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Sketching and Streaming Algorithms for
Processing Massive Data

Jelani Nelson∗

Several modern applications require handling data so massive that tra-
ditional algorithmic models do not provide accurate means to design and
evaluate efficient algorithms. Such models typically assume that all data fits
in memory, and that running time is accurately modeled as the number of
basic instructions the algorithm performs. However in applications such as
online social networks, large-scale modern scientific experiments, search en-
gines, online content delivery, and product and consumer tracking for large
retailers such as Amazon and Walmart, data too large to fit in memory must
be analyzed. This consideration has led to the development of several models
for processing such large amounts of data: the external memory model [3, 21]
and cache-obliviousness [13, 19], where one aims to minimize the number of
blocks fetched from disk, property testing [14], where it is assumed that the
data is so massive that we do not wish to even look at it all and thus aim to
minimize the number of probes made into the data, and massively parallel al-
gorithms operating in such systems as MapReduce and Hadoop [6, 9]. Also in
some applications, data arrives in a streaming fashion and must be processed
on the fly as it arrives. Such cases arise for example with packet streams in
network traffic monitoring, or query streams arriving at a web-based service
such as a search engine.

In this article we focus on this latter streaming model of computation,
where a given algorithm must make one pass over a data set to then compute
some function. We pursue such streaming algorithms which use memory that
is significantly sublinear in the amount of data, since we assume that the
data is too large to fit in memory. Sometimes it is also useful to consider
algorithms that are allowed not just one, but a few passes over the data,
in cases where for example the data set lives on disk and the number of

∗minilek@princeton.edu. Supported by NSF CCF-0832797.

1



passes may dominate the overall running time. We also occasionally discuss
sketches. A sketch is with respect to some function f , and a sketch of a
data set x is a compressed representation of x from which one can compute
f(x). Of course under this definition f(x) is itself a valid sketch of x, but
we often require more of our sketch than just being able to compute f(x).
For example, we typically require that it be possible for the sketch to be
updated as more data arrives, and sometimes we also require that sketches
of two different data sets that were prepared independently can be compared
to compute some function of the aggregate data, or similarity or difference
measures across different data sets.

Our goal in this article is not to be comprehensive in our coverage of
streaming algorithms. Rather, we discuss in some detail just a few surprising
results in order to convince the reader that it is possible to obtain some non-
trivial algorithms in this model. Those interested in learning more about this
area are encouraged to read the surveys [8, 18], or view the notes online for
streaming courses taught by Amit Chakrabarti at Dartmouth, Piotr Indyk
at MIT, and Andrew McGregor at UMass Amherst.

1 Probabilistic counting

How many bits does it take to store an integer between 1 and n? The answer
is clearly dlog2 ne bits, else two integers would map to the same bitstring and
be indistinguishable. But what if we only care about recovering the integer
up to a constant factor? Then it suffices to only recover dlog ne, and storing
dlog ne only requires O(log log n) bits.

This observation was behind one of the oldest known streaming algo-
rithms, invented in 1977 by Robert Morris [17], former chief scientist of a
division of the NSA (and father of the inventor of the first Internet worm).
Consider the streaming problem where we see a stream of n increments. We
would like to compute n, though approximately, and with some potential
small probability of failure. We could keep an explicit counter in memory
and increment it after each stream update, but that would require dlog2 ne
bits. Morris’ clever algorithm works as follows: initialize a counter c to 1,
and after each update increment c with probability 1/2c and do nothing oth-
erwise. Philippe Flajolet showed that the expected value of 2c is n+ 2 after
n updates [11], and thus 2c−2 is an unbiased estimator of n. The same work
showed the variance is bounded such that 2c − 2 will be within a constant
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factor of n with constant probability. By a combination of averaging many
independent estimators, as well as attempting to store log1+γ n in memory
instead of log2 n for some small γ > 0 by incrementing with higher probabil-
ity, it is possible to obtain more precise approximations of n in small memory
with very large probability.

2 Frequent Items

A common desired ability in many software systems is the ability to track
“hot” items. For example, Google Trends tracks which search queries and
topics have been the most popular over a recent time window. Large ISPs
like AT&T want to monitor IP traffic being routed through their network to
understand, for example, which servers are receiving the largest amounts of
traffic. Such knowledge can help in detecting Denial of Service attacks, as well
as designing their network infrastructure to minimize costs. For companies
serving similar or identical content to large numbers of users, such as Akamai
or Dropbox, it may be beneficial to detect whether certain content becomes
hot, i.e. frequently downloaded, to know which files to place on servers that
are faster or have connections with higher bandwidth.

The formal setup of this problem is as follows. There is some stream of
tokens i1, . . . , im with each ij coming from some fixed set of size n (e.g. the
set of all 232 IPv4 IP addresses, or the set of all queries in some dictionary).
Let us just suppose that this fixed set is [n].1 For some 0 < ε ≤ 1/2 known
to the algorithm at the beginning of the stream, we would like to report
all indices i ∈ [n] such that i appeared in the stream more than εm times.
This formalization models the examples above: a query stream coming into
Google, a packet stream going through a router, or a stream of downloads
over time made from some content delivery service.

One of the oldest streaming algorithms for detecting frequent items is
the MJRTY algorithm invented by Boyer and Moore in 1980 [7]. MJRTY
makes the following guarantee: if some i ∈ [n] appears in the stream a strict
majority of the time, it will be found. If this guarantee does not hold, MJRTY
may output anything. Note that if given a second pass over the stream, one
can verify whether the output index actually is a majority index. Thus,
MJRTY solves the frequent items problem for ε = 1/2.

1By [n] we mean the set {1, . . . , n}.
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Before describing MJRTY, first consider the following means of carrying
out an election. We have m voters in a room, each voting for some candidate
i ∈ [n]. We ask the voters to run around the room and find one other voter to
pair up with who voted for a different candidate (note: some voters may not
be able to find someone to pair with, for example if everyone voted for the
same candidate). Then, we kick everyone out of the room who did manage to
find a partner. A claim whose proof we leave to the reader as an exercise is
that if there actually was a candidate with a strict majority, then some non-
zero number of voters will be left in the room at the end, and furthermore
all these voters will be supporters of the majority candidate.

The MJRTY algorithm is simply the streaming implementation of the
election procedure in the previous paragraph. We imagine an election official
sitting at the exit door, processing each voter one by one. When the next
voter is processed, he will either be asked to sit aside amongst a pool of
people waiting to be paired off (clearly everyone in this pool supports the
same candidate, else the official could pair two people in the pool with each
other and kick them out of the room), or he will be paired up with someone
in the pool and removed. Now when a new voter approaches the official,
one of several things may happen. If the pool is empty, the official adds
him to the pool. If the pool is not empty and he is voting for a different
candidate than everyone in the pool, then the official grabs someone from
the pool, pairs them off, and kicks them both out of the room. Else if his
vote agrees with the pool, the official adds him to the pool. If the pool is
non-empty at the end, then the candidate the pool supports is labeled the
majority candidate. Note that this algorithm can be implemented to discover
the majority by keeping track of only two things: the size of the pool, and
the name of the candidate everyone in the pool supports. Maintaining these
two integers requires at most dlog2 ne+ dlog2me bits of memory.

What about general ε < 1/2? A natural generalization of the MJRTY
algorithm was invented by Jayadev Misra and David Gries in 1982 [16] (and
has been rediscovered at least a couple times since then [10, 15]). Rather
than pair off voters supporting different candidates, this algorithm tells the
voters to form groups of size exactly k such that no two people in the same
group support the same candidate. Then everyone who managed to make it
into a group of size exactly k is kicked out of the room. It can be shown that
any candidate receiving strictly more than m/k votes will be supported by
one of the last candidates standing, so we can set k = d1/εe. Furthermore,
a simple extension of the MJRTY algorithm implementation using k − 1
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ID/counter pairs (and thus using O(k log(n + m)) bits of space) provides a
streaming algorithm. When a new voter comes, if he matches any candidate
in the pool then we increment that counter by one. Else, we decrement all
counters by one (corresponding to forming a group of size k and removing
them).

3 Distinct Elements

On July 19, 2001 a variant of the Code Red worm began infecting machines
vulnerable to a certain exploit in an older version of the Microsoft IIS web-
server. The worm’s activities included changing the website hosted by the
infected webserver to display

HELLO! Welcome to http://www.worm.com! Hacked By Chinese!

as well as an attempted Denial of Service attack against www1.whitehouse.gov.
In August 2001 while trying to track the rate at which the worm was

spreading, David Moore and Colleen Shannon at The Cooperative Associ-
ation for Internet Data Analysis (CAIDA) needed to track the number of
distinct IP addresses sending traffic on particular links whose packets con-
tained the signature of the Code Red worm. This setup turns out to precisely
be an instantiation of the distinct elements problem introduced and studied
by Philippe Flajolet and G. Nigel Martin [12]. In this problem, one has a
stream of elements i1, i2, . . . , im each being an integer in the set {1, . . . , n}.
Then, given one pass over this stream, one must compute F0, the number
of distinct integers amongst the ij. In the case of tracking the Code Red
worm, n = 232 is the number of distinct IP addresses in IPv4, and m is the
number of packets traversing a monitored link while carrying the signature
of the worm. Aside from network traffic monitoring applications, the dis-
tinct elements problem naturally arises in several other domains: estimating
the number of distinct IP addresses visiting a website, or number of distinct
queries made to a search engine, or to estimate query selectivity in the design
of database query optimizers.

An obvious solution to the distinct elements problem is to maintain a
bitvector x of length n, where we initialize x = 0 then set xi = 1 if we
ever see i in the stream. This takes n bits of memory. Another option is to
remember the entire stream, taking O(m log n) bits. In fact Alon, Matias,
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and Szegedy [2] showed that Ω(min{n,m}) bits is necessary for this problem
unless slack is allowed in two ways:

1. Approximation: We do not promise to output F0 exactly, but rather
some estimate F̃0 such that |F̃0 − F0| ≤ εF0.

2. Randomization: Our algorithm may output a wrong answer with
some small probability.

Our goal is now to produce such an estimate F̃0 which is within εF0 of
F0 with probability at least 2/3. This success probability can be amplified
arbitrarily by taking the median estimate of several independent parallel runs
of the algorithm. Our goal is to design an algorithm using f(1/ε) · log n bits
of memory, e.g. O(log n) memory for a constant factor approximation. Note
that just storing an index in [n] requires dlog2 ne bits, which we presume fits
in a single machine word, so we are aiming to use just a constant number of
machine words!

In fact such an algorithm is possible. Suppose for a minute that we had
access to a perfectly random hash function h mapping [n] to the continuous
interval [0, 1]2. We maintain a single number X in memory: the minimum
value of h(i) we have ever encountered over all i appearing in the stream.
One can show that the expected minimum value satisfies

EX = 1/(F0 + 1).

Thus a natural estimator is to output 1/X − 1. Unfortunately a calculation
shows that the standard deviation of X is almost equal to its expectation, so
that 1/X−1 is poorly concentrated around a good approximation of F0. This
can be remedied by letting X̄ be the average of many independently such
X’s obtained independently at random in parallel, then instead returning
1/X̄ − 1. A more efficient remedy was found by Bar Yossef et al. [4], and
further developed (and named, as the KMV algorithm3) by Beyer et al. [5].
The algorithm maintains the k minimum hash values for k = O(1/ε2). Now
let Xk denote the kth minimum hash value. Then

EXk = k/(F0 + 1),

2In reality one would work with a sufficiently fine discretization of this interval since
computers can only store numbers to finite precision

3KMV stands for “k minimum values”.
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and the returned estimate is thus given as k/Xk − 1. This algorithm can
be shown to return a value satisfying the desired approximation guarantees
with large constant probability.

4 Linear Sketches

In some situations we do not simply want to compute on data coming into
a single data stream, but on multiple datasets coming from multiple data
streams. For example, we may want to compare traffic patterns across two
different time periods, or collected at two different parts of the network. An-
other motivating force is parallelization: split a single data stream into several
to farm out computation to several machines, then combine the sketches of
the data these machines have computed later to recover results on the entire
data set.

One way of accomplishing the above is to design streaming algorithms
that use linear sketches. Suppose we are interested in a problem which can
be modeled in the following turnstile model. We have a vector x ∈ Rn that
receives a stream of coordinate-wise updates of the form xi ← xi+v (v may be
positive or negative). We then at the end of the stream want to approximate
f(x) for some function f . For example in the distinct elements problem, v
is always 1 and f(x) = |{i : xi 6= 0}|. A streaming algorithm using a linear
sketch is then one whose memory contents can be viewed as Ax for some
(possibly random) matrix A. Unfortunately the algorithms discussed above
do not operate via linear sketches, but now we will see examples where this
is the case.

Join size estimation When querying a relational database there can be
multiple ways of executing the query to obtain the result, for example by
taking advantage of associativity. Database query optimizers then try to
cheaply estimate a plan to use to answer the query so as to minimize the
time required. For queries involving joins or self-joins, such optimizers make
use of size estimates of these joins to estimate intermediate table sizes. Ideally
we would like to obtain these estimates from a short sketch that can fit in
cache and thus be updated quickly as data is inserted into the database.

Let us formally define this problem. We have an attribute A and domain
D, and for i ∈ D we let xi denote the frequency of i in A. We will assume that
D = [n]. The self-join size on this attribute is then ‖x‖22 =

∑
i x

2
i , and thus
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we simply want to estimate the squared `2 norm of a vector being updated in
a data stream. In fact this general problem has a wider range of applicability.
For example, noting that ‖x‖22 is sensitive to heavy coordinates, AT&T used
`2-norm estimation to detect traffic anomalies where servers were receiving
too much traffic, signaling potential Denial of Service attacks (in this case xi
is the number of packets sent to IP address i).

The “AMS sketch” of Alon, Matias, and Szegedy [1, 2] provides a low-
memory streaming algorithm for estimating ‖x‖22. Suppose we had a random
hash function h : [n] → {−1, 1}. We initialize a counter X to 0, and when
some value v is added to xi we increment X by v · h(i). Thus at the end
of the stream, X =

∑
i xi · hi. It can be shown that EX2 = ‖x‖22 and that

the variance satisfies E(X2 − EX2)2 ≤ 2‖x‖42. By keeping track of k such
counters X1, . . . , Xk each using independent random hash functions hi and
averaging the X2

i , we obtain an unbiased estimator with smaller variance.
Standard tools like Chebyshev’s inequality then imply that if k = O(1/ε2)
then the average of the X2

i will be within ε‖x‖22 of ‖x‖22 with large constant
probability. Note that this is a linear sketch using a k × n matrix A, where
Ai,j = hi(j)/

√
k and our estimate of ‖x‖22 is ‖Ax‖22.

5 Pseudorandomness

One caveat in many of the algorithms presented above is our assumption that
the hash functions used be random. There are tn functions mapping [n] to
[t], and thus a random such function requires at least n log2 t bits to store.
In applications where we care about small-memory streaming algorithms, n
is large, and thus even if we find an algorithm using sublinear space it would
then not be acceptable to use an additional n bits of space or more to store
the hash function needed by the algorithm.

The above consideration thus pushes streaming algorithm designers to
look for hash functions which are not actually fully random, but only “ran-
dom enough” to ensure that the algorithms in which they are being used will
still perform correctly. There are at the highest level two directions one can
then take to find such hash functions. One is to make some complexity theo-
retic assumption, for example to assume that no efficient algorithm exists for
some concrete computational problem, then to construct hash functions that
can be proven sufficient based on the assumption made. The other direction
is to construct hash functions that are provably sufficiently random without
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making any such assumptions. This latter direction is for obvious reasons
typically harder to implement but is possible in certain applications, such
as for all the problems mentioned above. This area of constructing objects
(such as functions) that look “random enough” for various computational
tasks is known as pseudorandomness, and the interested reader may wish to
read [20].
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