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Short-term airborne particulate matter exposure
alters the epigenetic landscape of human genes
associated with the mitogen-activated protein
kinase network: a cross-sectional study
Juan Jose Carmona1,2,3, Tamar Sofer3, John Hutchinson4, Laura Cantone5, Brent Coull3, Arnab Maity6,
Pantel Vokonas7, Xihong Lin3, Joel Schwartz1,2 and Andrea A Baccarelli1,2,3*
Abstract

Background: Exposure to air particulate matter is known to elevate blood biomarkers of inflammation and to increase
cardiopulmonary morbidity and mortality. Major components of airborne particulate matter typically include black
carbon from traffic and sulfates from coal-burning power plants. DNA methylation is thought to be sensitive to these
environmental toxins and possibly mediate environmental effects on clinical outcomes via regulation of gene networks.
The underlying mechanisms may include epigenetic modulation of major inflammatory pathways, yet the details
remain unclear.

Methods: We sought to elucidate how short-term exposure to air pollution components, singly and/or in combination,
alter blood DNA methylation in certain inflammation-associated gene networks, MAPK and NF-κB, which may transmit
the environmental signal(s) and influence the inflammatory pathway in vivo. To this end, we utilized a custom-integrated
workflow—molecular processing, pollution surveillance, biostatical analysis, and bioinformatic visualization—to map
novel human (epi)gene pathway-environment interactions.

Results: Specifically, out of 84 MAPK pathway genes considered, we identified 11 whose DNA methylation status was
highly associated with black carbon exposure, after adjusting for potential confounders—age, sulfate exposure, smoking,
blood cell composition, and blood pressure. Moreover, after adjusting for these confounders, multi-pollutant analysis of
synergistic DNA methylations significantly associated with sulfate and BC exposures yielded 14 MAPK genes. No associations
were found with the NF-κB pathway.
Conclusion: Exposure to short-term air pollution components thus resulted in quantifiable epigenetic changes in
the promoter areas of MAPK pathway genes. Bioinformatic mapping of single- vs. multi-exposure-associated epigenetic
changes suggests that these alterations might affect biological pathways in nuanced ways that are not simply additive
or fully predictable via individual-level exposure assessments.
* Correspondence: abaccare@hsph.harvard.edu
1Laboratory of Human Environmental Epigenetics, Department of Environmental
Health, Harvard School of Public Health, Boston, MA, USA
2Exposure, Epidemiology, and Risk Program, Department of Environmental
Health, Harvard School of Public Health, Boston, MA, USA
Full list of author information is available at the end of the article

© 2014 Carmona et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,
unless otherwise stated.

mailto:abaccare@hsph.harvard.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Carmona et al. Environmental Health 2014, 13:94 Page 2 of 14
http://www.ehjournal.net/content/13/1/94
Background
Exposure to air particulate matter (PM) is well known to
augment oxidative stress in exposed individuals, and it has
been consistently linked to reduced lung function as well
as hospitalization and mortality for various cardiopulmo-
nary diseases [1]. Indeed, ambient air pollution is a critical
public health concern in US cities and worldwide, account-
ing for a staggering ~3.7 million premature deaths globally
in 2012, according to a World Health Organization es-
timate [2,3]. In highly PM-exposed individuals, blood
leukocyte gene expression profiling has revealed responses
related to worsened systemic oxidative stress and inflam-
mation, which exacerbate aggravation of the airways and
disease outcomes [4], yet the underlying mechanisms re-
main unclear.
Recent interest has focused on examining different com-

ponents of air pollution particles to assess their relative
toxicity in vivo. For example, black carbon (BC), a compo-
nent of PM commonly used as a marker of traffic particles,
has been reported to be more strongly associated with
increased blood pressure in the elderly compared to other
pollutants [5]. But sulfates—i.e., PM components from in-
dustrial emissions—had comparable effect as BC on dila-
tion of the brachial artery [6]. Similarly, traffic pollutants
are often more commonly cited as associated with asthma
[7]. However, PM with an aerodynamic diameter <2.5 μm
(PM2.5) had stronger associations than BC in some studies
[7,8], suggesting that PM from sources other than traffic
has stronger effects on asthma. Interestingly, sulfates have
also been associated with asthma phenotypes [9]. While
there are many components of particles in PM, BC as a
general index of traffic-derived particles and sulfate as a
marker of secondary particles, such as coal-burning power
plants, are reasonable surrogates for two of its more im-
portant sources. At present, however, questions remain
about how best to model these two pollutants, individually
and/or in combination, in order to understand their effects
on human populations [10].
DNA methylomics is an emerging field that can provide

unique opportunities to study source- and component-
specific biological effects from PM-related exposures
in vivo [11-14]. Many nuclear-encoded genes have been
shown to undergo exposure-related changes in their DNA
methylation status, an epigenetic mechanism highly sensi-
tive to chemical components found in PM [13-17]. DNA
methylation, the best understood of the epigenetic mecha-
nisms, is the covalent addition of methyl groups to cytosine
to form 5-methyl-cytosine (5mC). Methylation of promoter
regions and other regulatory sequences usually tends to
repress gene expression, although examples leading to
gene activation exist; consequently, DNA methylation is
now recognized as an important regulator of transcrip-
tion [11,18,19]. Since DNA methylation is responsive to
environment signals but changes less rapidly than mRNA
or protein/metabolite levels, it may represent a more stable
bio-archive of environmental exposures [20-22]. Import-
antly, these genome-wide chemical “annotations” hold
considerable promise as molecular indicators of toxic
exposures and possible predictors of disease risk [16,17].
Our work aims to apply recently validated biostatical and

biotechnological platforms to elucidate further the connec-
tion between epigenetic changes in genes with ambient
air pollution exposures in vivo. To this end, we evalu-
ated methylation microarray data from a subset of 141
male participants in the Normative Aging Study (NAS),
together with air pollution data from their correspond-
ing geographical regions. We focused on a key molecu-
lar pathway and its downstream target—MAPK (the
mitogen-activated protein kinase) and NF-κB (nuclear
factor kappa-light-chain-enhancer of activated B cells),
respectively—which have been shown to be activated by
PM exposure and may operate as biological mediators of
pathophysiological responses to PM [23-28].
The MAPK cascade transduces a broad range of extra-

cellular stress and physiological signals, and it mediates
cellular responses to diverse processes from cell prolifera-
tion and differentiation to inflammation [29-31]. The vari-
ous signaling branches of this pathway share a multi-tiered
control system: MAPK proteins are activated by dual phos-
phorylation on tyrosine and serine/threonine residues
via an upstream layer of dual-specificity kinases, MAPK
kinases (MAPKK), which are themselves phosphorylated
by a third tier of kinases, MAPKKKs. Previous experimen-
tal work has already identified activation of the MAPK
cascade as a possible mechanistic link between air pollu-
tion exposures and respiratory and cardiovascular health
outcomes [27,28]. MAPK signaling typically originates
from physiological stimuli, e.g., via cell-surface receptors—
and in some instances these receptors are coupled to small
GTPases [29].
Although a comprehensive MAPK signaling-interaction

map, or “interactome,” has recently been created [32],
drawn using experimental data from molecular studies
and predictive bioinformatic models, very little is known
about the epigenetic regulation of these MAPK pathway
genes, individually or collectively, in humans. During
signaling, communication is known to exist between
the MAPK network (upstream) and associated players
(downstream) like NF-κB [24]. Despite some cell-based
studies which have found that PM causes expression of
NF-κB-related genes and oxidant-dependent activation
of NF-κB in vitro [25], and that air pollution particles
activate NF-κB on contact with airway epithelial cell
surfaces in a rodent tracheal explant model [26], in vivo
data are lacking.
Our results demonstrate, for the first time, that methyla-

tion signals in certain (epi)gene clusters of the MAPK path-
way are significantly associated with ambient air pollution
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exposure in vivo. Within the MAPK pathway, DNA methy-
lation showed responses in genes that were specific to
BC and BC with sulfates. Strikingly, the combination of
BC and sulfates induced DNA methylation responses that
were wholly different from those detected in BC or sulfates
alone. These new data, therefore, provide evidence that the
biological effects of airborne particles on the human epige-
nome may vary depending on emission source as well as
on the combination of PM components [10,14,15]. In our
analyses, no significant associations were found with the
NF-κB pathway.

Methods
Human cohort description
The Normative Aging Study (NAS) is a longitudinal study
of human aging in Eastern Massachusetts, established
in 1963 by the Veterans Administration [13,33-36].
Community-dwelling men from the greater Boston metro-
politan area were screened at entry and accepted into the
study if they had no prior history of heart disease, hyper-
tension, diabetes mellitus, cancer, peptic ulcer, gout, recur-
rent asthma, bronchitis, or sinusitis. Between 1963 and
1968, a total of 2,280 men were enrolled, ranging in age
from 21 to 80 years (mean = 42 years) at entry. Since their
enrollment, the participants have undergone comprehen-
sive clinical examinations at 3–5 year intervals. As part of
those examinations, many clinical measures have been ob-
tained, ranging from blood pressure (systolic and diastolic)
and smoking status to complete blood count (CBC) data,
as described previously [37,38]. In the NAS, DNA has
been extracted from leukocytes and stored in all visits
since 1999. We conducted an epigenome-wide scan of
the promoter regions of ~19,000 genes on 141 subjects
from the NAS. The subjects were selected based on having
sufficient DNA for the assay, while leaving DNA for subse-
quent studies.
Importantly, in our analyses, five blood cell proportions

(obtained from the CBC data) were included as covariates
in our models to account for any appreciable changes in
blood composition: lymphocytes, neutrophils, monocytes,
basophils, and eosinophils [37,38]. Moreover, to slightly
increase our statistical power, blood cell proportions for
two participants were derived by single imputation [39-41],
given that Infinium HumanMethylation450 BeadChip array
data (from another study [20]) were available in the ab-
sence of CBC data. Computationally, we used the minfi
package function “estimateCellCounts(),” which applies
the regression-calibration approach from Houseman et al.
[39,42], using the flow-sorted end members from Reinius
et al. [43]. Furthermore, to estimate those cell proportions
that are not part of the Houseman et al. study—i.e., sub-
dividing granulocytes into neutrophils, eosinophils, and
basophils—we multiplied the estimated proportion of
granulocytes obtained from the Houseman method by the
mean proportion among NAS participants with measured
proportions (e.g., % neutrophils among total granulocytes).

Chromatin immunoprecipitation (ChIP) and DNA
methylation microarray
DNA samples were hybridized to the RefSeq 385K Pro-
moter tiling array (Roche NimbleGen, Madison, WI) repre-
senting the promoter regions of all well-characterized
genes in the RefSeq database (RefSeq genes with NM
Prefix), in addition to all of the UCSC-annotated CpG
islands. The array coverage is based on 50-75mer probes
with approximately 100 bp spacing, depending on the
sequence composition of the region. Sample immuno-
precipitation, labeling, hybridization and data extrac-
tion were all performed according to standard procedures
optimized by Roche-NimbleGen, as previously reported
by Selzer et al. [44].
High-quality genomic DNA (~5 μg) was isolated from

blood buffy coat using QiAmp DNA blood kits (QIAGEN,
Hilden, Germany) and digested with 24U Mse I (5’-T▼TAA)
enzyme (New England BioLabs) to produce small fragments
of approximately 200 bp–1 kb. This fragmented DNA
was heat-denatured to produce single-stranded DNA, then
immunoprecipitated using an anti-5mC (Abcam-ab10805)
monoclonal mouse antibody. Methylated DNA immuno-
precipitated (MeDIP) fragments were then heat-denatured
for 10 min at 95°C and immediately cooled on ice. Im-
mune complexes were captured with Protein-A agarose
bead slurry (Invitrogen-15918-014) and washed to remove
non-specifically-bounded material. Following elution of
bound complexes, MeDIP samples were purified with
phenol-chloroform:isoamyl alcohol and ethanol precipi-
tation in a −80°C freezer for 30 min. After centrifugation,
the supernatant was carefully removed, and the pellet was
washed with cold 70% ethanol and then centrifuged again
to remove residual supernatant. MeDIP samples were
completely air dried and re-suspended in 30 μl of 10 mM
Tris HCl (pH 8.5). Fragments were amplified by whole-
genome amplification (GenomePlex® Complete Whole
Genome Amplification [WGA2] Kit, Sigma-Aldrich). Ex-
perimental and total DNA samples were labeled using
9mer primers, with Cy3 and Cy5 dyes attached via Klenow
labelling (50 units/μL, New England BioLabs). The labeled
experimental IP and total DNAs were co-hybridized to the
array for 16–20 hours, washed, and scanned by the Roche
NimbleGen Service Laboratory (Reykjavík, Iceland). The
intensity ratio of IP to total DNA was used to identify
DNA methylation.

Ambient air pollution modeling
Continuous air pollution concentrations were measured
at a Harvard School of Public Health monitoring site
located on the Francis A. Countway Library of Medicine
rooftop (10 Shattuck Street, Boston, MA), 1 km from the
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clinical examination site. Average pollution measures
for the month prior to the blood draw were computed.
BC, a marker for traffic particles weighted toward diesel
particles, was measured using an aethalometer (Magee
Scientific, Berkeley, CA), and PM2.5 was measured using a
Tapered Element Oscillating Microbalance (model 1400A;
Rupprecht & Pataschnick Co., East Greenbush, NY), oper-
ated at 50 degrees with two 4 liter per minute PM2.5

impactors before the inlet. From September 25, 1999 to
February 2, 2004, particulate sulfate was measured using
the Harvard/EPA Denuder System (HEADS), which sam-
ples inorganic gaseous and particulate species in the air.
From January 1, 2003 through 2007, daily particulate filter
samples were analyzed, by X-ray fluorescence (XRF) spec-
troscopy, for elemental components. From these samples,
we multiplied the mass of sulfur by three to obtain the
mass of sulfate. For the days when both HEADS impactors
and XRF were in operation, we used linear regression and
determined that the measurements had a slope of 1 and
R2 > 0.9, indicating a high correlation between the two
monitoring methods. XRF measurements were used dur-
ing this period of overlap. These sulfate particles are sec-
ondary, long-range particles primarily from coal-burning
power plants.

Normalization and pre-processing of DNA methylation
data
We normalized the raw methylation intensities (log2 green
vs. red channel ratio) for each probe by subtracting the
overall median and then dividing by the probe’s GC-
content specific standard deviation, which is the standard
deviation of all the probes whose sequence has the same
number of G and C nucleotides as the target probe. We
then smoothed the normalized scores using a local linear
kernel smoother, as in Fan and Gijbels (1996), over the
probe locations. For a given gene, its methylation score
was then calculated by taking the area under the
smoothed curve, truncated at zero, over a 500 bp win-
dow around the transcription start site of the gene, and
then dividing by the percentage of CpG dinucleotides in
the DNA sequence within the window and the number of
probes having positive scores within the window.

Biostatistical methods and pathway analysis
We identified the genes associated with the MAP kinase
and NF-κB signaling pathways using the BioCarta refer-
ence website. Since the outcome (gene methylation) is high
dimensional, we employed a canonical-correlation-analysis
(CCA)-based approach, which is a type of extension of the
usual regression model for multiple outcomes. Under this
approach, to adjust for confounders, we first regressed each
of the exposures of interest, and the outcomes of interest,
on the set of confounders, and then used the residuals
from these regressions in the analysis.
For each gene pathway, we performed three analyses.
We studied the association of the gene methylations in
the pathway with (i.) BC exposure alone, adjusting for age,
blood pressure, smoking status, blood cell composition,
and sulfate exposure as confounders, (ii.) the association
of gene methylation with sulfate alone, adjusting for the
aforementioned confounders and BC exposure, and (iii.)
joint association modeling in which we studied the associ-
ation of the pathway with both BC and sulfate exposure
jointly (while adjusting for all other confounders). Our
goal was to identify exposure-specific effects, but also to
identify the effect of air pollution in the more realistic sce-
nario in which people are exposed to both pollutants.
As mentioned above, we used a sparse forward stepwise-

CCA method to identify specific genes that contribute to
the association between the exposure and the DNA methy-
lation status in the gene pathway. In short, the exposure
set is held fixed, while at each step, the gene methylation
score that contributes most to the association (between the
gene set and the exposure) is selected. Genes are added to
the set until a score is maximized. The association between
the exposure and methylations is measured using the ca-
nonical correlation between the two sets, namely X and Y.
The canonical correlation is given by cor(Xa, Yb), where a
and b are weight vectors (also called loading vectors),
with lengths representing the number of measures in
the exposures (pollutants) as “set X,” and the outcomes
(gene methylations) as “set Y,” which are calculated to
maximize the canonical correlation under the constrain
aTcov(X)a =1bTcov(Y)b =1. Each entry in a is a weight
corresponding to a specific pollutant (exposure), and
each entry in b is a weight corresponding to a specific
gene methylation measure. The larger the weight (in abso-
lute value), the larger the influence of the variable it repre-
sents on the canonical correlation.
The score used as a criterion to select genes was the

empirical CIC (Correlation Information Criterion), which
takes the correlation between the identified set of genes
and the exposures and removes the 99th percentile of this
distribution under the null. This distribution was deter-
mined by 1000 random samples for each combination
of 1 or 2 exposures (depending on the particular exposure
model of interest) and any number of “outcomes” (1, 2, 3,
4, .…, number of genes in the pathway under study).
To test the significance of the canonical correlation

between the set selected (set of “outcomes” and the set of
exposures) we used the Wilks’ Lambda tests statistic, ap-
plied with a permutation procedure. The Wilks’ Lambda
given by the ratio det(cov(X,Y))/[det(cov(X))det(cov(Y))],
where det(C) is the determinant of a matrix C, and (X,Y)
is the data matrix of both the exposures X and the out-
comes Y, is used to test the null hypothesis of no associ-
ation between two data matrices X and Y. It cannot be
used on the selected data because the variable selection



Table 1 The 84 MAPK pathway-linked genes considered
in our analyses

Gene Gene Gene

01 ATF2 38 MAP3K5 73 TRADD

02 CREB1 39 MAP3K6 74 TGFB1

03 CEBPA 40 MAP3K7 75 TGFB2

04 CHUK 41 MAP3K8 76 TGFB3

05 DAXX 42 MAP3K9 77 TGFBR1

06 ELK1 43 MAP4K1 78 FOS

07 GRB2 44 MAP4K2 79 HRAS

08 IKBKB 45 MAP4K3 80 MYC

09 JUN 46 MAP4K4 81 ARAF

10 MKNK1 47 MAP4K5 82 BRAF

11 MKNK2 48 MAPKAPK2 83 RAF1

12 MAPK1 49 MAPKAPK3 84 RELA

13 MAPK10 45 MAP4K3

14 MAPK11 50 MAPKAPK5

15 MAPK12 51 MAX

16 MAPK13 52 MEF2A

17 MAPK14 53 MEF2B

18 MAPK3 54 MEF2C

19 MAPK4 50 MAPKAPK5

20 MAPK6 55 MEF2D

21 MAPK7 56 NFKB1

22 MAPK9 57 NFKBIA

23 MAP2K1 58 PAK2

24 MAP2K2 59 PAK1

25 MAP2K3 60 RAC1

26 MAP2K4 61 RIPK1

27 MAP2K5 62 RPS6KB1

28 MAP2K6 63 RPS6KB2

29 MAP2K7 64 RPS6KA1

30 MAP3K10 65 RPS6KA2

31 MAP3K11 66 RPS6KA3

32 MAP3K12 67 RPS6KA4

33 MAP3K13 68 RPS6KA5

34 MAP3K14 69 SHC1

35 MAP3K2 70 STAT1

36 MAP3K3 71 SP1

37 MAP3K4 72 TRAF2

To our knowledge, this is the first human study to systematically evaluate
MAPK gene-promoter methylation using a wide collection of upstream and
downstream pathway components with respect to ambient air pollution
exposures.
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method (stepwise-CCA) was applied, changing the null
distribution of the correlation between the outcomes
and the exposures. Thus we permuted the exposure
data while holding the methylation scores for all genes
in the pathway, fixed 3000 times, then performed the
stepwise analysis on the permuted data, and finally com-
puted the Wilks’ Lambda statistic for the exposure and
genes identified by the stepwise-CCA method. The P-value
for the true exposure is the proportion of permuted expo-
sures with a lower Wilks’ Lambda P-value than the one for
the true exposure.

Bioinformatic visualization of an integrated MAPK
network
Pathways from the hiPathDb [45] Integrated database were
selected to link all BioCarta MAPK genes; these pathways
included the KEGG [46,47] ErbB signaling and MAPK
signaling pathways (path:hsa04010 and path:hsa0401,
respectively), in addition to the BioCarta MAPK signaling
pathway (pid p 100113 mapkpathway). The integrated path-
ways were downloaded in XML format and imported into
Cytoscape [48]. All non-gene nodes were removed by hand,
and the network was restricted to second neighbors of the
BioCarta MAP kinase genes. Supernodes with only a single
connection or only single direction edges were removed,
and redundant supernode-to-supernode connections were
simplified whenever possible; self-directed loops and redun-
dant edges of the same direction were also removed. Nodes
were annotated by fill-color with methylation coefficients
on a truncated scale of −1.5 to 1.5, as shown in the legend.

Disease ontologies of selected genes
The MAPK (epi)gene hits were analyzed for disease associ-
ation without regard to enrichment with the GeneAnswers
library [49]. Selected genes (11 total) comprised those with
non-zero methylation coefficients for any of the three
exposure conditions (black carbon, sulfate, and multi-
pollutant carbon and sulfate). GeneAnswers associates
genes with disease using DOLite [50], a database based
on the Disease Ontology [51], an open-source ontology
for the semantic integration of biomedical data associ-
ated with human disease.

Results and discussion
Novel (epi)gene pathway-exposure assessment
We hypothesized that short-term exposure to environmen-
tal air pollution components, singly or in a multi-pollution
paradigm, would be associated with blood DNA methyla-
tion alterations in known inflammation-linked gene net-
works, specifically the MAPK pathway, and possibly in
a downstream target, NF-κB. To study this hypothesis,
we implemented a multidisciplinary strategy with an estab-
lished sparse stepwise canonical correlation analysis
(stepwise-CCA) method [52,53], by which we were able to
evaluate genes in the abovementioned pathways with
respect to air pollution-related epigenetic alterations.
We first performed epigenome-wide scans of promoter

regions for ~19,000 genes from 141 participants from the
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Normative Aging Study [37,54,55]. Briefly, our previ-
ously validated workflow (described in Methods) included
DNA fragmentation, methylated DNA immunoprecipita-
tion (MeDIP) capture, DNA purification, hybridization to
the RefSeq 385K Promoter tiling array for methylomic de-
tection, and (epi)gene clustering by methylation status via
the stepwise-CCA algorithm [53]. Using the BioCarta ref-
erence database [56], we identified methylation changes in
the promoters of 84 genes from the MAP kinase-signaling
pathway, which are listed in Table 1. In humans, this large
gene network has very rarely been evaluated within the
context of air pollution-related effects in vivo.
We normalized the raw methylation intensities for each

array probe separately, smoothed these normalized inten-
sities for each probe, and finally constructed gene-specific
methylation scores based on the intensities of neighboring
probes around the transcription start site (TSS) of each
gene, as previously described [53]. We used these gene-
specific methylation scores, or “weights,” to investigate the
association between DNA methylation and environmental
exposures.
The gene methylation weights found by the stepwise-

CAA algorithm are provided throughout all of the data
tables: A large weight in the absolute value is interpreted as
a stronger effect. A positive value indicates increased methy-
lation (hypermethylation) with increased exposure to BC
(or sulfate, etc.), and a negative weight implies decreased
methylation (hypomethylation) with increased exposure.
Table 2 Summary of relevant NAS characteristics used in this
sulfate measures available (n =90), out of a total of 141 parti

NAS cohort description All participants

Age (years) n = 141 people

Median 73; Range 56–88; SD

Blood pressure (mmHg) n = 141

Systolic Median 130; Range 87–188;

Diastolic Median 79; Range 54–98; SD

Exposure (μg/m^3) n = 141

BC, 30-days averaged Mean 0.84; SD ±0.16

Sulfate, 30-days averaged N/A

Smoking status (n) n = 141

Never 53

Ever 7

Former 81

Blood count (%) n = 136

Lymphocytes Median 26; Range 6–39; SD

Neutrophils Median 62; Range 45–86; SD

Monocytes Median 9; Range 4–14; SD ±

Basophils Median 1; Range 0–2; SD ±0

Eosinophils Median 3; Range 0–11; SD ±

Relevant units are supplied in the left-hand side for each characteristic, with media
These weighted coefficients, however, should not be inter-
preted individually—but rather as a combined (epi)gene
cluster “hit,” constituting a set of bi-directional epigenetic
marks (+ or -) among pathway genes associated with an
exposure model.

Human cohort characteristics
Table 2 shows a summary of the characteristics of the
subgroup of NAS participants from our methylation study
for which sulfate measures were available (n = 90) vs. the
larger set. The characteristics reported for this subgroup—
BC, age, and other measures—were almost identical to
those calculated using information from the entire partici-
pant list (n =141). The air pollution measures are averages
of the 30 days of ambient BC and/or sulfate concentration
prior to the day that blood was collected for methylomic
analysis. This time window was selected to balance the
evidence of effects of short-term air pollution exposure on
the cardiovascular and respiratory systems, with the com-
mon understanding that at least some potential envir-
onmental effects on DNA methylation require days (or
weeks) to become apparent [57-59].
Our data included 84 MAPK pathway genes (listed in

Table 1), from which we identified exposure-specific (epi)
gene sets (Table 3) based on three pollution models. We
identified 11 genes whose methylation status was asso-
ciated with BC exposure (P-value 0.04) after adjusting for
relevant confounders: age, sulfate exposure, blood-cell-type
study: complete set and subset of participants who had
cipants

With sulfate measures

n = 90 people

±6.8 Median 73; Range 58–88; SD ±6.6

n = 90

SD ±16.13 Median 129.5; Range 87–188; SD ±15.65

±9.1 Median 78; Range 55–96; SD ±9.11

n = 90

Mean 0.83; SD ±0.15

Mean 3.06; SD ±0.79

n = 90

32

5

53

n = 88

±6.66 Median 26; Range 6–38; SD ±6.92

±7.71 Median 63; Range 45–86; SD ±7.78

1.92 Median 8; Range 4–14; SD ±1.96

.51 Median 1; Range 0–2; SD ±0.52

1.9 Median 3; Range 0–10; SD ±1.83

n (or mean), range, standard deviation, and sample size indicated.



Table 3 Results of the stepwise-CCA algorithm applied to
the MAP kinase pathway genes, grouped by exposure-
specific model

Weighted coefficients by exposure model

ID Black Carbon (BC) Sulfates (S) Multi (BCS)

BC 1 0 0.49

S 0 1 −1.08

MKNK2 0.39 0 0

MAPK10 0 0.5 −0.36

MAPK13 0.29 −0.51 0

MAPK6 0.65 0 0

MAPK9 0 0.13 −0.22

MAP2K1 0 0 −0.3

MAP2K5 0 0 0.42

MAP2K6 0 0 0.22

MAP3K11 0 −0.4 0

MAP3K14 0 0 0.37

MAP3K2 −0.25 0 0

MAP3K6 −0.37 0 0

MAP3K7 0 0.41 0

MAP4K1 0 −0.19 0.31

MAP4K3 0.42 0 0

MAP4K4 0 0.57 −0.61

MAPKAPK2 −1.36 0.62 0

MEF2A 0.32 0 0.33

PAK1 0 0 −0.57

RPS6KB1 0 −0.28 0.09

RPS6KB2 0.27 0 0

RPS6KA3 0 −0.33 0

SHC1 0.33 0 0

STAT1 0 −0.49 0.43

TGFB1 0 0.28 0

MYC 0 0 0.23

RELA 0.27 0 0.48

Canonical correlation 0.73 0.73 0.78

P-value* 0.02 0.04 0.05

P-value** 0.04 0.10 0.01

We identified a cluster of 27 MAPK gene hits, and their corresponding weights
(as coefficients after 3K permutation tests) are shown. At the bottom of the
table, P-values for each model are labeled as either adjusted for all covariates,
with two asterisks (**), or for all covariates except blood cell proportions, with
one asterisk (*).
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proportions (derived from the CBC data), smoking status,
and blood pressure (see Methods). Association analysis
between sulfate exposure and DNA methylation in the
MAPK pathway identified 12 genes after adjusting for
BC exposure and the other aforementioned confounders,
yet this group fell below the level of statistical significance
(P-value 0.10) likely due to a smaller sample size (n = 90).
Finally, multi-pollutant analysis of DNA methylation asso-
ciated jointly with sulfate and BC exposure yielded 14 sig-
nificant genes (P-value 0.01).
Importantly, adjusting for blood cell proportions barely

influenced the effect estimates, so in Table 3, we report
both P-values, with and without the cell proportion adjust-
ment (while including all of the other confounders). In
Additional file 1, A-D, we present clustered heatmaps
of the correlations between the full list of 84 MAPK
pathway genes (from Table 1) vs. the cluster of 27 gene hits
(Table 3), before and after adjusting for all confounders.
To aid best in visualizing all possible relationships

amongst our various MAPK hits from Table 3, we next
constructed an annotated Venn diagram (Figure 1). Inter-
estingly, no genes occupied the union of all 3 exposure
models, and minor overlap was observed across any 2 given
exposure combinations. For example, only two genes—
MAPK13 and MAPKAPK2—overlapped between BC and
sulfate, yet their methylation status reversed directionality.
Strikingly, it is evident that the genes associated with the
multi-pollutant model (BCS) are not simply the aggregate
collection of hits found in the BC and sulfate models. In
fact, it behaves like an entirely novel exposure combination,
suggesting that multi-pollutant exposures may impact the
epigenome in disparate ways, unlike their single-exposure
counterparts.
This key observation is also consistent with our past

work to identify new methylomic changes in gene pro-
moters related to the asthma pathway: Only a single allergy-
specific receptor gene, FCER1G, exhibited methylation
changes associated with both BC and sulfate exposure
[53]. All other significant immune-gene clusters were ei-
ther specific to BC exposure alone (6 genes) or to sulfate
exposure (4 genes). Functionally, however, all of these
genes did share a common biological network across
immune cells and the bronchus, which could be easily
visualized.

Visualization of MAPK pathway components
In the present work, however, our 27 (epi)gene hits in the
MAPK pathway do not share any obvious physiological
link, collectively, within some unified cardiopulmonary
pathway relevant to air pollution—thus perhaps consti-
tuting a novel epigenetic/signaling “crossroads” of exposure-
associated genes relevant to the processing of environmental
PM signals in vivo. To help visualize this dynamic system,
we next used an integrated bioinformatic approach to
overlay our DNA methylation coefficients (from Table 3)
onto an expanded MAPK signaling map. In Figure 2, we
can best appreciate the following points: (i.) our initial set
of 84 MAPK genes (dark circles) map widely across the
broadened MAPK signaling system, thereby ensuring that
most branches of the network were aptly queried via our
stepwise-CAA method; (ii.) the distribution of exposure-



Figure 1 Summary of all possible relationships between MAPK pathway gene hits as grouped by exposure model. All of the MAPK
genes from Table 3 are grouped here by their exposure-specific model: black carbon (BC); sulfates (S); and multi-exposure for BC and sulfates
(BCS). The various sections of this Venn diagram are color-coded to help identify gene subgroups within each region of the figure. The DNA
methylation status of each gene is summarized as either increased (green) or decreased (red).
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specific MAPK hits across the multi-pollution model
(Figure 2c) is not simply an aggregate of signaling com-
ponents found in the two other models, BC (2a) and
sulfates (2b).
In light of these data, therefore, we next hypothesized

that perhaps some of these genes (across all 3 exposure
models) would be linked to relevant human disease
outcomes already known to be exacerbated/modulated
by air pollution—e.g., heart disease [60,61], atherosclerosis
[62-64], stroke [65,66], cancers [67-69], etc.—among vari-
ous other disease contexts. Indeed, biocomputational pro-
filing (Figure 3) confirmed that 11 of our 27 hits (~41%)
were in fact highly associated with a wealth of PM-linked
pathophysiological conditions (and to many other varied
diseases), thereby underscoring that these genes may serve
as an epigenetic/signaling nexus of exposure-related sig-
nals in vivo, a role not fully appreciated among their other
biological functions.
Importantly, some individual connections between our

MAPK gene hits and various air pollution exposure models
do exist, upon examining a handful of in vitro cell-based
and/or animal-exposure studies. This literature helps to
further confirm the biological relevance of the MAPK
pathway within air pollution models and paradigms.
For example, the MAP2K1 protein (also known as
MEK1, MAPKK1, or MKK1) was previously found to be
important for induction of COX-2 protein expression via
vanadate exposure in vitro using a human lung carcinoma
cell line (A549) [70]. Moreover, another group reported
that primary human pulmonary cells exposed to cigarette
smoke extract (CSE), especially normal human bronchial
smooth muscle cells, required MAPKAPK2/MK2 pro-
tein activation to promote pathological expression of pro-
inflammatory Interlukin-8 [71]. Lastly, two key downstream
transcription factors associated with MAPK signaling merit
special consideration, STAT-1 and MYC. Vehicular-derived
airborne nano-sized particulate matter (from Los Angeles,
CA) that was re-aerosolized and administered to C57Bl/
6 J male mice led to increased MYC expression in brain
(cerebellum), liver, and lung tissue [72], and vanadium
compounds present in PM, such as vanadium pentoxide,
induced STAT-1 activation in lung myofibroblasts, which
required upstream hydrogen peroxide and MAP kinase
signaling activity [73].
In our study, the associations between the abovemen-

tioned MAPK pathway genes and our exposure models
were so specific (and reproducible) that further attempts
to find other significant (epi)gene clusters with the NF-κB



Figure 2 (See legend on next page.)
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(See figure on previous page.)
Figure 2 Methylation coefficients of our (epi)gene hits within the broader MAPK signaling system. A nexus integrating all BioCarta MAP
kinase genes to other previously studied MAPK networks is diagramed, wherein nodes representing the genes within the BioCarta MAP kinase
pathway (84 total) are outlined and labeled in dark black. Arrows indicate known direction of action. Methylation coefficients (from Table 3) are
represented here in a scale from blue (negative values), to white (zero), to orange (positive values). For simplicity, both unmeasured values and
zero are represented in white. Exposure-specific MAPK coefficients are shown across all three of our models: (a) black carbon; (b) sulfates; and
(c) the multi-pollutant paradigm.
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pathway, a downstream network often coupled to MAPK
signaling, failed consistently, despite a ~36% overlap in
gene sets across both pathways, as noted in Tables 4
and 5. We do recognize, however, that perhaps a higher
sample size could have helped to facilitate an association,
Figure 3 Biocomputational profiling of disease-linked MAPK (epi)gene h
paradigms—black carbon (BC), sulfates (S), and BC with sulfate (BCS)—and a co
annotation within the disease ontology [51] are shown: i.e., 11 out of 27 MAPK
with negative values in blue, zero in white, and positive values in red. Rows wi
as noted. Columns within the disease ontology concept-map represent individ
were collapsed, so diseases may represent subcategories of other disease
sub-categories of “Cancer”). Dots within the disease ontology table denot
is used to help demarcate columns.
which may not have been possible given our current
number of participants. Moreover, we also acknowledge
other key limitations inherent to our work, given that
the NAS is a male-only cohort and that we analyzed
blood-cell DNA.
its. A heatmap (left) of methylation coefficients for the three pollution
rresponding disease ontology table (right) are shown. Only genes with an
genes (~41%). Heatmap colors represent the methylation coefficients,
thin both the heatmap and the concept-map represent individual genes
ual diseases within the disease ontology. Disease category hierarchies
s represented (e.g., “Breast cancer” and “Ovarian cancer” are both
e an association of a gene with a given pathology. Alternative shading



Table 4 Complete list of the NF-κB signaling pathway and
associated genes (22 total) considered in this study

Gene Gene

01 CHUK† 12 NFKB1†

02 FADD 13 NFKBIA†

03 IKBKB 14 RIPK1†

04 IKBKG 15 TRAF6

05 IL1R1 16 TRADD†

06 IL1A 17 TLR4

07 IRAK1 18 TNF

08 MAP3K14† 19 TNFRSF1A

09 MAP3K7† 20 TNFRSF1B

10 TAB1 21 TNFAIP3

11 MYD88 22 RELA†

Despite the fact that 8 out of these 22 genes denoted by a dagger (†) were
shared by the MAPK pathway list in Table 1 (~36% overlap), our stepwise-CCA
method failed to identify any statistically significant NF-κB gene clusters for
any of the three exposure paradigms.
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Limitations and relevant considerations
Since the NAS is a male-only cohort, comprised of aging
individuals, we caution that any of the significant (epi)
gene-exposure associations observed here may not hold
exactly the same in females. Broadly speaking, the obser-
vation that DNA methylation in the promoters of MAPK
genes is altered by common ambient exposures (either
in a single- or multi-pollutant paradigm) is unlikely to be
a response inherent only to elderly men—yet, both the
magnitude of the response and which specific gene candi-
dates are most associated with the exposure may certainly
be influenced by age/sex [74,75].
This study utilized peripheral leukocyte DNA for methy-

lomic evaluation, as we have previously published using
similar methodologies [53]. Since lung and/or cardiac
tissue is impractical (and complex) to obtain from healthy
participants, most human in vivo exposure investigations
Table 5 No significant associations were obtained
between NF-κB genes and the exposure models tested

Weighted coefficients by exposure model

ID Black Carbon (BC) Sulfates (S) Multi (BCS)

BC 1 0 −0.49

S 0 1 1.08

MYD88 −0.96 0 0

RELA 0 −0.54 0

TNFRSF1A 0 0.82 1

TNFRSF1B 1.15 0 0

Canonical correlation 0.23 0.28 0.24

P-value* 0.88 0.61 0.81

P-value** 0.98 0.54 0.84

P-values for each model are indicated as either adjusted for all covariates (**)
or all covariates except blood cell proportions (*).
rely on blood-based discovery platforms. Circulating leu-
kocytes activated by PM exposure have been suggested to
mediate and/or amplify, through immune and inflamma-
tory pathways, the effects of air pollution on the cardio-
vascular and respiratory systems [76-78]. Importantly, our
conceptual framework does not assume that the blood
methylome is necessarily correlated with that of the heart
and/or lungs.
Although we were cautious to ensure that any exposure-

associated alterations in DNA methylation were not merely
due to changes in the ratios of blood cells—by including
blood cell proportions as key covariates in all of our models
(explained in Methods)—we lack the ability to link these
epigenetic marks to any appreciable modulation in gene
expression in these blood cells. We acknowledge this experi-
mental limitation given that most of our work was in silico.
As mentioned earlier, however, other studies from col-
leagues—spanning a diverse spectrum of cell-culture/animal
models—have demonstrated that exposure to PM and/or its
components can affect expression of MAPK pathway genes
(as well as MAPK protein activation) to promote cellular
signaling. Remarkably, in this study with human blood cells,
we identified some of the same MAPK pathway genes.
Furthermore, we have also shown that some of our gene hits
from blood were previously linked to disease outcomes
known to be exacerbated by PM in people (Figure 3).
In light of these points, it is possible that blood-cell DNA

methylation is not simply a passive, irrelevant target of
airborne environmental exposures: Blood-cell methylomic
alterations may eventually contribute directly/indirectly to
cardiopulmonary outcomes via mechanisms not yet well
understood, e.g., via aberrant MAPK signaling as a conse-
quence of (epi)gene destabilization. Bone marrow is a
highly vascular tissue, so blood-borne toxicants in PM may
continue to expose hematopoietic stem cells in the marrow,
thereby promoting a positive feedback loop that establishes
persistent methylomic alterations in the blood. To this
end, the specific 27 MAPK genes identified here, whose
promoter regions can undergo directional epigenetic modi-
fication (either hypo- or hyper-methylation) in response to
various exposure paradigms, merit future analysis.

Conclusions
This is the first human epigenetic study to evaluate MAPK
gene-promoter methylation changes, linking alterations
in 27 MAPK genes to ambient air pollution exposures
in vivo. Although the MAPK pathway was significantly
associated with two out of three exposure models tested,
these models were associated with the pathway quite dif-
ferently. An integrated, systems-level approach, therefore,
is needed to dissect more finely single- vs. multi-pollutant
exposure effects in vivo. Indeed, by further identifying and
studying epigenetic changes relevant to toxic exposures,
our research may provide new tools to develop targeted
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prevention when it is most effective, i.e. in early stages or,
among exposed individuals, even before any subclinical
cardiopulmonary impairment is detectable. As methods
for accurate epigenomic profiling become increasingly
available and affordable, these approaches may allow for
better multi-pollutant exposure assessment to be brought
to numerous environmental health studies, as well as to
preventive settings where exposure data are lacking or
where funds and opportunities for expensive personal
monitoring are limited. As the age of the US population
increases, such efforts will have the potential to help
millions of individuals in the prevention of air pollution-
related pathophysiological outcomes and their sequelae,
particularly among vulnerable people, and to narrow
health disparities and promote equity.

Additional file

Additional file 1: Clustered heatmaps of the observed correlations
between our full MAPK gene set and those shown to be associated
with air pollution. (A) Unadjusted DNA methylation coefficients were
used to cluster the 84 genes listed in Table 1; (B) clustering of adjusted
methylation coefficients, after accounting for all relevant confounders
included in this study—age, blood pressure, smoking status, blood cell
proportions, etc. (described in Methods); similarly, the same is shown for
the 27 MAPK gene hits from Table 3, prior to adjusting for all confounders
(C) and afterwards (D).
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