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C. Angeliniab, G. Batignaniab, S. Bettariniab, M. Carpinelliab,¶ G. Casarosaab, A. Cervelliab,

F. Fortiab, M. A. Giorgiab, A. Lusianiac, N. Neriab, E. Paoloniab, G. Rizzoab, and J. J. Walsha
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We report on analyses of tau lepton decays τ−
→ ηK−ντ and τ−

→ ηπ−ντ , with η → π+π−π0,
using 470 fb−1 of data from the BABAR experiment at PEP-II, collected at center-of-mass energies
at and near the Υ (4S) resonance. We measure the branching fraction for the τ−

→ ηK−ντ decay
mode, B(τ−

→ ηK−ντ ) = (1.42± 0.11(stat)± 0.07(syst))× 10−4, and report a 95% confidence level
upper limit for the second-class current process τ−

→ ηπ−ντ , B(τ
−
→ ηπ−ντ ) < 9.9× 10−5.

PACS numbers: 11.30.Ly, 13.35.Dx, 14.60.Fg

I. INTRODUCTION

Weak hadronic currents of spin-parity JP can be clas-
sified either as first or second class according to their
transformation properties under G parity (a combina-
tion of charge conjugation and isospin rotation) [1].
In hadronic τ decays, the first-class currents have
JPG = 0++, 0−−, 1+− or 1−+ and are expected to dom-
inate. The second-class currents, which have JPG =
0+−, 0−+, 1++ or 1−−, are associated with a matrix ele-

∗Now at Temple University, Philadelphia, Pennsylvania 19122,

USA
†Also with Università di Perugia, Dipartimento di Fisica, Perugia,

Italy
‡Also with Università di Roma La Sapienza, I-00185 Roma, Italy
§Now at University of South Alabama, Mobile, Alabama 36688,

USA
¶Also with Università di Sassari, Sassari, Italy

ment proportional to the mass difference between up and
down quarks. They vanish in the limit of perfect isospin
symmetry. So, while the Standard Model does not pro-
hibit second-class currents, such τ decays are expected
to have branching fractions of order 10−5 [2] and no evi-
dence has been found for them to date.

The τ− lepton provides a clean means to search for
second-class currents, through the decay mode τ− →
ηπ−ντ (charge-conjugate reactions are implied through-
out this paper). The ηπ− final state must have either
JPG = 0+− or JPG = 1−−, both of which can only be
produced via second-class currents. The decay could be
mediated by the a0(980)

− meson or by the π1(1400)
−

resonance. The CLEO collaboration has produced the
most stringent limit so far on τ− → ηπ−ντ decays, find-
ing B(τ− → ηπ−ντ ) < 1.4× 10−4 at the 95% confidence
level [3]. In this work we search for the τ− → ηπ−ντ
decay, with the η decaying to π+π−π0, using the large
τ -pair sample available from the BABAR experiment.

The τ− → ηK−ντ branching fraction has previously
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been measured by the CLEO [3], ALEPH [4] and Belle [5]
Collaborations, giving a world average value of B(τ− →
ηK−ντ ) = (1.61 ± 0.11) × 10−4 [6]. The measurement
of B(τ− → ηK−ντ ) reported here is the first from the
BABAR experiment, and its consistency with the Particle
Data Group (PDG) value helps to validate the method
used for the τ− → ηπ−ντ analysis.

II. BABAR EXPERIMENT

The analysis is based on data recorded by the BABAR

detector [7] at the PEP-II asymmetric-energy e+e− stor-
age rings operated at the SLAC National Accelerator
Laboratory. An integrated luminosity of 470 fb−1 was
collected from e+e− annihilations at and near the Υ (4S)
resonance: 91% of the luminosity was collected at a
center-of-mass energy of

√
s = 10.58 GeV, while 9%

was collected 40 MeV below this. With a cross section
of (0.919 ± 0.003) nb [8] for τ -pair production at our
luminosity-weighted center-of-mass energy, the data sam-
ple contains about 432 million produced τ+τ− events.
The BABAR detector is described in detail in Ref. [7].

Charged-particle (track) momenta are measured with a
5-layer double-sided silicon vertex tracker (SVT) and a
40-layer drift chamber (DCH). Outside the DCH there
is a ring-imaging Cherenkov detector (DIRC) and an
electromagnetic calorimeter (EMC) consisting of 6580
CsI(Tl) crystals. These detectors are all inside a super-
conducting solenoidal magnet that produces a magnetic
field of 1.5 T. Outside the magnet there is an instru-
mented magnetic flux return (IFR). In the analysis, elec-
trons are identified from the ratio of calorimeter energy
to track momentum (E/p), the shape of the shower in the
calorimeter and the ionization energy loss in the tracking
system (dE/dx). Muons are identified by hits in the IFR
and by their small energy deposits in the calorimeter. Pi-
ons and kaons are identified from dE/dx in the tracking
system and the Cherenkov angle from the DIRC.

III. EVENT SELECTION

Tau pairs are produced back-to-back in the e+e−

center-of-mass frame, and so each event is divided into
hemispheres using the thrust axis [9], calculated from all
reconstructed neutral EMC clusters with an energy above
50 MeV in the laboratory frame and all reconstructed
charged particles. Events with four well-reconstructed
tracks and zero net charge are selected. Each track is
required to have a distance of closest approach to the in-
teraction region of less than 10 cm when projected along
the beam axis and less than 1.5 cm in the transverse
plane. The events are required to have a “1-3 topology”
in the center-of-mass frame, where one track is in one
hemisphere (the tag hemisphere) and three tracks are
in the other hemisphere (the signal hemisphere). The
charged particle in the tag hemisphere must be identified

as either an electron (e-tag) or a muon (µ-tag), consis-
tent with coming from a fully leptonic τ decay. Hadronic
tags were not used because of the large backgrounds from
e+e− → qq events.

The τ candidates are reconstructed in the signal hemi-
sphere using the three tracks and a π0 candidate, which is
reconstructed from two separate EMC clusters, each with
an energy above 30 MeV in the laboratory frame and not
associated with a charged track. The π0 candidates are
required to have an invariant mass within 15 MeV/c2 of
the nominal π0 mass [6] and are then fitted to constrain
the mass. The π0 candidates are also required to have
an energy in the laboratory frame of at least 200 MeV.
Events with exactly one π0 candidate in the signal hemi-
sphere, where both EMC clusters are also in the signal
hemisphere, are selected.

Backgrounds arise from a number of sources, includ-
ing e+e− → qq events (where q = usdc) that contain
η mesons, and τ -pair events in which a τ decays into a
channel containing an η meson. The latter category in-
cludes τ− → ηπ−π0ντ , τ

− → ηK0π−ντ , τ
− → ηK−π0ντ

and τ− → ηK−ντ (background for the τ− → ηπ−ντ
mode). These modes contribute background events when
π0 or K0

L
mesons are missing, or when pions or kaons are

misidentified.

To reduce backgrounds a number of other selections are
applied. The e+e− → qq events are suppressed by requir-
ing the total visible energy of the event in the lab frame to
be less than 80% of the initial-state energy (τ -pair events
have missing energy carried by neutrinos). This back-
ground is also suppressed by requiring the magnitude of
the event thrust in the center-of-mass frame to be greater
than 0.95 (τ -pair events at BABAR are highly collinear).
The cosine of the angle between the thrust axis and the
beam axis is required to be less than 0.8 to ensure the
selected events are well reconstructed, without particles
passing through the edges of the active detector region
near the beam pipe. To reduce τ background modes con-
taining extra π0 particles or K0

L
mesons, events are re-

jected if they have any additional neutral EMC clusters
in the signal hemisphere with energy above 100 MeV in
the laboratory frame. After all selections, background
from bb events is negligible, due mainly to the effects of
the cuts on the event multiplicity and thrust.

The overall strategy for the analysis is to fit the
π+π−π0 mass spectra from τ− → π+π−π0K−ντ and
τ− → π+π−π0π−ντ candidate events, to determine the
numbers of η → π+π−π0 decays in the selected samples.
Monte Carlo event samples are used to estimate the num-
bers of η mesons expected from the background modes,
thus allowing the contribution from the signal modes to
be determined.

The largest source of combinatorial background in the
3π mass spectra comes from the τ− → π+π−π0π−ντ
channel, which is dominated by ω(782)π−ντ , with a sig-
nificant ρ(770)ππντ contribution. In addition, there is
a small background in the e-tag sample from Bhabha
events. To avoid any model dependence in the analyses,
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no additional cuts are used to remove these backgrounds,
since such cuts would distort the ηK− and ηπ− mass
spectra.

IV. MONTE CARLO SIMULATIONS

Monte Carlo (MC) simulations are used to measure
the signal efficiencies as well as the levels of background.
The production of τ pairs is simulated with the KK2f
generator [10], and the decays of the τ lepton are mod-
eled with Tauola [11]. In addition to samples of τ -pair
events in which the τ leptons decay according to known
branching fractions, samples of τ pairs are produced for
the main τ background modes and for the signal modes.
In these dedicated samples, one τ in each event is de-
cayed through the specified mode and the other decays
according to PDG branching fractions.
Continuum qq events are separated into two samples,

one for uu, dd and ss (the uds sample), and another for cc
(the cc sample). Both samples are simulated using JET-
SET [12], with EvtGen [13] used to simulate the decays
of charmed particles. Production of Υ (4S) events and B
meson decays are simulated using EvtGen. Final-state
radiative effects are simulated using Photos [14].
The detector response is modeled with GEANT4 [15],

and the MC events are fully reconstructed and analyzed
in the same manner as the data.

V. ANALYSIS

A. The π+π−π0 mass spectra

In the analysis, all three charged particles in the sig-
nal hemisphere are initially assumed to be pions, with
no requirements on the particle identification (PID) se-
lectors. Each event therefore has two possible π+π−π0

combinations. The remaining track associated with each
combination in the signal hemisphere is referred to as the
‘bachelor’ track.
For the τ− → ηK−ντ analysis, the bachelor track must

be identified as a kaon and the π+π−π0K− mass is re-
quired to be less than the τ mass. The π+π−π0 mass
spectra with these selections are shown in Fig. 1 sepa-
rately for the e-tag and the µ-tag samples; clear η peaks
are visible in both spectra. The curves in Fig. 1 show the
results of fits described in Sect. VC.
The ηK− mass distribution, as shown in Fig. 2, is con-

structed using a sideband subtraction method whereby
the π+π−π0K− mass spectrum for 3π mass in the η side-
band regions (0.510−0.525 and 0.570−0.585 GeV/c2) is
subtracted from the spectrum where the 3π mass lies in
the η peak region (0.54− 0.555 GeV/c2). To correct for
the shape of the combinatorial background, the entries
for the sideband region are weighted according to fac-
tors found by intergrating over the background functions
from the fitted π+π−π0 mass spectra. For this figure, the

various MC samples are combined according to expected
cross sections and the overall sample is normalized to the
data luminosity. The results show agreement between
data and MC, indicating that the τ− → ηK−ντ decay
mode, which dominates the distribution, is well modeled
in Tauola.
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FIG. 1: Mass spectra for π+π−π0 in τ−
→ π+π−π0K−ντ

candidates, for (a) e-tag data and (b) µ-tag data. The curves
show the results of the fits described in the text. Note the
suppressed zero on the y-axes.
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FIG. 2: The ηK− mass distributions for the data and MC
samples, for e- and µ-tag events, obtained from the sideband
subtraction method as described in the text. The MC samples
are normalized to the data luminosity; in particular the τ−

→

ηK−ντ sample is normalized to luminosity with the branching
fraction reported in this paper.
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FIG. 3: Invariant π+π−π0 mass distributions for τ−
→

π+π−π0π−ντ candidates, for (a) e-tag data (b) µ-tag data.
The curves show the results of the fits described in the text.
Note the suppressed zero on the y-axes.

)2 mass (GeV/cπ η
0.8 1 1.2 1.4 1.6

)2
E

n
tr

ie
s 

/ (
0.

08
 G

eV
/c

-50

0

50

100

150

200 data
Monte Carlo

FIG. 4: The ηπ− mass distributions for the data and MC
samples, for e- and µ-tag events, obtained from the sideband
subtraction method as described in the text. The MC samples
are normalized to the data luminosity; in particular, there are
no τ−

→ ηπ−ντ MC events.

In the search for τ− → ηπ−ντ decays, the bachelor
track must be identified as a pion and the π+π−π0π−

mass is required to be less than the τ mass. The re-
sulting π+π−π0 mass spectra are shown in Fig. 3, again
separately for e-tag and µ-tag events. It should be
noted that while the signal τ− → ηK−ντ channel con-
tributes over 90% to the η peaks in Fig. 1, the peaks in
Fig. 3 come largely or exclusively from backgrounds to

the τ− → ηπ−ντ search (as shown in Tables I and II, to
be discussed below). Fig. 4 shows the ηπ mass distribu-
tion, constructed using the sideband subtraction method,
as described above.

B. Fit parameters for the η peaks

To study the shapes of the η peaks in data and MC,
high statistics samples are examined. The high statis-
tics MC sample comprises the sum of e- and µ-tagged
events from the dedicated τ− → ηπ−ντ sample that are
selected as τ− → π+π−π0π−ντ candidates, and the e-
and µ-tagged events from the dedicated τ− → ηK−ντ
sample that are selected as τ− → π+π−π0K−ντ candi-
dates. For the data, we define a high-statistics control
sample by replacing the electron and muon tags with a
charged pion tag and loosening the selection criteria on
the thrust magnitude and total event energy. The high
statistics control sample then comprises all those events
that are selected to be τ− → π+π−π0π−ντ candidates
or τ− → π+π−π0K−ντ candidates. The control sample
thus defined contains a factor 20 more η → π+π−π0 de-
cays than the standard data sample, coming mainly from
uds events.

The shapes of the η peaks in both data and MC are
found to be well described by double-Gaussian functions.
Each double-Gaussian function has five parameters: two
peak masses, two widths and a relative contribution from
each Gaussian peak. The values of these parameters are
determined in fits to the high statistics samples and are
then fixed in the fits to the signal-candidate data (Figs. 1
and 3) and MC samples. For the data sample, the core
Gaussian has a width of (3.4±0.1) MeV/c2 and a relative
contribution of 62 ± 4%. For the MC sample, the core
Gaussian has a width of (3.8±0.1) MeV/c2 and a relative
contribution of 71± 2%.

C. Fits to the mass spectra

To measure the number of η mesons in the data and
MC samples, the π+π−π0 mass spectra are fitted over
the range 0.48 GeV/c2 to 0.62 GeV/c2 using a binned
maximum likelihood fit. The background is modelled as a
second-order polynomial while the η peak is modelled us-
ing the double-Gaussian function. The number of events
in the η peak is a free parameter in the fits, while the five
parameters of the double-Gaussian function are fixed to
the values obtained by fitting to the high statistics sam-
ples, as described above. The fit results and errors are
given in Tables I and II, which are discussed later in
Sect. VI.
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TABLE I: The numbers of η mesons, for ηK− candidates,
that are expected to come from each background mode and
the total number of η mesons seen in the data sample, as
explained in Sections VI and VII. For each entry, the first
error is statistical and the second error is systematic.

Background contribution Expected number of events

e-tag µ-tag

uds 4.5 ±2.7 ±2.3 8.9 ±4.7 ±4.5

cc 13.8 ±8.3 ±3.5 0.7 ±5.5 ±0.2

τ−
→ ηπ−π0ντ 13.3 ±3.7 ±0.7 2.9 ±2.0 ±0.2

τ−
→ ηK−π0ντ 8.4 ±0.5 ±2.1 5.0 ±0.4 ±1.3

τ−
→ ηK0π−ντ 3.9 ±0.5 ±0.7 2.3 ±0.4 ±0.4

Total background 44 ±10 ±5 20 ±8 ±5

Combined e- and µ-tag 64± 12± 8

Measured in Data Number of events in data

463 ±44 ±12 291 ±30 ±10

Combined e- and µ-tag 754 ± 53± 16

Signal Measured data−background

419 ±44 ±16 271 ±30 ±13

Combined e- and µ-tag 690 ± 53± 22

D. Efficiency

The efficiency to reconstruct a signal event is defined
as the probability that a genuine signal event contributes
an entry to the fitted η peak. The π+π−π0 mass spec-
tra from the dedicated τ− → ηπ−ντ and τ− → ηK−ντ
MC samples are fitted to measure the number of recon-
structed η mesons in each sample. The τ− → ηK−ντ
efficiency is found to be 0.336 ± 0.003% for e-tag and
0.242±0.003% for µ-tag events, giving a total efficiency of
0.578± 0.004%. For τ− → ηπ−ντ the corresponding val-
ues are 0.286±0.004%, 0.186±0.004%and 0.472±0.006%.
The efficiency for the τ− → ηK−ντ mode is higher
mainly because of a higher efficiency for the cut on the
thrust magnitude.

VI. BACKGROUNDS

As listed in Sect. IV, background sources of η mesons
include qq events as well as τ decay modes that contain
η mesons, such as τ− → ηπ−π0ντ , τ

− → ηK−π0ντ and
τ− → ηK0π−ντ . To measure the branching fractions of
τ− → ηK−ντ and τ− → ηπ−ντ , the numbers of η mesons
obtained from the fits must be corrected for contributions
from the background channels.
The number of η → π+π−π0 decays contributed by

each background mode is estimated from the MC sam-
ples, as discussed further below, and the results are sum-
marized in Tables I and II, where the first errors are sta-
tistical and the second are systematic (the systematic er-
rors come from the uncertainties on branching fractions).

TABLE II: The numbers of η mesons, for ηπ− candidates,
that are expected to come from each background mode and
the total number of η mesons seen in the data sample, as
explained in Sections VI and VII. For each entry, the first
error is statistical and the second error is systematic.

Background contribution Expected number of events

e-tag µ-tag

uds 20 ±9 ±14 64 ±13 ±43

cc 74 ±20 ±19 54 ±15 ±13

τ−
→ ηπ−π0ντ 215 ±14 ±12 118 ±11 ±7

τ−
→ ηK0π−ντ 100 ±2 ±17 71 ±2 ±12

τ−
→ ηK−ντ 35 ±1 ±2 26 ±1 ±1

τ−
→ ηK−π0ντ 0.6 ±0.2 ±0.1 0.2 ±0.2 ±0.1

Total background 445 ±27 ±31 333 ±23 ±47

Combined e- and µ-tag 778± 35± 73

Measured in Data Number of events in data

489 ±111 ±15 424 ±74 ±13

Combined e- and µ-tag 913± 134± 20

Signal Measured data−background

44 ±111 ±43 91 ±74 ±54

Combined e- and µ-tag 135± 134± 83

A. Background from uds events

Since inclusive η production in uds events at BABAR en-
ergies has not been well measured and may be poorly sim-
ulated in the JETSET Monte Carlo, the high-statistics
data control samples, described above, are used to correct
the MC for the level of background from this source.
To correct the uds simulation to better match the data,

scaling factors are evaluated based on ratios of the num-
bers of reconstructed η mesons in the high-statistics (uds-
enriched) data and MC samples. The scaling factors are
found to be 1.0± 0.5 for the ηK− channel and 1.5± 1.0
for the ηπ− channel. The relatively large uncertainty for
the scaling factor in the ηπ− channel is a reflection of the
poor simulation of a0 → ηπ− production in uds events.

B. Background from cc events

The simulation of η meson production in cc events is
more reliable than in uds events, since cc events always
contain two charmed particles, whose branching fractions
are well known [6]. To calculate a cc scaling factor, τ− →
π+π−π0π−ντ candidates are selected from the e- and µ-
tagged samples. To enhance the number of cc events the
selection made on the thrust magnitude is removed and
events with a π+π−π0π− mass greater than the τ mass
are selected.
The ηπ− mass distribution is constructed using the

sideband subtraction method described above. Peaks are
observed that correspond to the D− → ηπ− and D−

s →



10

ηπ− decays. A scaling factor of 1.2± 0.3 is found to give
best agreement between data and MC in the numbers
of D− and D−

s mesons. Although there is no evidence
for poor simulation of η production in cc events, this
is conservatively chosen as the cc scaling factor for the
π+π−π0K− and π+π−π0π− analyses.

C. Background from τ decays

The numbers of η mesons in the dedicated MC sam-
ples for each background τ -decay mode are calculated by
fitting the π+π−π0 mass spectra as previously described.
These numbers, together with the numbers of events be-
fore selections are made, the luminosities of the data and
the known branching fractions [6], are used to calculate
the numbers of η mesons in the data sample that are
expected to come from each background mode.

D. Uncertainties on backgrounds

For each background mode included in Tables I and
II there is a statistical error, which comes from the fits
to the π+π−π0 mass spectra arising mainly from limited
MC statistics, and a systematic error from uncertainties
in branching fractions or scaling factors. When combin-
ing the e-tag and µ-tag samples, correlated errors (e.g.
due to branching fraction uncertainties) are taken into
account. The total statistical and systematic errors are
combined in quadrature and propagated as systematic
errors on the final measurements.

VII. RESULTS AND CONCLUSION

Tables I and II give the numbers of η mesons mea-
sured in data, as obtained from the fits (Sect. VC), for
the ηK− and ηπ− candidate samples. The first errors
are statistical, while the second are systematic, calcu-
lated by varying the values of the fixed parameters within
their uncertainties. In both channels, the e-tag and µ-tag
analyses are combined for the final phase of the analyses.
The fits to the ηK− data sample yield 754 ± 53 ± 16

η mesons, compared to an expected background of 64 ±
12 ± 8, giving a signal contribution of 690 ± 53 ± 22 η
mesons. For the ηπ− sample, the fits yield 913±134±20
η mesons, with an expected background of 778± 35± 73,
and a signal contribution of 135 ± 134 ± 83 η mesons.
The statistical errors on the signals are taken to be the
same as those on the unsubtracted measurements, and
the other error contributions are combined to give the
total systematic errors.
Additional sources of systematic uncertainties on the

measurements of branching fractions are listed in Ta-
ble III. The uncertainty in the π0 detection efficiency
is 3% per π0 candidate, while the uncertainty on the
tracking efficiency for charged particles is 0.5% per track,

which is added linearly for the four tracks. The error on
the efficiency due to MC statistics comes from the statis-
tical error on the fits, as given in Sect. VD. The uncer-
tainties on the PID selectors are calculated from control
samples to be 0.7% for electrons, 1.8% for muons, 1.2%
for kaons and 0.2% for pions. The uncertainty on the
number of τ+ τ− events is 0.9%.
The branching fraction for τ− → ηK−ντ is measured

to be

B(τ− → ηK−ντ ) = (1.42±0.11(stat)±0.07(syst))×10−4.
(1)

The values obtained separately for the e-tag and µ-tag
samples are (1.48 ± 0.15 ± 0.08) × 10−4 and (1.33 ±
0.15 ± 0.09) × 10−4 . The measurement is compatible
with the world average of (1.61± 0.11)× 10−4, which is
dominated by the Belle measurement of (1.58 ± 0.05 ±
0.09)×10−4 [5]; this Belle measurement used the η → γγ
and the η → π+π−π0 decay modes (a branching frac-
tion of (1.60 ± 0.15 ± 0.10) × 10−4 is reported from the
η → π+π−π0 decay mode alone). The Belle Collab-
oration suggest that previous τ− → ηK−ντ measure-
ments [3, 4] underestimated background contamination,
an assertion that is supported by the observation that
the Belle and BABAR results are in good agreement. The
weighted average of the BABAR and Belle results is

B(τ− → ηK−ντ ) = (1.52± 0.08)× 10−4, (2)

where small correlations between the systematic uncer-
tainties of the two experiments have not been taken into
account.
The branching fraction for τ− → ηπ−ντ is measured

to be

B(τ− → ηπ−ντ ) = (3.4± 3.4(stat)± 2.1(syst))× 10−5.
(3)

With no evidence for a signal, a 95% confidence level
upper limit is obtained using B + 1.645σ, where B is the
measured τ− → ηπ−ντ branching fraction and σ is its
total uncertainty. We find

B(τ− → ηπ−ντ ) < 9.9× 10−5. (4)

The limit at 90% confidence level is B(τ− → ηπ−ντ ) <
8.5 × 10−5. This limit improves on the CLEO value [3],
further constraining branching fractions for second-class
current processes.
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TABLE III: Additional systematic uncertainties on the τ−
→ ηK−ντ and τ−

→ ηπ−ντ branching fractions.

τ−
→ ηK−ντ τ−

→ ηπ−ντ

Source e-tag µ-tag e- and µ-tag e-tag µ-tag e- and µ-tag
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Error on efficiency due to MC statistics 1.0% 1.1% 0.7% 1.6% 1.9% 1.2%
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Bachelor K−/π− PID 1.2% 1.2% 1.2% 0.2% 0.2% 0.2%

Luminosity and στ+τ− 0.9% 0.9% 0.9% 0.9% 0.9% 0.9%

Total systematic uncertainty 4.1% 4.4% 4.1% 4.1% 4.6% 4.1%
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