic procedures and specify your model so that the choice between the two becomes irrelevant.\(^3\)

In applied research, the primary difficulty following the advice the methodological community recommends is understanding when the difference between classical and robust standard errors is large enough to be worth doing something about. The purpose of this paper is to offer the exposition, intuition, tests, and procedures that can span the

\(^3\)Our work only applies to model-based inference which, although the dominant practice, is not the only theory of inference. Indeed, some researchers forgo models and narrow their inferences to certain quantities that, under Fisher (1935), Neyman (1923), or other theories, can be estimated without requiring the assumptions of a fully specified model (e.g., a sample mean gives an unbiased estimate of a population mean without a distributional assumption). In these approaches without a model, classical standard errors are not defined, and the correct variance of the non-model based estimator coincides with the robust variance. For these approaches, our recommended comparison between robust and classical standard errors does not apply.

The popularity of model-based inference may stem from the fact that models are often the easiest (or the only) practical way to generate valid estimators of some quantities. Likelihood or Bayesian theories of inference can be applied to an extremely wide range of inferences and offers a simple, standard approach to creating estimators (King 1989a). The alternative approach that led to robust standard errors begins with models but allow for valid inference under certain very specific types of misspecification and for only some quantities of interest. It explicitly gives up the ability to compute most quantities from the model in return for the possibility of valid inference for some (Eicker 1963, Huber 1967, White 1996).
divide between theory and applied work. We begin with a definition of robust standard
errors in Section 2 and a summary of their costs and benefits in Section 3. We then intro-
duce existing formal tests of misspecification, including our extensions and generations
in Section 4. Then, for three important published analyses with applications using robust
standard errors, we show how our proposed procedures and tests can reveal problems,
how to respecify a model to bring robust and classical standard errors more in line (thus
reducing misspecification), how confidence in the new analysis can increase, and how
substantive conclusions can sometimes drastically change. To provide intuition, we intro-
duce the concepts underlying the examples first via simulated datasets in Section 5 and
then via replications of the original data from the published articles in Section 6. Section
7 concludes.

2 What are Robust Standard Errors?

We first define robust standard errors in the context of a linear-normal regression model
with possible misspecification in the variance function or conditional expectation. The
analytical expressions possible in this simple case offer considerable intuition. We extend
these basic ideas to any maximum likelihood models and then to more complicated forms
of misspecification.

2.1 Linear Models

We begin with a simple linear-normal regression model. Let Y denote an $n \times 1$ vector
of random variables and X a fixed $n \times k$ matrix each column of which is an explanatory
variable (the first usually being a column of ones). Then the stochastic component of the
model is normal with $n \times 1$ mean vector μ and $n \times n$ positive definite variance matrix
$V(Y|X) \equiv \Sigma: Y \sim N(\mu, \Sigma)$. Throughout we denote the systematic component as
$E(Y|X) \equiv \mu = X\beta$, for $k \times 1$ vector of effect parameters β. For this exposition, we
focus on the variance matrix which, thus far, has considerable flexibility:

$$\Sigma = \begin{pmatrix} \sigma_{11}^2 & \sigma_{12}^2 & \cdots & \sigma_{1n}^2 \\ \sigma_{21}^2 & \sigma_{22}^2 & \cdots & \sigma_{2n}^2 \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1}^2 & \sigma_{n2}^2 & \cdots & \sigma_{nn}^2 \end{pmatrix} \tag{1}$$

If we rule out autocorrelation by assuming independence between $$Y_i$$ and $$Y_j$$ for all $$i \neq j$$ after conditioning on $$X$$, then we specialize the variance matrix to

$$\Sigma_1 = \begin{pmatrix} \sigma_{11}^2 & 0 & \cdots & 0 \\ 0 & \sigma_{22}^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_{nn}^2 \end{pmatrix} \tag{2}$$

Finally, if we also assume homoskedasticity, we are left with the classical linear-normal regression model (Goldberger 1991). To do this, we set the variance matrix to $$V(Y|X) = \sigma^2 I$$, where $$\sigma^2$$ is a scalar and $$I$$ is an $$n \times n$$ identity matrix. That is, we restrict Equation 2 to $$\Sigma = \sigma^2 I$$ or $$\sigma_{11}^2 = \sigma_{22}^2 = \cdots = \sigma_{nn}^2$$. (With this restriction, we could rewrite the entire model in the simpler scalar form as $$Y_i \sim N(X_i \beta, \sigma^2)$$ along with an independence (no autocorrelation) assumption.)

2.2 Estimators

Let $$y$$ be an $$n \times 1$$ observed outcome variable, a realization of $$Y$$ from the model with $$V(Y|X) = \sigma^2 I$$. Then the MLE for $$\beta$$ is the familiar least squares solution $$b = Ay$$, where $$A = Q^{-1}X'$$, $$Q = X'X$$, with variance $$V(b) = V(Ay) = AV(y)A' = A\sigma^2 IA' = \sigma^2 Q^{-1}$$. It is also well know that the MLE is normal in repeated samples. Thus, $$b|X \sim N(\beta, \sigma^2 Q^{-1})$$.

We can estimate $$\sigma^2$$ with its MLE $$\hat{\sigma}^2 = e'ee/n$$ (or small sample approximation) and where $$e = y - Xb$$ is an $$n \times 1$$ vector of residuals. The classical standard errors are the square root of the diagonal elements of the estimate of $$V(b)$$.

For illustration, consider estimates of two quantities of interest that may be estimated from this model. First is $$\beta$$, which under certain circumstances could include a causal effect. For the second, suppose the outcome variable is the Democratic proportion of the two-party vote, and we are interested in, for given values of $$X$$ which we denote $$x$$.

the probability that the Democrat wins: $\Pr(Y > 0.5|X = x)$. This is straightforward to calculate analytically under this simple model, but for intuition in the more general case, consider how we compute this quantity by simulation. First, simulate estimation uncertainty by drawing β and σ^2 from their distributions (or in the more general case, for simplicity, from their asymptotic normal approximations), insert the simulated values, which we denote by adding tildes, into the stochastic component, $N(X\tilde{\beta}, \tilde{\sigma}^2I)$, and finally add fundamental uncertainty by drawing \tilde{Y} from it. Then, to compute our estimate of $\Pr(Y > 0.5|X = x)$ by simulation, repeat this procedure a large number of times and count the proportion of times we observe $\tilde{Y} > 0.5$. A key point is that completing this procedure requires all parts of the full model.

2.3 Variance Function Misspecification

Suppose now a researcher uses the classical linear-normal regression model estimation procedure assuming homoskedasticity, but with data generated from the heteroskedastic model, that is with $V(Y|X) = \Sigma_1$ from Equation 2. In this situation, b is an unbiased estimator of β. If the heteroskedasticity is a function of X, then b is still unbiased but inefficient and with a classical variance estimator that is inconsistent because $V(b) = V(Ay) = AV(y)A' = A\Sigma_1A' \neq \sigma^2Q^{-1}$. As importantly, and regardless of whether the heteroskedasticity is a function of X, other quantities of interest from the same model such as $\Pr(Y > 0.5|X = x)$ can be very seriously biased. This last fact is not widely discussed in regression textbooks but can be crucial in applications.

Robust standard errors of course only try to fix the standard error inconsistency. Fixing this inconsistency seems difficult because, although A is known, Σ under Equation 2 has n elements and so it was long thought that consistent estimation would be impossible. In other words, for an estimator to be consistent (i.e., for the sampling distribution of an estimator to collapse to a spike over the truth as n grows), more information must be included in the estimator as n increases, but if the number of quantities to be estimated increases as fast as the sample size, the distribution never collapses.

The solution to the inconsistency problem is technical, but we can give an intuitive explanation. First define a $k \times k$ matrix $G = X'\Sigma_1X$ and then rewrite the variance as
\[V(b) = A\Sigma_1 A' = Q^{-1}GQ^{-1} \] (the symmetric mathematical form of which accounts for its “sandwich estimator” nickname). Interestingly, even though \(\Sigma_1 \) has \(n \) unknown elements, and so increases with the sample size, \(G \) remains a \(k \times k \) matrix as \(n \) grows. Thus, we can replace \(\sigma_i^2 \) with its inconsistent but unbiased estimator, \(e_i^2 \), and we have a new consistent estimator for the variance of \(b \) under either type of misspecification (White 1980, p.820).

Crucially for our purposes, this same result provides a convenient test for heteroskedasticity: Run least squares, compare the robust and classical standard errors, and see if they differ. Our preference is for this type of direct comparison, since standard errors are on the scale of the quantity being estimated and so the extent of differences can be judged substantively.\(^4\) However, researchers may also wish to use formal tests that compare the entire classical and robust variance matrices, as we discuss more in detail below (White 1980, Breusch and Pagan 1979, Koenker 1981, Koenker and Bassett 1982).

2.4 Other Types of Misspecification

We now go another step and allow for an incorrect variance function, conditional expectation function, or distributional assumption. In this general situation, instead of using \(b \) to estimate \(\beta \) in the true conditional expectation function \(E(Y|X) = X\beta \), we treat this function as unknown and define our estimand to be the “best linear predictor” — the best linear approximation to the true conditional expectation function (see Goldberger 1991, Huber 1967). In any or all of these types of misspecification, \(b \) still exists and has a variance, but differs from the classical variance for the same reason as above:

\[
V(b) = V(Ay) = AV(y)A' = A\Sigma_1 A' \neq \sigma^2 Q^{-1},
\]

resulting in the classical standard errors being inconsistent. So long as no autocorrelation is induced, we can still use the same estimator as in Section 2.3 to produce a consistent estimate of \(V(b) \). (For intuition

\(^4\)Judging whether the difference between robust and classical standard errors is substantially meaningful is not related to whether using one versus the other changes the “significance” of the coefficient of interest; indeed this significance is not even necessarily related to whether there exists a statistically significant difference between classical and robust standard errors. Instead, researchers should focus on how much the uncertainty estimate (standard error, implied confidence interval, etc.) is changing relative to the metric implied by the parameter or other quantity of interest being estimated; usually this is directly related to the metric in which the outcome variable is measured and so should be meaningful.)
as to why an incorrect functional form can sometimes show up as heteroskedasticity, consider what an omitted variable can do to the residuals: unexplained variation goes into the variance term, which needn’t have a constant effect.)

Numerous generalizations of robust standard errors have been proposed for many different types of misspecification, and for which the intuition offered above still applies. Versions of robust standard errors have been designed for data that are collected in clusters (Arellano 1987), with serial correlation (Bertrand, Duflo and Mullainathan 2004), from time-series cross-sectional (or panel) data (Beck and Katz 1995), via time series cross-sections with fixed effects and inter-temporal correlation (Kiefer 1980), with both heteroskedasticity and autocorrelation (Newey and West 1987), with spatial correlation (Driscoll and Kraay 1998), or which estimate sample rather than population variance quantities (Abadie, Imbens and Zheng 2011). These different versions of robust standard errors optimize variance estimation for the special cases to which they apply. They are also useful for exposing the particular types of misspecification that may be present (Petersen 2009).

2.5 General Maximum Likelihood Models

We now generalize the calculations above designed for the linear-normal case to any linear or nonlinear maximum likelihood model. If \(f(y_i|\beta) \) is a density describing the data generating process for an observation, and we assume independence across observations, then the likelihood function is \(\prod_{i=1}^{n} f(Y_i|\beta) \) and the log-likelihood is \(L(\beta) = \sum_{i=1}^{n} \log f(Y_i|\beta) \).

The generalization of the White estimator requires the first and second derivatives of the log-likelihood. The bread of the sandwich estimator, \(Q \), is now the hessian \(Q = L''(\beta) = \sum_{i=1}^{n} -\frac{\partial^2 \log f(y_i|\beta)}{\partial \beta_j^2} \). The meat of the sandwich, \(G \), is the square of the gradient \(G = \text{cov}\left[L'(\beta)\right] = \sum_{i=1}^{n} \left[\frac{\delta \log f(y_i|\beta)}{\delta \beta_j} \right]^T \left[\frac{\delta \log f(y_i|\beta)}{\delta \beta_j} \right] \). We then write the robust variance matrix as: \(V(b) = Q^{-1}GQ^{-1} \). All other results apply directly.
3 Costs and Benefits of Robust Estimation under Misspecification

3.1 Uses

Models are sometimes useful but almost never exactly correct, and so working out the theoretical implications for when our estimators still apply is fundamental to the massive multi-disciplinary project of statistical model building. In applications where using a fully specified model leads to unacceptable levels of model dependence and the assumptions necessary for robust standard errors to work do apply, they can be of considerable value (Bertrand, Duflo and Mullainathan 2004).

However, the more common situation for applied researchers is importantly different. If we are aware that a model is misspecified in one of the ways for which researchers have developed an appropriate robust standard error, then in most situations the researcher should use that information to try to improve the statistical model (Leamer 2010). Only in rare situations does it make sense to prefer a misspecified model, and so if information exists to improve the chosen model, we should take advantage of it. If insufficient time is available, then robust standard errors may be useful as a shortcut to some information, albeit under greater (model misspecification) uncertainty than necessary.

Consider first the best case scenario where the model is misspecified enough to make robust and classical standard errors diverge but not so much as to bias the point estimates. Suppose also that we can somehow make the case to our readers that we are in this Goldilocks region so that they should then trust the estimates that can be made. In this situation, the point estimator is inefficient. In many situations, inefficiency will be bad enough that improving the model by changing the variance function will be preferable (Moulton 1986, Green and Vavreck 2008, Arceneaux and Nickerson 2009). Because our point estimator is asymptotically normal, we can estimate \(\beta \) or any deterministic function of it. This is sometimes useful, such as when a linear regression coefficient coincides with a causal effect, or when a nonlinear regression coefficient is transformed into the expected value of the outcome variable.

However, because the full stochastic component of the model is ignored by this tech-
nique, any quantity based on the predictive distribution of the outcome variable cannot be validly estimated. For example, we would not be able to obtain unbiased or consistent estimates of the probability that the Democrat will win, confidence intervals on vote forecasts or counterfactual predictions, or most other related quantities. Since predictive distributions of the values of the outcome variable are not available, we cannot use most of the usual diagnostic procedures, such as posterior predictive checks, to validate that we are indeed in the Goldilocks region or otherwise provide evidence that our modeling strategy is appropriate.

To be more precise, consider a linear-normal regression model specification where robust and classical standard errors differ, meaning that the model is misspecified. Suppose that we are in the best case scenario where $\hat{\beta}$ is unbiased, and the robust estimator of the variance matrix is consistent. Now suppose we need to simulate from the model, as in King, Tomz and Wittenberg (2000), in order to calculate some quantity of interest based on the outcome, such as the probability that the Democrat wins. To do this, we need (1) random draws of the parameters from their sampling distribution reflecting estimation uncertainty (for example $\tilde{\beta} \sim N(\hat{\theta}, \hat{V}(\hat{\theta}))$, which is no problem), and (2) random draws of the outcome variable from the model. If the model were correct, this second step would be:

$$\tilde{Y} \sim N(X\tilde{\beta}, \tilde{\sigma}^2)$$

(3)

where $\tilde{\beta}$, $\tilde{\sigma}^2$, and \tilde{Y} denote simulated values. However, although step (1) still works under misspecification, step (2) and Equation 3 do not apply. For a simple example of this, suppose X is univariate and dichotomous and σ^2 is 1 for $X = 0$ and 100 for $X = 1$, or $\sigma^2_i = 100 \cdot X_i$. Clearly in this case, it would make little sense to draw Y from a distribution with any one value of σ^2. If we were computing the probability that the Democrat wins, we would need $Pr(Y > 0.5 | X) = \int_{0.5}^1 N(y | X\tilde{\beta}, 100 \cdot X) dy$. Even if for some reason we could believe that the normality assumption still applies under misspecification, using any fixed value of σ^2 to approximate $100 \cdot X_i$ would be a disaster for the substantive purpose at hand since it would yield the wrong value of the probability for some or all observations.

Under standard model diagnostic checking procedures, empirical tests are available
for questions like these; when using robust standard errors, we have the advantage of not having to specify the entire model, but we are left having to defend unverifiable theoretical assumptions. To be sure, these assumptions are sometimes appropriate, although they are difficult to verify and so must be considered a last resort, not a first line of defense against reviewers.

In general, if the robust and classical standard errors differ, the cause could be misspecification of the conditional expectation function, such as omitted variable bias that would invalidate all relevant point estimates, or it could be due to fundamental heteroskedasticity that will make some point estimates inefficient but not biased, and others biased. One reaction some have in this situation is to conclude that learning almost anything with or without robust standard errors is hopeless (Freedman 2006). We suggest instead that researchers take the longstanding advice in most textbooks and conduct appropriate diagnostic tests, respecify the model, and try to fix the problem (Leamer 2010). For example, some authors have avoided misspecification by modeling dependence structures, and ensuring that their fully specified models has observable implications consistent with their data (Hoff and Ward 2004, Gartzke and Gleditsch 2008). But however one proceeds, the divergence of the two types of standard errors is an easy-to-calculate clue about the veracity of one’s entire inferential procedure, and so it should not be skipped, assumed away, or used without comparison to classical standard errors.

3.2 Limitations

Finally, the difference between robust and classical standard errors provides an important clue but cannot reveal all possible problems. No one type of robust standard errors is consistent under all types of misspecification, and so no one such difference is a diagnostic for all types of misspecification. Many different tests and diagnostic procedures should be used to evaluate whether the assumptions of the model are consistent with the data. And even then, omitted variables that are unrelated to those included, but still important, can bias estimates in ways that no robust estimator can pick up. Indeed, this approach does not address problems of endogeneity, measurement error, missing data, and others. As such, any inference must always rely on some theoretical understanding. Nevertheless,
that does not absolve researchers from checking whatever can be checked empirically by studying the difference between robust and classical standard errors and other means.

In addition, no difference may exist between robust and classical standard error estimates, even when the model is misspecified. For example, the White (1980) test for heteroskedasticity and the Breusch and Pagan (1979) Langrange Multiplier test for heteroskedasticity may be less powerful when the errors are not normal (Ali and Giaccotto 1984). While methods have been offered to increase the power of the test (Koenker 1981, Koenker and Bassett 1982) they are not powerful in the presence of every possible distribution of errors. Other issues that may alter the properties of robust standard errors include small samples, especially for grouped data (Long and Ervin 2000, Donald and Lang 2007, Wooldridge 2003), and certain types of correlations among the errors (Ali and Giaccotto 1984, Caceres and Nielsen 2006).

4 A Generalized Information Matrix Test

For some purposes, a more formal test, leading to clear decision rules for the difference between robust and classical standard errors, may be useful. To compute this test, we would need a statistic and corresponding null distribution to describe the difference between the robust and classical variance matrices. This is the foundation for the information matrix test proposed by White (1984) for the linear case, and extended in different ways with different tests to other parametric models by others (Breusch and Pagan 1979, Koenker 1981, Koenker and Bassett 1982). In this section, we develop a single “generalized information matrix” (GIM) test that applies across all types of specific models and works much better in small, finite samples.

To begin, note that the downside of the original information matrix test is that its asymptotic distribution poorly approximates its finite sample distribution (Taylor 1987, Orme 1990, Chesher and Spady 1991, Davidson and MacKinnon 1992). Since the statistic is based on two high-dimensional variance matrices, a very large sample size is usually necessary for the asymptotics to provide a reasonable approximation. Moreover, while this test can technically be applied to any parametric model, the efficient form of the test is
different for each individual model, resulting in complexity for the user (Lancaster 1984, Orme 1988). As a result, general code for a diverse array of models is not straightforward to create and does not presently exist in a unified form in any commonly used software.

The literature thus offers well developed theory but nevertheless a difficult path for applied researchers. Our GIM test is designed to meet the needs of applied statistics as a single, simple, and formal measure of the difference between robust and classical standard errors that is easy to apply, does not rely on asymptotics, and works for any parametric model.

We first follow Dhaene and Hoorelbeke (2004) by using a parametric bootstrap for the variance matrix of the test statistic (see Section 4.1). This allows for better small sample performance, and easy adaptability to any parametric model. Then, unlike previous approaches, we extend this approach to clustered and time-series data, which are prevalent in many fields. This allows users to compare and test for classical versus cluster or time-series robust variance matrices (see Section 4.2). This extension makes it possible for us to write easy-to-use, open source, R code that implements this test, and which we make available as a companion to this paper.

4.1 An Introduction to Information Matrix Tests

For any maximum likelihood model, the classic variance matrix is the negative inverse of the Hessian matrix, $V_C(b) = -Q^{-1}$. Since the robust variance matrix is defined as $V_R(b) = Q^{-1}GQ^{-1}$, where G is the square of the gradient, we have $V_C(b) = V_R(b)$ when $G = -Q$. A test of model misspecification then comes by evaluating $E(G + Q) = 0$, which is true under the model.

To derive the test statistic, first, for observations $y_1 \ldots y_n$, let $\hat{D}_{ij} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (\hat{G}_{ij} + \hat{Q}_{ij})$. Then stack the lower triangular part of the components into a vector \hat{d}. And finally, $\omega = \hat{d}'\hat{V}^{-1}\hat{d}$ is asymptotically χ^2_q distributed, where q is the length of \hat{d}; \hat{V} is an asymptotic variance matrix, with a form derived by White (1984), but many modifications of it have been proposed in the literature for different assumptions and models.

We derive the GIM test by estimating V with a parametric bootstrap, as in Dhaene and Hoorelbeke (2004). To do this, we first estimate the MLE $\hat{\beta}$ and test statistic \hat{d} for the
data and the model we are estimating. We then draw \(n_b \) samples from the assumed data generating process, \(f(y_i|\hat{\beta}) \). For this new sample, we calculate the newly updated MLE \(\hat{\beta}_b \) and the bootstrapped test statistic \(\hat{d}_b \). We repeat this \(B \) times to generate \(B \) test statistics. Last, we estimate \(\hat{V}_B \) with \(\hat{V}_B = \frac{1}{B-1} \sum_{b=1}^{B} (\hat{d}_b - \bar{d})(\hat{d}_b - \bar{d})' \), where \(\bar{d} = \frac{1}{B} \sum_{b=1}^{B} \hat{d} \).

This leads to the GIM test statistic \(\omega_B = \vec{d}' \hat{V}_B^{-1} \vec{d} \), which has a Hotelling’s \(T^2 \) distribution and can be used to compute p-values directly. We use bootstrapped critical values can be used to determine the significance of the test.

4.2 The GIM Test for Clustered Standard Errors

We now extend the parametric bootstrap approach of Dhaene and Hoorelbeke (2004) to accommodate data with clustering and time-dependence, so that GIM can test for the difference between classical and either cluster-robust or autocorrelation-robust variance matrices. This development then makes it possible to use this test in the vast majority of applications in the social sciences.

By the same logic as the classic information matrix test, if clustering and time-dependence is well modeled, so that the residuals have no clustering or time series pattern, then the classical and cluster- or autocorrelation-robust variance matrices should be approximately the same. We thus use the comparison between the two estimators to test for model misspecification. To do this, we first estimate the MLE \(\hat{\beta} \) and calculate the hessian \(Q \). We then estimate \(G \) based on the type of misspecification we would like to test for. In the cluster-robust case, \(G_c \) is estimated by summing first within clusters and then over the clusters.

\[
G_c = \left[\sum_{j=1}^{n} \sum_{i \in c_j} g_i(Y_i'|\hat{\theta})' h_i(Y_i'|\hat{\theta}) \right],
\]

where \(c \) is the cluster index. In the autocorrelation-robust case, \(G_a \) adds a weight to each square of the gradient, depending on the lag the modeler expects to exist in the data:

\[
G_a = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{i-j} \hat{g}_i \hat{g}_j.
\]

where \(\hat{g} \) is the estimated gradient. The equation for the weight vector \(w \) depends on what type of autocorrelation-robust variance matrix the researcher wants to estimate. For
example, Newey and West (1987) use a weight vector $1 - \frac{l}{L+1}$, where l is the lag $i - j$ and L is the maximum lag.

Once the appropriate choice of G has been made and it is calculated from the data and specified model, we calculate the test statistic:

$$\hat{D}_{ij} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} (\hat{G}_{ij} + \hat{Q}_{ij}).$$

To bootstrap the variance matrix for this test statistic, we draw n_b samples from the data generating process of the model, $f(y_i | \hat{\beta})$. For each new sample, we calculate the new MLE $\hat{\beta}_b$ and the bootstrapped test statistic \hat{D}_b. Last, we estimate \hat{V}_B with

$$\hat{V}_B = \frac{1}{B-1} \sum_{b=1}^{B} (\hat{D}_b - \bar{D})(\hat{D}_b - \bar{D})'$$

where $\bar{D} = \frac{1}{B} \sum_{b=1}^{B} \hat{D}_b$.

Finally, this leads to our GIM test statistic $\omega_B = \hat{D}' \hat{V}_B^{-1} \hat{D}$, from which we calculate p-values by bootstrapping.

4.3 Verification

We now evaluate the GIM test by conducting formal Monte Carlo simulations. To do this, we first simulate data from a univariate normal distribution with mean $\mu = 5Z + X + Z^2$ and variance 1. (We draw covarates X and Z from a bivariate normal with means 8 and 5, variances 1, and correlation 0.5). We then draw 100 samples with $n = 200$ from this data generating process, run the GIM test on each, and obtain a p-value. Since the model is correctly specified, a formal indication of whether the GIM test is working properly would be that the computed p-values are uniformly distributed. Figure 1 graphs the cumulative distribution of these results (plotting the percent of p-values less than each given value of the probability). The uniform distribution of p-values does indeed show up in the simulations and is reflected in the figure by the blue line closely approximating the 45 degree line.

We then evaluate the GIM test further by introducing different levels of misspecification into the model and observing whether the test deviates as it should from uniform. We create these misspecifications by taking the dependent variable to the power of ν before
running the GIM test. In this simulation, larger values of Y will have a higher variance. We run the GIM test for $\nu = \{1, 3, 4, 5\}$ and report results in Figure 1 (in blue, green, orange, and brown, respectively). All misspecified simulations $\nu > 1$ have p-values above the 45 degree line, indicating that the p-values are not uniformly distributed, and indeed as expected ν grows the results are skewed more toward lower, less uniform, p-values. Higher levels of misspecification have a higher p-value line because the test has more power to detect this misspecification.

5 Simulations

Although our GIM test offers a formal evaluation and decision rule for the difference between robust and classical standard errors, we now develop some intuition by showing how the GIM test compares to the rule-of-thumb difference between robust and classical standard errors, using simulations with various misspecified functional forms.
For intuition, we offer here three Monte Carlo experiments of the general analytical results summarized in Section 2. We set up these experiments to highlight common important issues, and to also presage, and thus parallel, the empirical data we analyze, and articles we replicate, in Section 6.

5.1 Incorrect Distributional Assumptions

In this first simulation, we use a linear-normal model to analyze data from a skewed, non-normal process, and show how the more data deviate from the normal, the larger the differences between robust and classical standard errors and, simultaneously, the more our GIM test reveals a problem. Either way of looking at the results should clearly alert the investigator to a problem.

To be more specific, we draw a random variable from a normal distribution with mean \(\mu = 5Z + X + X^2 \). We then create the dependent variable by taking its power to a fixed parameter \(\nu \). For larger values of the exponent, the distribution will be highly skewed, with a long right tail.

For \(n = 1,000 \), we draw the two explanatory variables \(X \) and \(Z \) from a bivariate normal with mean parameters 8 and 5, variances 1, and correlation 0.5. Then, for each value of the parameter \(\nu \) from 1 to 3 (in increments of 0.002), we draw a normal random variable \(M \) from a Normal distribution with mean \(\mu = 5Z + X + X^2 \), variance 1, and then create \(Y = M^\nu \). We then run a linear regression of \(Y \) on \(X \), \(X^2 \), and \(Z \) and calculate robust and classical standard errors.

Figure 2 then gives results for each different degree of misspecification, as indicated by the value of \(\nu \) on the horizontal axis plotted by the difference between the classical and robust standard error for the coefficient on the \(X^2 \) term (at the bottom of the figure on the vertical axis) and for the percent of GIM tests rejected (in the top portion of the figure). As is evident, the difference between robust and classical standard errors become dramatically different as the model becomes more misspecified (i.e., for larger values of \(\nu \), to the right of the graph).
5.2 Incorrect Functional Forms

We now study what happens when the systematic component of the normal model is misspecified. To do this, we generate the data from a linear-normal model with $E(Y_i|X) \equiv \mu_i = \beta_0 + \beta_1 Z_i + \beta_2 X_i + \beta_3 X_i^2$, but where the analyst omits X_i^2, effectively setting $\beta_3 = 0$. The amount of misspecification is thus indicated by the value of β_3 used to generate the data. For each data set, we calculate the difference between the robust and classical standard errors, as well as the GIM test, and show how both clearly reveal the misspecification.

For $n = 1,000$, we create two explanatory variables X and Z from a bivariate normal with means 3 and 1, variances 1, and correlation 0.5. Then for values of β_3 from 0 to 5 in increments of 0.005, we draw Y from a normal with mean $5Z_i - X_i + \beta_3 X_i^2$ and homoskedastic variance ($\sigma^2 = 1$). For each, we run a linear regression of Y on a constant,
Figure 3: Incorrect Functional Form Simulation. The difference between classical and robust standard errors (bottom) and percent of GIM tests rejected (top) indicate little problem with misspecification (at the left of the graph) but bigger differences reveal the misspecification as it gets worse (toward the right).

For each of these simulated data sets, Figure 3 plots the difference between classical and robust standard errors on the vertical axis (bottom) and GIM test (top) by the the degree of misspecificatdion indicated by β_3 on the horizontal axis. For simulations from exactly or approximately at the correct data generation process (on the left), there is little deviation between robust and classical standard errors. However, as the misspecification grows, the standard error difference and the percent of GIM tests rejected grows fast, unambiguously revealing the misspecification. A scholar who used one of these tests would not have a difficult time ascertaining and fixing the cause of the problem.
5.3 Incorrect Stochastic Component

For the third simulation, we generate data from a Negative Binomial regression model, but estimate from its limiting case, a Poisson. The Poisson model is heteroskedastic to begin with (with mean equal to the variance), and so this is a case of misspecification due to overdispersion, where the variance is greater than the mean (King 1989b).

We begin with $n = 1,000$ draws of two explanatory variables X and Z from a bivariate normal with means 0, variances 1, and correlation 0.5. We then draw Y conditional on X from a negative binomial distribution with mean parameter $E(Y_i|X) \equiv \lambda_i = \exp (1 + 0.1 \cdot Z_i - 0.1 \cdot X_i)$ and overdispersion parameter θ such that $V(Y_i|X) = \lambda_i (1 + \theta \lambda_i)$, such that $\theta > 0$ and the larger θ is the more the data generation process diverges from the Poisson. For each data set we run an exponential Poisson regression of Y on X and Z and compare the classical and robust standard errors.

Figure 4 gives the results, with the difference in standard errors (bottom) and percent of GIM tests rejected (top) on the vertical axis and the degree of overdispersion (misspecification) on the horizontal axis. As is evident, robust and classical standard errors are approximately equal when the data are nearly Poisson but diverge sharply as overdispersion increases. Thus, we have a third example of being able to easily detect misspecification with robust and classical standard errors.

6 Empirical Analyses

We now offer three empirical examples where robust and classical standard errors differ and thus clearly indicate the presence of misspecification, but where this issue has gone unnoticed. These correspond to the three sections in Section 5. We then apply our more general GIM test, some of the other standard diagnostic techniques to detect the cause of the problem, respecify the model, and then show how the standard error differences vanish. We also highlight the sometimes large differences in substantive conclusions that result from having a model that fits the data.

In all cases, we try to stick close to our intended purpose, and avoid exploring other potential statistical problems. We thank the authors for making their data available and
Figure 4: Incorrect Stochastic Component Simulation. The vertical axis gives the difference between the classical and robust standard errors (bottom) and percent of GIM tests rejected (top). The horizontal axis gives θ, the degree of overdispersion. The larger θ is, the more misspecification exists in the data.

making it easy to replicate their results; none should be faulted for being unaware of the new methodological points we make here, developed years after their articles were written.

6.1 Small Country Bias in Multilateral Aid

We begin by replicating the analysis in Neumayer (2003, Table 3, Model 4), who argues that multilateral aid flows (from a variety of regional development banks and United Nations agencies as a share of total aid) favor less populous countries. The original analysis is a linear regression of multilateral aid flows on log population, log population squared, GDP, former colony status, the distance from the Western world, political freedom, military expenditures, and arms imports.

The robust standard errors from this regression are starkly different from the classical
standard errors. For example, for the coefficient on log population of -3.13, the robust standard error is almost twice that of the classical standard error (0.72 vs 0.37, respectively). We can also compare the entire robust variance matrix with the classical variance matrix, using the test we develop in section Section 4. In this case, the p-value of this test is nearly zero (< 0.0009), indicating clear evidence of misspecification.

Given the high probability of misspecification, we proceed to standard diagnostics. The most obvious characteristic of these data is its extreme skewness, as can be seen in the long right tail in the left panel of Figure 5. (The same result appears in the residuals, which we examine below in different ways.) We therefore use the Box-Cox transformation to transform the dependent variable in a manner parallel to our simulation in Section 5.1. We use Box-Cox parameter of 0.18, which is similar to a natural log but transforms to normality better.\(^5\) The result, which appears in right panel of the same figure, is a much more symmetric and approximately normally distributed variable.

Two other diagnostics we offer in Figure 6 are similarly revealing. The top left panel is a plot of the residuals from the author’s model on the vertical axis by log population

\(^5\)We drop the six observations in the data sets which were miscoded as negative.
on the horizontal. The result is an almost textbook example of heteroskedasticity, with very low variance on the vertical axis for small values of log-population and much higher variance for large values. After taking the log, the result at the bottom left is much closer to homoskedastic. We also conduct a test for normality via a Q-Q plot for the original model (top right) and the model applied to the transformed data (bottom right), which lead us to the same conclusion that our modified model has corrected the misspecification. Finally, we note that the GIM test is now not significant (p-value of 0.14).

For all these tests, the problem revealed by the difference between the classical and robust standard errors has been corrected by the transformation. At this point, the theory...
Figure 7: Aid Flows and Country Size: Quadratic in the original misspecified model (in blue), but monotonically increasing in the revised model that passes the specification tests (in red).

(i.e., the full model) has been adjusted so that the observable implications of it, which we are able to measure, are now consistent with the data, the result being that we should be considerably more confident in the empirical results, whatever they are. In the present case, however, it happens that the substantive results did change quite substantially.

Neumayer (2003) writes, “as population size increases, countries’ share of aid initially falls and then increases. Multilateral aid flows thus exhibit a bias toward less populous countries.” We replicate this quadratic relationship and represent it with the blue line and associated confidence region in Figure 7. However, as we show above, the robust and classical standard errors indicate the model is misspecified. In the model that passes this specification test, which we display in red, the results are dramatically different: now the bias in aid flows is clearly to countries with larger populations, for the entire range of population in the data.
6.2 The Effects of Trade Agreements on Foreign Direct Investment

For our second example, we replicate Büthe and Milner (2008, Table 1, Model 4), who argue that having an international trade agreement increases foreign direct investment (FDI). Their analysis model is linear regression with time-series cross-sectional data and intercept fixed effects for countries, using cluster-robust standard errors. Their dependent variable is annual inward FDI flows, and their independent variables of interest are whether the country is a member of the General Agreement on Tariffs and Trade through the World Trade Organization (GATT/WTO) and the number of preferential trade agreements (PTAs) a country is party to.

We focus on the (1.08) coefficient on GATT/WTO membership for which the classical standard error is 0.21, and the cluster robust standard error is almost twice as large, at 0.41. The GIM test calculating the difference between the Discroll-Kraay auto-correlation consistent and classical variance matrices indicates a significant difference between the two matrices (with a p-value of < 0.0009). This result could suggest a significant amount of heteroskedasticity in the data, which is at best indicates inefficiency for some quantities and bias in others, or it could suggest model misspecification that biases all relevant quantities.

We applied the usual regression diagnostics and find that the source of the misspecification is the authors’ detrending strategy. Büthe and Milner (2008) detrend because “the risk of spurious correlation arises when regressing a dependent variable with a trend on any independent variable with a trend”. This is an excellent motivation, and the authors clearly followed or improved best practices in this area. However, they detrend each variable linearly, even though many of the trends are unambiguously quadratic, and they restrict the trend to be the same for all nations, which is also contrary to evidence in their highly heterogeneous set of countries. The result is that their detrending strategy induced a new spurious time series pattern in the data.

For mean cumulative PTAs and FDI inflows over time, Figure 8 presents the raw data in a time series plot on the left. As the authors note, using data with trends like this can lead to spurious relationships. They detrend both time series linearly, which we
Figure 8: Comparison of Detrending Strategies: Raw data (left), the Büthe and Milner (2008) attempt at linear detrending (center), and our quadratic detrending (right).

represent in the center figure and which, unfortunately, still has a very pronounced trends. In some ways, this induces an even stronger (spurious) relationship between these two variables. Our alternative specification detrends quadratically by country, illustrated in the right graph, which results in transformed variables that are much closer to stationary.\(^6\)

Further, the GIM test for heteroskedasticity and autocorrelation is no longer significant (with a p-value of 0.81).

We provide more intuition for the exact source of the problem in Figure 9 by plotting the residuals (and a smoothed loess line) over time for three example countries. We do this for the original model (in black) and our modified model that detrends quadratically by country (in red). The fact that individual countries exhibit such clear differences in time series patterns reveals where the difference between cluster robust and classical standard errors are coming from in the first place. That is, the problem stems from the fact that the authors restricted the detrending to be the same in every country, when in fact the time series pattern varies considerably across countries. Our alternative approach of modeling the patterns in the data produces residuals with time series patterns that are closer to stationary and similar across these regions, and as a result the robust and classical standard errors are now much closer. Changing to a better fitting functional form parallels our simulation in Section 5.2.

\(^6\)For the purposes of this paper, we try to adhere to the author’s model as closely as possible. Instead of detrending, an alternative approach would be to model the time series processes in the data more directly.
To supplement the three examples in Figure 9, we present in Figure 10 loess smoothed lines fit to residuals for each country, all together (standardized so they can appear in one graph). While many countries show strong nonlinear residual trends in the original specification (left panel), most of the trends in our alternative specification have now vanished (right panel).

We conclude by noting that the conclusions of the authors change considerably. Unlike in the original model, neither of the two variables of interest (GATT/WTO or PTAs)
are still significantly correlated with FDI inflow. Figure 11 gives one visualization of this relationship, showing both the elimination of the key result and the fact that robust and classical standard errors differ dramatically in the authors’ original model but after adjustment they are approximately the same. As is obvious from the country-level results, estimates of numerous country-level quantities would also differ between the two models.

We followed a detrending strategy here to stay as close as possible to the analytic strategy in the original paper, but other approaches may be preferable for the substantive purpose of estimating the impact of trade agreements on FDI inflows. In particular, some of the variation attributed to uncertainty by these modeling approaches may be due to heterogeneous treatment effects, as at least some interpretations of our auxiliary analyses (not shown) may suggest. That is, it may be that trade agreements have a positive relationship with FDI inflows in some countries (e.g., Colombia) and a negative one in others (e.g., the Philippines).

6.3 The Effects of Allies on Consequences for IMF Loan Conditions

Finally, we offer an example where the authors did not use robust standard errors, but using them as we recommend makes it easy to detect clear evidence for misspecification that can improve their inferences. This example shows how it would be productive for robust standard errors to see even wider usage, but as a diagnostic rather than intended elixir.

Thus Dreher and Jensen (2007, Model 7) claim that the International Monetary Fund (IMF) will impose fewer conditions on loans for close allies of the U.S., because the U.S. will be reluctant to threaten the successful election of the person in power. In contrast, if a country is not allied with the U.S., the U.S. will influence the IMF to put the leader out of power by imposing more conditions on a country prior to an election.

The authors fit a Poisson regression model. For their coefficient on U.S. support (−9.55), the classical standard error is 3.73, whereas the robust standard error is substantially larger, at 6.28, a difference of substantive importance. For example, holding constant other variables at their means, if the percent of vote for the U.S. shifts from 0.25 (its mean) to 0.5 (its maximum), the classical standard errors lead to a narrow confidence
interval on the decrease in the expected number of conditions \([-18, -12]\), whereas the robust standard errors predict a much wider confidence interval at \([-18, -3]\). In addition, the GIM test for the difference between the robust and classical variance matrix is significant, with a p-value of 0.0027.

In applying standard diagnostics, two problems are obvious. First, as with much count data, these data are overdispersed; a score test gives a p-value of 0.00005 (Dean and Lawless 1989). Second, no Letter of Intent in the entire data set has fewer than five conditions. We interpret this as theoretical truncation — that is, by policy, the IMF always includes at least five conditions.

We fix the first problem by switching from a Poisson to a negative binomial distribution and the second by truncating it. The result is a 0-to-4 truncated Negative Binomial regression model, paralleling our simulation on the effects of changing to a better fitting distribution in Section 5.1. In the new model, instead of the standard error on voting with the U.S. differing by a factor of two, now the robust standard error is 6.76 and the classical standard error is 6.06. The information matrix test is also no longer significant (with a p-value of 0.65).

The authors report that the number of conditions will “significantly” decrease when
Figure 12: Model Comparison: The Dreher and Jensen (2007) model with misspecification at the bottom in blue and our modified model in red, with confidence intervals.

countries have an election and U.S. support, but they do not examine the magnitude of this effect. One many ways of doing this in substantive terms is reported in the blue line near the bottom of Figure 12. This line gives the probability that the expected decrease in conditions due an election is greater than three. For the author’s model, this is a nearly flat line at zero. This result is coming from the fact that their data is highly overdispersed even though they are assuming the variance is equal to the mean. In contrast, for our modified model, which appears in red (with confidence intervals), the change in the expected decrease in conditions being greater than 3 is substantial, rising from a probability of 0.07 to about 0.20 as the proportion vote with the U.S. increases from only 0.4 to 0.6. This is roughly what the authors’ theory implies should have be the case, even though due to their misspecification, their results indicate otherwise.

7 Concluding Remarks

Scholarly work that includes robust standard errors which differ from classical standard errors require considerably scrutiny. At best their estimators are inefficient, but in all likelihood estimators from their model of at least some quantities are biased. The bigger the difference robust standard errors make, the stronger the evidence for misspecification. To be clear, merely choosing to report only classical standard errors is not the solution here, as our last empirical example illustrates. And reporting only robust standard errors, with-
out classical standard errors, or only classical without robust standard errors is similarly unhelpful.

Robust standard errors should be treated not as a way to avoid reviewer criticism or as a magical cure all. They are neither. They should instead be used for their fundamental contribution — as an excellent model diagnostic procedure. We strongly echo what the best data analysts have been saying for decades: use all the standard diagnostic tests; be sure that your model actually fits the data; seek out as many observable implications as you can observe from your model. And use all these diagnostic evaluation procedures to respecify your model. If you have succeeded in choosing a better model, your robust and classical standard errors should now approximately coincide. As White (1980) originally wrote, robust variance estimation "does not relieve the investigator of the burden of carefully specifying his models. Instead, it is hoped that the statistics presented here will enable researchers to be even more careful in specifying and estimating econometric models."

As these simulations and examples illustrate, the consequence of using this procedure as we recommend can be extremely consequential for substantive conclusions, the degree of model dependence, and the extent of inefficiency and bias.

References

Beck, Nathaniel and Jonathan Katz. 1995. "What to Do (and Not to Do) with Time-
Series-Cross-Section Data.” American Political Science Review 89:634–647.

Koenker, Roger. 1981. “A Note on Studentizing a Test for Heteroscedasticity.” *Journal of

White, Halbert. 1980. “A Heteroskedasticity-Consistent Covariance Matrix Estimator and

