Search for Production of Invisible Final States in Single-Photon Decays of $\Upsilon(1S)$

We search for single-photon decays of the $\Upsilon(1S)$ resonance, $\Upsilon \to \gamma + \text{invisible}$, where the invisible state is either a particle of definite mass, such as a light Higgs boson A^0, or a pair of dark matter particles, $\chi \bar{\chi}$. Both A^0 and χ are assumed to have zero spin. We tag $\Upsilon(1S)$ decays with a dipion transition $\Upsilon(2S) \to \pi^+\pi^- \Upsilon(1S)$ and look for events with a single energetic photon and significant missing energy. We find no evidence for such processes in the mass range $m_{A^0} \leq 9.2\,\text{GeV}$ and $m_{\chi} \leq 4.5\,\text{GeV}$ in the sample of $9.8 \times 10^6 \Upsilon(2S)$ decays collected with the BABAR detector and set stringent limits on new physics models that contain light dark matter states.

through Wilczek production [10] of an on-shell scalar state A^0: $\Upsilon(1S) \to \gamma A^0$, $A^0 \to$ invisible. Such low-mass Higgs states appear in several extensions of the Standard Model [11]. Constraining the low-mass Higgs sector is important for understanding the Higgs discovery reach of high-energy colliders [12].

The BF for $T(1S) \to \gamma A^0$ is predicted to be as large as 5×10^{-4}, depending on m_{A^0} and couplings [13]. If there is also a low-mass neutralino with mass $m_\chi < m_{A^0}/2$, the decays of A^0 would be predominantly invisible [14].

For multibody $T(1S) \to \gamma \chi \pi \pi$ decays, the current 90% confidence level (C.L.F.) BF upper limit, based on a data sample of $\sim 10^6 T(1S)$ decays, is of order 10^{-3} [13]. The limit on two-body $T(1S) \to \gamma + X, X \to$ invisible decays is $B(T(1S) \to \gamma + X) < 3 \times 10^{-5}$ for $m_\chi < 7.2$ GeV [3].

The limit on invisible decays of $T(1S)$ is $B(T(1S) \to \chi \chi < 3.0 \times 10^{-4}$ [7].

This Letter describes a high-statistics, low-background search for decays $Y(1S) \to \gamma \gamma +$ invisible, characterized by a single energetic photon and a large amount of missing energy and momentum. This is the first search of this kind to use the $Y(1S)$ mesons produced in dipion $\Upsilon(2S) \to \pi^+ \pi^- \Upsilon(1S)$ transitions. We search for both resonant two-body decays $Y(1S) \to \gamma A^0, A^0 \to$ invisible, and nonresonant three-body processes $Y(1S) \to \gamma \chi \chi$.

For the resonant process, we assume that the decay width of the A^0 resonance is negligible compared to the experimental resolution [16]. We further assume that both the A^0 and χ particles have zero spin. The decays $Y(1S) \to \chi \chi$ are modeled with phase-space energy and angular distributions, which corresponds to S-wave coupling between the $b\bar{b}$ and $\chi \chi$.

The analysis is based on a sample corresponding to an integrated luminosity of 14.4 fb^{-1} collected on the $\Upsilon(2S)$ resonance with the BaBar detector at the PEP-II asymmetric-energy e^+e^- collider at the SLAC National Accelerator Laboratory. This sample corresponds to $(98.3 \pm 0.9) \times 10^6 \Upsilon(2S)$ decays. We also employ a sample of 28 fb^{-1} accumulated on the $\Upsilon(3S)$ resonance ($\Upsilon(3S)$ sample) for studies of the continuum backgrounds. Both $T(3S) \to \pi^+ \pi^- \Upsilon(2S)$ and $T(3S) \to \pi^+ \pi^- \Upsilon(1S)$ decays produce a dipion system that is kinematically distinct from the $Y(2S) \to \pi^+ \pi^- T(1S)$ transition. Hence, the $Y(3S)$ events passing our selection form a pure high-statistics continuum QED sample. For selection optimization, we also use 1.4 fb^{-1} and 2.4 fb^{-1} datasets collected about 30 MeV below the $\Upsilon(2S)$ and $\Upsilon(3S)$ resonances, respectively (off-peak samples). The BaBar detector, including the tracking and particle identification systems, the electromagnetic calorimeter (EMC), and the Instrumented Flux Return (IFR), is described in detail elsewhere [17,18].

Detection of low-multiplicity events requires dedicated trigger and filter lines. First, the hardware-based Level-1 (L1) trigger accepts single-photon events if they contain at least one EMC cluster with energy above 800 MeV. A collection of L1 trigger patterns based on drift chamber information selects a pair of low-momentum pions. Second, a software-based Level-3 (L3) trigger accepts events with a single EMC cluster with the center-of-mass (CM) energy $E^* > 1$ GeV [19], if there is no charged track with transverse momentum $p_T > 0.25$ GeV originating from the e^+e^- interaction region. Complementary to this, a track-based L3 trigger accepts events that have at least one track with $p_T > 0.2$ GeV. Third, an offline filter accepts events that have exactly one photon with energy $E^*_\gamma > 1$ GeV, and no tracks with momentum $p^* > 0.5$ GeV. A nearly independent filter accepts events with two tracks of opposite charge, which form a dipion candidate with recoil mass (defined below) between 9.35 and 9.60 GeV.

The analysis in the low-mass region $m_{A^0} \leq 8$ GeV ($m_\chi \leq 4$ GeV), which corresponds to photon energies $E^*_\gamma > 1.1$ GeV, requires the single-photon or the dipion trigger/filter selection to be satisfied: the trigger/filter efficiency for signal is 83%. In the high-mass region, $7.5 \leq m_{A^0} \leq 9.2$ GeV ($3.5 \leq m_\chi \leq 4.5$ GeV), we only accept events selected with the dipion trigger/filter, since a significant fraction of this region lies below the energy threshold for the single-photon selection. This selection has an efficiency of 12.5% for signal events.

We select events with exactly two oppositely-charged tracks and a single energetic photon with $E^*_\gamma \geq 0.15$ GeV in the central part of the EMC ($-0.73 < \cos \theta^*_\gamma < 0.68$). Additional photons with $E^*_\gamma \leq 0.12$ GeV can be present so long as their summed laboratory energy is less than 0.14 GeV. We require that both pions be positively identified with 85–98% efficiency for real pions, and a misidentification rate of < 5% for low-momentum electrons and < 1% for kaons and protons. The pion candidates are required to form a vertex with $\chi^2_{\text{pix}} < 20$ (1 degree of freedom) displaced in the transverse plane by at most 2 mm from the e^+e^- interaction region. The transverse momentum of the pion pair is required to satisfy $p_T^{\pi\pi} < 0.5$ GeV, and we reject events if any track has $p^*_\gamma > 1$ GeV.

We further reduce the background by combining several kinematic variables of the dipion system [7] into a multilayer perceptron neural network discriminant (NN) [20]. The NN is trained with a sample of simulated signal events $Y(1S) \to \gamma \chi \chi (m_\chi = 0)$ and an off-peak sample for background; the NN assigns a value N close to +1 for signal and close to −1 for background. We require $N > 0.65$ in the low-mass region. This selection has an efficiency of 87% for signal and rejects 96% of the continuum background. In the high-mass region we require $N > 0.89$ (73% signal efficiency, 98% continuum rejection).

Two additional requirements are applied to reduce specific background contributions. Neutral hadrons from the radiative decays $Y(1S) \to \gamma K^0_s K^0_s$ and $Y(1S) \to \gamma \eta \pi$ may not be detected in the EMC. We remove 90% of
these background events by requiring that there be no IFR cluster within a range of 20° of azimuthal angle (ϕ) opposite the primary photon (IFR veto). This selection is applied for $m_{A^0} < 4$ GeV and $m_{\chi} < 2$ GeV, since the hadronic final states in radiative $T(1S)$ decays are observed to have low invariant mass [21].

For the high-mass range we suppress contamination from electron bremsstrahlung by rejecting events if the photon and one of the tracks are closer than 14° in ϕ. In addition, the two-photon process $e^+e^- \rightarrow e^+e^-\gamma\gamma \rightarrow e^+e^-\eta', \eta' \rightarrow \pi^+\pi^-\pi^0$, in which the e^+e^- pair escapes detection along the beam axis and the two pions satisfy our selection criteria, produces photons in a narrow energy range $0.25 < E_\gamma^* < 0.45$ GeV. We take advantage of the small transverse momentum of the η' and reject over half of these events by requiring the primary photon and dipion system to be separated by at most $\Delta \phi = 160^\circ$.

The signal efficiency for this requirement is 88%.

For the served to have low invariant mass $[21]$. hadronic final states in radiative Υ energy range $0 < \sqrt{s}$, these background events by requiring that there be no IFR cluster within a range of 20° of azimuthal angle (ϕ) opposite the primary photon (IFR veto). This selection is applied for $m_{A^0} < 4$ GeV and $m_{\chi} < 2$ GeV, since the hadronic final states in radiative $T(1S)$ decays are observed to have low invariant mass [21].

The selection criteria are chosen to maximize $\varepsilon/(1.5 + \sqrt{B})$ [22], where ε is the selection efficiency for $m_{\chi} = 0$ and B is the expected background yield. The signal efficiency varies between 2 and 11%, and is lowest at the highest masses (lowest photon energy). The backgrounds can be classified into three categories: continuum backgrounds from QED processes $e^+e^- \rightarrow \pi^+\pi^- \ldots$ with particles escaping detection, radiative leptonic decays $T(1S) \rightarrow \gamma\ell^+\ell^-$, where leptons $\ell \equiv e, \mu, \tau$ are not detected, and peaking backgrounds from radiative hadronic decays and two-photon η' production.

We extract the yield of signal events as a function of m_{A^0} (m_{χ}) in the interval $0 \leq m_{A^0} \leq 9.2$ GeV ($0 \leq m_{\chi} \leq 4.5$ GeV) by performing a series of unbinned extended maximum likelihood scans in steps of m_{A^0} (m_{χ}). We use two kinematic variables: the dipion recoil mass M_{recoil} and the missing mass squared M_X^2:

$$M_{\text{recoil}}^2 = M_{\gamma\gamma}^2(2S) + m_{\pi\pi}^2 - 2M_{\gamma\gamma}(2S)E_{\pi\pi}^*$$

$$M_X^2 = (P_{\gamma\gamma} + e^- - P_{\pi\pi} - P_{\pi\pi})^2$$

where $E_{\pi\pi}^*$ is the CM energy of the dipion system, and P is the four-momentum. The two-dimensional likelihood function is computed for observables (M_{recoil}, M_X^2) over the range $9.44 \leq M_{\text{recoil}} \leq 9.48$ GeV and $-10 \leq M_X^2 \leq 68$ GeV2 (low-mass region) and $40 \leq M_X^2 \leq 84.5$ GeV2 (high-mass region). It contains contributions from signal, continuum background, radiative leptonic $T(1S)$ background, and peaking backgrounds, as described below.

We search for the A^0 in mass steps equivalent to half the mass resolution $\sigma(m_{A^0})$. We sample a total of 196 points in the low-mass region $0 \leq m_{A^0} \leq 8$ GeV range, and 146 points in the high-mass range $7.5 \leq m_{A^0} \leq 9.2$ GeV. For the $T(1S) \rightarrow \gamma\chi\chi$ search, we use 17 values of m_{χ} over $0 \leq m_{\chi} \leq 4.5$ GeV. For each m_{A^0} (m_{χ}) value, we compute the value of the negative log-likelihood NLL = $-\ln \mathcal{L}(N_{\text{sig}})$ in steps of the signal yield $N_{\text{sig}} \geq 0$ while minimizing NLL with respect to the background yields N_{cont} (continuum), N_{ept} ($T(1S) \rightarrow \gamma\ell^+\ell^-$), and, where appropriate, N_{hadr} (radiative hadronic background) or $N_{\eta'}$ (two-photon η' background). If the minimum of NLL occurs for $N_{\text{sig}} > 0$, we compute the raw statistical significance of a particular fit as $S = \sqrt{2\log(\mathcal{L}/\mathcal{L}_0)}$, where \mathcal{L}_0 is the value of the likelihood for $N_{\text{sig}} = 0$. For small S, we integrate $\mathcal{L}(N_{\text{sig}})$ with uniform prior over $N_{\text{sig}} \geq 0$ to compute the 90% C.L. Bayesian upper limits. In the range $7.5 \leq m_{A^0} \leq 8$ GeV and $3.5 \leq m_{\chi} \leq 4$ GeV where the low-mass and high-mass selections overlap, we add NLLs from both datasets, ignoring a small (3%) correlation. This likelihood scan procedure is designed to handle samples with a very small number of events in the signal region.

We use signal Monte Carlo (MC) samples [23, 24] $T(1S) \rightarrow \gamma A^0$ and $T(1S) \rightarrow \gamma\chi\chi$ generated at 17 values of m_{A^0} over a broad range $0 \leq m_{A^0} \leq 9.2$ GeV and at 17 values of m_{χ} over $0 \leq m_{\chi} \leq 4.5$ GeV to determine the signal distributions in M_X^2 and selection efficiencies. We then interpolate these distributions and efficiencies. The signal probability density function (PDF) in M_X^2 is described by a Crystal Ball (CB) function [25] ($T(1S) \rightarrow \gamma A^0$) or a resolution-smeared phase-space function ($T(1S) \rightarrow \gamma\chi\chi$). The resolution in M_X^2 is dominated by the photon energy resolution, and varies monotonically from 1 GeV2 at low m_{A^0} to 0.2 GeV2 at $m_{A^0} = 9.2$ GeV. We correct the signal PDF in M_X^2 for the difference between the photon energy resolution function in data and simulation using a high-statistics $e^+e^- \rightarrow \gamma\gamma$ sample. We determine the signal distributions in M_{recoil}, as well as that of background containing real $T(1S)$ decays, from a large data sample of events $T(1S) \rightarrow \mu^+\mu^-$. This PDF is modeled as a sum of two CB functions with common mean, a common resolution $\sigma(M_{\text{recoil}}) \approx 2$ MeV, and two opposite-side tails.

We describe the M_X^2 PDF of the radiative $T(1S) \rightarrow \gamma\ell^+\ell^-$ background by an exponential function, and determine the exponent from a fit to the distribution of M_X^2 in a $T(1S) \rightarrow \gamma\ell^+\ell^-$ data sample in which the two stable leptons (e or μ) are fully reconstructed. Before the fit, this sample is re-weighted by the probability as a function of M_X^2 that neither lepton is observed.

The continuum M_X^2 PDF is described by a function that has a resolution-smeared phase-space component at low M_X^2, and an exponential rise at high M_X^2. For the low-mass selection $(-10 \leq M_X^2 \leq 68$ GeV2), we determine this PDF from a fit to the $T(3S)$ data sample. For the high-mass region ($40 \leq M_X^2 \leq 84.5$ GeV2), we determine this PDF, as well as the M_X^2 PDF of the peaking η' background, from a fit to the $T(2S)$ data sample selected with the NN requirement $N < 0$. The M_{recoil} PDF is determined from a fit to the $T(3S)$ data sample.

The contribution from the radiative hadronic backgrounds is estimated from the measurement of $T(1S) \rightarrow \gamma h^+h^-$ spectra [21]. We assume isospin symmetry to relate $B(T(1S) \rightarrow \gamma K^+K^-)$ to $B(T(1S) \rightarrow \gamma K^0_SK^0_S)$, and
\(B(\Upsilon(1S) \rightarrow \gamma \pi \pi) \) to \(B(\Upsilon(1S) \rightarrow \gamma n \pi) \). A small additional contribution arises from \(\Upsilon(1S) \rightarrow \gamma \pi^+ \pi^- \) events in which the pions escape detection. We expect \(N_{\text{hadr}} = 6.6 \pm 1.1 \) radiative hadronic events (without IFR veto), dominated by \(\Upsilon(1S) \rightarrow \gamma K^0_S K^0_L \), or \(N_{\text{hadr}} = 1.02 \pm 0.14 \) events (with IFR veto). We describe the \(M_X^2 \) distribution of these events with a combination of CB functions, using the measured spectrum of \(\Upsilon(1S) \rightarrow \gamma h^+ h^- \) events [21].

The largest systematic uncertainty is on the reconstruction efficiency, which includes the trigger/filter efficiency \(\varepsilon_{\text{trig}} \), and photon \(\varepsilon_{\gamma} \) and dipion \(\varepsilon_{\pi \pi} \) reconstruction and selection efficiencies. We measure the product \(\varepsilon_{\pi \pi} \times N_{\Upsilon(1S)} \), where \(N_{\Upsilon(1S)} \) is the number of produced \(\Upsilon(1S) \) mesons, with a clean high-statistics sample of the \(\Upsilon(1S) \rightarrow \mu^+ \mu^- \) decays. The uncertainty (2.1\%) is dominated by \(\mathcal{B}(\Upsilon(1S) \rightarrow \mu^+ \mu^-) \) (2\%) [2] and a small selection uncertainty for the \(\mu^+ \mu^- \) final state. We measure \(\varepsilon_{\pi} \) in an \(e^+ e^- \rightarrow \gamma \gamma \) sample in which one of the photons converts into an \(e^+ e^- \) pair in the detector material (1.8\% uncertainty). The trigger efficiency \(\varepsilon_{\text{trig}} \) is measured in unbiased random samples of events that bypass the trigger/filter selection. This uncertainty is small for the single-photon triggers (0.4\%), but is statistically limited for the dipion triggers (8\%). In the low-mass region, we take into account the anti-correlation between single-photon and dipion trigger efficiencies in L3; the uncertainty for the combination of the triggers is 1.2\%.

We account for additional uncertainties associated with the signal and background PDFs, and the predicted number of radiative hadronic events \(N_{\text{hadr}} \), including PDF parameter correlations. These uncertainties do not scale with the signal yield, but are found to be small. We also test for possible biases in the fitted values of the signal yield with a large ensemble of pseudo-experiments. The biases are consistent with zero for all values of \(m_{A^0} \) and \(m_{\chi} \), and we assign an uncertainty of 0.25 events.

As a first step in the likelihood scan, we perform fits to the low-mass and high-mass regions with \(N_{\text{sig}} = 0 \). The free parameters in the fit are \(N_{\text{cont}}, N_{\text{lept}}, \) and \(N_{\text{hadr}} \) (low-mass region), and \(N_{\text{cont}}, N_{\text{lept}}, \) and \(N_{\eta'} \) (high-mass region). The results of the fits are shown in Fig. 1. We observe no significant deviations from the background-only hypothesis. We find \(N_{\text{hadr}} = 8.7^{+4.0}_{-3.3} \pm 0.8 \) (without IFR veto) with a significance of 3.5\sigma, including systematic uncertainties.

We then proceed to perform the likelihood scans as a function of \(N_{\text{sig}} \) in steps of \(m_{A^0} \) and \(m_{\chi} \). In the scan, the contribution of radiative hadronic background is fixed to the expectation \(N_{\text{hadr}} = 1.02 \pm 0.14 \) for \(m_{A^0} < 4 \) GeV \((m_{\chi} < 2 \) GeV\) where the IFR veto is applied, and to \(N_{\text{hadr}} = 6.6 \pm 1.1 \) for fits in \(4 \leq m_{A^0} \leq 8 \) GeV \((2 \leq m_{\chi} \leq 4 \) GeV\) range. We do not observe a significant excess of events above the background, and set upper limits on \(\mathcal{B}(\Upsilon(1S) \rightarrow \gamma A^0) \times \mathcal{B}(A^0 \rightarrow \text{invisible}) \) (Fig. 2) and \(\mathcal{B}(\Upsilon(1S) \rightarrow \gamma \chi \bar{\chi}) \) (Fig. 3). The limits are dominated by statistical uncertainties. The largest statistical fluctua-
tion, \(2.0\sigma\), is observed at \(m_{A'} = 7.58\) GeV \[26\]; we estimate the probability to see such a fluctuation anywhere in our dataset to be over 30%.

In summary, we find no evidence for the single-photon decays \(\Upsilon(1S) \to \gamma + \text{invisible}\), and set 90% C.L. upper limits on \(\mathcal{B}(\Upsilon(1S) \to \gamma A^0) \times \mathcal{B}(A^0 \to \text{invisible})\) in the range \((1.9-4.5) \times 10^{-6}\) for \(0 \leq m_{A'} \leq 8.0\) GeV, \((2.7-37) \times 10^{-6}\) for \(8 \leq m_{A'} \leq 9.2\) GeV, and scalar \(A^0\). We limit \(\mathcal{B}(\Upsilon(1S) \to \gamma A^0)\) in the range \((0.5-24) \times 10^{-5}\) at 90% C.L. for \(0 \leq m_A \leq 4.5\) GeV, assuming the phase-space distribution of photons in this final state. Our results improve the existing limits by an order of magnitude or more, and significantly constrain \[26\] light Higgs boson \[13\] and light dark matter \[8\] models.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BaBar. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MICINN (Spain), STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union), the A. P. Sloan Foundation (USA) and the Binational Science Foundation (USA-Israel).

\[\text{---}\]

* Now at Temple University, Philadelphia, Pennsylvania 19122, USA
\‡ Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy
\‡ Also with Università di Roma La Sapienza, I-00185 Roma, Italy
* Also with Università di Sassari, Sassari, Italy

[26] Additional plots are available in the Appendix.
The following includes supplementary material for the Electronic Physics Auxiliary Publication Service.

FIG. 4: Projection plots from the fit with $m_{A^0} = 7.58$ GeV (the most significant deviation from zero) to (a) M_{recoil} and (b) M_X^2. Overlaid is the fit (solid blue line), signal contribution (solid red line), continuum background (black dashed line), radiative leptonic $T(1S)$ decays (green dash-dotted line), and radiative hadronic $T(1S)$ decays (magenta dotted line). The top plot show residuals in each bin, normalized by the bin error. The fit corresponds to $B(T(1S) \rightarrow \gamma A^0) \times B(A^0 \rightarrow \text{invisible}) = (3.2^{+2.2}_{-1.8} \pm 1.0) \times 10^{-6}$, where the first uncertainty is statistical and the second is systematic, and statistical significance of 2.0σ. The probability to observe such a fluctuation anywhere in our dataset is over 30%.

FIG. 5: Upper limits on the product $g_T \times \sqrt{B(A^0 \rightarrow \text{invisible})}$ at 90% C.L. as a function of m_{A^0}. The parameter g_T is an effective coupling of the CP-odd Higgs A^0 to bound state $T(1S)$; in NMSSM, $g_T = \tan \beta \cos \theta F_T$, where $\cos \theta$ is the fraction of non-singlet component in A^0, $\tan \beta$ is the ratio of Higgs vacuum expectation values, and F_T is the effective form-factor (including the QCD and QED corrections). The theoretically preferred region in NMSSM [13] is $g_T > 1$.