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INVESTIGATION

Characterization of the Mutagenic Spectrum of
4-Nitroquinoline 1-Oxide (4-NQO) in Aspergillus
nidulans by Whole Genome Sequencing
Damien J. Downes,* Mark Chonofsky,† Kaeling Tan,†,‡ Brandon T. Pfannenstiel,*,1

Samara L. Reck-Peterson,† and Richard B. Todd*,2

*Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506, †Department of Cell Biology,
Harvard Medical School, Boston, Massachusetts 02115, and ‡Faculty of Health Sciences, University of Macau, Taipa,
Macau SAR, China

ABSTRACT 4-Nitroquinoline 1-oxide (4-NQO) is a highly carcinogenic chemical that induces mutations in
bacteria, fungi, and animals through the formation of bulky purine adducts. 4-NQO has been used as
a mutagen for genetic screens and in both the study of DNA damage and DNA repair. In the model
eukaryote Aspergillus nidulans, 4-NQO2based genetic screens have been used to study diverse processes,
including gene regulation, mitosis, metabolism, organelle transport, and septation. Early work during the
1970s using bacterial and yeast mutation tester strains concluded that 4-NQO was a guanine-specific
mutagen. However, these strains were limited in their ability to determine full mutagenic potential, as they
could not identify mutations at multiple sites, unlinked suppressor mutations, or G:C to C:G transversions.
We have now used a whole genome resequencing approach with mutant strains generated from two
independent genetic screens to determine the full mutagenic spectrum of 4-NQO in A. nidulans. Analysis
of 3994 mutations from 38 mutant strains reveals that 4-NQO induces substitutions in both guanine and
adenine residues, although with a 19-fold preference for guanine. We found no association between
mutation load and mutagen dose and observed no sequence bias in the residues flanking the mutated
purine base. The mutations were distributed randomly throughout most of the genome. Our data provide
new evidence that 4-NQO can potentially target all base pairs. Furthermore, we predict that current
practices for 4-NQO2induced mutagenesis are sufficient to reach gene saturation for genetic screens with
feasible identification of causative mutations via whole genome resequencing.
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4-Nitroquinoline 1-oxide (4-NQO) is a highly carcinogenic chemical
that causes mutations in bacteria, fungi, and animals. 4-NQO has been
used widely in the study of DNA damage and DNA repair and to
generate mutants for genetic screens. 4-NQO induces mutagenesis after
metabolic conversion to 4-hydroxyaminoquinolone 1-oxide (4-HAQO)
(Miller 1970), which forms stable bulky adducts on purines (Tada and
Tada 1976). Based on in vitro studies as well as in Escherichia coli and
animal cells, 4-HAQO forms the majority of adducts (~50%) on the
second nitrogen (N2) of guanine (Tada and Tada 1971; Galiegue-
Zouitina et al. 1986; Bailleul et al. 1989). However, carbon eight (C8)
guanine adducts (Bailleul et al. 1981; Galiègue-Zouitina et al. 1984; Tada
et al. 1984) and nitrogen six (N6) adenine adducts (Galiegue-Zouitina
et al. 1985, 1986) also occur at a lower frequency, ~30% and ~10%,
respectively (Bailleul et al. 1989). Additional lesions were thought to be
caused by production of reactive oxygen species (Kohda et al. 1986). In
E. coli and mammalian cells, 4-HAQO adducts are repaired by the
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nucleotide excision repair pathway (Ikenaga et al. 1975a,b, 1977;
Ikenaga and Kakunaga 1977), and in E. coli the error prone DNA
polymerase IV (Pol IV) is the likely cause of sequence changes (Williams
et al. 2010). Early work to characterize the mutagenic effects of 4-NQO
in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe,
as well as in the bacteria Salmonella typhimurium and E. coli, relied upon
reversion of characterized auxotrophic tester strains, as DNA sequencing
technology was not yet readily available (Prakash et al. 1974; Janner et al.
1979; Rosenkranz and Poirier 1979). These experiments identified the
changes induced by 4-NQO as G:C to A:T transitions, G:C to T:A
transversions, and frameshifts (Prakash et al. 1974; Janner et al. 1979;
Rosenkranz and Poirier 1979). However, differences in frequency and
mutation type varied between species and with 4-NQO concentration
(Rosenkranz and Poirier 1979). Studies relying on reversion tester strains
are limited by their inability to detect or determine multiple mutations in
the same target gene as well as unlinked suppressor mutations, and the
lack of strains to specifically detect G:C to C:G transversions (Prakash
and Sherman 1973). In addition, these strains were not informative as to
how flanking sequence affects mutagenic potential. Furthermore, auxo-
trophic reversion tester strains may show mutational bias due to func-
tional constraints. Therefore, the full 4-NQO mutagenic spectrum,
including type and relative frequency of induced mutations as well as
the effect of flanking sequence, remains to be determined.

The genetic model filamentous fungus Aspergillus nidulans has
been invaluable for advances in understanding a variety of eukaryotic
cellular processes, including cell-cycle progression, development, re-
sponse to DNA damage and pH changes, gene regulation, and metab-
olism (Clutterbuck 1969; Arst and Cove 1973; Morris 1975; Oakley and
Oakley 1989; Harris et al. 1994; Goldman and Kafer 2004; Penalva et al.
2008; Wong et al. 2008). Many of these advances have been made using
genetic screens. The versatility of A. nidulans for genetic analysis is due
to several amenable characteristics, including stable haploid and diploid
life stages as well as asexual and sexual reproduction (Pontecorvo et al.
1953). Heterozygous diploid strains, constructed via the parasexual cy-
cle, can be used for analysis of dominance or complementation and to
map novel mutations to a chromosome by haploidization (Todd et al.
2007a). Mutations can then be mapped more finely by classical genetic
mapping via the sexual cycle (Todd et al. 2007b). Furthermore, the well-
developed DNA-mediated transformation system, with homologous
gene targeting and multiple selectable markers, enables construction
of strains for mutational analysis and selection of mutants in genetic
screens, and reconstruction of identified candidate mutations to identify
the causative mutation associated with the mutant phenotype (Nayak
et al. 2006). A. nidulans has been used extensively in genetic screens
for mutants generated by a variety of chemical and physical muta-
gens, including N-methyl-N9-nitro-N-nitrosoguanidine (MNNG)
(Clutterbuck 1969; Hynes and Pateman 1970a,b; Arst and Cove 1973;
Osman et al. 1993), nitrous acid (Apirion 1965; Clutterbuck 1969),
diethyl sulfate (Clutterbuck 1969), ultraviolet (UV) light (Pontecorvo
et al. 1953; Clutterbuck 1969; Axelrod et al. 1973; Morris 1975; Osman
et al. 1993), and X-rays (Pontecorvo et al. 1953). However, many
genetic screens in A. nidulans use 4-NQO (Harris et al. 1994; Wu
et al. 1998; Pokorska et al. 2000; Conlon et al. 2001; Heck et al. 2002;
Kinghorn et al. 2005; Cecchetto et al. 2012; Larson et al. 2014; Tan
et al. 2014) because it is safer and more stable than MNNG and it is
thought to produce primarily single base-pair substitutions, which can
generate both loss-of-function and altered function mutants. These
altered function mutants are important for identifying essential genes
in which larger mutations would be lethal. The utility and application
of 4-NQO as a mutagen in genetic screens highlight the importance of
understanding the full consequences of 4-NQO mutagenesis.

To fully characterize the mutagenic potential of any chemical,
analysis of mutations that are unbiased by the selection method or gene
function is required. A genomics approach, rather than sampling a single
gene target by reversion of auxotrophies, overcomes limitations imposed
by functional constraints, as mutations in noncoding regions and
mutations unrelated to the selection and independent of function also
can be detected. Whole genome sequencing has been used to identify the
effects of ethyl methanesulfonate, ethylnitrosourea, and UV light in
several eukaryotes, including Arabidopsis thaliana (Uchida et al. 2011),
Danio rerio (Voz et al. 2012), Caenorhabditis elegans (Flibotte et al.
2010), and the apicomplexan parasite Toxoplasma gondii (Farrell et al.
2014). Recent advances in sequencing technology have permitted rapid
and affordable resequencing of fungal genomes, and this has enabled
identification of causative mutations in mutants generated in genetic
screens (McCluskey et al. 2011; Pomraning et al. 2011; Nowrousian
et al. 2012; Bielska et al. 2014; Tan et al. 2014; Yao et al. 2014; Zhang
et al. 2014). In this work, we have used a genome resequencing approach
to fully characterize the 4-NQO mutagenic spectrum at a whole genome
level using almost 4000 4-NQO2induced mutations arising from in-
dependent genetic screens (Tan et al. 2014; this study). 4-NQO causes all
possible base-pair substitutions with a 19-fold preference for guanine
over adenine residues.

MATERIALS AND METHODS

A. nidulans strains, media, growth conditions
A. nidulans strains RT244 (biA1 pyrG89 gpdA(p)areAHA fmdS-lacZ
pyroA4 nkuAΔ::Bar [prnA::areANES::gfp::AfpyroA] crmAT525C::pyrG)
and RPA520 (yA::[gpdA(p)mCherry::FLAG::PTS1::Afpyro] pabaA1 pyrG89
[TagGFP2::rabA::AfpyrG] pyroA4 nkuAΔ::argB [HH1::TagBFP::Afribo])
were used for mutagenesis. Mutant strains generated from RPA520
were outcrossed to RPA478 (pyrG89 [TagGFP2::rabA::AfpyrG] pyroA4
nkuAΔ::argB [HH1::TagBFP::Afribo] riboB2) or RPA496 (pyrG89
[TagGFP2::rabA::AfpyrG] pyroA4 nkuAΔ::argB [HH1::TagBFP::Afribo]).
A. nidulans growth conditions and media adjusted to pH 6.5 were as
described (Cove 1966). Aspergillus nitrogen-free minimal media contain-
ing 1% w/v glucose and nitrogen sources (ammonium tartrate, sodium
nitrate, or L-proline) added to a final concentration of 10 mM (Cove
1966), or rich yeast and glucose media (Szewczyk et al. 2006), supple-
mented for auxotrophies, were used for growth.

Mutagenesis and sequencing
Mutagenesis using 4-NQO (Sigma-Aldrich) was carried out primarily
as described (Holt and May 1996; Tan et al. 2014). In summary, ~107

or ~108 conidia, suspended in phosphate buffer (0.1 M potassium
phosphate pH 7.0, 0.01% Tween 80) and quantified using a hemocy-
tometer, were exposed to 0.2424.0 mg mL21 4-NQO at 37� for
30 min. 4-NQO was quenched with an equal volume of 0.5 M sodium
thiosulfate and washed twice in phosphate buffer. Strains were recovered
from 50%, 10%, and 3% survival treatments (0.24 mg mL21 4-NQO per
107 spores, 0.45 mg mL21 4-NQO per 107 spores, and 4.0 mg mL21

4-NQO per 108 spores, respectively) after 224 days’ growth on either
yeast and glucose media or supplemented Aspergillus nitrogen-free
minimal media containing 10 mM L-proline and tested for mutant
phenotypes. Proline-using mutant phenotypes in strains derived from
RT244 were mapped by meiotic crossing to RT250 (yA1 pabaA1
pyrG89 gpdA(p)areAHA fmdS-lacZ prn-309). Genomic DNA was iso-
lated as described (Lee and Taylor 1990). The genomes of RT244 and
a derivative mutant strain were sequenced by the Genome Sequencing
Facility (Kansas University Medical Center, Kansas City, Kansas) on
an Illumina HiSEQ 2500 platform using single-end 50-bp reads. The
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genomes of RPA478, RPA496, RPA520, and bulked segregrant prog-
eny of derivative mutant strains were sequenced by single-end, whole
genome sequencing on the Illumina Genome Analyzer HiSeq 2000
platform, generating sequence reads ~50 base pairs in length (Tan
et al. 2014). For mutant strains from RT244 showing tight linkage
of the causative mutation and prnA, the mutations were identified
by amplification of the prnA::areANES::gfp regions with prn39-F
(59-TCACGGCTATTCCGTGCTTTGA-39) and gfp59-R (59-ACGCT
GAACTTGTGGCCGTTA-39) using Ex Taq (TaKaRa) and sequencing
at Kansas State University DNA Sequencing and Genotyping Facility.

In silico analysis
In silico analysis used the Galaxy platform (galaxyproject.org) (Blankenberg
et al. 2010b) and Broad Genome Analysis Toolkit (GATK; broadinstitute.
org/gatk) (McKenna et al. 2010). FASTA files were converted to FASTQ
format using FASTQ Groomer (Blankenberg et al. 2010a). Sequence
quality was determined using FastQC (Li and Durbin 2009) (bioin-
formatics.babraham.ac.uk/projects/fastqc/). Nucleotide sequence reads
were aligned using Burrows-Wheeler Alignment for Illumina with
default settings to the A. nidulans FGSC_A4 genome (Version S10)
downloaded from AspGD (Cerqueira et al. 2014). Genome coverage
was determined using BEDTools (Quinlan and Hall 2010). Sequence
coverage was lacking or not aligned for the centromeres, the ribosomal
rRNA repeats, and mitochondrial sequences. Variants were identified
using FreeBayes (Garrison and Marth 2012) with default settings
except for report polymorphism probability (2P: 0.01), ploidy (2p: 1),
minimum observations (2F: 0.5), and minimum coverage (2!: 4) or
using GATK (Depristo et al. 2011) with default settings except for quality
score .50 (2stand_call_conf: 50.0, 2stand_emit_conf: 10.0) and down
sampling to 50 fold coverage (2dcov: 50.0). Variants unique to mutant
strains were identified using Select Variants (Depristo et al. 2011).
Aligned sequence reads from wild-type strains were manually inspected
to confirm the absence of all identified unique variants. Box plots were
generated using JMP 11 (SAS), outliers in boxplots are points lying 1.5 ·
interquartile range (third quartile to first quartile) above the third quartile
or below the first quartile. The Student’s t-test and simple x2 test were
computed in Excel (Microsoft Office). SAS 9.4 (SAS) was used for ex-
ponential quantile-quantile plots (CAPABILITY procedure: QQplot /
exponential, s = est, u = est), Kolmogorov-Smirnov tests (UNIVARIATE
procedure with histogram & exponential settings), and categorical x2

tests (FREQ and GENMOD procedures). Consensus motifs of mu-
tated sites were generated using WebLogo (Crooks et al. 2004)
(weblogo.berkeley.edu). A. nidulans sequence annotation of transcribed
and intergenic regions, and gene function descriptions were obtained
from AspGD (Cerqueira et al. 2014), and descriptions of yeast orthologs
were obtained from SGD (Cherry et al. 2012).

Prediction of saturation
We derived the following random sampling with replacement equation
that can be adjusted to calculate the probability of a specific mutation of
every nucleotide (nucleotide saturation) or every possible substitution at
every nucleotide (substitution saturation):

PSðXÞ ¼
�
1� �

1� f :b�1�m:s:ð1�kÞ�b

The standard equation for probability of a specific event (X) given
multiple random samples with replacement is P(X) = 12 (12 N-1)n,
where N21 is the probability of the specific event given a single
sample was taken, and n is the number of samples taken. For our
equation, N21 is replaced with the relative frequency with which

a specific mutation arises (f) divided by the total number of base
pairs at which it could have arisen (b). The number of samples is the
mean number of mutations arising per spore (m), multiplied by the
number of treated spores (s), multiplied by the number of surviving
spores (1 2 k), where k is the proportion kill, i.e., for a mutation at
a single base-pair PS(X) = 1-(1-f.b-1)m.s.(1-k). To determine the prob-
ability of a mutation at every possible base pair, where the likelihood
of mutating any base pair is equivalent due to random mutagenesis,
the probability of a single event is raised to the power of the number
of base pairs (b), giving the final equation PS(X) for the probability of
saturation of a specific mutation (X). The following values were
used: PS(G/H) f = 0.95, PS(G/A) f = 0.53, PS(G/T) f = 0.276, PS
(G/C) f = 0.14, PS(A/B) f = 0.05, PS(A/C) f = 0.01, PS(A/G) f = 0.03,
PS(A/T) f = 0 0.01), b = 15241995.5 using a 50% GC content in A.
nidulans (Galagan et al. 2005), m = 105, s is variable and k = 0.5
(50% kill) or 0.9 (90% kill).

The probability of nucleotide saturation of both guanine and
adenine is therefore:

PSðG/H and A/BÞ ¼ PSðG/HÞ · PSðA/BÞ

And the probability of substitution saturation of both guanine and
adenine is as follows:

PSðG/A;T;C and A/C;G;TÞ ¼ PSðG/AÞ ·PSðG/TÞ · PSðG/CÞ
· PSðA/CÞ · PSðA/GÞ · PSðA/TÞ

RESULTS AND DISCUSSION

4-NQO mutations are distributed across the genome
To determine the effects of 4-NQO mutagenesis on A. nidulans DNA,
we used whole genome sequence data from two independent genetic
screens. The first mutagenesis involved direct selection for reversion of
a proline nonutilization phenotype conferred by fusion of a nuclear
export signal to the transcription factor PrnA (D. J. Downes and R. B.
Todd, unpublished data). Mutant strains were generated with a dose
of 4-NQO resulting in 97% kill. We isolated nine mutant strains from
this screen by direct selection for proline utilization. For eight mutant
strains, the causative mutations mapped to the prnA locus, whereas for
the ninth mutant strain the proline utilization phenotype was unlinked
to prnA. Mutations in prnA were identified by sequencing polymerase
chain reaction products (Table 1). The strain containing the unlinked
mutation and the mutagenesis parent were used for whole genome
sequencing. The second mutagenesis was for a microscopy-based screen
for defective organelle transport on rich media (Tan et al. 2014). Co-
nidia were treated with doses of 4-NQO conferring 50% or 90% kill.
Mutant strains of interest were identified by visual screening for mis-
localization of fluorescently labeled nuclei, endosomes and peroxisomes
(Tan et al. 2014). To identify all lesions induced in this screen bulked
segregant progeny of 40 mutant strains, 17 from 50% kill, and 23 from
90% kill, the mutagenesis parent and the outcross parents were
sequenced. Reads from both screens were mapped to the A. nidulans
FGSC_A4 reference genome (Galagan et al. 2005), providing sufficient
coverage high quality variant calling in all regions excluding centro-
meres and the nucleolar organizing region ribosomal DNA repeats on
Chromosome V (Brody et al. 1991; Clutterbuck and Farman 2008).
Although our mutant strains were selected or chosen for specific phe-
notypes and therefore bias may occur for the causative mutation, most
of the mutations arising throughout the genome will be random muta-
tions unrelated to the observed phenotypes. Therefore, these mutations
represent a data set of 4-NQO2derived sequence changes that are
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neither biased by selection nor constrained by function. In total we
identified almost 7000 mutations in the 41 mutant strains that were
absent in the parents. However, ~42% of these mutations were in just
three strains. These three mutant strains each carried a substitution or
nonsense mutation in at least one DNA repair gene (Supporting
Information, File S1). These genes either lacked mutations in the 38
mutant strains with a lower mutation load, or in three cases carried only
silent mutations or conservative substitutions. As the mutations arising
in the three high mutation load strains may be due to defective DNA
repair, rather than resulting directly from 4-NQO2induced mutagen-
esis, they were excluded from further analysis. Of the remaining 3994
4-NQO2induced mutations distributed across the genomes of 38 mu-
tant strains, 3993 were single-nucleotide substitutions and one was
a ΔG:C single base-pair deletion (File S2). The total number of muta-
tions per strain ranged from 23 to 240; however, there was no signif-
icant difference in the mutation load arising from different 4-NQO
doses and kill percentages (Figure 1). Therefore, we pooled the data
for mutants isolated following different mutagen doses for subsequent
analyses. The lack of a dose effect on the number of observed mutations
per strain in our dataset seems somewhat counterintuitive. It is possible
that this could result from the sample size of our data, or our inability to
determine the number of mutations in the unrecovered strains killed or
selected against.

To determine whether the effects of 4-NQO are biased toward
particular regions of the genome or occur randomly, we classified each
of the 3994 mutations as affecting either predicted transcribed regions
(59 untranslated region, coding, intron and 39 untranslated region
sequences) or intergenic regions (all other sequences). We found 2724
mutations within predicted transcribed regions and 1270 mutations in

intergenic regions, consistent with relative genome content for each
class. The mutations mapped to all regions of the genome, excluding
mitochondrial DNA, the centromeres, and ribosomal repeats, where
low coverage limited single-nucleotide polymorphism (SNP) calling
(Figure 2A). The observed number of mutations per chromosome
was not significantly different from that expected, calculated based on
DNA content under random distribution (x2 = 4.7, d.f. = 7, P = 0.695)
(Figure 2A). The distances between randomly occurring mutations are

n Table 1 4-NQO mutations selected by phenotype at specific loci in A. nidulans

Target(s) Reference
Number and type of mutation

% Killa G / A G / C G / T A / C A / G A / T +Nb ΔNc

areA Al Taho et al. 1984; Kudla et al. 1990 99.9 1
areB Conlon et al. 2001 2 1 1
cnxE Heck et al. 2002 2 5 3 1 1
hypA Harris et al. 1994; Kaminskyj and Hamer 1998;

Shi et al. 2004
70 2

hypB Kaminskyj and Hamer 1998; Yang et al. 2008 2 1
kinA, nudA,F,K Tan et al. 2014 50, 90 1 1 5
meaA Monahan et al. 2002 2 9 1 2 1 1 2
nimA Wu et al. 1998 80295 1
nimA, sonA-C Larson et al. 2014 — 21 9 4
nrtA Kinghorn et al. 2005 — 7 5 5
prnA Pokorska et al. 2000 — 28
prnA-areANES-gfp This study 97 6 2
sepH Harris et al. 1994; Bruno et al. 2001 70 1
swoA Harris et al. 1994; Momany et al. 1999; Shaw and

Momany 2002
70 1

swoC Harris et al. 1994; Momany et al. 1999; Lin and
Momany 2003

70 1

swoF Harris et al. 1994; Momany et al. 1999; Shaw
et al. 2002

70 1

swoH Harris et al. 1994; Momany et al. 1999; Lin
et al. 2003

70 1

uaY Oestreicher and Scazzocchio 2009 .99 17 8 12 2 1 1
uaY Cecchetto et al. 2012 90 16 1 2 3
Total 91 43 44 2 1 6 2 6

4-NQO, 4-nitroquinoline 1-oxide.
a

2, not reported.
b

+N, insertion.
c ΔN, deletion.

Figure 1 Number of point mutations per strain is not dose-dependent.
Distribution of the number of mutations per strain resulting from 50% kill
(N = 17; 0.24 mg mL21 4-NQO per 107 spores) and 90% kill (N = 20; 0.45
mg mL21 4-NQO per 107 spores) as well as combined data (N = 38).
There was no significant difference between the number of mutations
induced by 50% kill compared with 90% kill using unpaired unequal
distribution Student’s t-test. The combined data includes the single mu-
tant from 97% kill (4.0 mgmL21 4-NQOper 108 spores) with 70 mutations.
Boxplots show minimum and maximum (whiskers), median (dividing line),
mean (circle), and 95% confidence interval of mean (diamond).
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expected to follow an exponential distribution with a rate of l, where
l-1 is the mean distance between mutations (Sun et al. 2006; Farrell
et al. 2014). The majority of the mutations were 3211 kbp apart with a
mean spacing of 7461 bp (Figure 2B). An exponential quantile-quantile
plot comparing the observed distances between mutations in the whole
genome against the expected exponential distribution shows a close
match with the theoretical distribution (Figure 2C). However, a one-
sample Kolmogorov-Smirnov goodness-of-fit test has a P-value , 0.01

(N = 3977, mean = 7,461.44, D = 0.0247) suggesting the observed data
differ significantly from the expected trend. To determine whether this
was consistent across the genome, we constructed quantile-quantile
plots for each of the eight chromosomes (Figure 2D). Like the whole
genome data, the observed distribution for each chromosome follows
the exponential line closely. For all chromosomes except Chromosome
II, the Kolmogorov-Smirnov test statistically supports an exponential
distribution. Therefore, the majority of 4-NQO2generated mutations

Figure 2 4-NQO mutations are
randomly distributed across the
genome. (A) A. nidulans chro-
mosome map showing locations
of 3994 mutations arising from
4-NQO mutagenesis and %GC
content (Galagan et al. 2005).
Mutations within genes (tran-
scribed regions) are red and those
outside genes are blue. Centro-
meres are marked as circles.
Expected (Exp.) number of muta-
tions per chromosome was calcu-
lated by dividing 3994 by the
proportion of genome content
in each chromosome. Obs., ob-
served. (B) Boxplot of distance
between mutations showing mini-
mum and maximum values within
1.5 · interquartile range of the
box (whiskers), median (dividing
line), mean (circle), 95% confidence
interval of mean (diamond), and
outliers (squares). (C2D) Exponen-
tial quantile-quantile plot of distan-
ces between mutations compared
with theoretical exponential
distribution (red line) where
l21 = mean. P-value shown
for Kolmogorov-Smirnov test
D statistic. N is the number of
distances between mutations.
Distances between mutations
flanking centromeres and the ri-
bosomal repeats were excluded.
Genome (N = 3977, mean =
7461.44, D = 0.0247), I (N = 505,
mean = 7332.67, D = 0.0388),
II (N = 524, mean = 7610.55, D =
0.0584), III (N = 472, mean =
7226.80, D = 0.0297), IV (N = 367,
mean = 7717.14, D = 0.0375),
V (N = 419, mean = 7411.85, D =
0.0529), VI (N = 465, mean =
7167.69, D = 0.0251), VII (N = 603,
mean = 7397.4, D = 0.0389), VIII
(N = 622, mean = 7782.67, D =
0.0201).
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conform to the expected exponential distribution and are randomly
distributed. We observed 71 mutations in very close proximity
(,10 bp) to another mutation in the same mutant (File S3). These
mutations may have arisen either independently from multiple bulky
adducts or from a single adduct and an additional repair-based error.
Because these two events cannot be distinguished and these mutations
comprise ,2% of the total data pool, they are considered individual
events for all further analyses.

4-NQO confers all six possible transitions
and transversions
4-NQO was previously reported to induce transitions or transversions
of guanine residues and frameshifts in bacteria and yeasts (Prakash
et al. 1974; Janner et al. 1979; Rosenkranz and Poirier 1979). However,
adducts of adenine are also formed and therefore adenine is a possible
target (Galiègue-Zouitina et al. 1984, 1985; Bailleul et al. 1989; Menichini
et al. 1989). Of the 3994 mutations identified from our screens, 3799
(95.12%) resulted from mutation of a guanine and only 195 (4.88%)
from mutation of an adenine, consistent with the preference for guanine
adduct formation (Figure 3, A and B). For SNPs of both guanine and
adenine transition mutations were more frequent than transversions,
with 56.27% (2137/3798) transitions for guanine (x2 = 59.65, d.f. = 1,
P , 0.0001) and 55.90% (109/195) transitions for adenine (x2 = 2.71,
d.f. = 1, P = 0.099). The most common mutation was G:C to A:T.
Conversion of G:C to T:A, or conversion of G:C to C:G occurred at
intermediate frequencies (Figure 3A). Mutation of A:T was rare
(,5%) and in some individual mutant strains was not detected, but
all three possible substitutions were observed in the complete data set
(Figure 3B). To ensure the low frequency of adenine mutations was
consistent with chemical mutagenesis rather than spontaneous mutation,
we estimated the predicted level of spontaneous changes. Although studies

of spontaneous mutation rate have been carried out in A. nidulans, they
provide rates only for specific loci and not the whole genome (Lilly
1965; Alderson and Hartley 1969; Babudri and Morpurgo 1990;
Baracho and Baracho 2003). Spontaneous mutation rates are very sim-
ilar in Aspergillus spp., Neurospora crassa, and S. cerevisiae (Drake et al.
1998). Using an estimate of 0.0034 mutations per replication (Drake
et al. 1998) with 30 days active growth between mutagenesis and se-
quencing and 1 hr per nuclear division (Bainbridge 1976), we predict an
average of 2.5 spontaneous mutations may have arisen per strain. Sim-
ilarly, calculations using sequence length and number of generations
based on two whole genome studies in S. cerevisiae (Lynch et al. 2008;
Zhu et al. 2014) predict just 3.5 spontaneous mutations per strain. By
distributing the number of predicted spontaneous mutations across the
six possible changes at the ratio described in the whole genome studies
(Lynch et al. 2008; Zhu et al. 2014), we found all three types of A:T
substitutions were more frequent than the expected spontaneous mu-
tation level (Figure 3B). Therefore 4-NQO mutagenesis can cause all
possible single-nucleotide substitutions. In previous 4-NQO mutagene-
sis studies using tester strains, mutations of adenine were reported as
either absent (Prakash et al. 1974) or low-frequency events (~7%) and
were only significantly different to nonmutagenized control strains in
three of six experiments (Janner et al. 1979). We found only one oc-
currence of a deletion and no insertions. This low indel frequency
suggests that this mutation may have arisen spontaneously. Therefore,
we found no evidence for 4-NQO2induced frameshift mutations.

4-NQO2induced mutations are not influenced by
nucleotide flanking sequence
For some mutagens, such as UV light and methyl-nitroso urea, the
sequence context can influence the outcome of mutagenesis (Kurowska
et al. 2012; Setlow et al. 1963). We analyzed the adjacent sequence for
each of the six mutation types using the 10 upstream and 10 down-
stream nucleotides of all 3993 SNPs (Figure S1). For all six substitutions,
there was no consensus outside of the affected residue, suggesting that
only the adenine or guanine is required for efficient adduct formation.
Therefore, 4-NQO can potentially target any nucleotide pair within the
A. nidulans genome.

Phenotype-associated 4-NQO mutation spectrum
frequencies differ from nonbiased whole genome data
Although mutant strains arising from the screens in this work were
selected for specific restoration of proline utilization or defective organelle
transport phenotypes, we expect only one or a few of the mutations
identified by whole genome sequencing of each mutant strain to
contribute to the selected phenotype as causative mutations (Nowrousian
et al. 2012; Tan et al. 2014). Although mutations at some loci will be
constrained by function due to their requirement for growth or viability
under the selection conditions, normal morphology, or ability to cross for
genetic analysis, for example, the majority of mutations are expected to be
unrelated to the selection. 4-NQO has been used in many mutagenic
screens since being reported as a good mutagen for producing both
loss-of-function and altered function mutants in A. nidulans (Bal et al.
1977). We collated data from the literature and from this study for genetic
screens in which mutants were selected for a diverse range of phenotypes
and where sequence data were reported or the exact mutation associated
with the selected phenotype could be inferred (Table 1). To compare our
whole genome mutation frequencies with phenotype-selected mutation
frequencies, we used a one-way frequency table with x2 analysis. The
distribution of mutation types for the two data sets was significantly
different (x2 = 22.50, d.f. = 5, P = 0.0004). Interestingly, G:C to C:G
and A:T to T:A transversions were significantly more common, whereas

Figure 3 4-NQO induces all six possible base pair substitutions.
Distribution of the number of substitutions affecting guanine-cytosine
(A) and adenine-thymine (B) base pairs per mutant. Note the different
scales on the x-axis for A and B. The dashed line in B shows the
predicted number of spontaneous mutations per individual. Boxplots
show minimum and maximum values within 1.5 · interquartile range of
the box (whiskers), median (dividing line), mean (circle), 95% confi-
dence interval of mean (diamond), and outliers (squares). Using un-
paired unequal distribution Student’s t-test: NS, not significantly
different, �P , 0.05 and ���P , 0.001.
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G:C to A:T and A:T to G:C transitions were less common in the
phenotype-selected data compared with the whole genome data set (Fig-
ure 4). These differences may be accounted for by the functional con-
straints of the selection of these mutations. For 24 amino acid codons
(those encoding Phe, Leu Tyr, His, Gln, Asn, Lys, Asp, Glu, Cys, Ser, Arg)
a transition in the third base position results in a synonymous change
unlikely to alter the phenotype, whereas a transversion causes a nonsynon-
ymous change. To test this hypothesis, we performed one-way frequency
analysis on the number of transitions and transversions in the two data
sets (x2 = 3.60, d.f. = 1, P = 0.057). Although not significantly different by
the conventional 95% confidence level, this test raises the possibility that
functional constraints in the selection of mutants could be an important
parameter. Therefore, the rates and types of mutations identified by whole
genome sequencing of mutants likely approximate the true mutagenic
spectrum for survivors of 4-NQO mutagenesis in A. nidulans, whereas
the historical data are impacted by the constraints of phenotypic selection
at the specific loci studied.

Prediction of 4-NQO screen saturation
The purpose of a genetic screen is to identify genes contributing to
a particular phenotype. Generally, a screen that has identified every gene
associated with a pathway or phenotype is considered a saturation
screen, as was most elegantly demonstrated in the seminal Drosophila
melanogaster developmental screen carried out by Nüsslein-Volhard
and Wieschaus (1980). Even though estimating the number of possible

genes involved in the pathway or phenotype is difficult, several methods,
which use gamma or Poisson distributions, have been used to predict
gene saturation (Pollock and Larkin 2004). Our whole genome charac-
terization of 4-NQO mutagenesis identified both the mean number and
relative frequencies of nucleotide substitutions and therefore allows pre-
diction of the probability of saturation by using a random sampling
with replacement equation (see the section Materials and Methods).
Our approach calculates the number of spores required to mutate every
nucleotide (nucleotide saturation), which is an overestimate of the num-
ber of spores required to reach gene saturation. Using our equation, we
calculate 2 · 107 or 1 · 108 spores with a kill of 50% and 90%, re-
spectively, are sufficient to isolate a mutation in every A:T and G:C pair
and in effect reach nucleotide saturation (Figure 5A).

How many spores would need to be used to isolate every possible
mutation at every possible site? Using the same equation, we determined
the number of spores required to generate every possible substitution at
every nucleotide (substitution saturation). Interestingly, only 4 · 107

spores are required with a 50% kill to reach substitution saturation for
guanine, and only 15 times as many spores (6 · 108) are required to
reach substitution saturation of both guanine and adenine (Figure 5B).
Using a 90% kill, substitution saturation of guanine can be achieved with
2 · 108 spores; however, 4 · 109 spores are required to saturate adenines.
Current 4-NQO mutagenesis protocols in A. nidulans use between 107

and 108 spores, and therefore easily reach nucleotide saturation or even
substitution saturation. Many laboratories use alternative physical or
chemical mutagenesis methods for A. nidulans, including UV light and
MNNG. It will be interesting to use the approach we used here to do
a comparative study of the outcomes and efficacy of these mutagens.

Figure 5 Number of spores required for screen saturation. (A) Probability
of mutating every G:C (solid), A:T (dashed), and every nucleotide (dotted)
in the A. nidulans genome at least once (nucleotide saturation) with
4-NQO doses causing 50% (red), and 90% kill (blue) were calculated using
a random sampling with replacement equation. Note, PS(G/H and A/B) =
PS(A/B) as for this number of treated spores PS(G/H) = 1. (B) The same
equation was used to calculate the number of spores required to generate
every possible substitution at every nucleotide (substitution saturation)
under the same conditions. Note, PS(G/A,C,T and A/C,G,T) = PS(A/C,G,T)

as for this number of treated spores PS(G/A,C,T) = 1.

Figure 4 4-NQO affects primarily guanine nucleotides. Relative fre-
quency (percent) of nucleotide substitutions identified by whole genome
sequencing of random mutations and in phenotype-selected changes
from published screens and this study (Table 1). Weighted arrows indicate
change from wild type to mutant nucleotide.
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Mutant screens in A. nidulans to characterize diverse cellular pro-
cesses, including metabolism, mitosis, and organelle transport have
used the highly carcinogenic chemical mutagen 4-NQO to induce
sequence changes. Using a whole genome approach, we have charac-
terized the mutagenic spectrum of 4-NQO and determined that its
effects are distributed across the genome in a manner unbiased by
sequence other than a preference for guanine over adenine at a ratio of
19:1. Interestingly, 4-NQO dose did not impact the number of mutations
caused within a single surviving strain for 50% and 90% kill percentages.
Therefore, future screens and kill percentages can be designed to suit
whether selection or manual screening is required to identify a trait of
interest. The number of mutations ranged between 23 and 240 per
mutant. Importantly for A. nidulansmutant screens, this is a manageable
number of candidate mutations to test for causation of the selected
phenotype when combined with the power of haploidization and/or
meiotic mapping, or with bulk segregant analysis. Additionally, we have
shown that all six possible sequence transitions and transversions are
induced by 4-NQO adduct repair, making it possible to conduct satu-
ration screens with this chemical. We conclude that current practices
using 4-NQO mutagenesis are sufficient to reach gene saturation in
genetic screens. Therefore, our findings provide genome-wide evidence
for the assertion of Bal et al., (Bal et al. 1977) that “4-NQO is a good
mutagen for A. nidulans.”
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