Greenness indices from digital cameras predict the timing and seasonal dynamics of canopy-scale photosynthesis


1Department of Organismic and Evolutionary Biology, Harvard University, HUH, 22 Divinity Avenue, Cambridge, MA 02138, USA.
2Department of Earth and Environment, 685 Commonwealth Ave, Boston, MA 02215
3Institute for the Study of Earth, Oceans, and Space, Morse Hall, University of New Hampshire, 8 College Road, Durham, NH 03824-3525
4Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
5Département de Géographie, Université de Montréal, Montréal, QC, H2V 2B8, Canada
6130 Mulford Hall, Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720-3110
7Global Change and Photosynthesis Research Unit, USDA-ARS and Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
8Climate and Carbon Sciences Program, UC Berkeley, One Cyclotron Rd, Berkeley, CA 94720
9Department of Civil, Environmental and Geodetic Engineering, 417E Hitchcock Hall, 2070 Neil Ave., Columbus, OH, 43210
10Department of Geography, Multi-disciplinary Science Building II, Room 318, 702 N. Walnut Grove Avenue, Indiana University, Bloomington, IN 47405
11Department of Geography, University of Colorado, Boulder, Colorado 80309
12Centre d'Étude de la Forêt (CEF), Faculté de Forsterie et de Géomatique, Pavillon Abitibi-Price, Université Laval, Québec City, Québec, Canada G1K 7P4
13Northern Research Station, USDA Forest Service, Durham, NH, USA 03824
14Department of Geography, MacKintosh-Corry Hall, Queen’s University, Kingston, Ontario, Canada
15School of Natural Resources and Environment Biological Sciences East, The University of Arizona, Tuscon, AZ 85721
16School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA 02138
17Department of Forestry, University of Missouri, Columbia, MO, USA 65211
18Department of Biology, 247 Jordan Hall, 1001 E. Third St, Indiana University, Bloomington, IN 47405
19Atmospheric, Earth and Energy Division, L-103, PO Box 808, Lawrence Livermore National Laboratory, Livermore, CA 94550
20Centro de Ciência do Sistema Terrestre, Instituto Nacional de Pesquisas Espaciais, Cachoeira Paulista, SP, Brazil
The proliferation of digital cameras co-located with eddy covariance instrumentation provides new opportunities to better understand the relationship between canopy phenology and the seasonality of canopy photosynthesis. In this paper we analyze the abilities and limitations of canopy color metrics measured by digital repeat photography to track seasonal canopy development and photosynthesis, determine phenological transition dates, and estimate intra-annual and interannual variability in canopy photosynthesis. We used 59 site-years of camera imagery and net ecosystem exchange measurements from 17 towers spanning three plant functional types (deciduous broadleaf forest, evergreen needleleaf forest and grassland/crops) to derive color indices and estimate gross primary productivity (GPP). GPP was strongly correlated with greenness derived from camera imagery in all three plant functional types. Specifically, the beginning of the photosynthetic period in deciduous broadleaf forest and grassland/crops and the end of the photosynthetic period in grassland/crops were both correlated with changes in greenness; changes in redness were correlated with the end of the photosynthetic period in deciduous broadleaf forest. However, it was not possible to accurately identify the beginning or ending of the photosynthetic period using camera greenness in evergreen needleleaf forest. At deciduous broadleaf sites, anomalies in integrated greenness and total GPP were significantly correlated up to 60 days after the mean onset date for the start of spring. More generally, results from this work demonstrate that digital repeat photography can be used to quantify both the duration of the photosynthetically active period as well as total GPP in deciduous broadleaf forest and grassland/crops, but that new and different approaches are required before comparable results can be achieved in evergreen needleleaf forest.
Keywords: PhenoCam, digital repeat photography, phenology, photosynthesis, gross primary productivity, seasonality, deciduous broadleaf forest, evergreen needleleaf forest, grassland
INTRODUCTION

Climate change impacts on vegetation phenology have been widely documented across a range of biomes and plant functional types (Richardson et al. 2013). In particular, long-term records of leaf and flower phenology in temperate and boreal forest indicate that spring onset is occurring earlier (Miller-Rushing and Primack 2008, Thompson and Clark 2008, Aono and Kazui 2009, Linkosalo et al. 2009), and more generally, that growing seasons are becoming longer on decadal to millennial scales (Menzel 2000). Studies using satellite remote sensing have documented trends towards longer growing seasons over large regions of in mid- and high-latitude ecosystems of the Northern Hemisphere (Myneni et al. 1997, Zhang et al. 2007, Jeong et al. 2011, Xu et al. 2013). At lower latitudes, warmer temperatures have led to earlier spring phenology and longer growing seasons in Mediterranean ecosystems (Penuelas et al. 2002, Gordo and Sanz, 2010), while desert plant communities have experienced shifts in species composition in response to changes in the timing of winter precipitation (Kimball et al. 2010).

While a large number of studies have identified widespread patterns of change, the impacts of changes in phenology on ecosystem function and feedbacks to the climate system remain poorly understood and quantified (Richardson et al. 2013). For example, multi-site comparisons show that growing season length is positively correlated with net ecosystem productivity (NEP; Churkina et al. 2005, Baldocchi 2008), but spatial patterns observed across sites are not identical to temporal patterns at individual sites, which are driven primarily by interannual variability in weather (Richardson et al. 2010). Warmer springs and longer growing seasons have been shown to increase annual carbon uptake in boreal deciduous forest (Barr et al. 2004, 2007), mixed temperate forest (Dragoni et al. 2011) and evergreen needleleaf forest (Richardson et al. 2009a,
2010). In subalpine forest, on the other hand, longer growing seasons can lead to lower NEP if warmer temperatures (Sacks et al. 2007) or shallower spring snowpacks (Hu et al. 2010) reduce soil moisture sufficiently to create drought conditions. Similarly, drought conditions in grassland can also shorten the growing season length, thereby lowering annual NEP (Flanagan and Adkinson 2011).

Because phenology is a key regulator of ecosystem function, substantial effort has recently been devoted to expanding networks that track seasonal vegetation dynamics (Morisette et al., 2009). Methods to monitor phenology fall into two broad categories: visual observations and remote sensing. Visual observations provide the oldest and longest running phenology records in existence (e.g., Aono and Kazui 2008), but visual observations are labor intensive to collect, and the spatial extent of observations collected by an individual is inherently limited. Spaceborne remote sensing, which provides synoptic and global views of land surface phenology and its responses to natural climatic variability, helps to address this limitation (Piao et al. 2006, Dragoni and Rahman 2012, Elmore et al. 2012). However, imagery from remote sensing platforms such as the Moderate Resolution Imaging Spectroradiometer (MODIS) is often collected at coarse spatial resolutions (250-500m) that encompass considerable landscape heterogeneity within each pixel. An additional weakness is the relatively low temporal resolution of some space-borne remote sensing instruments. While coarse spatial resolution sensors such as MODIS provide observations with repeat intervals of 1-2 days, moderate spatial resolution sensors such as Landsat provide a revisit frequency of 16 days, a relatively long interval for capturing rapid changes during seasonal transition periods. In both cases, persistent cloud cover can significantly reduce the frequency of useable observations, which can substantially decrease the utility of
space-borne remote sensing for observing and characterizing the timing of key phenological transitions.

Digital repeat photography, a form of near-surface remote sensing, provides data at higher temporal frequency and finer spatial scale than satellite remote sensing (Richardson et al. 2009b). Specifically, digital repeat photography can provide imagery that is nearly continuous in time, rarely obscured by clouds, and robust to variation in illumination conditions (Sonnentag et al. 2012). Exploiting this, color indices derived from digital repeat photography have been used to characterize the phenology of diverse plant communities and functional types (PFT) including deciduous broadleaf forest (Richardson et al. 2007, Ahrends et al. 2008, Ide and Oguma 2010, Sonnentag et al. 2012, Hufkens et al. 2012, Dragoni et al. 2011), evergreen broadleaf forest (Zhao et al. 2012), evergreen needleleaf forest (Richardson et al. 2009b, Ide and Oguma 2010, Bater et al. 2011), desert shrublands (Kurc and Benton 2010), bryophyte communities (Graham et al. 2006) and invasive plants (Sonnentag et al. 2011). Several studies have used these data to evaluate uncertainties in satellite-based phenological monitoring (Graham et al. 2010, Hufkens et al. 2012, Elmore et al. 2012, Klosterman et al. 2014).

Color indices derived from digital repeat photography have also been correlated with canopy photosynthesis in deciduous broadleaf forest (Richardson et al. 2007, 2009a, Ahrends et al. 2009, Mizunuma et al. 2012), grasslands (Migliavacca et al. 2012), and desert shrublands (Kurc and Benton 2010). However, each of these studies was limited to one or two sites and it is unclear how well results from these efforts generalize within and across PFTs at regional to continental scales. Further, a large proportion of previous studies have focused on temperate deciduous
forest. Not only does the relationship between annual carbon exchange and the length of the
carbon uptake period vary substantially across PTFs (e.g., Richardson et al. 2010), but
relationships among camera-based color metrics, phenology, and carbon exchange remain under-
studied in ecosystems and PFTs outside of deciduous broadleaf forest (Richardson et al. 2013).
Hence, there is a need for improved understanding regarding how canopy photosynthesis is
linked to canopy phenology across and within PFTs, and by extension, the role of digital repeat
photography for studying these relationships.

With these issues in mind, our objective in this study was to perform a systematic analysis of
digital repeat photography as a tool for understanding the relationship between canopy
phenology and canopy photosynthesis, both within and among multiple PFTs. To this end, the
specific questions guiding this study were:

1) Can camera-derived color indices be used to monitor the seasonality of GPP within and across
multiple PFTs?
2) How does the relationship between canopy phenology and GPP vary within and across PFTs?
3) What is the relationship between dynamics in greenness measured from digital camera
imagery and key phenophase transitions in different PFTs?
4) Can interannual variation in annual GPP be estimated using camera-derived color indices?

To address these questions, we used data from the PhenoCam network of co-located cameras and
eddy covariance towers to assess the relationship between canopy phenology and the seasonality
of photosynthesis. Our study, conducted across a range of PFTs, provides the most
comprehensive analysis of canopy development and photosynthesis using digital repeat
photography to date, and provides useful new understanding regarding the ability of camera-
derived color indices to track the seasonality of GPP across space and time.

METHODS

Study Sites

The study spanned 13 geographically distinct research sites, including 17 flux towers in total
(Table 1; Appendix A). We used all possible sites that were members of both the PhenoCam
(http://phenocam.sr.unh.edu/) and the AmeriFlux (http://ameriflux.ornl.gov/) or Canadian
Carbon Program (http://fluxnet.ornl.gov/site_list/Network/3) networks. In addition, we included
four towers, managed by the University of Illinois (UI), that were not members of either
network. Each site was dominated by one of three PFTs: deciduous broadleaf forest (DBF),
evergreen needleleaf forest (ENF), and grassland/crops (GRS; Table 1). The Groundhog site in
Ontario is most accurately described as mixed ENF/DBF; here, we group it with ENF sites
because conifer species are dominant. Together, measurements from these sites comprised 59
site-years of concurrent flux and camera data, with 26, 11, and 22 site-years in DBF, ENF and
GRS PFTs, respectively. Most sites had 2-5 years of data. One notable exception, however, is the
ARM site in Oklahoma, where data were collected nearly continuously from 2003-2011. One of
the UI sites featured a crop rotation from maize to soybean in the second year (out of two),
which caused significant changes in the magnitude of carbon fluxes. To address this, we treat the
two site-years (2009 vs. 2010) as separate sites: UI Maize and UI Soy.

Digital repeat photography
On each eddy covariance tower, the digital camera was installed in a fixed position, with a view across the top of the canopy. Cameras were pointed north to minimize shadows and lens flare, enclosed in commercial waterproof housings, and inclined up to 20° below horizontal. Most cameras collected photos, which were saved in 24-bit JPEG format, at 30-60 minute intervals, 12-24 hours a day. Exceptions include Bartlett (10-20 minute intervals, 12:00-14:00) and ARM Oklahoma (1 midday photo). Half of the towers used StarDot NetCam XL or SC cameras (StarDot Technologies, Buena Park, CA), while the other sites used cameras from a variety of manufacturers (Table 1). To minimize the impact of variation in scene illumination (e.g. clouds and aerosols), auto white/color balance was turned off, and exposure adjustment for each camera was set to automatic mode. Note, however, that Vaira was an exception in this regard. To correct for variability induced by auto color balancing at this site, we used a grey reference panel in the camera field of view (e.g., Jacobs et al. 2009).

Images were either archived by the site investigator or automatically transferred to the PhenoCam server via file transfer protocol (FTP). Time series were first visually inspected for camera shifts and changes in field of view. Noting these changes, we processed the image archives to extract regions of interest (ROI) that encompassed all portions of the full canopy within the foreground (Fig. 1). At Vaira, the ROI was restricted to the grass portion of the image, excluding distant oak trees from analysis. To quantify canopy greenness, we calculated the green chromatic coordinate (GCC), which is widely used to monitor canopy development and identify phenological phase changes (Richardson et al. 2007, Ahrends et al. 2009, Sonnentag et al. 2012, Zhao et al. 2012):

$$ GCC = \frac{D_{NG}}{D_{NR} + D_{NG} + D_{NB}} $$

(1)
where $DN$ is the digital number and $R$, $G$ and $B$ denote the red, green and blue channels, respectively. For completeness, we also calculated the Excess Green (ExG) index:

$$ExG = 2DN_G - (DN_R + DN_B)$$  \hspace{1cm} (2)

which has been shown to be less noisy than GCC in some coniferous canopies (Sonnentag et al. 2012). To characterize canopy coloration in fall, the red chromatic coordinate (RCC) was calculated using the same form as Eq. 1, substituting $DN_R$ in the numerator.

Following Sonnentag et al. (2012), we calculated the $90^{th}$ percentile of GCC, ExG and RCC values for 3-day moving windows, yielding up to 122 observations each year. Only photos taken during daylight hours (6:00 – 18:00 local time) were included, and any images with under-exposed ROIs (which we defined as <15% color saturation, or $DN < 39$, in any band) were excluded. We did not exclude photos due to poor weather conditions or snow, as the $90^{th}$ percentile filter successfully removed these (Sonnentag et al. 2012). To eliminate any residual noise we removed GCC or ExG values that exceeded ±2 standard deviations of the mean within 27-day windows. To account for changes in camera settings or shifts in camera fields of view, GCC, RCC and ExG values were manually screened and rescaled (as needed) to preserve a smooth and continuous time series at each site.

We used nonlinear least squares regression to fit logistic functions to GCC, RCC and ExG time series, which were then used to estimate phenophase transition dates from DBF and GRS sites (e.g., Fisher et al. 2007, Richardson et al. 2009b). For GRS sites, we used separate logistic functions in spring and fall:

$$GCC(t) = a_s + \frac{b_s}{1 + e^{(c_s - d_s t)}}$$  \hspace{1cm} (3a)
where $t$ is the day-of-year and the remaining terms are empirically estimated coefficients. For DBF sites, we used the modified logistic function presented by Elmore et al. (2012), which includes an additional parameter ($a_2$) that accounts for “summer greendown” that is widely observed in DBF greenness time series (Keenan et al., 2014):

$$GCC(t) = a_1 + (b - a_2 \times t) \left(\frac{1}{1+e^{(c_f-d_f+c_f)}} - \frac{1}{1+e^{(c_f-d_f+c_f)}}\right)$$

(4)

Note that in Equation 4, $a_1+b$ denotes the early summer maximum GCC, while the minimum summer GCC value preceding fall coloring is given by $(b - a_2 \times t)$. Coefficients in Equations 3 and 4 were estimated using the Levenberg-Marquardt method.

Following a widely used remote sensing approach (e.g., Zhang et al. 2003), phenophase transitions were determined by calculating local minima and maxima in the curvature change rate of Equations 3 and 4. In spring, maxima correspond to dates of leaf unfolding (start of spring) and maximum greenness (end of spring). In autumn, the onset of fall coloring (start of senescence) and leaf abscission (end of fall) correspond to the timing of minima. The midpoints of each season, middle of spring and middle of fall, were identified using the local minimum and maximum, respectively. We also tested one additional method to estimate the end of fall in DBF sites based on the timing of maximum fall coloring (Richardson et al. 2009b), which was determined using the date of the maximum RCC value in the second half of the growing season.

Early analysis indicated that the logistic function provided a poor representation of GCC dynamics at many ENF sites; a separate method was needed to explore links between GCC and GPP seasonality in evergreen sites. Hence, we calculated splines along GCC curves and
examined correlations between dates at which a range of GCC thresholds (5–75% of seasonal amplitude, in 5% intervals) were reached, and dates at which a similar range of GPP thresholds were reached.

**Eddy covariance data**

To assess the ability of camera-based indices to capture seasonal dynamics in carbon fluxes, we compared color indices with estimates of GPP derived from eddy covariance measurements. To do this we used 30-minute non-gap-filled NEE data to estimate GPP, except at the Harvard Forest and Morgan Monroe sites, where only hourly data were available. NEE was partitioned into GPP ($\mu$mol CO$_2$ m$^{-2}$ s$^{-1}$) using the $Q_{10}$ method (Raich and Schlesinger 1994):

$$GPP = NEE - Reco = NEE - R_{ref} \times Q_{10}^{(T - T_{ref})/10}$$

where $R_{ref}$ is a scaling parameter, $Q_{10}$ is the temperature sensitivity of ecosystem respiration ($R_{eco}$), and $T_{ref}$ (= 10$^°$) is the base temperature where $R_{eco} = R_{ref}$. Friction velocity ($u^*$) filtering was used to remove nocturnal NEE measurements when there was insufficient turbulence using site-specific $u^*$ values. The $Q_{10}$ function was estimated independently for every site-year, yielding 30-minute estimates of $R_{eco}$ and GPP. When available, we compared our GPP estimates with estimates provided by site investigators. Results from this comparison showed that the estimates were in close agreement (mean $R^2 = 0.95$; range: 0.91-0.98).

To make the GPP data comparable to the camera-based color indices, we calculated the mean daily-integrated GPP (g C m$^{-2}$ d$^{-1}$) across the three-day periods over which the camera data were processed. In addition, we also calculated mean daytime instantaneous flux rates (calculated across all daytime hours, defined as PPFD $\geq$ 5 $\mu$mol m$^{-2}$ s$^{-1}$), as well as estimates of the light-
saturated rate of photosynthesis ($A_{\text{max}}, \mu\text{mol CO}_2 \text{ m}^{-2} \text{ d}^{-1}$), which was derived by fitting a Michaelis-Menten light response function to the high-frequency (hourly or half-hourly) flux measurements. The use of these alternative metrics did not change our interpretation of the results described below. To allow comparison at annual time scales, we calculated annual GPP sums, using the same $Q_{10}$ method as above, but including gap-filled NEE. When gap-filled NEE data were not provided by site investigators, we used an online tool (http://www.bgc-jena.mpg.de/~MDIwork/eddyproc/) that implements standardized gap filling methods (Reichstein et al. 2005).

To evaluate GCC as a predictor of photosynthesis, daily GPP was regressed against 3-day GCC for each tower site. We also regressed the mean daytime instantaneous flux rate ($\text{GPP}_{30}$; averaged over equivalent 3-day periods) against GCC, which allowed us to assess this relationship independent of day length. Goodness-of-fit was based on the coefficient of determination ($R^2$), calculated using linear and quadratic functions at a significance level of 0.05.

A key goal of this analysis was to assess how well dynamics in GCC capture changes in photosynthetic activity corresponding to phenological transitions. For example, one question we examined was, “Does start of spring, estimated by GCC, correspond to the first day of photosynthesis ($\text{GPP} > 0 \text{ g C m}^{-2} \text{ d}^{-1}$) in spring?” To compare relative photosynthetic capacity across sites, we fit smoothing splines to the daily GPP time series for each of the six DBF sites and calculated the percentage of maximum annual flux (maximum daily GPP within a given year = 100%) at 1% intervals along the estimated splines. These data were then pooled, providing a composite DBF data set of 19 site-years. Using phenophase transition dates (start of spring,
middle of spring, middle of fall, end of fall) extracted from the GCC and RCC time series, we
performed geometric mean regression between camera-derived dates and a range of flux
amplitudes (1-90%). Goodness-of-fit was evaluated using the coefficient of determination and
the slope of the regression. Bias was quantified using the mean deviation, and accuracy was
evaluated using the root mean square deviation (RMSD) between transition dates estimated from
GCC data and transition dates estimated from GPP data.

To explore these relationships at the GRS sites, we pooled data from the four UI sites and
performed a parallel analysis. The ARM site in Oklahoma was excluded because both the flux
data and the camera data included mixtures of differing phenological patterns associated with
multiple crop cycles. We also excluded the Vaira site because it is characterized by
asynchronous seasonality (winter active vs. summer active elsewhere) relative to the rest of the
sites in our analysis of transition dates. To compare the timing of maximum greenness (GCC$_{90\%}$)
and carbon flux (GPP$_{90\%}$), we determined the dates when each metric reached 90% of the
maximum annual value at each site using only complete site-years.

Because the rates of spring increase and fall decrease in daily GPP or GCC can vary between
years (see Richardson et al. 2010), dates corresponding to the start and end of the growing season
may not fully characterize patterns of interannual variability in phenology. To assess this, we
tested the hypothesis that during the spring or fall transition periods time-integrated GCC values
provide more information about anomalies in GPP than start-of-season or end-of-season dates
estimated from GCC time series. To do this, we first re-scaled the GCC and GPP data to account
for differences across sites in the magnitude of carbon fluxes and canopy greenness. This
provided normalized time series of daily GPP and GCC, both on a scale from 0 to 1. We then fit
splines to the normalized GPP and GCC values over 60 day-periods following the earliest start of
spring and preceding the latest end of fall, and calculated the integral under each spline curve
using numerical approximation. These integrals were then converted to anomalies relative to
each site-level mean and used to calculate linear correlations between integrated GCC anomalies
and integrated GPP anomalies. To determine whether integrated GCC values provide greater
explanatory power than discrete dates such as the start of spring, we compared these results with
linear correlations between phenophase transition date anomalies and integrated GPP anomalies.
Lastly, we tested whether spring and fall greenness anomalies were correlated with integrated
annual GPP anomalies via multiple linear regression, using spring and fall normalized integrated
GCC anomalies as independent variables and annual GPP anomalies as the response variable.

RESULTS

Canopy development and photosynthesis – patterns among plant functional types

Time series of GCC and daily GPP (Fig. 2; Appendix B) demonstrate broadly consistent
relationships within each of the three PFTs, with some notable exceptions. DBF and GRS sites
exhibited clear seasonality in both GCC and GPP, with high values during the photosynthetically
active season and low values during the inactive season. GRS sites exhibited shorter but well-
defined growing seasons compared to those in DBF (Fig. 2c). In ENF sites, the annual cycle in
GCC was roughly sinusoidal, with a relatively short period of minimum values in winter (Fig.
2b). Relationships between GCC and GPP in both the active and dormant seasons were phase-
shifted, with spring increases in GCC preceding those in GPP, and autumn decreases in GCC
lagging behind GPP.
We also noted distinct differences among the PFTs with regard to the amplitude and range of GCC values. In DBF and GRS, GCC time series were characterized by low values (0.33-0.36) during the winter and high values (0.40 to 0.50) in peak growing season (Table 1; Appendix B). In contrast, the dynamic range of ENF was much smaller (e.g., seasonal amplitude was 0.04 GCC units for Chibougamau vs. 0.08 GCC units for Harvard, Figs. 2b and 2a, respectively). The smallest range was observed for Wind River, where GCC values varied by just 0.03 throughout the year. There was also a wide range in GPP among PFTs owing to differences in ecosystem productivity arising from factors such as species composition, leaf area, and local climate. Across all sites and PFTs, daily GPP values showed strong seasonal patterns, but there was substantial day-to-day variation caused by changes in short term environmental conditions (e.g. clouds, vapor pressure deficits, and soil moisture) that limit short-term productivity, and by extension, decrease correlation between GPP and GCC on short (i.e., hours to days) time scales.

Canopy development and photosynthesis – patterns within plant functional types

DBF sites exhibited two primary modes of variation in GCC during the photosynthetically active season. First, over the course of two or three weeks in late spring, GCC tended to exhibit a distinct late-spring “green peak” that was not observed in either ENF or GRS. Second, following this peak, GCC tended to gradually decline over roughly three months, leading to a decrease in GCC of about 30% relative to the seasonal amplitude. At the onset of leaf coloration, GCC tended to decrease rapidly, leading into the annual winter minimum. Daily GPP, by contrast, increased more slowly throughout the spring, reaching its maximum value 2-4 weeks after the
GCC peak. And, whereas GCC remained high during the summer months, daily GPP tended to
decline almost immediately after its peak, well in advance of the fall decline in GCC.

As we noted above, daily GPP exhibited substantial day-to-day variability in all PFTs. At the
Missouri Ozarks site in 2007, however, daily GPP decreased sharply in July, nearly two months
before the autumn decrease in GCC, likely in response to moisture stress (Yang et al. 2010).
Otherwise, covariance between daily GPP and GCC for DBF sites was generally strong overall
(R² = 0.50 – 0.79; Table 2; Fig. 3a; Appendix C) and tended to be linear at lower values of GCC.
At higher values of GCC, however, there was little or no relationship between daily GPP and
GCC for most DBF sites, which reflects the fact that daily GPP during mid-summer is controlled
by day-to-day variation in weather that does not affect canopy greenness on short time scales.
Correlations between daily GPP and GCC were comparable with those between GCC and GPP₃₀
(Table 2), indicating that GCC-GPP relationships are robust and independent of seasonal
changes in day length.

ENF sites were characterized by unique patterns of seasonality in GCC and GPP. Most notably,
the period associated with minimum GCC values during winter dormancy was short lived. At
most ENF sites GCC continued to decline into early winter, even when daily GPP was near zero,
before rising again in late winter well in advance of the spring onset of photosynthesis. This
pattern was not observed at the Wind River site, which was photosynthetically active throughout
almost the whole year (Appendix B). Among all ENF sites, the summertime peak in GCC
occurred close to the peak in daily GPP. Overall, correlations between daily GPP and GCC were
almost as strong (R² = 0.53 – 0.76; Appendix C; Table 2) as those for DBF sites. As with DBF,
correlation between GCC and GPP$_{30}$ were comparable with those between GCC and daily GPP (Table 2).

For all but one GRS site, correlations between daily GPP and GCC were high ($R^2 = 0.80-0.90$; Table 2; Appendix C), and the relationship was linear. Similar to the ENF sites, GCC at GRS sites exhibited a short summer plateau. At the UI Switchgrass and UI Prairie sites, GCC was modestly phase shifted, with GCC leading daily GPP in spring and lagging daily GPP in fall. Covariance between GPP and GCC at the ARM Oklahoma site, where the growing season extends well beyond that at most other sites, was substantially higher between GCC and GPP$_{30}$ than between GCC and daily GPP (Table 2).

For DBF and GRS, relationships between GPP and ExG were similar to those observed for GCC (Table 2). At ENF sites, correlations between ExG and GPP were marginally higher than those between GCC and GPP, but the magnitude of these differences was site-specific. At Wind River, in particular, ExG accounted for about 15% more variance in daily GPP than GCC because of the greater stability (less day-to-day noise) in ExG. Similar (but less pronounced) increases were also observed at Chibougamau, Howland, and Niwot.

**Camera and flux-based phenophase transitions**

Using a combination of greenness (GCC) and redness (RCC) indices, digital repeat photography facilitated accurate determinations of the start and end of the photosynthetic period for DBF and GRS. In ENF sites, however, the lack of a discernible winter baseline prevented accurate estimation of the start and end of canopy photosynthesis. In ENF and GRS, GCC provided a
relatively accurate estimation of the date of maximum photosynthesis; however, the relationship in ENF was statistically insignificant. In the section below we elaborate on these themes, discussing four camera-based phenology metrics – start of spring, middle of spring, middle of fall, and end of fall – and their relationship with the seasonality of GPP.

At DBF sites, camera-derived spring and fall phenophase transition dates successfully captured spatiotemporal variability in the beginning and end of the photosynthetic period. Start of spring, estimated using Equation 4 fit to the GCC time series, was most highly correlated with the day of year corresponding to when flux amplitudes were between 24-30% of maximum GPP ($R^2 = 0.62$; $n = 17$). Mean deviation (MD) and RMSD between start of spring from GCC and GPP was smallest at 20% and 24% of GPP amplitudes, respectively (Fig. 4a). Results were even stronger (Fig. 4b) for the “middle of spring” (the date on which 50% of the seasonal amplitude in GCC was reached), which corresponded to 30-40% of the spring amplitude in GPP ($R^2 = 0.82$). In contrast, GCC was a relatively poor predictor of the date of maximum photosynthesis (GPP$_{90%}$) in DBF sites, with the date of GCC$_{90%}$ consistently preceding the date of GPP$_{90%}$ by more than three weeks, on average. Note, however, that the magnitude of this bias was disproportionately influenced by one site-year (Harvard Forest in 2010), in which a late summer increase in GPP delayed the 90% threshold significantly (Fig. 5A).

Correlations between the date at which 50% of the seasonal amplitudes in GCC and GPP were reached in fall was relatively weak ($R^2 = 0.43$; Fig. 4D). Similarly, correspondence between GCC- and GPP-derived end of fall dates was also weak. Canopy redness (RCC), rather than greenness, provided the best indicator of the end of the photosynthetically active period, with the
date of peak RCC strongly correlated to the date when GPP amplitude reached 14% ($R^2 = 0.69$; Fig. 4c).

At GRS sites, GCC provided more information about seasonal dynamics in photosynthesis during spring than in fall. GCC was a good indicator of the beginning of the photosynthetically active period, with high correlation between both the start and middle of spring derived from GCC time series and the date corresponding to a wide range of amplitudes in spring GPP (Fig. 6a, b). Relative to GPP$_{90\%}$, GCC$_{90\%}$ was less biased at GRS sites than that at DBF sites (Fig. 5c). Similar to patterns observed in spring, the timing of both the middle and end of fall from GCC showed significant (but lower relative to spring) correlations across a broad range of GPP amplitudes (Fig. 6c).

At ENF sites, GCC typically started to increase prior to the onset of the growing season, when GPP was still zero, and continued to decrease late in the year after GPP had returned to zero. Thus, at both the start and end of the growing season, significant variations in GCC occur that are not associated with dynamics in GPP. Indeed, correlations between the timing of changes in GCC and GPP across a wide range of spring and fall amplitude thresholds (5–75% of seasonal amplitude, in 5% intervals) were statistically insignificant at $p \leq 0.05$. It would appear, therefore, that camera-based GCC time series cannot be used to predict the beginning or end of the photosynthetically active period for ENF sites. It is worth noting, however, that GCC did provide a rough indication of the date of maximum GPP. While the correlation between the dates on which 90% of the spring amplitudes in GCC and GPP were reached was statistically insignificant ($R^2 = 0.32$, $p = 0.11$), the mean bias (across all site-years) was less than one day ($0.3 \pm 10$ d).
In the final element of our analysis, we investigated whether spring and fall time-integrated sums of daily GCC provide additional or complementary information regarding interannual variation in GPP relative to phenophase transition dates estimated from the GCC time series. To do this, we first focused on the Barlett Forest site and calculated springtime integrated daily GPP and GCC from 2006 to 2012 (Fig. 7). Starting on DOY 115 (selected to precede the earliest observed green-up day, DOY 118), we integrated both GCC and GPP over successively longer time segments at 5-day increments (e.g., DOY 115-120, 115-125, etc.). Results from this analysis showed that springtime integrated GCC anomalies were strongly and significantly correlated with integrated GPP anomalies for up to 30 days ($R^2 = 0.56-0.88$; $n = 7$), by which time cumulative photosynthetic uptake had reached nearly 150 g C m$^{-2}$ in some years. GCC and GPP integrals beyond DOY 145 did not show statistically significant correlations. In fall, integrated GCC anomalies computed for time segments spanning 30 days preceding the end of fall (DOY 290) were moderately correlated with corresponding GPP anomalies ($R^2 = 0.47$; $p = 0.09$; data not shown). For comparison, start- and middle-of-spring transition dates were modestly correlated with integrated GPP anomalies over the period from DOY 115 to 145 ($R^2 = 0.69$ and 0.43), while GCC-based middle and end-of-fall transition dates were highly correlated with time integrals of GPP over the period from DOY 265 to 290 ($R^2 = 0.96, 0.70$). Thus, at Bartlett, GCC integrals provide more information about flux anomalies than do individual phenological transition dates in the spring, but less information in the fall.
We then extended this analysis to include all DBF and three of the four Illinois GRS sites (we excluded the UI Maize and UI Soy notes, for which only a single year of data was available). For the DBF sites, we found moderate correlation (as high as $R^2 = 0.49$; $n = 19$ after 30 days) between normalized GCC integral anomalies and normalized GPP integral anomalies up to 60 days after green-up (Fig. 8). Over this period, anomalies of up to $158 \text{ gC m}^{-2}$ (Harvard), or ~8% of the annual total GPP, were observed. Correlations based on time integrals extending beyond 60 days after the earliest green-up were not statistically significant. In contrast to results at Bartlett Forest, start- and middle-of-spring transition date anomalies were more highly correlated with normalized GPP integral anomalies ($R^2 = 0.71$ and 0.60 at 20 and 30 days, respectively). In fall, correlations between GCC integral anomalies and GPP anomalies were not statistically significant, whereas end-of-fall transition date anomalies were weakly correlated with normalized GPP integral anomalies ($R^2 = 0.30$). Multiple linear regression analysis showed that about half the variance in annual GPP integral anomalies is explained by a combination of spring and fall GCC anomalies ($R^2 = 0.54$). By comparison, a linear model using anomalies in the start-of-spring and end-of-fall transition dates determined from the GCC time series explained less than one-third of the variance in annual GPP integral anomalies ($R^2 = 0.30$). Thus, it is not clear whether integrated GCC provides more information related to interannual variation in GPP than specific transition dates.

At GRS sites we found strong correlation between normalized GCC anomalies and normalized GPP anomalies up to 60 days after the start of spring ($R^2 = 0.97$; $n = 6$; Fig. 9) and during the period 20-50 days preceding the end of the growing season ($R^2 = 0.83$). While these results are promising, it is important to note that the sample size is small ($n = 6$) and each tower is
represented by only two site-years. As at DBF sites, information related to interannual variation
in fall GPP from time-integrated GCC values was comparable to that provided from transition
dates, but provided less information related to spring GPP variations. For example, correlation of
start-of-spring with spring GPP anomalies was lower than that for GCC anomalies (R² = 0.85)
while correlation of end-of-fall with fall GPP anomalies (R² = 0.81) was equivalent to that of the
integrated GCC anomaly.

DISCUSSION

Canopy development and photosynthesis

Results from this study demonstrate that canopy greenness is correlated with rates of
photosynthesis in both forest and grassland. Consistent with results from previous studies,
canopy greenness and GPP were correlated across DBF sites (Ahrends et al. 2009, Richardson et
al. 2007, 2009). For reasons that are unclear, we found a stronger relationship between
greenness and photosynthesis in grassland than Migliavacca et al. (2012). At ENF sites, our
results are consistent with those obtained by Richardson et al. (2009b) and showed moderate to
strong correlation between canopy greenness and GPP across all of the sites we examined. This
was particularly true for ExG, suggesting that camera-based modeling of GPP in ENF should be
based on this index. Specifically, ExG was less sensitive than GCC to variation in illumination
conditions. Thus, ExG appears to minimize the impact of shadows, which are prominent and
highly variable in conifer canopies.

Our analysis also revealed several limitations of canopy greenness as a predictor of GPP. For
example, there was a pronounced peak in GCC at the end of spring in DBF sites (also noted by
Sonnentag et al. 2012, Mizunuma et al. 2012) that preceded the peak in GPP by several weeks. Peak GCC is caused by seasonal variation in foliage pigments (e.g., Sims and Gamon, 2002) and is accentuated by the oblique viewing angle used by the cameras in this study (Keenan et al. 2014). As a result, GCC\(_{90\%}\) tended to occur several weeks before GPP\(_{90\%}\). Data from the Missouri Ozarks site also demonstrated limitations of GCC during drought conditions when photosynthesis was reduced by moisture stress, but canopy color was unaffected. As a result, GPP and GCC became decoupled as GPP dropped rapidly while GCC remained high (Appendix B). Even though ENF sites exhibited well-defined seasonality in greenness, GCC was only weakly correlated to GPP at these sites. Conifers undergo seasonal changes in chlorophyll content, with winter minima approximately 40% lower than summer maxima (Billow et al. 1994, Ottander et al. 1995). Hence, seasonal variation in chlorophyll concentrations at sites with long winters (Chibougamau, Groundhog, Niwot) may be driving observed patterns in canopy greenness, even during the non-photosynthetic period (Fig. 2; Appendix C).

**Phenophase transitions and integrated GCC-GPP**

Start of spring and end of fall, determined based on GCC and RCC, provided biased estimates for the beginning and cessation of the photosynthetically active period (i.e. GPP > 0 g C m\(^{-2}\) d\(^{-1}\)). In deciduous broadleaf forest and grassland/crops sites, the MD and RMSD for the start of spring were lowest for GPP values between 20-26% of the spring amplitude, while for end of fall, deviations were lowest for GPP at 14-16% of the fall amplitude. Local maxima in the change in curvature rate, which is used to identify the start of spring and end of fall (Zhang et al. 2003), occurs above wintertime minimum values, when GCC reach ~10% and 90% of the amplitude of equations 3 and 4, respectively. In DBF, an additional source of disagreement between the
timing of GCC and GPP is early season photosynthesis from sub-dominant evergreen trees, which can increase ecosystem GPP well before leaf emergence in deciduous trees.

Garrity et al. (2011) tested 13 metrics of canopy phenology (excluding cameras) and found that no single source provided adequate characterization of the full seasonality of carbon flux phenology. Notably, the beginning of the photosynthetic period was generally well characterized while the end of the photosynthetic period was poorly characterized, and the timing of maximum GPP was not significantly correlated with any radiometric or remotely sensed variable (Garrity et al. 2011). Although we found similar patterns for DBF sites, there was relatively close association between $GPP_{90\%}$ and $GCC_{90\%}$ in GRS. Other researchers have found that maximum GCC at DBF sites precedes maximum GPP (Ahrends et al. 2009, Richardson et al. 2009b), leaf area index (Keenan et al., 2014), and leaf chlorophyll content (Nagai et al. 2011) by several weeks to two months. Likewise, leaf-level studies indicate long periods (50-80 days) between green-up and maximum photosynthesis (Reich et al. 1991, Bassow and Bazzazz 1998, Morecroft et al. 2003). Thus, it is perhaps not surprising that we found that changes in GCC tend to lead changes in GPP in both spring and autumn in DBF.

A particularly important conclusion from this work is that repeat digital photography not only allows us to identify when photosynthesis begins and ends, but also helps us estimate how much of an impact phenological variability has on seasonal and annual carbon budgets. Using an independent measure of canopy phenology, we showed how changes in the timing of green leaf phenology in the spring and fall affects cumulative photosynthesis. Among DBF sites, we also
found significant correlation between combined spring-fall GCC anomalies and anomalies in annual GPP.

**Impacts and future work**

By examining relationships between camera-derived metrics of greenness and GPP across a large set of sites spanning multiple years and three plant functional types, this research provides an improved foundation for using digital repeat photography to model the impact of phenological dynamics on the carbon cycle of terrestrial ecosystems. Key contributions of this study are (1) demonstration of relatively general relationships between GPP and GCC, and (2) quantification of spatiotemporal variability in canopy development and GPP among and across three major PFTs. More generally, results from this study highlight the role that cameras can play in refining and calibrating phenological sub-routines in Earth System models, which vary widely in their representation of green leaf phenology (e.g., Richardson et al. 2012). The Community Land Model, for instance, includes seven PFTs (Bonan et al. 2002), four of which were represented in our study: deciduous broadleaf forest (DBF), coniferous evergreen forest (ENF), grasses (GRS), and crops (GRS). Our study did not include broadleaf evergreen forest, deciduous and evergreen shrubs, and we are not aware of any studies that have compared camera-based phenology and carbon fluxes in broadleaf evergreen forest, (but see Doughty and Goulden 2007 for radiometry-based phenology). However, given the major role of humid tropical forest in the global carbon cycle, there is a clear need for camera-based studies in this biome.

Although our study was focused on canopy-scale phenology, digital repeat photography also has significant potential as a tool for bridging the gap between canopy-to-landscape scale processes
and organismal-level observations of leafing and flowering phenology. Digital repeat
photography can also play an essential role in scaling organismal- and canopy-level observations
to the synoptic scale provided by remote sensing (Hufkens et al. 2012). As networks of spatially
referenced online camera imagery rapidly expand (Graham et al. 2010, Sonnentag et al. 2012,
Abrams and Pless 2013), opportunities to leverage these networks to monitor and calibrate
models of terrestrial phenology are likely to increase. Exploiting this, future work will explore
how such camera networks can be used to characterize spatiotemporal variability in phenology
and determine the environmental drivers (e.g. temperature, precipitation, photoperiod, snow
cover) that regulate canopy development and senescence at regional to continental scales.

CONCLUSIONS

In this study, we demonstrate the strengths and limitations of camera-based canopy greenness for
monitoring the phenology of photosynthesis in three PFTs: deciduous broadleaf forest, evergreen
needleleaf forest and grassland/crops. We encountered key differences among PFTs in the
relationship between canopy development, expressed as greenness, and the seasonality of carbon
fluxes. These differences were also evident in the detection of discrete phenophase transitions.
Canopy greenness proved effective at detecting the beginning and end of the photosynthetically
active period in GRS sites. In DBF sites, greenness was effective for detecting the beginning of
the photosynthetic period, whereas redness was most effective for detecting the end. A key
finding of this study was that integrated GCC was significantly correlated with total GPP during
the first 30-60 days following green-up, in both DBF and GRS. In some cases, integrated GCC
was a better predictor of summed spring/fall GPP than discrete transitions dates. Further, in DBF
there was a moderate correlation between combined spring-fall GCC anomalies and the annual
GPP integral anomalies, indicating significant seasonal control of shifts in phenology on ecosystem productivity. Camera data thus provide a valuable and independent means by which ecosystem-scale phenology can be characterized (cf. phenological metrics derived from CO₂ fluxes themselves, as in Richardson et al. 2010). Finally, our results suggest that digital repeat photography may be used to estimate interannual variability in GPP resulting from phenological variability with greater accuracy than many existing ecosystem process models provide (Keenan et al. 2012, Richardson et al. 2012).
ACKNOWLEDGMENTS

Development of the PhenoCam network has been supported by the USDA Forest Service’s
Northeastern States Research Cooperative and the National Science Foundation’s Macrosystem
Biology Program (award EF-1065029). MT was partially supported by the US National Park
Service Inventory and Monitoring Program and the USA National Phenology Network (grant
number G10AP00129 from the United States Geological Survey [USGS]). Research at the
Bartlett Experimental Forest tower was supported by the National Science Foundation (grant
DEB-1114804), and the USDA Forest Service’s Northern Research Station. Research at
Howland and Harvard Forest was supported by the Office of Science Biological and
Environmental Research (BER), U.S. Department of Energy. Research at ARM Oklahoma was
also supported by BER under Contract No. DE-AC02-05CH11231 as part of the Atmospheric
Radiation Measurement program and Atmospheric System Research program. Research at the
UMBS was supported by BER (project DE-SC0006708) and NSF (grant DEB-0911461). The
Groundhog and Chibougamau sites, as parts of the Canadian Carbon Program, received funding
from the Canadian Foundation for Climate and Atmospheric Sciences (CFCAS), NSERC,
Natural Resources Canada, and Environment Canada. The contents of this paper are solely the
responsibility of the authors and do not necessarily represent the official views of NSF or USGS.


Keenan, T. F. et al. 2012. Terrestrial biosphere model performance for inter-annual variability of

Keenan, T. F. et al. 2014. Tracking forest phenology and seasonal physiology using digital repeat

Klosterman, S.T., et al. 2014. Evaluating remote sensing of deciduous forest phenology at
multiple spatial scales using PhenoCam imagery Biogeosciences Discussions 11:2305-2342.


Linkosalo, T., R. Hakkinen, J. Terhivuo, H. Tuomenvirta, P. Hari. 2009. The time series of
flowering and leaf bud burst of boreal trees (1846–2005) support the direct temperature

fluxes from a boreal mixedwood forest ecosystem in Ontario, Canada. Agricultural and Forest
Meteorology 140:79–96.

Journal of Biometeorology 44:76-81.


Appendices

Appendix A. Map of PhenoCam sites.

Appendix B. Time series of daily GPP (gC m\(^{-2}\) d\(^{-1}\)) and GCC for all deciduous broadleaf forest (DBF) evergreen needleleaf forest (ENF) and grassland (GRS) sites, listed by plant functional type. One characteristic year of data is featured in each sub-plot.

Appendix C. Scatter plots of daily GPP (gC m\(^{-2}\) d\(^{-1}\)) vs. GCC for all deciduous broadleaf forest (DBF) evergreen needleleaf forest (ENF) and grassland (GRS) sites, listed by plant functional type. Linear (blue) and quadratic regression lines (red) are superimposed (see Table 2 for coefficients of determination). All years of data are featured in each sub-plot.
Table 1. Summary of camera/eddy covariance sites used in this study, arranged by plant functional type. DBF = broadleaf deciduous forest, ENF = evergreen needleleaf forest, GRS = grassland/crops.

<table>
<thead>
<tr>
<th>Site</th>
<th>PFT</th>
<th>Lat.</th>
<th>Long.</th>
<th>Alt. (m)</th>
<th>Years</th>
<th>Camera</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bartlett</td>
<td>DBF</td>
<td>44.0646</td>
<td>-71.2881</td>
<td>268</td>
<td>2006-2012</td>
<td>Axis 211</td>
<td>Richardson et al. 2007</td>
</tr>
<tr>
<td>U Michbio1</td>
<td>DBF</td>
<td>45.5598</td>
<td>-84.7090</td>
<td>225</td>
<td>2008-2011</td>
<td>StarDot NetCam SC</td>
<td>Nave et al. 2011</td>
</tr>
<tr>
<td>U Michbio2</td>
<td>DBF</td>
<td>45.5598</td>
<td>-84.7138</td>
<td>230</td>
<td>2009-2011</td>
<td>StarDot NetCam SC</td>
<td>Curtis et al. 2002</td>
</tr>
<tr>
<td>Chibougamou</td>
<td>ENF</td>
<td>49.6924</td>
<td>-74.3420</td>
<td>380</td>
<td>2008-2010</td>
<td>StarDot NetCam SC</td>
<td>Bergeron et al. 2006</td>
</tr>
<tr>
<td>Howland</td>
<td>ENF</td>
<td>45.2041</td>
<td>-68.7403</td>
<td>80</td>
<td>2010-2012</td>
<td>Stardot NetCam SC</td>
<td>Hollinger et al. 1999</td>
</tr>
<tr>
<td>Niwot</td>
<td>ENF</td>
<td>40.0328</td>
<td>-105.5470</td>
<td>3055</td>
<td>2008-2011</td>
<td>Canon VB-C10R</td>
<td>Sacks et al. 2007</td>
</tr>
<tr>
<td>Location</td>
<td>Type</td>
<td>Latitude</td>
<td>Longitude</td>
<td>Station</td>
<td>Year</td>
<td>Camera/Device</td>
<td>Authors</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>---------</td>
<td>---------</td>
<td>----------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>UI Miscanthus</td>
<td>GRS</td>
<td>40.0628</td>
<td>-88.1984</td>
<td>314</td>
<td>2009-2010</td>
<td>Axis 211M</td>
<td>Zeri et al. 2011</td>
</tr>
<tr>
<td>Vaira</td>
<td>GRS</td>
<td>38.4133</td>
<td>-120.9506</td>
<td>129</td>
<td>2009-2010</td>
<td>D-Link DCS-900</td>
<td>Baldocchi et al. 2004</td>
</tr>
</tbody>
</table>
**Table 2.** Coefficients of determination for linear ($R^2$) and quadratic regression ($R^2_{quad}$) of GCC and ExG with daily GPP and mean 30-minute GPP rate (GPP$_{30}$). $N =$ number of observations. In all reported correlations, $p < 0.0001$.

<table>
<thead>
<tr>
<th>Site</th>
<th>PFT</th>
<th>GCC-GPP$_d$</th>
<th>GCC-GPP$_{30}$</th>
<th>ExG-GPP$_d$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$R^2$</td>
<td>$R^2_{quad}$</td>
<td>$R^2$</td>
</tr>
<tr>
<td>Bartlett DBF</td>
<td></td>
<td>0.782</td>
<td>0.783</td>
<td>0.765</td>
</tr>
<tr>
<td>Harvard DBF</td>
<td></td>
<td>0.787</td>
<td>0.809</td>
<td>0.754</td>
</tr>
<tr>
<td>Missouri Ozarks DBF</td>
<td></td>
<td>0.498</td>
<td>0.571</td>
<td>0.496</td>
</tr>
<tr>
<td>Morgan Monroe DBF</td>
<td></td>
<td>0.629</td>
<td>0.680</td>
<td>0.618</td>
</tr>
<tr>
<td>U Michbio1 DBF</td>
<td></td>
<td>0.776</td>
<td>0.776</td>
<td>0.794</td>
</tr>
<tr>
<td>U Michbio2 DBF</td>
<td></td>
<td>0.788</td>
<td>0.819</td>
<td>0.771</td>
</tr>
<tr>
<td>Chibougamou ENF</td>
<td></td>
<td>0.723</td>
<td>0.794</td>
<td>0.728</td>
</tr>
<tr>
<td>Groundhog ENF/DBF</td>
<td></td>
<td>0.756</td>
<td>0.833</td>
<td>0.754</td>
</tr>
<tr>
<td>Howland ENF</td>
<td></td>
<td>0.714</td>
<td>0.735</td>
<td>0.758</td>
</tr>
<tr>
<td>Niwot ENF</td>
<td></td>
<td>0.654</td>
<td>0.675</td>
<td>0.707</td>
</tr>
<tr>
<td>Wind River ENF</td>
<td></td>
<td>0.527</td>
<td>0.529</td>
<td>0.498</td>
</tr>
<tr>
<td>ARM Oklahoma GRS</td>
<td></td>
<td>0.547</td>
<td>0.597</td>
<td>0.648</td>
</tr>
<tr>
<td>UI Maize GRS</td>
<td></td>
<td>0.837</td>
<td>0.838</td>
<td>0.874</td>
</tr>
<tr>
<td>UI Miscanthus GRS</td>
<td></td>
<td>0.861</td>
<td>0.870</td>
<td>0.872</td>
</tr>
<tr>
<td>UI Prairie GRS</td>
<td></td>
<td>0.901</td>
<td>0.916</td>
<td>0.887</td>
</tr>
<tr>
<td>UI Soy GRS</td>
<td></td>
<td>0.820</td>
<td>0.822</td>
<td>0.823</td>
</tr>
<tr>
<td>UI Switchgrass GRS</td>
<td></td>
<td>0.805</td>
<td>0.815</td>
<td>0.789</td>
</tr>
<tr>
<td>Vaira GRS</td>
<td></td>
<td>0.793</td>
<td>0.815</td>
<td>0.759</td>
</tr>
</tbody>
</table>
Figures

Figure 1. Examples of webcam photographs, representing the three plant functional types: (a) Harvard (deciduous broadleaf forest), (b) Chibougamau (evergreen needleleaf forest), and (c) UI miscanthus (grassland). Polygons indicate the Region of Interest for extracting image greenness.

Figure 2. Time series of daily GPP (blue circles, gC m⁻² d⁻¹) and GCC (green diamonds) for deciduous broadleaf forest (DBF; a) evergreen needleleaf forest (ENF; b) and grassland/crops (GRS; c). Two characteristic years of data are featured in each sub-plot.

Figure 3. Scatter plots of daily GPP (gC m⁻² d⁻¹) vs. GCC for deciduous broadleaf forest (DBF; a) evergreen needleleaf forest (ENF; b) and grassland (GRS; c). Linear (blue) and quadratic regression lines (red) are superimposed (see Table 2 for coefficients of determination). All years of data are featured in each sub-plot.

Figure 4. Four metrics comparing estimates of DOY for start of spring (a), middle of spring (b), and middle of fall (d) using dates extracted from GCC curve fitting and % of maximum GPP. The plots represent 19 DBF site-years. End of fall (c) camera dates are derived from date of maximum RCC. On left axes, R² (0.0 – 1.0) and slope for geometric mean regression. On right axes, mean deviation (MD) and root mean square deviation (RMSD) of estimates; units are days.

Figure 5. Comparisons of derived dates (DOY) of maximum greenness and fluxes – GCC₉₀% and GPP₉₀%, respectively – for deciduous broadleaf forest (a), evergreen needleleaf forest (b) and grassland/crops (C) sites.

Figure 6. Four metrics comparing estimates of DOY of start of spring (a), middle of spring (b), end of fall (c) and middle of fall (d) using dates extracted from GCC curve fitting and % of maximum GPP. Plots represent 8 GRS site-years. On left axes, R² and slope for geometric mean
regression. On right axes, mean deviation (MD) and root mean square deviation (RMSD) of estimates; units are days.

**Figure 7.** Regression of GPP integrated sums (gC m\(^{-2}\)) vs. GCC integrated sums (dimensionless) during the first 30 days following green-up (in 5-day increments) for 2006-2012 at Bartlett.

**Figure 8.** Regression of GPP integrated sums (dimensionless) vs. GCC integrated sums (dimensionless) during the first 60 days following green-up (shown in 10-day increments) for deciduous broadleaf sites. Legend colors are equivalent to Figure 5a.

**Figure 9.** Regression of normalized GPP integrated sums (dimensionless) vs. GCC integrated sums (dimensionless) during the first 60 days following green-up (in 10-day increments) for the GRS sites, UI Miscanthus (black circles), UI Prairie (white circles) and UI Switchgrass (grey circles).
DOY 115 to 120
GCC integral
GPP integral (gC m\(^{-2}\))

DOY 115 to 125
GCC integral
GPP integral (gC m\(^{-2}\))

DOY 115 to 130
GCC integral
GPP integral (gC m\(^{-2}\))

DOY 115 to 135
GCC integral
GPP integral (gC m\(^{-2}\))

DOY 115 to 140
GCC integral
GPP integral (gC m\(^{-2}\))

DOY 115 to 145
GCC integral
GPP integral (gC m\(^{-2}\))

R\(^2\)=0.773
p=0.009

R\(^2\)=0.791
p=0.007

R\(^2\)=0.881
p=0.001

R\(^2\)=0.831
p=0.004

R\(^2\)=0.614
p=0.036

R\(^2\)=0.567
p=0.050