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Diversification of bacterial genome content through
distinct mechanisms over different timescales
Nicholas J. Croucher1,2, Paul G. Coupland3, Abbie E. Stevenson1, Alanna Callendrello1, Stephen D. Bentley3 &

William P. Hanage1

Bacterial populations often consist of multiple co-circulating lineages. Determining how such

population structures arise requires understanding what drives bacterial diversification. Using

616 systematically sampled genomes, we show that Streptococcus pneumoniae lineages are

typically characterized by combinations of infrequently transferred stable genomic islands:

those moving primarily through transformation, along with integrative and conjugative

elements and phage-related chromosomal islands. The only lineage containing extensive

unique sequence corresponds to a set of atypical unencapsulated isolates that may represent

a distinct species. However, prophage content is highly variable even within lineages,

suggesting frequent horizontal transmission that would necessitate rapidly diversifying anti-

phage mechanisms to prevent these viruses sweeping through populations. Correspondingly,

two loci encoding Type I restriction-modification systems able to change their specificity over

short timescales through intragenomic recombination are ubiquitous across the collection.

Hence short-term pneumococcal variation is characterized by movement of phage and

intragenomic rearrangements, with the slower transfer of stable loci distinguishing lineages.
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S
treptococcus pneumoniae is a human respiratory commensal
and pathogen in which extensive genetic diversity underlies
phenotypic variation in traits such as antibiotic resistance,

virulence and antigenic profile. Alongside considerable allelic
variation in the core genome, the species contains many ‘genomic
islands’ (GIs): genetic loci only found in a subset of the
population1. Any GI may be transferred between cells through
transformation2, as pneumococci possess a competence system.
Some GIs, referred to as ‘mobile genetic elements’ (MGEs),
encode functions that promote their own transfer between cells.
At least three types of MGEs have been characterized in
S. pneumoniae: phage3, most commonly of the Siphoviridae
family4; plasmids5,6, of which just two cryptic examples are
known in pneumococci; and integrative and conjugative elements
(ICEs), which have played an important role in the spread of
antibiotic resistance7,8.

Horizontal movement of DNA can be limited by bacterial
‘immunity’ mechanisms9. Although pneumococci lack CRISPR
elements10, they do encode restriction-modification systems11

(RMSs) that can cleave MGEs when present within the cell as
double-stranded DNA. While the pneumococcal competence
machinery imports DNA into the cell in restriction-insensitive
single-stranded form12,13, the acquisition of novel GIs by this
mechanism necessitates the synthesis of the complementary
strand of DNA after integration into the chromosome. If the
pattern of modification of the imported DNA differs from that of
the recipient’s genome, the locus may become vulnerable to
endonucleolysis by RMSs that cleave unmodified motifs2. Hence,
variation in many RMSs affects multiple mechanisms of GI
transfer. However, the best-characterized pneumococcal RMSs11,
DpnI and DpnII, do not inhibit the acquisition of GIs by
transformation. DpnI cleaves GATC motifs when fully
methylated in double-stranded DNA, while the DpnII RMS
cleaves unmethylated GATC motifs, but encodes a methylase that

modifies imported single-stranded DNA2,14. Another factor that
has been suggested to affect the movement of sequence is the
lineage’s ‘pherotype’, determined by the sequence of the
competence stimulating peptide (CSP) pheromone it secretes15.
CSP is a critical signal in triggering competence for trans-
formation, and multiple sets of cognate signalling peptides and
receptors are found in the population16. It remains controversial
as to whether the exchange of sequence is inhibited by differences
in pherotype between pneumococci17,18.

A recently published set of 616 draft pneumococcal genomes19

provides an opportunity to examine the extent of, and processes
underlying, variation in gene content within a single population.
This systematic collection of isolates carried by children in
Massachusetts was previously divided into fifteen monophyletic
sequence clusters (SCs), and a sixteenth diverse group of rarer
genotypes (SC16), based on variation in the core genome. One
monophyletic SC (SC12), composed of atypical unencapsulated
pneumococci20 that have caused outbreaks of conjunctivitis21,
was found to be a distinct outlier from the rest of the population.
The analysis presented here describes the evolutionary processes
that generate this population structure. SCs were found to be
characterized by their complement of stable GIs, including those
transferred primarily through transformation and conjugation,
while changes over shorter timescales frequently represented
the consequence of phage transmission and intragenomic
recombination.

Results
SCs have distinct accessory genomes. The original analysis of
616 pneumococcal genome sequences identified 5,442 clusters of
orthologous genes (COGs), of which around 1,500 were ‘core’ to
almost all isolates and around 3,000 were rare19. Applying the
‘power law’ method for quantifying the pangenome22,23 suggested
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Figure 1 | Existence of distinct clusters in the pneumococcal population and the properties of the cCOGs with which they are associated.

(a) Comparison of pairwise distances between isolates in terms of their core genome divergence, as measured by the cophenetic distance calculated from

a maximum likelihood core genome phylogeny19, and the difference in their accessory genomes, as measured by the Jaccard distance based on the

variation in the COG content of their sequences. Points in red indicate comparisons within monophyletic sequence clusters, while purple points represent

comparisons between isolates within the diverse SC16. Points in green indicate comparisons between the atypical unencapsulated isolates of SC12 and

other sequence clusters; points in turquoise represent all other comparisons between isolates in different sequence clusters. (b) Properties of the

COGs characteristic of SC12. The 78 COGs found in 495% of SC12 isolates, and found at a frequency o5% in the other monophyletic sequence clusters,

were classified according to their function or location. (c) The 141 cCOGs of all other sequence clusters classified in the same manner.
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the gene pool available to this population was unbounded
(Supplementary Fig. 1). However, this was heavily influenced by
numerous rare COGs that individually had little impact on the
population structure, and were the most likely to represent false-
positive gene predictions. An alternative representation (Fig. 1)
showed the distribution of variation across the population using
pairwise comparisons between isolates. This revealed three
distinct groups of points that suggested differences in gene
content were approximately proportional to core genome
divergence.

The mainly red group of points nearest the origin of the plot
demonstrated isolates within the same monophyletic SC were
highly similar in their core and accessory genomes, while the set
of turquoise points showed the greater level of divergence
between representatives of different non-SC12 SCs (purple points
represent comparisons between isolates in SC16). The disconti-
nuity between these two sets of points indicated clonal structure
in the population, as higher rates of recombination were
predicted to generate a more homogenous distribution
(Supplementary Fig. 2). Hence the co-circulating lineages that
could be distinguished through their core genomes24 also
maintained distinct accessory genomes. The set of green points
represented comparisons between isolates in SC12 and those in
other SCs, highlighting the divergence of SC12 from the rest of
the population.

Potential speciation of atypical genotypes. Genetic loci unique
to SC12 seemed likely to explain its distinctive phenotype and
disease tropism. To define a set of candidate genes, ‘characteristic
COGs’ (cCOGs) were identified in each SC as those COGs found
in greater than 95% of genomes in that cluster, while being
present in fewer than 5% of genomes in any other monophyletic
SC. This identified 78 cCOGs in SC12 (Fig. 1b). Forty-four
cCOGs were found within putative MGEs, and a further three
were found within the conjugative element-related pneumococcal
pathogenicity island 1 (PPI-1)8, although the pit iron transporter
operon within this locus implicated in pathogenesis25 was absent
from SC12 but present in all other SCs (Supplementary Fig. 3a).

Other non-MGE GIs contributing to SC12 divergence
appeared to represent single gain or loss events conserved across
the SC. All lacked a functional capsule polysaccharide synthesis
(cps) locus and conserved a distinct set of large surface proteins
(Supplementary Fig. 3b–e). The SC12 isolates also lacked either of
the fucose utilization loci, one of which was evident in all other
SCs (Supplementary Fig. 4); the conservation of these sequences
across deep-branching clades suggested exchange at this locus
was not rapid, and therefore a single deletion in an ancestor of
SC12 would account for the observed pattern. Analogously, it
seemed likely a single acquisition of genes encoding dihydrox-
yacetone kinases, in place of the pneumococcal histidine triad
protein gene phpA (Supplementary Fig. 3f), would explain their
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conservation in SC12 and absence from other isolates in the
collection. Hence, the SC12 isolates appeared to be genetically,
antigenically and metabolically distinct from the other SCs, and
therefore may represent a separate species.

Clonal association of GI diversity. Each of the other SCs had a
smaller number of cCOGs (Fig. 1c and Supplementary Table 1).
In some cases, these corresponded to putative protein antigens or
cps genes; for instance, all SC4 representatives expressed capsule
type 22F, not found elsewhere in the sample19. The other cCOGs
showed little similarity in sequence or putative function, although
a substantial number were located in the 30 variable region of
PPI-18. Although extensive diversity was observed at this locus
across the species, there was little evidence of variation within SCs
(Fig. 2), suggesting genes within this locus may underlie lineages’
distinctive traits: at least some allelic variation has previously
been associated with differences in virulence in a mouse model of
disease26. Distinct loci within PPI-1, each B20-kb long and
encoding metabolic genes, were evident in SC1, SC5 and the
serotype 3 isolates27. However, not all alleles were unique to a SC:
SC2 and SC3 shared an B10 kb gene cassette, a 3.8 kb allele was
common to SC6, SC10, SC13 and SC15, and both complete and
incomplete versions of a previously described lantibiotic synthesis
gene cluster8 were found in the PPI-1 loci of SC8, SC9 and SC12.
In SC12, these genes were accompanied by a putative RMS, which
alone constituted the 30 variable region of PPI-1 in SC4 and SC11.
The read mapping suggested SC4 also possessed the version of the
island found in SC6, but in fact these genes were found on an ICE
and appear to exemplify the contribution of MGEs to the

diversity of sequences within PPI-18,28. MGEs themselves
accounted for almost a quarter of the cCOGs not associated
with PPI-1, suggesting such elements did not necessarily exhibit a
high level of mobility, and instead may contribute to the stable
differences between SCs.

Diversification driven by MGEs. The smallest putative mobile
sequences previously characterized in pneumococci, three
families of short interspersed repeats29, were generally stable in
frequency within SCs (except for expansion and contraction of
boxB tandem arrays), with small differences between lineages
(Supplementary Fig. 5). All three families were evident in SC12
at typical frequencies, in contrast to the related species
S. pseudopneumoniae30 and S. mitis31. Similarly, some types of
insertion sequences (ISs) were ubiquitous across the sample,
while others exhibited stable associations with particular lineages
(Supplementary Fig. 6). Acquisition of novel ISs was observed
within SC8: IS1202 was gained through serotype switching events
twice, while ISSpn5 was imported as part of ICE ‘scars’8. An
extensive search for longer MGEs (see Supplementary Methods)
identified 2,260 putative MGE-derived genetic loci, with a median
length of 31 COGs (range 2–91 COGs). On the basis of their
distribution around the chromosome, 16 insertion sites could be
robustly identified within the core genome (Supplementary Fig. 7
and Supplementary Methods). As in Escherichia coli and
Salmonella enterica, the majority of the insertion sites (15 of
16) were in intergenic regions despite the high coding densities
of bacterial genomes32. However, in contrast to these enteric
bacteria, all but two insertion sites were closer to the origin of
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replication than the terminus. As the distance of genes from
the replichore boundaries is conserved even more strongly
than synteny in pneumococci33, this result should apply across
the species, although sequence variation prevented the re-
identification of three known insertion sites for large
conjugative elements that lie close to the terminus of
replication (Supplementary Fig. 7).

A network was constructed in which each putative MGE was
represented by a node, coloured according to the SC of the host
cell, with vertices linking elements determined as being similar
using Mountford’s index34. This allowed all but 34 putative
MGEs to be classified into three groups based on the presence of
functional domains (Fig. 3, Supplementary Figs 8,9; Supplemen-
tary Methods). The most numerous group (1,083 nodes)
represented putative ICEs (Supplementary Table 2). These
spanned the full range of detected MGE lengths, likely
reflecting the efficiency of conjugation in transferring long
segments of DNA between streptococci35, permitting modular
variation through the insertion or deletion of sequence
segments36. Hence, these elements are effective vectors for the
import of novel DNA into a species. For instance, all antibiotic
resistance genes encoded by MGEs were found on ICEs in the
component labelled A and B. These consisted of sequences related
to Tn5253, generated through the insertion of Tn916-type
elements and other cassettes into Tn5252-type elements8,37

(Supplementary Figs 10,11). Conversely, ICEs in component C
did not appear to carry ‘cargo’ genes, but did exhibit extensive
similarity to Streptococcus suis MGE ICESsu3245738, which
contained a cluster of resistance genes not evident in the
pneumococcal elements (Supplementary Fig. 12). Hence, in
other species, these elements can fulfil the role played by
component A and B ICEs in pneumococci.

Component C was one of the six ICE network components
predominately associated with SC12, and in this case appeared
to represent a conserved GI distinguishing these isolates from
the rest of the population. Such sharing of MGEs through
recent common ancestry (that is, vertical transmission of the
MGE) was indicated by these cliques of highly connected nodes
within the same SC. Conservation of ICEs has been observed in
multidrug-resistant lineages in which the ICEs encoded resistance
genes37,39,40, but many examples identified here, such as those in
component C or the Tn5252-type MGE similar to ICESpPN128

found in SC6 (Supplementary Fig. 11), lack such obviously
beneficial cargo genes. In some cases, the importance of
vertical transmission to the spread of some MGEs may reflect
the absence of modules encoding the machinery needed for
horizontal mobility. Examples were evident in component D
(Supplementary Fig. 13), the longest representative of which
appeared potentially mobile, whereas the shorter members may
have lost some of the machinery for transfer between cells41.

The second group of MGEs, accounting for 471 nodes,
likely represents phage-related chromosomal islands (PRCIs),
mobilized in cis by ‘helper’ prophage42. First identified as
‘pathogenicity islands’ carrying superantigens in Staphylococcus
aureus43, these pneumococcal examples encoded a high
proportion of sequences for which no robust functional
prediction could be made. Representatives from components
E and F exhibited similarity with the Streptococcus pyogenes PRCI
SpyCI1 (Supplementary Figs 14,15) and were typically between
8 and 15 kb in length with putative integrase and regulatory
genes transcribed in one direction and a DNA primase gene
transcribed in the opposite direction. Representatives from
component G were similar in size and genetic organization,
with an integration module that showed limited similarity
with the enterococcal PRCI EfCIV58344 (Supplementary
Fig. 16). The most unusual representatives were in component

H, in which the putative integrase and primase genes were linked
to a central, transposase-flanked portion that closely matched a
GI from Streptococcus mutans LJ23 (Supplementary Fig. 17).
However, there was generally little evidence of the ICE-type
modular evolution: PRCIs exhibited less variation in size
(Supplementary Fig. 8), and the same core set of functions
tended to be conserved between them. Sequence variation was
instead mosaic in nature, with the level of sequence divergence
between representatives changing at breakpoints that varied
between elements, likely representing the consequence of
homologous recombination.

Exhibiting a similar mosaic pattern of sequence variation were
prophage, the third group of 672 nodes. These generally
conserved a distinctive module order, and had a consistent
orientation across the five insertion sites containing full-length
prophage in which the genes active during MGE replication were
aligned with the strong coding bias of the pneumococcal genome,
akin to the ‘polarization’ seen in enteric bacteria32. In marked
contrast with ICEs and PRCIs, few instances of prophage being
stably associated with a lineage were observed, as implied by the
connectivity within component I (Supplementary Table 2).
Notable exceptions to this trend were evident: isotypes of
prophage fOXC141, independently observed to be stably
associated with the serotype 3 genotype predominant in
Massachusetts19,27, were identified in the expected hosts
(Supplementary Fig. 18). These viruses were within component
I, which encompassed the previously described diversity of
pneumococcal phages4. Similarly conserved between related
isolates were two atypical phage: one similar to Enterococcus
faecalis V583-pp144 present in all but four members of SC4
(components J and K; Supplementary Fig. 19), and another
similar to S. oralis prophage fPH10 present in five SC11 isolates
(component L; Supplementary Fig. 20). Yet, the largest set of
nodes that showed stable association with host SCs was found
within component I; these represented a GI identified in the
multidrug-resistant PMEN1 lineage8 that likely represented a
‘prophage remnant’ that has lost its mobilization machinery
(Supplementary Fig. 18). Such degradation of an MGE can occur
when selection acts to conserve a beneficial cargo gene45; the only
candidate in this instance was a coding sequence (CDS) with a
functional domain associated with RMSs, suggesting this gene
may have been preserved to protect against other MGEs.

Potential barriers to sequence exchange. The apparently high
rate of phage transmission suggested there would be strong
selection for mechanisms that prevented infection with these
viruses, which may also inhibit the exchange of other GIs. RMSs
seemed likely to play such a role, and 11 candidate RMSs were
identified using Pfam domains46 (Supplementary Tables 3 and 4).
Three of these were present at the dpn locus, of which two were
the previously characterized DpnI and DpnII systems11. The only
example of switching between these two systems within a SC
occurred on the long branch within SC12 (Fig. 4b). The one other
change at the dpn locus within a SC involved replacement
of a Type II RMS (designated DpnIII and represented by
SPN23F18640-18650 in the genome of S. pneumoniae ATCC
700669 (ref. 8)) present in all but one isolate of SC13, in which it
had been replaced by DpnI. DpnIII likely targets a different motif
to DpnI and DpnII, both sensitive to adenine methylation11,
as functional domain information suggested the DpnIII RMS
modified cytosine bases.

As both DpnI and DpnII do not prevent the uptake of GIs by
transformation2, but are likely to be similarly effective against
MGEs found as double-stranded DNA forms in the cell, it was
unsurprising to find that the accessory genome diversified at
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approximately the same rate in isolates carrying either system
(Supplementary Fig. 21). However, there was also little difference
in the equivalent rate estimated from those isolates carrying
DpnIII, which appeared to be a typical Type II restriction system.
Furthermore, increasing numbers of non-Dpn accessory RMSs
also did not appear to affect the rate of accessory genome
diversification, despite these Type I and II systems being
potentially able to cleave MGEs or any GIs imported by
transformation (Supplementary Fig. 22). Despite their apparent
lack of effect on the plasticity of genome content, these accessory
RMSs exhibited a similar level of conservation across clades as the
Dpn systems (Fig. 4b).

The absence of an observed effect may reflect the influence of
other aspects of the transformation mechanism. One candidate
was pherotype, which was also conserved across deep-branching

clades. All 15 monophyletic SCs were uniformly associated with
either CSP-1 or CSP-2, with no isolates having acquired the rarer
pherotypes or switched between the more common types (Fig. 4a)
despite requiring a change within the range of commonly
observed transformation events47. One explanation is that inter-
pherotype exchange of sequence is infrequent18. However, any
inhibition of exchange between the pherotypes does not appear to
substantially affect their relative rates of recombination. No
significant difference was observed in the rate of diversification
through homologous recombination relative to point mutation
between SCs of the two common pherotypes (Wilcoxon rank-
sum test of previously calculated r/m values19, N¼ 15, W¼ 20,
P¼ 0.46), and no substantial difference in the relative rate of
accessory to core genome diversification could be identified
between them (Supplementary Fig. 23).
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Rapid RMS variation through DNA inversion. The lack of a
detectable impact of either accessory RMSs or pherotype on the
rate of genome content diversification indicated there may be an
alternative mechanism inhibiting the spread of GIs. Two candi-
dates were ‘core’ RMSs that were ubiquitous in the sampled
population (Figs 4 and 5). Both of these were Type I RMS loci
containing multiple sequences encoding different DNA-binding
target recognition domains (TRDs) of specificity subunits toge-
ther with a recombinase. One of these loci encoded TRDs on both
strands of the genome (Fig. 5a), and had previously been
demonstrated to undergo rearrangements through sequence
inversion in S. pneumoniae TIGR4 (ref. 48). This phase variation
resulted in five TRD-encoding sequences being combined into up
to six different full-length genes, each encoding a putatively
functional Type I RMS specificity subunit formed of two TRDs.
This region was denoted the ‘inverting variable restriction’ locus
(ivr locus), with the specificity subunit encoded by the
spnIVRhsdS gene. The rapid variation in the composition of
spnIVRhsdS across the sequenced collection (Fig. 4c) was hypo-
thesized to be driven by intragenomic recombinations catalysed
by the recombinase encoded by ivrR within the ivr locus48.
Hence, ivrR was disrupted using an antibiotic resistance marker

to stabilize three different versions of spnIVRhsdS generated by
intragenomic recombination during routine culturing of S.
pneumoniae R6 (ref. 49).

The mutants were characterized by SMRT sequencing, with de
novo assemblies confirming that each had a different spnIVRhsdS
allele (Supplementary Fig. 24). The mutant with the same
spnIVRhsdS sequence as the R6 genome (composed of the TRDs
denoted Aa) was found to have adenines methylated at the N6
position in three motifs. Two of these, TCGAG and TCTAGA
(underlined adenines were methylated; Supplementary Table 5),
likely represented the activity of two Type II RMSs. Twenty CDSs
in the S. pneumoniae R6 genome matched the RMS-associated
functional domains listed in Supplementary Table 3. The most
likely candidates for causing these methylation patterns were
SpnIM, an ‘orphan’ methyltransferase encoded by a CDS adjacent
to an endonuclease pseudogene, predicted to target the TCTAGA
motif50; and Spr1102, which appears to form a functional Type II
RMS with Spn1103 (orthologous with the accessory RMS with
accession code LK020705 in Fig. 4). The third motif,
CAG(N)8TTYG, was bipartite and likely to represent the
activity of the Type I RMS encoded by the ivr locus. SMRT
sequencing of the second mutant, in which the 30 region of the
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spnIVRhsdS gene had been switched by an inversion such that it
was composed of TRDs Ab, found the same Type II RMS motifs
and an altered Type I motif, GAA(N)9TTYG. The maintenance of
the 50 half of the spnIVRhsdS allele was consistent with the
conservation of the TTYG component of the original motif.
Correspondingly, SMRT sequencing of a third mutant with a Ba
spnIVRhsdS allele, in which only the 50 region of spnIVRhsdS
differed from allele Aa, identified a bipartite methylated motif of
CAG(N)7GTG; this preserved the CAG component of the
original motif, while nevertheless again altering the system’s
overall specificity.

Rapid RMS variation through DNA translocation. In contrast
with the ivr locus described above, the TRD-encoding sequences
at the second ‘core’ RMS (the SP_0886-SP_0892 region of the
S. pneumoniae TIGR4 genome) were all on the same strand
(Fig. 5b). In many isolates, apparently functional specificity
subunit genes were formed through the combination of two
TRDs, as at the ivr locus. Alignments of the locus in closely
related members of sequence type 3280 (ref. 19) suggested that
‘shuffling’ of TRDs occurred through lateral translocation of
DNA (Supplementary Fig. 25); PCR amplification confirmed
this was genuine variation and not an assembly artefact
(Supplementary Fig. 26). This was unlikely to represent sponta-
neous, irreversible mutation because isolates in SC2 and SC3
apparently alternated between two different forms (Fig. 4d and
Supplementary Fig. 27). Rather, the changes were likely catalysed
by the putative recombinase, TvrR, encoded by this locus, hen-
ceforth termed the ‘translocating variable restriction’ (tvr) locus.
These alterations would likely involve excision and re-integration
of DNA; the putative TvrTA toxin–antitoxin system may select
against failure to re-insert the gene cassette during rearrange-
ments, as these systems are likely to be effective in stabilizing such
dynamic genetic loci. To test whether variation in this locus could
occur through intragenomic recombination, individual colonies
from three different isolates, each of which had a different full-
length spnTVRhsdS gene (Fig. 5b), were serially passaged in broth
three times. A PCR was designed to amplify an B3 kb product
from the ‘native’ version of the locus, which could also detect
rearrangements through the amplification of shorter products as
the consequence of a primer binding site within a TRD-encoding
sequence being shuffled closer to the 30 edge of the locus (Fig. 5c).
In the case of CH2060, only the B3 kb product was clearly
observed, suggesting any rearrangements were rare in this isolate;
with BR1109, a shorter band became prominent over the time
course, suggesting infrequent rearrangement; whereas the variant
locus was easily detectable in ND6010 after a single night’s
growth. None of these shorter bands were observed following the
replacement of the 30 end of the locus, including tvrR, with a
kanamycin resistance marker (Supplementary Fig. 28). Again, the
high rate of this mechanism was reflected by the extensive var-
iation in spnTVRhsdS observed across the population (Fig. 4d).
These data indicated that the ‘shuffling’ of spnTVRhsdS config-
urations was rapid, commonly occurring within SCs, whereas the
horizontal acquisition of new spnTVRhsdS TRD-encoding
sequences was much less frequent.

S. pneumoniae R6 lacks a full-length tvr locus specificity
subunit gene (spnTVRhsdS), hence the absence of any corre-
sponding signal from the previous SMRT sequencing data. To
determine whether the system was active when a full-length
spnTVRhsdS allele was present, the three tvr loci in which the 30

end had been replaced with a kanamycin resistance marker were
introduced into the S. pneumoniae R6 Aa mutant. When the tvr
locus from isolate BR1109 was introduced, the same methylation
motifs were detected as in the original Aa mutant, with no

evidence of another RMS being active. This may be the
consequence of a small truncation of the methylase subunit,
or a low specificity, or efficiency, of methylation. However,
introducing the loci from isolates CH2060 and ND6010 resulted
in the detection of both the Type II RMS and ivr locus-associated
motifs, along with an additional Type I methylation motif
(Supplementary Table 5): GATA(N)6RTC in CH2060 and
GGA(N)7TGA in ND6010. Hence, the tvr locus encodes an
RMS with a specificity apparently determined by the sequence of
spnTVRhsdS, a gene that can vary through intragenomic
recombination.

Discussion
The observation of distinct co-circulating lineages, as defined by
the core genome, is often assumed to mirror selectively important
differences in gene content. While pneumococci belonging to the
same lineage are more likely to share accessory genome loci, this
is generally not the result of lineages maintaining large numbers
of unique genes; instead, they are characterized by combinations
of stable, individually common GIs. The SC12 isolates were an
exception in this population. They appear to be adapted to a
different, although likely overlapping, ecological niche and may
merit recognition as a novel species.

Not all GIs were stable; different types demonstrated different
dynamics across the population, as illustrated by Fig. 6. The black
line traces the general decline in gene content similarity from
focusing only on near-identical isolates to comparing the entire
collection. This partly reflects the low rate at which GIs primarily
depending on transformation for their mobility were exchanged,
as exemplified by the conservation of PPI-1 alleles (Fig. 2), genes
involved in sugar metabolism (Supplementary Fig. 4) and capsule
type19 within SCs. Other lines trace the divergence assessed using
only the subset of COGs associated with the three large MGE
types (Supplementary Methods). These show that PRCIs and
ICEs were stable within SCs, but diverged between them. Such
conservation may reflect these MGEs providing an advantage to
their host, although few examples of potentially beneficial cargo
were identified. Nevertheless, these MGEs appear to be reliant on
vertical transmission for their success, and therefore the clonal
dissemination of ICE-associated antibiotic resistance37,39,40 can
also be thought of not only as hosts maintaining selectively
advantageous MGEs, but also as MGEs providing a benefit for
their long-term host.

In contrast to such a ‘symbiotic’ long-term association between
MGEs and hosts, prophage were much less stable (Fig. 6). The
typically destructive transmission mechanism of phage imposes a
strong selective cost on host cells, meaning isolates carrying
prophage are likely to be selected out of the population
comparatively quickly. This lowered vertical transmission
through inheritance necessitates that phage have an elevated rate
of horizontal movement between cells51. As RMSs are effective at
inhibiting horizontal transmission, the benefit they confer on
their host cell is likely to be high if cells are frequently being
infected by phage, as in this population. Yet, this inhibition is
contingent on the donor and potential recipient harbouring
different RMSs. Hence, RMSs can be highly effective at
preventing the spread of MGEs if diverse across the population;
however, this did not appear to be the case for the accessory
RMSs in this collection, as typified by the dpn locus only having
two common alleles. This contrasts with the extensive variety of
prophage from which variants may emerge able to evade such
defences. Furthermore, the observed stability of RMSs on non-
MGE GIs (Fig. 6) implied they were exchanged less frequently
than phage. This makes it difficult to conceive how they might co-
evolve at the same rate as phage, and also makes them unlikely to
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be effective in preventing transmission between isolates of the
same SC. Hence, the maintenance of these RMSs may partly
reflect persistence as ‘selfish’ elements52.

Unlike GI exchange by transformation, the speed of intrage-
nomic recombination is not limited by the need to encounter a

suitable donor cell, and hence it can facilitate adaptation over
short timescales53. Rapid intragenomic changes affecting RMSs
have previously been described in other species, through phase
variation produced by DNA inversion54,55, variation in the length
of tandem repeat arrays56 and homopolymeric tracts57. The rate
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of diversification facilitated by the ivr and tvr loci means they are
likely to be effective at preventing phage transmission in clonally
related cell populations, as is evident from the high levels of
diversity seen at these loci even between closely related isolates
(Fig. 6). Consistent with such an anti-phage activity, of the three
motifs associated with the ivr locus, the most frequent was found
at a density of one site per 2.3 kb in the subset of COGs associated
with prophage, with the least frequent was present at a density of
one per 16 kb. The motifs associated with the tvr locus were found
at densities of one per 3.8 kb and one per 5.4 kb in the same
sequences. As complete prophage are typically over 30 kb in
length4, these systems should frequently be effective at preventing
viral infection.

Hence, closely related pneumococci are most likely to be
distinguished by shuffling of these variable RMSs and their
complement of prophage. However, the reversible nature of the
RMS alterations means that once an equilibrium level of diversity
is reached through intragenomic recombination, it does not tend
to increase (Fig. 6), with the exception of transfer of spnTVRhsdS
TRD-encoding sequences between isolates (Fig. 4d). Similarly, the
association of prophage with different lineages is comparatively
transient. Hence, the fast movement of phage needed to overcome
their relatively low rate of vertical transmission, and the rapid
intragenomic recombination that diversifies RMSs likely to
inhibit viral infection, do not accumulate to cause ever-greater
differences over time. Instead, the infrequent transfer of more
stable GIs accounts for the distinctive characteristics of different
lineages. It seems likely that the slow pace of such exchanges may
partly represent a consequence of the activity of the ivr and tvr
loci, given their broad distribution across the species. For
instance, the impact of RMSs on ICE transfer may be inferred
from the presence of the ardA gene, encoding a DNA-mimicking
anti-Type I restriction protein, on Tn916-type sequences58.
Hence the fast, transient ‘microevolutionary’ changes observed
within clonal populations can be distinguished from the
infrequent ‘macroevolutionary’ events that result in the stable
differences between lineages.

Methods
Analysis of COG distribution. The COGs and SCs used in these analyses
were defined previously19. The power law pangenome model22,23 was fitted to the
output of 1,000 replicates in which all 616 isolates were sampled in a random order
using R59. The comparison of cophenetic and Jaccard distances was achieved using
distance matrices calculated with the VEGAN60 and APE61 packages. When
comparing the rates of accessory genome divergence for different subpopulations,
plots were generated using only distances between isolate pairs that were
concordant for the trait being studied.

Functional annotation was generated for each COG through scanning a
representative protein, selected to be of median length, for Pfam46 functional
domains using HMMer62. Characteristic COGs were identified as those COGs
present in 495% of the tested monophyletic SC isolates and absent from at least
95% of isolates in other monophyletic SCs. This made allowance for a low rate of
assembly or gene prediction error. These cCOGs were then classified using the
Pfam annotations and the genomic location of the COG, as ascertained using
BLAT for nucleotide alignment63, followed by inspection with Artemis and ACT64.

Analysis of GI distribution. For the variable region of PPI-1 and the two fucose
utilization gene clusters, the identified alleles represent a manually curated set that
were concatenated to form a reference sequence. Repeats were excised from these
loci to avoid misleading mapping artefacts. The raw Illumina reads for each isolate
were then mapped against this reference using BWA65 with standard settings to
produce a coverage plot. This was converted to a heatmap using Biopython66.

Simulation of lineage coexistence. A simple simulation was used to test how
the observed coexistence of distinct SCs inferred from the accessory genome
distribution and core genome phylogeny would be affected by different levels of
recombination. A discrete step forward time Wright–Fisher simulation was applied
to a population of 1,000 sequences, initially composed of a random sample of
15 different genotypes, based on the number of monophyletic SCs identified in the
genome collection. Every sample was represented by 100 ‘core’ loci, and 100
‘accessory’ loci, each of which was biallelic. In each generation, each individual

independently acquired a mutation at a single core locus with a probability of 0.1,
or a single accessory locus, also with a probability of 0.1. In addition, with a
probability of r, a given individual underwent recombination with a randomly
selected donor. This involved each locus of the core and accessory genome being
independently acquired from the donor with a fixed probability of 0.025 in this
simulation (equating to an import of around 50 kb in a pneumococcus). The next
generation of 1,000 sequences were then selected from the population at random
with replacement, with each simulation run for 10,000 generations. Finally, a
neighbour-joining tree was generated from the core loci using APE61, and the
cophenetic distances plotted against the accessory genome dissimilarity (calculated
as a Jaccard distance) as in Fig. 1. Qualitatively similar results were obtained for
different mutation rates and numbers of generations.

Detection and classification of MGE. Short interspersed repeat sequences were
detected using hidden Markov models as described previously29. Analysis of the
distribution of ISs involved constructing a reference sequence from the ISs found to
be associated with pneumococci in the ISFinder database67 and analysing the
distribution of sequence by read mapping as for GIs. The identification and
classification of multi-gene MGEs is described in Supplementary Methods and
Supplementary Table 6. BLAT63 was used for alignment of translated nucleotide
sequences; these were displayed using ACT64. Accession codes for MGE assemblies
are listed in Supplementary Table 7.

Detection of RMSs. Fifty-eight COGs were identified through searching the
overall set for those containing one of the Pfam46 domains listed in Supplementary
Table 3. Representatives of each example were then manually investigated using
ACT, and functional loci selected on the criteria that they contain apparently
full-length endonuclease and methylase genes (as well as a specificity subunit gene,
if a Type I system). These have been submitted to the ENA with accession codes
listed in Supplementary Table 4.

Ascertaining the arrangement of ivr loci in silico. For each isolate, the Illumina
reads were mapped to the reverse complement of the region defined by coordinates
454708-456366 in the genome of S. pneumoniae R6 [EMBL accession code:
AE007317]49, corresponding to the complete spr0449 spnIVRhsdM CDS and
invariant 50 region of the spr0448 spnIVRhsdS CDS. The unmapped pairs of those
reads mapped in the correct orientation for providing information on the
downstream region should correspond to the 50 variable region of spnIVRhsdS.
Consequently, the number of uniquely mapping reads with at least 95% similarity
along their full length to each of the two alternative 50 sequences (A and B in
Fig. 5a) found in the locus were tallied, and their relative frequencies displayed as a
heatmap in the first pair of columns in Fig. 4c. Seven isolates had ten or fewer reads
matching the two ivr locus 50 TRD sequences in total; de novo assemblies
confirmed these isolates had complete, or partial, deletions of the ivr locus, and
consequently all spnIVRhsdS TRD sequences were set as having zero coverage in
these isolates.

The 50 TRD-encoding sequence most frequently found immediately
downstream of the spnIVRhsdM CDS was then used as the reference sequence for a
second round of mapping, as appropriate for each isolate. In this case, the
unmapped read pairs downstream of the mapped reads should correspond to the 30

TRD-encoding sequence of the spnIVRhsdS gene (a, b and c in Fig. 5a) most
commonly found adjacent to this 50 TRD-encoding sequence. The relative
frequencies of these reads with at least 95% similarity along their whole length to
each of the three 30 TRD-encoding sequence were displayed as the three adjacent
columns in Fig. 4c. Ten isolates had fewer than ten reads mapping to the 30 TRD-
encoding sequences. De novo assemblies confirmed these corresponded to the clade
of seven isolates within SC12, which shared a deletion that eliminated all of the 30

ivr locus TRD-encoding sequences, and a further three isolates across the collection
that suffered from deletions or rearrangements at the locus that explained this lack
of matches. All 30 TRD-encoding sequences of spnIVRhsdS were set as having zero
coverage in these isolates.

Ascertaining the arrangement of tvr loci in silico. A single COG (CLS00804)
corresponded to the majority of the tvr locus TRDs. Every member of this COG
was scanned for the Pfam domain Methylase_S (PF01420), found in single copy in
spnTVRhsdS TRD-encoding sequences and in two copies in putatively functional
spnTVRhsdS genes. The amino-acid sequences corresponding to this domain were
extracted from each CDS, aligned using MUSCLE68 and clustered using BAPS69.
This identified 11 different groups of sequences, which could then be classified as
corresponding to 50 or 30 TRD-encoding sequences based on the order of domains
within putatively functional CDSs. The distribution of these sequences across the
population is shown in Fig. 4d.

Ascertaining ivr and tvr orientations by PCR. To confirm the orientations of the
ivr and tvr loci by PCR, isolates were cultured overnight in THY broth (Todd
Hewitt broth containing 0.5% yeast extract), and their DNA extracted using
DNeasy kits (Qiagen). In each reaction, 50 ng of genomic DNA was used as the
template for PCR amplification with the specified primers (Supplementary Table 8)
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using the OneTaq DNA polymerase and appropriate buffer (NEB). Product
elongation was performed at 48 �C for a time commensurate with the expected
product length. Reaction products were separated by agarose gel electrophoresis.

To produce the time courses shown in Fig. 5c, each of the three isolates
CH2060, BR1109 and ND6010 were streaked out on blood agar plates and a single
colony transferred into 1 ml of THY broth. Cultures were grown at 37 �C in 5%
CO2 for 24 h, at which point 100 ml was transferred into a fresh 1 ml of THY
medium. This passage was repeated serially two further times for each isolate. DNA
was extracted from the broth remaining after inoculation of the next culture using a
DNA purification kit (Qiagen). PCR amplification used the primers RC08090 and
R08140 for CH2060 and BR1109 (and the corresponding knock out mutants), and
primers ND001 and R08140 for ND6010 (and the corresponding knock out
mutant), and used the conditions described above except that the extension time in
the thermocycle was 60 s, to increase the sensitivity for detection of shorter
products generated by rearrangement of the locus.

Construction of S. pneumoniae R6 ivrR knockouts. To disrupt the ivrR recom-
binase of S. pneumoniae R6 and thereby stabilize the locus in different orientations,
the two B500 bp halves of the recombinase gene were separately amplified using
the primer pairs R6hsdSL and Lint, which added an ApaI site, and R6hsdSR and
Linr, which added a BamHI site. The ermCB resistance marker was then amplified
using template DNA from a macrolide-resistant PMEN1 isolate with primers
ermBF and ermBR, which added BamHI and ApaI sites onto the construct,
respectively. DNA products were purified by agarose gel electrophoresis, then
digested with ApaI (NEB) at room temperature for 1 h, or with BamHI (NEB)
at 37 �C for 1 h, as appropriate. The three digestion products were purified with a
DNA Purification Kit (Qiagen) and mixed in equimolar proportions for ligation
with T4 ligase (NEB) at 4 �C for 24 h. Full-length ligation products were then
amplified using primers R6hsdSL and R6hsdSR; this allowed a product around 3 kb
in length to be purified through agarose gel electrophoresis. This construct was
then reamplified with the same primer pair and used to transform thawed S.
pneumoniae R6 cells in the presence of 10 ng of CSP-1 and 5 ml 500 mM calcium
chloride. After 2 h incubation, cells were spread on blood agar plates supplemented
with 5 mg l� 1 erythromycin, and multiple colonies picked for screening using
PCRs to identify mutants with different spnIVRhsdS genes, resulting in the isola-
tion of the three patterns found in isolates S. pneumoniae R6 Aa, Ab and Ba.

Construction of S. pneumoniae R6 tvrR knockouts. Three isolates with different
putatively functional alleles of the spnTVRhsdS genes were identified from the
collection19: CH2060, BR1109 and ND6010. For each of these, the region upstream
of tvrR in the tvr locus was amplified through PCR using the primers LUpVL and
LDwnVL, and the region downstream of the tvr locus amplified using RUpVL and
RDwnVL. These primers added an ApaI site onto the 30 end of the upstream
product, and a BamHI site onto the 50 end of the downstream product. An aph30

gene was amplified from the Janus cassette70 using the primers kanL and kanR,
which generated a DNA fragment containing the resistance marker flanked by
ApaI and BamHI sites. These three PCR products were then digested with the
appropriate enzymes as described above, and ligated in equimolar proportions
using T4 ligase (NEB) at room temperature for 10 min. Primers LUpVL and
RDwnVL were then used to amplify the complete construct from the ligation
reaction, which was purified using agarose gel electrophoresis. The extracted DNA
was reamplified using primers LUpVL and RDwnVL, and then used to transform
the parental isolate, using the appropriate CSP as determined from the genome
sequence, and S. pneumoniae R6 Aa, using CSP-1, as described above.

SMRT sequencing of samples. Initially 2–4mg genomic DNA was converted
into B20 kb fragments through hydrodynamic shearing using a MegaRuptor
(Diagenode). The DNA fragments were subsequently made into ‘SMRTbells’ by a
process of damage repair, end-repair, adapter ligation and exonuclease-based
removal of un-ligated molecules and adapters using DNA Template Prep Kit 2.0
(3–10 kb; Pacific Biosciences). The long-fragment SMRTbell libraries were
subsequently annealed with primers and bound with P4 polymerase using the
DNA/Polymerase Binding Kit P4. Sequencing was performed using the PacBio
RSII by ‘MagBead loading’ of these complexes onto several V3 SMRTcells, which
were each sequenced using 180 min movies.

Analysis of the data was conducted with using smrtanalysis version 2.1.0.
De novo assembly, using PacBio data exclusively, was performed using the
Hierarchical Genome Assembly Process, protocol RS_HGAP_Assembly.2. Base
modification and motif analysis was performed using protocol
RS_Modification_and_Motif_Analysis.1n. All data have been submitted to the
ENA under the study accession code ERP005506.
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