Search for $b \rightarrow u$ transitions in $B^{\pm} \rightarrow [K^{\pm}\pi^{\pm}\pi^{0}]_{D}K^{\pm}$ decays

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th>Citation</th>
<th>Lees, J. P., V. Poireau, V. Tisserand, J. Garra Tico, E. Grauges, M. Martinelli, D. A. Milanes, et al. 2011. “Search for $B \rightarrow u$ Transitions in $B^{\pm} \rightarrow [K^{\pm}\pi^{\pm}\pi^{0}]_{D}K^{\pm}$ Decays.” Phys. Rev. D 84, no. 1: 012002.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>doi:10.1103/PhysRevD.84.012002</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:13579264</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP</td>
</tr>
</tbody>
</table>
Search for $b \to u$ Transitions in $B^{\pm} \to [K^{\mp} \pi^{\pm}\pi^0]_D K^{\pm}$ Decays

We present a study of the decays $B^\pm \rightarrow DK^\pm$ with D mesons reconstructed in the $K^+\pi^-\pi^0$ or $K^-\pi^+\pi^0$ final states, where D indicates a D^0 or a \bar{D}^0 meson. Using a sample of 474 million BB pairs collected with the BABAR detector at the PEP-II asymmetric-energy e^+e^- collider at SLAC, we measure the ratios $R^+_\pm = \frac{\Gamma(B^\pm \rightarrow [K^+\pi^-\pi^0](\bar{D}^0))^+}{\Gamma(B^\pm \rightarrow [K^+\pi^-\pi^0](D^0))^+}$ and $R^- = \frac{(12.5^{+12.0}_{-10.0}(\text{stat})^{+3}_{-4}(\text{syst}))}{10^{-3}}$, from which we extract the upper limits at 90% probability: $R^+_\pm < 23 \times 10^{-3}$ and $R^- < 29 \times 10^{-3}$. Using these measurements, we obtain an upper limit for the ratio r_B of the magnitudes of the $b \rightarrow u$ and $b \rightarrow c$ amplitudes $r_B < 0.13$ at 90% probability.

PACS numbers: 13.25.Hw, 14.40.Nd

I. INTRODUCTION

CP violation effects are described in the Standard Model (SM) of elementary particles with a single phase in the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix V_{ij} [1]. One of the unitarity conditions for this matrix can be interpreted as a triangle in the plane of Wolfenstein parameters [2], where one of the angles is $\gamma = \arg\{ -V^*_{ub}V_{ud}/|V^*_{ub}V_{ud}| \}$. Various methods to determine γ using $B^+ \rightarrow DK^+$ decays have been proposed [3–5]. In this paper, we consider the decay

channel $B^+ \rightarrow DK^+$ with $D \rightarrow K^-\pi^+\pi^0$ [6] studied through the Atwood-Dunietz-Soni (ADS) method [4]. In this method the final state under consideration can be reached through $b \rightarrow c$ and $b \rightarrow u$ processes as indicated in Fig. 1 that are followed by either Cabibbo-favored or Cabibbo suppressed D^0 decays. The interplay between different decay channels leads to a possibility to extract the angle γ alongside with other parameters for these decays.

Following the ADS method, we search for $B^+ \rightarrow [K^-\pi^+\pi^0]DK^+$ events, where the favored $B^+ \rightarrow D^0K^+$ decay, followed by the doubly- Cabibbo-suppressed $D^0 \rightarrow K^-\pi^+\pi^0$ decay, interferes with the suppressed $B^+ \rightarrow D^0K^+$ decay, followed by the Cabibbo-favored $D^0 \rightarrow K^-\pi^+\pi^0$ decay. These are called “opposite-sign” events because the two kaons in the final state have opposite charges. We also reconstruct a larger sample of “same-sign” events, which mainly arise from the favored $B^+ \rightarrow D^0K^+$ decays followed by the Cabibbo-favored $D^0 \rightarrow K^-\pi^+\pi^0$ decays. We define $f \equiv K^-\pi^+\pi^0$ and...
Neglecting D-mixing effects, which in the SM give negligible corrections to γ and do not affect the r_B measurement, the ratios R^+ and R^- are related to the B- and D-mesons’ decay parameters through the following relations:

$$R^+ = \frac{r_B^2 + r_D^2 + 2r_Br_Dk_D\cos(\gamma + \delta)}{r_B^2 + r_D^2 + 2r_Br_Dk_D\cos(\gamma - \delta)},$$

$$R^- = \frac{r_B^2 + r_D^2 + 2r_Br_Dk_D\cos(\gamma - \delta)}{r_B^2 + r_D^2 + 2r_Br_Dk_D\cos(\gamma + \delta)},$$

with $\delta = \delta_B + \delta_D$. The values of k_D and δ_D measured by the CLEO-c collaboration [8], $k_D = 0.84 \pm 0.07$ and $\delta_D = (47^{+14}_{-11})^\circ$, are used in the signal yield estimation and r_B extraction. The ratio r_D has been measured in different experiments and we take the average value $r_D^2 = (2.2 \pm 0.1) \times 10^{-3}$ [9]. Its value is small compared to the present determination of r_B, which is taken to be (0.106 ± 0.016) [10]. According to Eqs. 8 and 9, this implies that the measurements of ratios R^\pm is mainly sensitive to r_B. For the same reason, the sensitivity to γ is reduced, and therefore the main aim of this analysis is to measure R^+ , R^- , γ, and r_B. The current high precision on r_B is based on several earlier analyses by the $\bar{B}A\bar{B}B$ [7, 11–13], BELLE [14–16], and CDF [17] collaborations.

Neglecting D-mixing effects, which in the SM give negligible corrections to γ and do not affect the r_B measurement, the ratios R^+ and R^- are related to the B- and D-mesons’ decay parameters through the following relations:

$$R^+ = \frac{r_B^2 + r_D^2 + 2r_Br_Dk_D\cos(\gamma + \delta)},$$

$$R^- = \frac{r_B^2 + r_D^2 + 2r_Br_Dk_D\cos(\gamma - \delta)},$$

with $\delta = \delta_B + \delta_D$. The values of k_D and δ_D measured by the CLEO-c collaboration [8], $k_D = 0.84 \pm 0.07$ and $\delta_D = (47^{+14}_{-11})^\circ$, are used in the signal yield estimation and r_B extraction. The ratio r_D has been measured in different experiments and we take the average value $r_D^2 = (2.2 \pm 0.1) \times 10^{-3}$ [9]. Its value is small compared to the present determination of r_B, which is taken to be (0.106 ± 0.016) [10]. According to Eqs. 8 and 9, this implies that the measurements of ratios R^\pm is mainly sensitive to r_B. For the same reason, the sensitivity to γ is reduced, and therefore the main aim of this analysis is to measure R^+ , R^- , γ, and r_B. The current high precision on r_B is based on several earlier analyses by the $\bar{B}A\bar{B}B$ [7, 11–13], BELLE [14–16], and CDF [17] collaborations.

This paper is an update of our previous analysis [7] based on 226 × 10^6 $\bar{B}B$ pairs and resulting in a measurement of $R_{ADS} = (13^{+12}_{-10}) \times 10^{-3}$, which was translated into the 95% confidence level limit $r_B < 0.19$.

The results presented in this paper are obtained with 431 fb$^{-1}$ of data collected at the $\Upsilon(4S)$ resonance with the $\bar{B}A\bar{B}B$ detector at the PEP-II e^+e^- collider at SLAC, corresponding to 474 × 10^6 $\bar{B}B$ pairs. An additional “off-resonance” data sample of 45 fb$^{-1}$, collected at a center-of-mass (CM) energy 40 MeV below the $\Upsilon(4S)$ resonance, is used to study backgrounds from “continuum” events, $e^+e^- \rightarrow q\bar{q}$ ($q = u, d, s, \text{or } c$).

II. EVENT RECONSTRUCTION AND SELECTION

The $\bar{B}A\bar{B}B$ detector is described in detail elsewhere [18]. Charged-particle tracking is performed by a five-layer silicon vertex tracker (SVT) and a 40-layer drift chamber (DCH). In addition to providing precise position information for tracking, the SVT and DCH measure the specific ionization, which is used for identification of low-momentum charged particles. At higher momenta pions and kaons are distinguished by Cherenkov radiation detected in a ring-imaging device (DIRC). The positions and energies of photons are measured with an electromagnetic calorimeter (EMC) consisting of 6580 thallium-doped CsI crystals. These systems are mounted inside a 1.5 T solenoidal superconducting magnet. Muons are identified by the instrumented flux return, which is located outside the magnet.

The event selection is based on studies of off-resonance data and Monte Carlo (MC) simulations of continuum and $e^+e^- \rightarrow \Upsilon(4S) \rightarrow \bar{B}B$ events. The $\bar{B}A\bar{B}B$ detector response is modeled with GEANT4 [19]. We also use
EvtGen [20] to model the kinematics of B meson decays and JetSet [21] to model continuum background processes. All selection criteria are optimized by maximizing the $S/\sqrt{S+B}$ ratio, where S and B are the expected numbers of the opposite-sign signal and background events, respectively. In the optimization we assume an opposite-sign branching fraction of 4×10^{-6} [9].

The charged kaon and pion identification criteria are based on a likelihood technique. These criteria are typically 85% efficient, depending on the momentum and polar angle, with misidentification rates at the 2% level. The π^0 candidates are reconstructed from pairs of photon candidates with an invariant mass in the interval [119,146] MeV/c2 and with total energy greater than 200 MeV. Each photon should have energy greater than 70 MeV.

The neutral D meson candidates are reconstructed from a charged kaon, a charged pion, and a neutral pion. The correlation between the tails in the distribution of the $K\pi\pi^0$ invariant mass, m_D, and the π^0 candidate mass, m_{π^0}, is taken into account by requiring $|m_D - m_{\pi^0}|$ to be within 24 MeV/c2 of its nominal value [9], which is 1.5 times the experimental resolution.

The B^+ candidates are reconstructed by combining D and K^+ candidates, and constraining them to originate from a common vertex. The probability distribution of the cosine of the B polar angle with respect to the beam axis in the CM frame, $\cos \theta_B$, is expected to be proportional to $(1 - \cos^2 \theta_B)$. We require $|\cos \theta_B| < 0.8$.

We measure two almost independent kinematic variables: the beam-energy substituted mass $m_{ES} = \sqrt{(s/2 + p_K^0 \cdot p_B^0)^2/E^2_B - p_B^2}$, and the energy difference $\Delta E = E_B - \sqrt{s}/2$, where E and p are the energy and momentum, the subscripts D and B refer to the candidate B meson and e^+e^- system, respectively, \sqrt{s} is the center-of-mass energy, and E_B is measured in the CM frame. For correctly reconstructed B mesons the distribution of m_{ES} peaks at the B mass, and the distribution of ΔE peaks at zero. The B candidates are required to have ΔE in the range $[-23, 23]$ MeV (±1.3 standard deviations). We consider only events with m_{ES} in the range [5.20, 5.29] GeV/c2.

In less than 2% of the events, multiple B^+ candidates are present, and in these cases we choose that with a reconstructed D mass closest to the nominal mass value [9]. If more than one B^+ candidate share the same D candidate, we select that with the smallest $|\Delta E|$. In the following we refer to the selected candidate as B_{sig}. All charged and neutral reconstructed particles not associated with B_{sig}, but with the other B decay in the event, B_{other}, are called the rest of the event.

III. BACKGROUND CHARACTERIZATION

After applying the selection criteria described above, the remaining background is composed of non-signal $B\Bar{B}$ events and continuum events. Continuum background events, in contrast to $B\Bar{B}$ events, are characterized by a jet-like topology. This difference can be exploited to discriminate between the two categories of events by means of a Fisher discriminant F, which is a linear combination of six variables. The coefficients of the linear combination are chosen to maximize the separation between signal and continuum background so that F peaks at 1 for signal and at -1 for continuum background. They are determined with samples of simulated signal and continuum events, and validated using off-resonance data. In the Fisher discriminant we use the absolute value of the cosine of the angle between B_{sig} and B_{other} thrust axes, where the thrust axis is defined as the direction maximizing the sum of the longitudinal momenta of all the particles. Other variables included in F are the event shape moments $L_0 = \sum_i p_i$, and $L_2 = \sum_i |cos \theta_i|^2$, where the index i runs over all tracks and energy deposits in the rest of the event; p_i is the momentum; and θ_i is the angle with respect to the thrust axis of the B_{sig}. These three variables are calculated in the CM system.

We also use the distance between the decay vertices of B_{sig} and D, the distance of closest approach between K mesons tracks belonging to signal decay chain, and $|\Delta t|$, the absolute value of the proper time interval between the B_{sig} and B_{other} decays [22]. The latter is calculated using the measured separation along the beam direction between the decay points of B_{sig} and B_{other} and the Lorentz boost of the CM frame. The B_{other} decay point is obtained from tracks that do not belong to the reconstructed B_{sig}, with constraints from the B_{sig} momentum and the beam-spot location. We use m_{ES} and F to define two regions: the fit region, defined as $5.20 < m_{ES} < 5.29$ GeV/c2 and $-5 < F < 5$, and the signal region, defined as $5.27 < m_{ES} < 5.29$ GeV/c2 and $0 < F < 5$.

The $B\Bar{B}$ background is divided into two components: non-peaking (combinatorial) and peaking. The latter consists of B-meson decays that have a well-pronounced peak in the m_{ES} signal region. One of the decay channels which can mimic opposite-sign signal events, is the $B^+ \to D\rho^+$ decay with $D \to K^+K^-$ and $\rho^+ \to \pi^+\pi^0$. In order to reduce this contribution, we veto events for which the invariant K^+K^- pair mass $m_{K^+K^-} = |m_{K^+K^-} - M_{D(PDG)}| > 20$ MeV/c2 (with the D meson invariant mass, $M_{D(PDG)}$, taken to be 1864.83 MeV/c2 [9]). Simulations indicate that the remaining background is negligible.

Another possible source of peaking $B\Bar{B}$ background is the decay $B^+ \to D\pi^+$ with $D \to K^+\pi^-\pi^0$, which can contribute to the signal region of the same-sign sample due to the misidentification of the π^+ as a K^+. The number of events is expected to be about 8% of the total same-sign signal sample (see Table I).

The charmless $B^+ \to K^+K^-\pi^+\pi^-\pi^0$ decay can also contribute to the signal region. The branching fraction of this decay has not been measured. Therefore the size of this background is estimated from the sidebands of the reconstructed D mass, $1.904 < M_D < 2.000$ GeV/c2 or
1.700 < M_{D} < 1.824 \text{ GeV}/c^{2}. The result of the study is reported in Table I. In the final fit, we fix the yield of the same-sign B\overline{B} peaking background to the sum of charmless and open-charm events. The opposite-sign background in the final event sample is assumed to be negligible.

The overall reconstruction efficiency for signal events is (9.6 ± 0.1)% for opposite-sign signal events and (9.5 ± 0.1)% for same-sign signal events. These numbers are equal within the uncertainty as expected. The composition of the final sample is shown in Table I.

IV. FIT PROCEDURE AND RESULTS

To measure the ratios \(R^+ \) and \(R^- \) we perform extended maximum-likelihood fits to the \(m_{\text{ES}} \) and \(F \) distributions, separately for the \(B^+ \) and \(B^- \) data samples. We write the extended likelihood functions \(\mathcal{L}^\pm \) as:

\[
\mathcal{L}^\pm = \frac{e^{-N'}}{N'} \cdot N^N \cdot \prod_{i=1}^{N} f^\pm(x_j | \theta, N'),
\]

with

\[
f^\pm(x | \theta, N') = \frac{1}{N'} \cdot \left(\frac{R^+ N_{\text{total}}^\pm}{1 + R^+} f_{\text{sig,ss}}^\pm(x | \theta_{\text{sig,ss}}) + \frac{N_{\text{B}}^\pm}{1 + R^+} f_{\text{sig,os}}^\pm(x | \theta_{\text{sig,os}}) + \sum_{j} N_{\text{bkg}}^B f_B^\pm(x | \theta) \right);
\]

where \(f_{\text{sig,ss}}(x | \theta_{\text{sig,ss}}), f_{\text{sig,os}}(x | \theta_{\text{sig,os}}) \), and \(f_B(x | \theta) \) are the probability density functions (PDFs) of the hypotheses that the event is a same-sign signal, opposite-sign signal, or a background event (\(B_i \) are the different background categories used in the fit), respectively. \(N \) is the number of events in the selected sample, and \(N' \) is the expectation value for the total number of events. The symbol \(\theta \) indicates the set of parameters to be fitted. \(N_{\text{B}}^\pm, \text{total} \) is the total number of signal events, \(R^\pm \cdot N_{\text{total}}^N \) for the decays of the \(B^\pm \) meson, and \(N_{\text{bkg}}^B \) is the total number of events of each background component. For the opposite-sign events the background comes from continuum and \(B\overline{B} \) events. The peaking \(B\overline{B} \) background is introduced as a separate component in the fit to the same-sign sample. The fit is performed to the \(B^+ \) sample (consisting of 1506 events) to determine \(R^+ \) and to the \(B^- \) sample (consisting of 15057 events) to determine \(R^- \). The PDFs for \(R^+ \) and \(R^- \) fits are identical. The \(R_{\text{ADS}} \) ratio is fitted to the same likelihood ansatz, but to the combined \(B^+ \) and \(B^- \) data sample.

Since the correlations among the variables are negligible, we write the PDFs as products of the one-dimensional distributions of \(m_{\text{ES}} \) and \(F \). The absence of correlation between these distributions is checked using MC samples. The signal \(m_{\text{ES}} \) distributions is modeled with the same asymmetric Gaussian function for both same-sign and opposite-sign events, while the \(F \) distribution is taken as a sum of two Gaussians. The continuum background \(m_{\text{ES}} \) distributions for the same and opposite-sign events are modeled with two different threshold AR-

GUS functions [23] defined as follows:

\[
A(x) = x \sqrt{1 - \left(\frac{x}{x_0} \right)^2} \cdot e^{(1 - \left(\frac{x}{x_0} \right)^2)},
\]

where \(x_0 \) represents the maximum allowed value for the variable \(x \), and \(c \) determines the shape of the distribution. The \(m_{\text{ES}} \) distribution of the non-peaking \(B\overline{B} \) background components are modeled with Crystal Ball (CB) functions that are different for same-sign and opposite-sign events [24]. The CB function is a Gaussian modified to include a power-law tail on the low side of the peak. The \(F \) distributions for the \(B\overline{B} \) background are approximated with sums of two asymmetric Gaussians. For the peaking \(B\overline{B} \) background we conservatively use the same parameter set as for the signal.

The PDF parameters are derived from data when possible. The parameters for continuum events are determined from the off-resonance data sample. The parameters for the \(m_{\text{ES}} \) distribution of signal events are extracted from the sample of \(B^+ \rightarrow D\pi^+ \) with \(D \rightarrow K^+\pi^-\pi^0 \), while for the parameters of the signal Fisher PDF we use the MC sample. The parameters of non-peaking \(B\overline{B} \) distributions are determined from the MC sample.

From each fit, we extract the ratios \(R^+, R^- \), or \(R_{\text{ADS}} \), the total number of signal events in the sample (\(N_{\text{B}}^\pm, \text{total} \)) along with the non-peaking background yields and threshold function slope for the continuum background. We fix the number of peaking \(B\overline{B} \) background events.

To test the fitting procedure we generated 10000 pseudo-experiments based on the PDFs described above. The fitting procedure is then tested on these samples. We find no bias in the number of fitted events for any component of the fit. Tests of the fit procedure performed on the full MC samples give values for the yields compatible with those expected.

The main results of the fit to the data are summarized in Table II.

The fits to the \(m_{\text{ES}} \) for \(F > 0.5 \) and the \(F \) distribution with \(m_{\text{ES}} > 5.27 \text{ GeV}/c^2 \) are shown in Fig. 2, for the combined \(B^+ \) and \(B^- \) sample. These restrictions reduce the background and retain most of the signal events. Fig. 3 shows the fits for the separate \(B^+ \) and \(B^- \) samples.

V. SYSTEMATIC UNCERTAINTIES

We consider various sources of systematic uncertainties, listed in Table III. One of the largest contributions comes from the uncertainties on the PDF parameters. To evaluate the contributions related to the \(m_{\text{ES}} \) and \(F \) PDFs, we repeat the fit varying the PDF parameters for each fit species within their statistical errors, taking into account correlations among the parameters (labeled as "PDF error" in Table III).
TABLE I: Composition of the final selected sample as evaluated from the MC samples normalized to data and from data for the charmless peaking background. The signal contribution is estimated using values of branching fractions from the PDG [9] and $r_B = 0.1$ [10]. The errors are from the statistics of the control samples only.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Region</th>
<th>Signal</th>
<th>$B\bar{B}$ non-peeking</th>
<th>Continuum</th>
<th>$D\pi$</th>
<th>Charmless peaking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same sign</td>
<td>Fit</td>
<td>2252 ± 20</td>
<td>450 ± 12</td>
<td>7403 ± 62</td>
<td>176 ± 14</td>
<td>28 ± 14</td>
</tr>
<tr>
<td></td>
<td>Signal</td>
<td>1921 ± 18</td>
<td>147 ± 8</td>
<td>203 ± 10</td>
<td>130 ± 14</td>
<td>21 ± 14</td>
</tr>
<tr>
<td>Opposite sign</td>
<td>Fit</td>
<td>28.7 ± 0.2</td>
<td>434 ± 12</td>
<td>21201 ± 104</td>
<td>-</td>
<td>-2 ± 9</td>
</tr>
<tr>
<td></td>
<td>Signal</td>
<td>24.4 ± 0.2</td>
<td>65 ± 5</td>
<td>612 ± 18</td>
<td>-</td>
<td>-2 ± 9</td>
</tr>
</tbody>
</table>

FIG. 2: (color online) Distribution of (a,b) m_{ES} (with $F > 0.5$) and (c,d) F (with $m_{ES} > 5.27$ GeV/c2) and the results of the maximum likelihood fits for the combined B^+ and B^- samples (extracting R_{ADS}), for (a,c) opposite-sign and (b,d) same-sign decays. The data are well described by the overall fit result (solid blue line) which is the sum of the signal, continuum, non-peeking, and peaking $B\bar{B}$ backgrounds.

FIG. 3: (color online) Projections of the 2D likelihood for m_{ES} with the additional requirement $F > 0.5$, obtained from the fit to the B^+ (left) and B^- (right) data sample for opposite-sign events (extracting R^+ and R^-). The labeling of the curves is the same as in Fig. 2.

To evaluate the uncertainties arising from peaking background contributions, we repeat the fit varying the the peaking $B\bar{B}$ background contribution within its statistical uncertainties and the errors of branching fractions, B, used to estimate the contribution. For the opposite-sign events only the positive part of the probability distribution is used in the evaluation.

Differences between data and MC (labeled as “Simulation” in Table III) in the shape of the F distribution are studied for signal components using the data control samples of $B^+ \rightarrow D\pi^+$ with $D \rightarrow K^+\pi^-\pi^0$. These parameters are expected to be slightly different between the $B \rightarrow D\pi$ and $B \rightarrow DK$ samples. We conservatively take the systematic uncertainty as the difference in the fit results from the nominal parameters set (using MC events) and the parameters set obtained using the $B \rightarrow D\pi$ data sample.

The systematic uncertainty attributed to the cross-feed between opposite-sign and same-sign events has been evaluated from the MC samples. The number of same-sign events passing the selection of the opposite-sign events is taken as a systematic uncertainty. The efficiency-
TABLE II: Results of fits to the B^+, B^-, and the combined B^+ and B^- samples, including the extracted number of signal and background events and their statistical errors.

<table>
<thead>
<tr>
<th>Sample</th>
<th>B^+</th>
<th>B^-</th>
<th>B^+ and B^-</th>
</tr>
</thead>
<tbody>
<tr>
<td>R, 10^{-3}</td>
<td>5.1_{-10}^{+12}</td>
<td>12.1_{-10}^{+12}</td>
<td>$9.1_{-7.6}^{+8.2}$</td>
</tr>
<tr>
<td>$N_{B^+,\text{tot}}$</td>
<td>1032 \pm 41</td>
<td>946 \pm 39</td>
<td>1981 \pm 57</td>
</tr>
<tr>
<td>N_{bkg}^{SS}</td>
<td>305 \pm 52</td>
<td>120 \pm 36</td>
<td>402 \pm 65</td>
</tr>
<tr>
<td>N_{bkg}^{SS}</td>
<td>315 \pm 44</td>
<td>329 \pm 44</td>
<td>644 \pm 62</td>
</tr>
<tr>
<td>$N_{\text{cont,SS}}$</td>
<td>10290 \pm 111</td>
<td>10017 \pm 105</td>
<td>20329 \pm 154</td>
</tr>
<tr>
<td>N_{bkg}^{SS}</td>
<td>3660 \pm 69</td>
<td>3539 \pm 68</td>
<td>7203 \pm 76</td>
</tr>
</tbody>
</table>

The systematic uncertainties for the ratios R^+ and R^- and the hadronic D decay parameters r_D, δ_D, and k_D taken from [8] and [9]. The dark and light shaded zones represent the 68% and 90% probability regions, respectively.

![Diagram](image)

FIG. 4: Bayesian posterior probability density function for r_B from our measurement of R^+ and R^- and the hadronic D decay parameters r_D, δ_D, and k_D taken from [8] and [9]. The dark and light shaded zones represent the 68% and 90% probability regions, respectively.

TABLE III: Systematic errors for R^\pm and R_{ADS} in units of 10^{-3}.

<table>
<thead>
<tr>
<th>Source</th>
<th>R^+</th>
<th>R^-</th>
<th>R_{ADS}</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDF error</td>
<td>$+1.1$ -1.8</td>
<td>1.1</td>
<td>1.0</td>
</tr>
<tr>
<td>Same sign peaking background</td>
<td>0.2</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>Opposite sign peaking background</td>
<td>$+3.6$ -3.6</td>
<td>$+3.6$ -3.6</td>
<td>$+3.6$ -3.6</td>
</tr>
<tr>
<td>Simulation</td>
<td>0.6</td>
<td>0.6</td>
<td>0.7</td>
</tr>
<tr>
<td>B errors</td>
<td>0.2</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>Crossfeed contribution</td>
<td>0.1</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>Efficiency ratio</td>
<td>0.1</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>Combined uncertainty</td>
<td>$+1.2$ $+1.6$ $+1.4$</td>
<td>-4.1 -3.9 -3.7</td>
<td></td>
</tr>
</tbody>
</table>

The systematic uncertainties for the ratios R^+, R^-, and R_{ADS} are summarized in Table III. The overall systematic errors represent the sum in quadrature of the individual uncertainties.

VI. EXTRACTION OF r_B

Following a Bayesian approach [26], the probability distributions for the R^+ and R^- ratios obtained in the fit are translated into a probability distribution for r_B using Eqs. 8 and 9 simultaneously. We assume the following prior probability distributions: for r_D a Gaussian with mean 4.7×10^{-2} and standard deviation 3×10^{-3} [9]; for k_D and δ_D, we use the likelihood obtained in Ref. [8], taking into account a 180 degree difference in the phase convention for δ_D; for γ and δ_B, we assume a uniform distribution between 0 and 360 degrees, while for r_B a uniform distribution in the range $[0, 1]$ is used. We obtain the posterior probability distribution shown in Fig. 4. Since the measurements are not statistically significant, we integrate over the positive portion of that distribution and obtain the upper limit $r_B < 0.13$ at 90% probability, and the range

$$r_B \in [0.01, 0.11]$$

at 68% probability, and 0.078 as the most probable value.

VII. SUMMARY

We have presented a study of the decays $B^\pm \rightarrow D^0 K^\pm$ and $B^\pm \rightarrow \bar{D}^0 K^\pm$, in which the D^0 and \bar{D}^0 mesons decay to the $K^\mp \pi^\pm \pi^0$ final state using the ADS method. The analysis is performed using 474 $\times 10^6$ $B\bar{B}$ pairs, the full $BABAR$ dataset. Previous results [7] are improved and superseded by improved event reconstruction algorithms and analysis strategies employed on a larger data sample.

The final results are:

$$R^+ = (5_{-10}^{+12} \text{stat})_{-4}^{+1} \text{syst}) \times 10^{-3},$$

$$R^- = (12_{-10}^{+12} \text{stat})_{-4}^{+2} \text{syst}) \times 10^{-3},$$

$$R_{ADS} = (9.1_{-7.6}^{+8.2} \text{stat})_{-3.7}^{+1.4} \text{syst}) \times 10^{-3},$$

from which we obtain 90% probability limits:

$$R^+ < 23 \times 10^{-3},$$

$$R^- < 29 \times 10^{-3},$$

$$R_{ADS} < 21 \times 10^{-3}.$$
VIII. ACKNOWLEDGMENTS

We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physique des Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovación (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union), the A. P. Sloan Foundation (USA) and the Binational Science Foundation (USA-Israel).

[6] Charge conjugate processes are assumed throughout the paper.