
An Optimal Algorithm for the Distinct Elements
Problem

Citation
Kane, Daniel M., Jelani Nelson, and David P. Woodruff. 2010. "An Optimal Algorithm for the
Distinct Elements Problem." In Proceedings of the Twenty-Ninth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems of Data: PODS '10, June 6-11, 2010, Indianapolis,
Indiana: 41-52. New York, NY: ACM.

Published Version
doi:10.1145/1807085.1807094

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:13820438

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:13820438
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=An%20Optimal%20Algorithm%20for%20the%20Distinct%20Elements%20Problem&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=6ef3c3d2ed8b8931ccedc9e9b9479618&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

An Optimal Algorithm for the Distinct Elements Problem

Daniel M. Kane
∗

Harvard University
One Oxford Street

Cambridge, MA 02138
dankane@math.harvard.edu

Jelani Nelson
†

MIT CSAIL
32 Vassar Street

Cambridge, MA 02139
minilek@mit.edu

David P. Woodruff
IBM Almaden Research

Center
650 Harry Road

San Jose, CA 95120
dpwoodru@us.ibm.com

ABSTRACT
We give the first optimal algorithm for estimating the num-
ber of distinct elements in a data stream, closing a long line
of theoretical research on this problem begun by Flajolet
and Martin in their seminal paper in FOCS 1983. This
problem has applications to query optimization, Internet
routing, network topology, and data mining. For a stream
of indices in {1, . . . , n}, our algorithm computes a (1 ± ε)-
approximation using an optimal O(ε−2+log(n)) bits of space
with 2/3 success probability, where 0 < ε < 1 is given. This
probability can be amplified by independent repetition. Fur-
thermore, our algorithm processes each stream update in
O(1) worst-case time, and can report an estimate at any
point midstream in O(1) worst-case time, thus settling both
the space and time complexities simultaneously.

We also give an algorithm to estimate the Hamming norm
of a stream, a generalization of the number of distinct ele-
ments, which is useful in data cleaning, packet tracing, and
database auditing. Our algorithm uses nearly optimal space,
and has optimal O(1) update and reporting times.

Categories and Subject Descriptors: F.2.0 [Analysis
of Algorithms and Problem Complexity]: General; H.2.m
[Database Management]: Miscellaneous

General Terms: Algorithms, Theory

Keywords: distinct elements, streaming, query optimiza-
tion, data mining

1. INTRODUCTION
Estimating the number of distinct elements in a data stream

∗Supported by a National Defense Science and Engineering
Graduate (NDSEG) Fellowship.
†Supported by a National Defense Science and Engineering
Graduate (NDSEG) Fellowship, and in part by the Cen-
ter for Massive Data Algorithmics (MADALGO) - a center
of the Danish National Research Foundation. Part of this
work was done while the author was at the IBM Almaden
Research Center.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’10, June 6–11, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0033-9/10/06 ...$10.00.

is a fundamental problem in network traffic monitoring, query
optimization, data mining, and several other database areas.
For example, this statistic is useful for selecting a minimum-
cost query plan [33], database design [18], OLAP [30, 34],
data integration [10, 14], and data warehousing [1].

In network traffic monitoring, routers with limited mem-
ory track statistics such as distinct destination IPs, requested
URLs, and source-destination pairs on a link. Distinct ele-
ments estimation is also useful in detecting Denial of Service
attacks and port scans [2, 17]. In such applications the data
is too large to fit at once in main memory or too massive
to be stored, being a continuous flow of data packets. This
makes small-space algorithms necessary. Furthermore, the
algorithm should process each stream update (i.e., packet)
quickly to keep up with network speeds. For example, Estan
et al [17] reported packet header information being produced
at .5GB per hour while estimating the spread of the Code
Red worm, for which they needed to estimate the number
of distinct Code Red sources passing through a link.

Yet another application is to data mining: for example,
estimating the number of distinct queries made to a search
engine, or distinct users clicking on a link or visiting a web-
site. Distinct item estimation was also used in estimating
connectivity properties of the Internet graph [32].

We formally model the problem as follows. We see a
stream i1, . . . , im of indices ij ∈ [n], and our goal is to
compute F0 = |{i1, . . . , im}|, the number of distinct in-
dices that appeared, using as little space as possible. Since
it is known that exact or deterministic computation of F0

requires linear space [3], we settle for computing a valueeF0 ∈ [(1 − ε)F0, (1 + ε)F0] for some given 0 < ε < 1 with
probability 2/3, over the randomness used by the algorithm.
This probability can be amplified by independent repetition.

The problem of space-efficient F0-estimation is well-studied,
beginning with the work of Flajolet and Martin [20], and
continuing with a long line of research, [3, 4, 5, 6, 9, 12, 16,
17, 19, 23, 24, 26, 36]. In this work, we finally settle both
the space- and time-complexities of F0-estimation by giving
an algorithm using O(ε−2+log(n)) bits of space, with worst-
case update and reporting times O(1). By update time, we
mean the time to process a stream token, and by reporting
time, we mean the time to output an estimate of F0 at any
point in the stream. Our space upper bound matches the
known lower bounds [3, 26, 36] up to a constant factor, and
the O(1) update and reporting times are clearly optimal. A
detailed comparison of our results to those in previous work
is given in Figure 1. There is a wide spectrum of time/space
tradeoffs but the key points are that none of the previous

Paper Space Update Time Notes
[20] O(logn) - Assumes random oracle, constant ε
[3] O(logn) O(logn) Only works for constant ε
[24] O(ε−2 logn) O(ε−2)
[5] O(ε−3 logn) O(ε−3)
[4] O(ε−2 logn) O(log(ε−1)) Algorithm I in the paper
[4] O(ε−2 log logn+ poly(log(ε−1), log logn) logn) ε−2 poly(log logn+ log(ε−1)) Algorithm II in the paper
[4] O(ε−2(log(ε−1) + log logn) + logn) O(ε−2(log(ε−1) + log logn)) Algorithm III in the paper
[16] O(ε−2 log logn+ logn) - Assumes random oracle, additive error
[17] O(ε−2 logn) - Assumes random oracle
[6] O(ε−2 logn) O(log(ε−1))
[19] O(ε−2 log logn+ logn) - Assumes random oracle, additive error
This work O(ε−2 + logn) O(1) Optimal

Figure 1: Comparison of our algorithm to previous algorithms on estimating the number of distinct elements
in a data stream.

algorithms achieved our optimal O(ε−2+logn) bits of space,
and the only ones to achieve optimal O(1) update and/or re-
porting time had various restrictions, e.g., the assumption of
access to a random oracle (that is, a truly random hash func-
tion) and/or a small constant additive error in the estimate.
The best previous algorithms without any assumptions are
due to Bar Yossef et al [4], who provide algorithms with
various tradeoffs (Algorithms I, II, and III in Figure 1).

We also give a new algorithm for estimating L0, also
known as the Hamming norm of a vector [13], with opti-
mal running times and near-optimal space. This problem is
a generalization of F0-estimation to the case when items can
be removed from the stream. While F0-estimation is useful
for a single stream or for taking unions of streams if there
are no deletions, L0-estimation can be applied to a pair of
streams to measure the number of unequal item counts. This
makes it more flexible than F0, and can be used in applica-
tions such as maintaining ad-hoc communication networks
amongst cheap sensors [25]. It also has applications to data
cleaning to find columns that are mostly similar [14]. Even if
the rows in the two columns are in different orders, stream-
ing algorithms for L0 can quickly identify similar columns.
As with F0, L0-estimation is also useful for packet tracing
and database auditing [13].

Formally, in this problem there is a vector x = (x1, . . . , xn)
which starts off as the 0 vector, and receives m updates of
the form (i, v) ∈ [n]×{−M, . . . ,M} in a stream (M is some
positive integer). The update (i, v) causes the change xi ←
xi+v. At the end of the stream, we should output (1±ε)L0

with probability at least 2/3, where L0 = |{i : xi 6= 0}|.
Note that L0-estimation is a generalization of F0-estimation,
since in the latter case an index i in the stream corresponds
to the update (i, 1) in an L0-estimation problem.

We give an L0-estimation algorithm with O(1) update and
reporting times, usingO(ε−2 log(n)(log(1/ε)+log log(mM)))
bits of space, both of which improve upon the previously best
known algorithm of Ganguly [22], which had O(log(1/ε)) up-
date time and required O(ε−2 log(n) log(mM)) space. Our
update and reporting times are optimal, and the space is op-
timal up to the log(1/ε) + log log(mM) term due to known
lower bounds [3, 27]. Furthermore, unlike with Ganguly’s
algorithm, our algorithm does not require that xi ≥ 0 for
each i to operate correctly.

1.1 Overview of our algorithms
Our algorithms build upon several techniques given in pre-

vious works, with added twists to achieve our stated per-
formance. In for example [4], it was observed that if one
somehow knows ahead of time a value R = Θ(F0), refining
to (1 ± ε)-approximation becomes easier. For example, [4]
suggested a“balls and bins” approach to estimating F0 given
such an R. The key intuition is that when hashing A balls
randomly into K bins, the number of bins hit by at least
one ball is highly concentrated about its expectation, and
treating this expectation as a function of A then inverting
provides a good approximation to A with high probability
for A = Θ(K). Then if one subsamples each index in [n]

with probability 2− log(R/K), in expectation the number of
distinct items surviving is Θ(K), at which point the balls-
and-bins approach can be simulated by hashing indices (the
“balls”) into entries of a bitvector (the “bins”).

Following the above scheme, an estimate of F0 can be ob-
tained by running a constant-factor approximation in par-
allel to obtain such an R at the end of the stream, and
meanwhile performing the above scheme for geometrically
increasing guesses of R, one of which must be correct to
within a constant factor. Thus, the bits tracked can be
viewed as a bitmatrix: rows corresponding to log(n) lev-
els of subsampling, and columns corresponding to entries in
the bitvector. At the end of the stream, upon knowing R,
the estimate from the appropriate level of subsampling is
used. Such a scheme with K = Θ(1/ε2) works, and gives
O(ε−2 log(n)) space, since there are log(n) levels of subsam-
pling.

It was then first observed in [16] that, in fact, an estima-
tor can be obtained without maintaining the full bitmatrix
above. Specifically, for each column they gave an estimator
that required only maintaining the deepest row with its bit
set to 1. This allowed them to collapse the bitmatrix above
to O(ε−2 log log(n)) bits. Though, their estimator and anal-
ysis required access to a purely random hash function.

Our F0 algorithm is inspired by the above two algorithms
of [4, 16]. We give a subroutine RoughEstimator using
O(log(n)) space which with high probability, simultaneously
provides a constant-factor approximation to F0 at all times
in the stream. Previous subroutines gave a constant factor
approximation to F0 at any particular point in the stream
with probability 1−δ using O(log(n) log(1/δ)) space; a good
approximation at all times then required setting δ = 1/m to
apply a union bound, thus requiring O(log(n) log(m)) space.
The next observation is that if R = Θ(F0), the largest row
index with a 1 bit for any given column is heavily concen-

trated around the value log(F0/K). Thus, if we bitpack the
K counters and store their offsets from log(R/K), we expect
to only use O(K) space for all counters combined. Whenever
R changes, we update all our offsets.

There are of course obvious obstacles in obtaining O(1)
running times, such as the occasional need to decrement
all K counters (when R increases), or to locate the start-
ing position of a counter in a bitpacked array when reading
and writing entries. For the former, we use a “variable-bit-
length array” data structure [7], and for the latter we use
an approach inspired by the technique of deamortization of
global rebuilding (see [29, Ch. 5]). Furthermore, we ana-
lyze our algorithm without assuming a truly random hash
function, and show that a combination of fast k-wise inde-
pendent hash functions [35] and uniform hashing [31] suffice
to have sufficient concentration in all probabilistic events we
consider.

Our L0-estimation algorithm also uses subsampling and a
balls-and-bins approach, but needs a different subroutine for
obtaining the value R, and for representing the bitmatrix.
Specifically, if one maintains each bit as a counter and tests
for the counter being non-zero, frequencies of opposite sign
may cancel to produce 0 and give false negatives. We instead
store the dot product of frequencies in each counter with a
random vector over a suitably large finite field. We remark
that Ganguly’s algorithm [22] is also based on a balls-and-
bins approach, but on viewing the number of bins hit by
exactly one ball (and not at least one ball), and the source
of his algorithm’s higher complexity stems from technical
issues related to this difference.

1.2 Preliminaries
Throughout this paper, all space bounds are given in bits.

We always use m to denote stream length and [n] to denote
the universe (the notation [n] represents {1, . . . , n}). With-
out loss of generality, we assume n is a power of 2, and ε ≤ ε0

for some fixed constant ε0 > 0. In the case of L0, M denotes
an upper bound on the magnitude of updates to the xi. We
use the standard word RAM model, and running times are
measured as the number of standard machine word opera-
tions (integer arithmetic, bitwise operations, and bitshifts).
We assume a word size of at least Ω(log(nmM)) bits to be
able to manipulate counters and indices in constant time.

For reals A,B, ε ≥ 0, we use the notation A = (1 ± ε)B
to denote that A ∈ [(1 − ε)B, (1 + ε)B]. We use lsb(x) to
denote the (0-based index of) the least significant bit of a
nonnegative integer x when written in binary. For example,
lsb(6) = 1. We define lsb(0) = log(n). All our logarithms
are base 2 unless stated otherwise. We also use Hk(U, V)
to denote some k-wise independent hash family of functions
mapping U into V . Using known constructions [11], a ran-
dom h ∈ Hk(U, V) can be represented in O(k log(|U |+ |V |))
bits when |U |, |V | are powers of 2, and computed in the
same amount of space. Also, henceforth, whenever we dis-
cuss picking an h ∈ Hk(U, V), it should be understood that
h is being chosen as a random element of Hk(U, V).

When discussing F0, for t ∈ [m] we use I(t) to denote
{i1, . . . , it}, and define F0(t) = |I(t)|. We sometimes use I
to denote I(m) so that F0 = F0(m) = |I|. In the case of L0-
estimation, we use I(t) to denote the i with xi 6= 0 at time

t. For an algorithm which outputs an estimate eF0 of F0, we

let eF0(t) be its estimate after only seeing the first t updates
(and similarly for L0). More generally, for any variable y

kept as part of the internal state of any of our algorithms,
we use y(t) to denote the contents of that variable at time
t.

Lastly, we analyze our algorithm without any idealized as-
sumptions, such as access to a cryptographic hash function,
or to a hash function which is truly random. Our analyses
all take into account the space and time complexity required
to store and compute the types of hash functions we use.

2. BALLS AND BINS WITH LIMITED IN-
DEPENDENCE

In the analysis of the correctness of our algorithms, we
require some understanding of the balls and bins random
process with limited independence. We note that [4] also
required a similar analysis, but was only concerned with ap-
proximately preserving the expectation under bounded inde-
pendence whereas we are also concerned with approximately
preserving the variance. Specifically, consider throwing a
set of A balls into K bins at random and wishing to un-
derstand the random variable X being the number of bins
receiving at least one ball. This balls-and-bins random pro-
cess can be modeled by choosing a random hash function
h ∈ HA([A], [K]), i.e. h acts fully independently on the A
balls, and letting X = |i ∈ [K] : h−1(i) 6= ∅|. When analyz-
ing our F0 algorithm, we require an understanding of how
X behaves when h ∈ Hk([A], [K]) for k � A.

Henceforth, we let Xi denote the random variable indicat-
ing that at least one ball lands in bin i under a truly random
hash function h, so that X =

PK
i=1 Xi.

The following fact is standard.

Fact 1. E[X] = K
“

1−
`
1− 1

K

´A”
The proof of the following lemma is deferred to the full

version due to space constraints.

Lemma 1. If 100 ≤ A ≤ K/20, then Var[X] < 4A2/K.

We now state a lemma that k-wise independence for small
k suffices to preserve E[X] to within 1± ε, and to preserve
Var[X] to within an additive ε2. We note that item (1) in
the following lemma was already shown in [4, Lemma 1] but
with a stated requirement of k = Ω(log(1/ε)), though their
proof actually seems to only require k = Ω(log(1/ε)/ log log(1/ε)).
Our proof of item (1) also only requires this k, but we require
dependence on K in our proof of item (2). The proof of the
following lemma is in Section A.1, and is via approximate
inclusion-exclusion.

Lemma 2. There exists some constant ε0 such that the
following holds for ε ≤ ε0. Let A balls be mapped into
K bins using a random h ∈ H2(k+1)([A], [K]), where k =
c log(K/ε)/ log log(K/ε) for a sufficiently large constant c >
0. Suppose 1 ≤ A ≤ K. For i ∈ [K], let X ′i be an indicator
variable which is 1 if and only if there exists at least one
ball mapped to bin i by h. Let X ′ =

PK
i=1 X

′
i. Then the

following hold:

(1). |E[X ′]−E[X]| ≤ εE[X]

(2). Var[X ′]−Var[X] ≤ ε2

We now give a consequence of the above lemma.

Lemma 3. There exists a constant ε0 such that the fol-
lowing holds. Let X ′ be as in Lemma 2, and also assume
100 ≤ A ≤ K/20 with K = 1/ε2 and ε ≤ ε0. Then

Pr[|X ′ −E[X]| ≤ 8εE[X]] ≥ 4/5

. Proof. Observe that

E[X] ≥ (1/ε2)

1−

1−Aε2 +

A

2

!
ε4

!!

= (1/ε2)

Aε2 −

A

2

!
ε4

!
≥ (39/40)A,

since A ≤ 1/(20ε2).
By Lemma 2 we have E[X ′] ≥ (1 − ε)E[X] > (9/10)A,

and additionally using Lemma 1 we have that Var[X ′] ≤
Var[X] + ε2 ≤ 5ε2A2. Set ε′ = 7ε. Applying Chebyshev’s
inequality,

Pr[|X ′ −E[X ′]| ≥ (10/11)ε′E[X ′]]

≤ Var[X ′]/((10/11)2(ε′)2E2[X ′])

≤ 5 ·A2ε2/((10/11)2(ε′)2(9/10)2A2)

< (13/2)ε2/(10ε′/11)2

< 1/5

Thus, with probability at least 1/5, by the triangle in-
equality and Lemma 2 we have |X ′−E[X]| ≤ |X ′−E[X ′]|+
|E[X ′]−E[X]| ≤ 8εE[X].

3. F0 ESTIMATION ALGORITHM
In this section we describe our F0-estimation algorithm.

Our algorithm requires, in part, a constant-factor approx-
imation to F0 at every point in the stream in which F0 is
sufficiently large. We describe a subroutine RoughEsti-
mator in Section 3.1 which provides this, using O(log(n))
space, then we give our full algorithm in Section 3.2.

We remark that the algorithm we give in Section 3.2 is
space-optimal, but is not described in a way that achieves
O(1) worst-case update and reporting times. In Section 3.4,
we describe modifications to achieve optimal running times
while preserving space-optimality.

We note that several previous algorithms could give a
constant-factor approximation to F0 with success probabil-
ity 2/3 using O(log(n)) space. To understand why our guar-
antees from RoughEstimator are different, one should pay
particular attention to the quantifiers. In previous algo-
rithms, it was guaranteed that there exists a constant c > 0
such that at any particular point t in the stream, with prob-

ability at least 1 − δ the output eF0(t) is in [F0(t), cF0(t)],
with the space used being O(log(n) log(1/δ)). To then guar-

antee eF0(t) ∈ [F0(t), cF0(t)] for all t ∈ [m] with probability
2/3, one should set δ = 1/(3m) to then union bound over all
t, giving an overall space bound of O(log(n) log(m)). Mean-
while, in our subroutine RoughEstimator, we ensure that

with probability 2/3, eF0(t) ∈ [F0(t), cF0(t)] for all t ∈ [m]
simultaneously, and the overall space used is O(log(n)).

3.1 RoughEstimator
We now show that RoughEstimator (Figure 2) with

probability 1 − o(1) (as n → ∞) outputs a constant-factor

approximation to F0(t) for every t in which F0(t) is suffi-

ciently large. That is, if our estimate of F0(t) is eF0(t),

Pr[∀t ∈ [m] s.t. F0 ≥ KRE, eF0(t) = Θ(F0(t))] = 1− o(1),

where KRE is as in Figure 2.

Theorem 1. With probability 1 − o(1), the output eF0 of

RoughEstimator satisfies F0(t) ≤ eF0(t) ≤ 8F0(t) for ev-
ery t ∈ [m] with F0(t) ≥ KRE simultaneously. The space
used is O(log(n)).

Proof. We first analyze space. The counters in total take
O(KRE log log(n)) = O(log(n)) bits. The hash functions
hj1, h

j
2 each take O(log(n)) bits. The hash functions hj3 take

O(KRE log(KRE)) = O(log(n)) bits.
We now analyze correctness.

Lemma 4. For any fixed point t in the stream with F0(t) ≥
KRE, and fixed j ∈ [3], with probability 1 − O(1/KRE) we

have F0(t) ≤ eF j0 (t) ≤ 4F0(t).

Proof. The algorithm RoughEstimator of Figure 2
can be seen as taking the median output of three instan-
tiations of a subroutine, where each subroutine has KRE

counters C1, . . . , CKRE , hash functions h1, h2, h3, and de-
fined quantities Tr(t) = |{i : Ci(t) ≥ r}|, where Ci(t) is the
state of counter Ci at time t. We show that this subrou-
tine outputs a value eF0(t) ∈ [F0(t), 4F0(t)] with probability
1−O(1/KRE).

Define Ir(t) ⊆ I(t) as the set of i ∈ I(t) with lsb(h1(i)) ≥
r. Note |Ir(t)| is a random variable, and

E[|Ir(t)|] =
F0(t)

2r
, Var[|Ir(t)|] =

F0(t)

2r
−F0(t)

22r
≤ E[|Ir(t)|],

with the latter using 2-wise independence of h1. Then by
Chebyshev’s inequality,

Pr

»˛̨̨̨
|Ir(t)| −

F0(t)

2r

˛̨̨̨
≥ q · F0(t)

2r

–
≤ 1

q2 ·E[|Ir(t)|]
. (1)

Since F0(t) ≥ KRE, there exists an r′ ∈ [0, logn] such that
KRE/2 ≤ E[|Ir′(t)|] < KRE. We condition on the event E
that KRE/3 ≤ Ir′(t) ≤ 4KRE/3, and note

Pr[E] = 1−O(1/KRE)

by Eq. (1). We also condition on the event E ′ that for all
r′′ > r′ + 1, Ir′′(t) ≤ 7KRE/24. Applying Eq. (1) with
r = r′ + 2 and using that Ir+1(t) ⊆ Ir(t),

Pr[E ′] ≥ 1−O(1/KRE).

We now define two more events. The first is the event
E ′′ that Tr′(t) ≥ ρKRE. The second is the event E ′′′ that
Tr′′(t) < ρKRE for all r′′ > r′ + 1. Note that if E ′′ ∧ E ′′′

holds, then F0(t) ≤ eF0(t) ≤ 4F0(t). We now show that these
events hold with large probability.

Define the event A that the indices in Ir′(t) are per-
fectly hashed under h2, and the event A′ that the indices
in Ir′+2(t) are perfectly hashed under h2. Then

Pr[A | E] ≥ 1−O(1/KRE).

and similarly for Pr[A′ | E ′].
Note that, conditioned on E ∧ A, Tr′(t) is distributed

exactly as the number of non-empty bins when throwing
|Ir′(t)| balls uniformly at random into KRE bins. This is

1. Set KRE = max{8, log(n)/ log log(n)}.
2. Initialize 3KRE counters Cj1 , . . . , C

j
KRE

to −1 for j ∈ [3].

3. Pick random hj1 ∈ H2([n], [0, n− 1]), hj2 ∈ H2([n], [KRE
3]), hj3 ∈ H2KRE ([KRE

3], [KRE]) for j ∈ [3].

4. Update(i): For each j ∈ [3], set Cj
h

j
3(h

j
2(i))

← max


Cj
h

j
3(h

j
2(i))

, lsb(hj1(i))

ff
.

5. Estimator: For integer r ≥ 0, define T jr = |{i : Cji ≥ r}|.
For the largest r = r∗ with T jr ≥ ρKRE, set eF j0 = 2r

∗
KRE. If no such r exists, eF j0 = −1.

Output eF0 = median{ eF 1
0 ,
eF 2
0 ,
eF 3
0 }.

Figure 2: RoughEstimator pseudocode. With probability 1 − o(1), eF0(t) = Θ(F0(t)) at every point t in the

stream for which F0(t) ≥ KRE. The value ρ is .99 · (1− e−1/3).

because, conditioned on E ∧ A, there are no collisions of
members of Ir′(t) under h2, and the independence of h3 is
larger than |Ir′(t)|. Thus,

E[Tr′(t) | E ∧ A] =

1−

„
1− 1

KRE

«|Ir′ (t)|!
KRE.

The same argument applies for the conditional expectation
E[Tr′′(t) | E ′ ∧ A′] for r′′ > r′ + 1. Call these conditional
expectations Er. Then since (1−1/n)/e ≤ (1−1/n)n ≤ 1/e
for all real n ≥ 1 (see Proposition B.3 of [28]), we have that
Er/KRE lies in the interval24„1− e−

|Ir(t)|
KRE

«
,

0@1− e−
|Ir(t)|
KRE

„
1− 1

KRE

« |Ir(t)|
KRE

1A35
Thus for r′′ > r′ + 1,

Er′′ ≤

1− e−7/24

„
1− 1

KRE

«7/24
!
KRE, and

Er′ ≥
“

1− e−1/3
”
KRE.

A calculation shows that Er′′ < .99Er′ since KRE ≥ 8.
By negative dependence in the balls and bins random pro-

cess (see [15]), the Chernoff bound applies to Tr(t) and thus

Pr [|Tr′(t)− Er′ | ≥ εEr′ | E ∧ A] ≤ 2e−ε
2Er′/3

for any ε > 0, and thus by taking ε a small enough constant,

Pr[E ′′ | E ∧ A] ≥ 1− e−Ω(KRE).

We also have, for r′′ > r′ + 1,

Pr[E ′′′ | E ′∧A′] = Pr
ˆ
Tr′′(t) ≥ ρKRE | E ′ ∧ A′

˜
≥ 1−e−Ω(KRE).

Thus, overall,

Pr[E ′′ ∧ E ′′′] ≥ Pr[E ′′ ∧ E ′′′ ∧ E ∧ E ′ ∧ A ∧A′]
≥ Pr[E ′′ ∧ E ∧ A] + Pr[E ′′′ ∧ E ′ ∧ A′]− 1

= Pr[E ′′ | E ∧ A] ·Pr[A | E] ·Pr[E]

+ Pr[E ′′′ | E ′ ∧ A′] ·Pr[A′ | E ′] ·Pr[E ′]
− 1

≥ 1−O(1/KRE)

Now, note that for any t ∈ [m], if eF j0 (t) is a 4-approximation

to F0(t) for at least two values of j, then eF0(t) ∈ [F0(t), 4F0(t)].

Thus by Lemma 4, eF0(t) ∈ [F0(t), 4F0(t)] with probability
1−O(1/KRE

2). Let tr be the first time in the stream when
F0(tr) = 2r (if no such time exists, let tr =∞). Then by a

union bound, our estimate of eF0(tr) is in [F0(tr), 4F0(tr)] at
all tr for r ∈ [0, logn] with probability 1−O(log(n)/KRE

2) =

1−o(1). Now, observe that our estimates eF0(t) can only ever
increase with t. Thus, if our estimate is in [F0(tr), 4F0(tr)]
at all points tr, then it is in [F0(t), 8F0(t)] for all t ∈ [m].
This concludes our proof.

3.2 Full algorithm
In this section we analyze our main algorithm (Figure 3),

which (1 ± O(ε))-approximates F0 with 11/20 probability.
We again point out that the implementation described in
Figure 3 is not our final algorithm which achieves O(1) up-
date and reporting times; the final optimal algorithm is a
modification of Figure 3, described in Section 3.4. We as-
sume throughout that F0 ≥ K/32 and deal with the case of
small F0 in Section 3.3. The space used is O(ε−2 + log(n))
bits. Note that the 5/8 can be boosted to 1 − δ for arbi-
trary δ > 0 by running O(log(1/δ)) instantiations of our
algorithm in parallel and returning the median estimate
of F0. Also, the O(ε) term in the error guarantee can be
made ε by running the algorithm with ε′ = ε/C for a suffi-
ciently large constant C. Throughout this section we with-
out loss of generality assume n is larger than some constant
n0, and 1/ε2 ≥ C log(n) for a constant C of our choice,
and is a power of 2. If one desires a (1 ± ε)-approximation

for ε > 1/
p
C log(n), we simply run our algorithm with

ε = 1/
p
C log(n), which worsens our promised space bound

by at most a constant factor.
The algorithm of Figure 3 works as follows. We main-

tain K = 1/ε2 counters C1, . . . , CK as well as three values
A, b, est. Each index is hashed to some level between 0 and
log(n), based on the least significant bit of its hashed value,
and is also hashed to one of the counters. Each counter
maintains the deepest level of an item that was hashed to
it. Up until this point, this information being kept is iden-
tical as in the LogLog [16] and HyperLogLog [19] algorithms
(though our analysis will not require that the hash functions
be truly random). The value A keeps track of the amount of
storage required to store all the Ci, and our algorithm fails
if this value ever becomes much larger than a constant times
K (which we show does not happen with large probability).

1. Set K = 1/ε2.

2. Initialize K counters C1, . . . , CK to −1.

3. Pick random h1 ∈ H2([n], [0, n−1]), h2 ∈ H2([n], [K3]), h3 ∈ Hk([K3], [K]) for k = Ω(log(1/ε)/ log log(1/ε)).

4. Initialize A, b, est = 0.

5. Run an instantiation RE of RoughEstimator.

6. Update(i): Set x← max{Ch3(h2(i)), lsb(h1(i))− b}.
Set A← A−

˚
log(2 + Ch3(h2(i)))

ˇ
+ dlog(2 + x)e.

If A > 3K, Output FAIL.

Set Ch3(h2(i)) ← x. Also feed i to RE.

Let R be the output of RE.

if R > 2est:

(a) est← log(R), bnew ← max{0, est− log(K/32)}.
(b) For each j ∈ [K], set Cj ← max{−1, Cj + b− bnew}

(c) b← bnew, A←
PK
j=1 dlog(Cj + 2)e.

7. Estimator: Define T = |{j : Cj ≥ 0}|. Output eF0 = 2b · ln(1− T
K)

ln(1− 1
K)

.

Figure 3: F0 algorithm pseudocode. With probability 11/20, eF0 = (1±O(ε))F0.

The value est is such that 2est is a Θ(1)-approximation to
F0, and is obtained via RoughEstimator, and b is such
that we expect F0(t)/2b to be Θ(K) at all points t in the
stream. Each Ci then actually holds the offset (from b) of
the deepest level of an item that was hashed to it; if no
item of level b or deeper hashed to Ci, then Ci stores −1.
Furthermore, the counters are bitpacked so that Ci only re-
quires O(1 + log(Ci)) bits of storage (Section 3.4 states a
known data structure which allows the bitpacked Ci to be
stored in a way that supports efficient reads and writes).

Theorem 2. The algorithm of Figure 3 uses O(ε−2 +
log(n)) space.

Proof. The hash functions h1, h2 each require O(log(n))
bits to store. The hash function h3 takes O(k log(K)) =
O(log2(1/ε)) bits. The value b takes O(log logn) bits. The
value A never exceeds the total number of bits to store all
counters, which is O(ε−2 log(n)), and thus A can be rep-
resented in O(log(1/ε) + log log(n)) bits. The counters Cj
never in total consume more than O(1/ε2) bits by construc-
tion, since we output FAIL if they ever would.

Theorem 3. The algorithm of Figure 3 outputs a value
which is (1±O(ε))F0 with probability at least 11/20 as long
as F0 ≥ K/32.

Proof. Let eFRE
0 (t) be the estimate of F0 offered by RE

at time t. Throughout this proof we condition on the event

E that F0(t) ≤ eFRE
0 (t) ≤ 8F0(t) for all t ∈ [m], which occurs

with probability 1− o(1) by Theorem 1.
We first show that the algorithm does not output FAIL

with large probability. Note A is always
PK
i=1 dlog(Ci + 2)e,

and we must thus show that with large probability this quan-
tity is at most 3K at all points in the stream. Let A(t) be the
value of A at time t (before running steps (a)-(c)), and sim-
ilarly define Cj(t). We condition on the randomness used
by RE, which is independent from the remaining parts of
the algorithm. Let t1, . . . , tr−1 be the points in the stream

where the output of RE changes, i.e eFRE
0 (tj − 1) 6= eFRE

0 (tj)
for all j ∈ [r − 1], and define tr = m. We note that A(t)

takes on its maximum value for t = tj for some j ∈ [r], and
thus it suffices to show that A(tj) ≤ 3K for all j ∈ [r]. We

furthermore note that r ≤ log(n) + 3 since eFRE
0 (t) is weakly

increasing, only increases in powers of 2, and is always be-
tween 1 and 8F0 ≤ 8n given that E occurs. Now,

A(t) ≤ K +

KX
i=1

log(Ci(t) + 2)

≤ K +K · log

 PK
i=1 Ci(t)

K
+ 2

!
with the last inequality using concavity of the logarithm and
Jensen’s inequality. It thus suffices to show that, with large
probability,

PK
i=1 Ci(tj) ≤ 2K for all j ∈ [r].

Fix some t = tj for j ∈ [r]. For i ∈ I(t), let Xi(t) be the
random variable max{−1, lsb(h1(i)) − b}, and let X(t) =P
i∈I(t) Xi(t). Note

PK
i=1 Ci(t) ≤ X(t), and thus it suffices

to lower bound Pr[X(t) ≤ 2K].
We have that Xi(t) equals s with probability 1/2b+s+1 for

0 ≤ s < log(n) − b, equals log(n) − b with probability 1/n,
and equals −1 with the remaining probability mass. Thus

E[X(t)] ≤ F0(t) ·

0@1/n+

log(n)−b−1X
s=0

2−(b+s+1)

1A = F0(t)/2b.

Furthermore, by choice of h1 the Xi(t) are pairwise inde-
pendent, and thus Var[X(t)] ≤ E[X(t)] since Var[Xi(t)] ≤
E[Xi(t)]. Then by Chebyshev’s inequality,

Pr[X(t) > 2K] <
F0(t)

2b · (2K − F0(t)/2b)2

Conditioned on E , K/256 ≤ F0(t)/2b ≤ K/32, implying
the above probability is at most 1/(32K). Then by a union
bound over all tj for j ∈ [r], we have that X(t) ≤ 2K for all
j ∈ [r] with probability at least 1− r/(32K) ≥ 1− 1/32 by
our assumed upper bound on ε, implying we output FAIL
with probability at most 1/32.

We now show that the output from Step 7 in Figure 3 is

(1 ± O(ε))F0 with probability 11/16. Let A be the algo-
rithm in Figure 3, and let A′ be the same algorithm, but
without the third line in the update rule (i.e., A′ never

outputs FAIL). We first show that the output eF0 of A′ is
(1 ± O(ε))F0 with probability 5/8. Let Ib be the set of in-
dices i ∈ I such that lsb(i) ≥ b. Then E[|Ib|] = F0/2

b, and
Var[|Ib|] ≤ E[|Ib|], with the last inequality in part using
pairwise independence of h1. We note that conditioned on
E , we have

K/256 ≤ E[|Ib|] ≤ K/32

Let E ′ be the event that K/300 ≤ |Ib| ≤ K/20. Then by
Chebyshev’s inequality,

Pr[E ′ | E] ≥ 1−O(1/K) = 1− o(1).

Also, if we let E ′′ be the event that Ib is perfectly hashed
under h2, then pairwise independence of h2 gives

Pr[E ′′ | E ′] ≥ 1−O(1/K) = 1− o(1).

Now, conditioned on E ′ ∧ E ′′, we have that T is a random
variable counting the number of bins hit by at least one ball
under a k-wise independent hash function, where there are
B = |Ib| balls, K bins, and k = Ω(log(K/ε)/ log log(K/ε)).
Then by Lemma 3, T = (1±8ε)(1− (1−1/K)B)K with 4/5
probability, in which case

ln(1− T/K) = ln((1− 1/K)B ± 8ε(1− (1− 1/K)B))

Conditioned on E ′, (1− 1/K)B = Θ(1), and thus the above
is ln((1 ± O(ε))(1 − 1/K)B) = B ln(1 − 1/K) ± O(ε) since
ln(1 + x) = O(|x|) for |x| < 1/2, and thuseF0 = B · 2b ±O(ε · 2bK). (2)

Conditioned on E , we have that 2b ≤ 256F0/K, and thus
the error term in Eq. (2) is O(εF0). Also, E[B] = F0/2

b,
which is at least K/256 conditioned on E . Thus by pairwise
independence of h1, Chebyshev’s inequality implies

Pr[|B −E[B]| ≥ c/
√
K] ≤ E[B]

(c2/K) ·E[B]2
≤
„

16

c

«2

since Var[B] ≤ E[B], which we can make an arbitrarily
small constant by setting c to be a large constant. Note that
1/
√
K is just ε, and thus we have that B = (1±O(ε))F0/2

b

with arbitrarily large constant probability.
Putting everything together, we have that, conditioned

on E ∧ E ′ ∧ E ′′, eF0 = (1±O(ε))F0 with probability at least
4/5 − δ for any constant δ > 0 of our choice, e.g. δ = 1/5.
Since Pr[E ∧ E ′ ∧ E ′′] ≥ 1− o(1), we thus have

Pr[eF0 = (1±O(ε))F0] ≥ 3/5− o(1).

Note our algorithm in Figure 3 succeeds as long as (1) we

do not output FAIL, and (2) eF0 = (1 ± O(ε))F0, and thus
overall we succeed with probability at least 1− 2

5
−o(1)− 1

32
>

11
20

.

3.3 Handling small F0

In Section 3.2, we assumed that F0 = Ω(K) for K = 1/ε2

(specifically, F0 ≥ K/32). In this subsection, we show how
to deal with the case that F0 is small, by running a similar
(but simpler) algorithm to that of Figure 3 in parallel.

The case F0 < 100 can be dealt with simply by keeping
the first 100 distinct indices seen in the stream in memory,
taking O(log(n)) space.

For the case F0 ≥ 100 we can apply Lemma 3 as was
done in the proof of Theorem 3. We maintain K′ = 2K
bits B1, . . . , BK′ in parallel, initialized to 0. When seeing
an index i in the stream, in addition to carrying out Step
6 of Figure 3, we also set Bh3(h2(i)) to 1 (h3 can be taken
to have range K′ = 2K, and its evaluation can be taken
modulo K when used in Figure 3 to have a size-K range).
Let t0 be the smallest t ∈ [m] with F0(t) = K′/64, and t1
be the smallest t ∈ [m] with F0(t) = K′/32 (if no such ti
exist, set them to ∞). Define TB(t) = |{i : Bi(t) = 1}|,
and define eFB0 (t) = ln(1 − TB(t)/K′)/ ln(1 − 1/K′). Then
by similar calculations as in Theorem 3 and a union bound

over t0, t1, Pr[eFB0 (ti) = (1±O(ε))F0(ti) for i ∈ {0, 1}] is at

least 1 − 2 · (1/5) − o(1) = 3/5 − o(1). Noting that eFB0 (t)
monotonically increases with t, we can do the following: for

t with eFB0 (t) ≥ K′/32 = K/16, we output the estimator

from Figure 3; else, we output eFB0 (t). We summarize this
section with the following theorem.

Theorem 4. Let δ > 0 be any fixed constant, and ε > 0
be given. There is a subroutine requiring O(ε−2 + log(n))
space which with probability 1− δ satisfies the property that
there is some t′ ∈ [m] satisfying: (1) for any fixed t < t′,
(1±O(ε))F0 is output, and (2) for any t ≥ t′ the subroutine
outputs LARGE, and we are guaranteed F0(t) ≥ 1/(16ε2).’

3.4 Running time
In this subsection we discuss an implementation of our F0

algorithm in Figure 3 with O(1) update and reporting times.
We first state a few theorems from previous works.

Theorem 5 (Brodnik [8], Fredman and Willard [21]).
The least and most significant bits of an integer fitting in a
machine word can be computed in constant time.

The next two theorems give hash families which have
strong independence properties while only requiring O(1)
evaluation time (recall that the k-wise independent hash
functions of Carter and Wegman require Θ(k) evaluation
time).

Theorem 6 (Pagh and Pagh [31, Theorem 1.1]). Let
S ⊆ U = [u] be a set of z > 1 elements, and let V = [v],
with 1 < v ≤ u. Suppose the machine word size is Ω(log(u)).
For any constant c > 0 there is word RAM algorithm that,
using time log(z) logO(1)(v) and O(log(z) + log log(u)) bits
of space, selects a family H of functions from U to V (inde-
pendent of S) such that:

1. With probability 1−O(1/zc), H is z-wise independent
when restricted to S.

2. Any h ∈ H can be represented by a RAM data structure
using O(z log(v)) bits of space, and h can be evaluated
in constant time after an initialization step taking O(z)
time.

The following is a corollary of Theorem 2.16 in [35].

Theorem 7 (Siegel [35]). Let U = [u] and V = [v]
with u = vc for some constant c ≥ 1, where the machine
word size is Ω(log(v)). Suppose one wants a k(v)-wise in-
dependent hash family H of functions mapping U to V for
k(v) = vo(1). For any constant ε > 0 there is a random-
ized procedure for constructing such an H which succeeds

with probability 1− 1/vε, taking vε bits of space. A random
h ∈ H can be selected using vε bits of random seed, and h
can be evaluated in O(1) time.

We now describe a fast version of RoughEstimator.

Lemma 5. RoughEstimator can be implemented with
O(1) worst-case update and reporting times, at the expense
of only giving a 16-approximation to F0(t) for every t ∈ [m]
with F0(t) ≥ KRE, for KRE as in Figure 2.

Proof. We first discuss update time. We replace each
hj3 with a random function from the hash family H of Theo-
rem 6 with z = 2KRE, u = KRE

3, v = KRE. The constant c
in Item 1 of Theorem 6 is chosen to be 1, so that each hj3 is
uniform on any given subset of z items of [u] with probability
1−O(1/KRE). Note that the proof of correctness of Rough-
Estimator (Theorem 1) only relied on the hj3 being uniform
on some unknown set of 4KRE/3 < 2KRE indices with prob-
ability 1−O(1/KRE) (namely, those indices in Ir′(t)). The
space required to store any h ∈ H is z log(v) = O(log(n)),
which does not increase our space bound for RoughEsti-
mator. Updates then require computing a least significant
bit, and computing the hj1, h

j
2, h

j
3, all taking constant time.

For reporting time, in addition to the information main-
tained in Figure 2, we also maintain three sets of counters
Aj0, A

j
1, A

j
2, A

j
3, A

j
4 for j ∈ [3]. For a fixed j, the Aji store

T jr+i for an r we now specify. Roughly speaking, for the val-
ues of t where F0(t) ≥ KRE, r will be such that, conditioned
on RoughEstimator working correctly, 2r will always be
in [F0(t)/2, 8F0(t)]. We then alter the estimator of Rough-
Estimator to being 2r+1.

Note that, due to Theorem 4, the output of RoughEs-
timator does not figure into our final F0-estimator until
F0(t) ≥ (1 − O(ε))/(32ε2), and thus the output of the al-
gorithm is irrelevant before this time. We start off with
r = log(1/(32ε2)). Note that Aj0, A

j
1, A

j
2, A

j
3, A

j
4 can be

maintained in constant time during updates. At some point
t1, the estimator from Section 3.3 will declare that F0(t1) =
(1 ± O(ε))/(32ε2), at which point we are assured F0(t1) ≥
1/(64ε2) ≥ log(n) (assuming ε is smaller than some con-
stant, and assuming that 1/ε2 ≥ 64 log(n)). Similarly, we
also have F0(t1) ≤ 1/(16ε2) ≤ 4 log(n). Thus, by our choice
of r and conditioned on the event that RoughEstimator
of Figure 2 succeeds (i.e., outputs a value in [F0(t), 8F0(t)]
for all t with F0(t) ≥ KRE), we can determine the median
across the j of the largest r∗ such that T jr ≥ ρKRE from the
Aji and set r(t1) = r∗ so that 2r(t1) is in [F0(t1), 8F0(t1)].

Our argument henceforth is inductive: conditioned on the
output of RoughEstimator from Figure 2 being correct
(always in [F0(t), 8F0(t)]), 2r(t) will always be in [F0(t)/2, 8F0(t)]
for all t ≥ t1, which we just saw is true for t = t1. Note
that conditioned on RoughEstimator being correct, its es-
timate of F0 cannot jump by a factor more than 8 at any
given point in the stream. Furthermore, if this happens, we
will detect it since we store up to Aj4. Thus, whenever we
find that the estimate from RoughEstimator changed (say

from 2r
′

to 2r
′′

), we increment r by r′′ − r′ and set each Aji
to Aji+r′′−r′ for i ≤ 4+r′−r′′ For 4+r′−r′′ < i ≤ 4, we re-

compute Aji from scratch, by looping over the KRE counters
Ci. This requires O(KRE) work, but note that since t ≥ t1,
there must be at least KRE updates before F0(t) doubles,
and thus we can afford to do O(1) work toward this looping
per update. In the meantime 2r cannot fall below F0/2.

We will use the following “variable-bit-length array” data
structure to implement the array C of counters in Figure 3,
which has entries whose binary representations may have
unequal lengths. Specifically, in Figure 3, the bit represen-
tation of Ci requires O(1 + log(Ci + 2)) bits.

Definition 1 (Blandford, Blelloch [7]). A variable-
bit-length array (VLA) is a data structure implementing an
array C1, . . . , Cn supporting the following operations: (1)
update(i, x) sets the value of Ci to x, and (2) read(i) re-
turns Ci. Unlike in standard arrays, the Ci are allowed
to have bit-representations of varying lengths, and we use
len(Ci) to represent the length of the bit-representation of
Ci.

Theorem 8 (Blandford and Blelloch [7]). There is
a VLA data structure using O(n+

P
i len(Ci)) space to store

n elements, supporting worst-case O(1) updates and reads,
under the assumptions that (1) len(Ci) ≤ w for all i, and
(2) w ≥ log(M). Here w is the machine word size, and M
is the amount of memory available to the VLA.

We now give a time-optimal version of Figure 3.

Theorem 9. The algorithm of Figure 3 can be imple-
mented with O(1) worst-case update and reporting times.

Proof. For update time, we select h3 from the hash fam-
ily of Theorem 7, which requires O(1/εε) space for arbitrar-
ily small ε > 0 of our choosing (say, ε = 1), and thus this
space is dominated by other parts of the algorithm. We then
can evaluate h1, h2, h3 in constant time, as well as compute
the required least significant bit in constant time. Updat-
ing A requires computing the ceiling of a base-2 logarithm,
but this is just a most significant bit computation which we
can do in O(1) time. We can also read and write the Cj
in constant time whilst using the same asymptotic space by
Theorem 8.

What remains is to handle the if statement for when
R > 2est. Note that a näıve implementation would require
O(K) time. Though this if statement occurs infrequently
enough that one could show O(1) amortized update time,
we instead show the stronger statement that an implemen-
tation is possible with O(1) worst case update time. The
idea is similar to that in the proof of Lemma 5: when bnew

changes, it cannot change more than a constant number of
times again in the next O(K) updates, and so we can spread
the O(K) required work over the next O(K) stream updates,
doing a constant amount of work each update.

Specifically, note that bnew only ever changes for times t
when R(t) > 2est(t) ≥ K/16, conditioned on the subroutine
of Theorem 4 succeeding, implying that F0(t) ≥ K/256,
and thus there must be at least K/256 updates for F0(t)
to double. Since RoughEstimator always provides an 8-
approximation, est can only increase by at most 3 in the
next K/256 stream updates. We will maintain a primary
and secondary instantiation of our algorithm, and only the
primary receives updates. Then in cases where R > 2est

and bnew changes from b, we copy a sufficiently large con-
stant number of the Cj (specifically, 3 · 256) for each of the
next K/256 updates, from the primary to secondary struc-
ture, performing the update Cj ← max{−1, Cj + b − bnew}
in the secondary structure. If RoughEstimator fails and
est changes by more than 3 in the next K/256 updates,
we output FAIL. Meanwhile, during this copy phase, we

process new stream updates in both the primary and sec-
ondary structures, and we answer updates from the primary
structure. The analysis of correctness remains virtually un-
changed, since the value 2b corresponding to the primary
structure still remains a constant-factor approximation to
F0 during this copy phase.

For reporting time, note we can maintain T = |{i : Ci ≥
0}| during updates, and thus the reporting time is the time
to compute a natural logarithm, which can be made O(1)
via a small lookup table (see Section A.2).

4. L0 ESTIMATION ALGORITHM
Here we give an algorithm for estimating L0, the Ham-

ming norm of a vector updated in a stream.
Our L0 algorithm is based on the approach to F0 estima-

tion in Figure 4. In this approach, we maintain a lg(n)×K
bit-matrix A, and upon receiving an update i, we subsam-
ple i to the row determined by the lsb of a hash evalua-
tion, then evaluate another hash function to tell us a col-
umn and set the corresponding bit of A to 1. Note that
our algorithm from Section 3 is just a space-optimized im-
plementation of this approach. Specifically, in Figure 3
we obtained a c-approximation R to F0 via RoughEsti-
mator for c = 8. The value b we maintained was just
max{0, lg(32R/K)}. Then rather than explicitly maintain-
ing A, we instead maintained counters Cj which allowed
us to deduce whether Ab,j = 1 (specifically, Ab,j = 1 iff
Cj = 0).

The proof of correctness of the approach in Figure 4 is thus
essentially identical to that of Theorem 3 (in fact simpler,
since we do not have to upper bound the case of outputting
FAIL), so we do not repeat it here. Thus, we need only show
that the approach in Figure 4 can be implemented for some
constant c ≥ 1 in the context of L0-estimation. Specifically,
we must show that (a) the bit-matrix A can be maintained
(with large probability), and (b) we can implement the ora-
cle in Step 4 of Figure 4 to give a c-approximation to L0 for
some constant c ≥ 1.

We first show (a), that we can maintain the bit-matrix
A with large probability. In fact, note our estimate of L0

only depends on one particular row i∗ = log(16R/K) of A,
so we need only ensure that we maintain row i∗ with large
constant probability. We first give two facts.

Fact 2. Let t, r > 0 be integers. Pick h ∈ H2([r], [t]).

For any S ⊂ [r] , E[
Ps
i=1

`|h−1(i)∩S|
2

´
] ≤ |S|2/(2t).

Proof. Write |S| = s. Let Xi,j indicate h(i) = j. By
linearity of expectation, the desired expectation is then

t
X
i<i′

E[Xi,1]E[Xi′,1] = t

s

2

!
1

t2
≤ s2

2t
.

Fact 3. Let Fq be a finite field and v ∈ Fdq be a non-zero

vector. Then, a random w ∈ Fdq gives Prw[v ·w = 0] = 1/q,
where v · w is the inner product over Fq.

Proof. The set of vectors orthogonal to v is a linear sub-
space V ⊂ Fdq of dimension d− 1 and thus has qd−1 points.
Thus, Pr[w ∈ V] = 1/q.

Lemma 6. There is a scheme which represents each Ai,j
using O(log(1/ε) + log log(mM)) bits such that, for i∗ =

log(16R/K), the (i∗)th row of A can be recovered with proba-
bility 2/3. Furthermore, the update time and time to recover
any Ai,j are both O(1).

Proof. We represent eachAi,j as a counterBi,j ofO(log(K)+
log log(mM)) bits. We interpret Ai,j as being the bit “1” if
Bi,j is non-zero; else we intrepret Ai,j as 0. The details are
as follows. We choose a prime p randomly in [D,D3] for D =
100K log(mM). Notice that for mM larger than some con-
stant, by standard results on the density of primes there are
at least K2 log2(mM) primes in the interval [D,D3]. Since
every frequency xi is at most mM in magnitude and thus
has at most log(mM) prime factors, non-zero frequencies re-
main non-zero modulo p with probability 1−O(1/K2), which
we condition on occurring. We also randomly pick a vector
u ∈ FKp and h4 ∈ H2([K3], [K]). Upon receiving an update
(i, v), we increment Blsb(h1(i)),h3(h2(i)) by v ·uh4(h2(i)), then
reduce modulo p.

Define Ii∗ = {i ∈ I : lsb(i) = i∗}. Note that condi-
tioned on R ∈ [L0, cL0], we have E[Ii∗] ≤ K/32, and thus
Pr[|Ii∗ | ≤ K/20] = 1− O(1/K) = 1− o(1) by Chebyshev’s
inequality. We condition on this event occurring. Also, since
the range of h2 is of size K3, the indices in Ii∗ are perfectly
hashed with probability 1 − O(1/K) = 1 − o(1), which we
also condition on occurring.

Let Q be the event that p does not divide any |xj | for
j ∈ Ii∗ . Then by a union bound, Pr[Q] = 1−O(1/K).

Let Q′ be the event that h4(h2(j)) 6= h4(h2(j′)) for dis-
tinct j, j′ ∈ Ii∗ with h3(h2(j)) = h3(h2(j′)).

Henceforth, we also condition on bothQ andQ′ occurring,
which we later show holds with good probability. Define J
as the set of j ∈ [K] such that h3(h2(i)) = j for at least one
i ∈ Ii∗ , so that to properly represent the Ai∗,j we should
have Bi∗,j non-zero iff j ∈ J . For each j ∈ J , Bi∗,j can be
viewed as maintaining the dot product of a non-zero vector
v, the frequency vector x restricted to coordinates in Ii∗
which hashed to j, with a random vector w, namely, the
projection of u onto coordinates in Ii∗ that hashed to j.
The vector v is non-zero since we condition on Q, and w is
random since we condition on Q′.

Now, letXi,j be a random variable indicating that h3(h2(j)) =
h3(h2(j′)) for distinct j, j′ ∈ Ii∗ . Let X =

P
j<j′ Xj,j′ . By

Fact 2 with r = K3, t = K, and s = |Ii∗ | < K/20, we have
that E[X] ≤ K/800. Let Z = {{j, j′} ∈

`
Ii∗
2

´
: h3(h2(j)) =

h3(h2(j′))}. For (j, j′) ∈ Z let Yj,j′ be a random variable in-
dicating h4(h2(j)) = h4(h2(j′)), and let Y =

P
(j,j′)∈Z Yj,j′ .

Then by pairwise independence of h4, and the fact that we
conditioned on Ii∗ being perfectly hashed under h2, we have

E[Y] =
X

(j,j′)∈Z

Pr[h4(h2(j)) = h4(h2(j′))] = |Z|/K.

Note |Z| = X. Conditioned on X ≤ 20E[X] ≤ K/40,
which happens with probability at least 19/20 by Markov’s
inequality, we have that E[Y] ≤ |Z|/K ≤ 1/40, so that
Pr[Y ≥ 1] ≤ 1/40. Thus, Q′ holds with probability at least
(19/20) · (39/40) > 7/8.

Finally, by Fact 3 with q = p, and union bounding over
all K counters Bi∗,j , no Bi∗,j for j ∈ J is 0 with probability
1−K/p ≥ 99/100. Thus, our scheme overall succeeds with
probability (7/8) · (99/100)− o(1) > 2/3.

We next show (b) in Section A.3, i.e. give an algorithm
providing an O(1)-approximation to L0 with O(1) update
and reporting times. The space used isO(log(n) log log(mM)).

1. Set K = 1/ε2.

2. Instantiate a lg(n)×K bit-matrix A, initializing each Ai,j to 0.

3. Pick random h1 ∈ H2([n], [0, n− 1]), h2 ∈ H2([n], [K3]), h3 ∈ Hk([K3], [K]) for k = Ω(lg(1/ε)/ lg lg(1/ε)).

4. Obtain a value R ∈ [F0, cF0] from some oracle, for some constant c ≥ 1.

5. Update(i): Set Alsb(h1(i)),h3(h2(i)) ← 1.

6. Estimator: Define T = |{j ∈ [K] : Alog(16R/K),j = 1}|. Output eF0 = 32R
K
· ln(1− T

K)
ln(1− 1

K)
.

Figure 4: An algorithm skeleton for F0 estimation.

Note that, as with our F0 algorithm, we also need to have
an algorithm which provides a (1 ± ε)-approximation when
L0 � 1/ε2. Just as in Section 3.3, this is done by handling
the case of small L0 in two cases separately: detecting and
estimating when L0 ≤ 100, and (1 ± ε)-approximating L0

when L0 > 100. In the former case, we can compute L0 ex-
actly with large probability by perfect hashing (see Lemma 8
in Section A.3). In the latter case, we use the same scheme
as in Section 3.3, but using Lemma 6 to represent our bit
array.

Putting everything together, we have the following.

Theorem 10. There is an algorithm for (1±ε)-approximating
L0 using space O(ε−2 log(n)(log(1/ε) + log log(mM))), with
2/3 success probability, and with O(1) update and reporting
times.

Acknowledgments
We thank Nir Ailon, Erik Demaine, Piotr Indyk, T.S. Jayram,
Swastik Kopparty, Rasmus Pagh, Mihai Pǎtraşcu, and the
authors of [6] for valuable discussions and references.

5. REFERENCES
[1] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy.

The Aqua approximate query answering system. In SIGMOD,
pages 574–576, 1999.

[2] A. Akella, A. Bharambe, M. Reiter, and S. Seshan. Detecting
DDoS attacks on ISP networks. In Proc. MPDS, 2003.

[3] N. Alon, Y. Matias, and M. Szegedy. The Space Complexity of
Approximating the Frequency Moments. J. Comput. Syst.
Sci., 58(1):137–147, 1999.

[4] Z. Bar-Yossef, T.S. Jayram, R. Kumar, D. Sivakumar, and
L. Trevisan. Counting distinct elements in a data stream. In
Proc. RANDOM, pages 1–10, 2002.

[5] Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Reductions in
streaming algorithms, with an application to counting triangles
in graphs. In Proc. SODA, pages 623–632, 2002.

[6] K. S. Beyer, P. J. Haas, B. Reinwald, Y. Sismanis, and
R. Gemulla. On synopses for distinct-value estimation under
multiset operations. In SIGMOD, pages 199–210, 2007.

[7] D. K. Blandford and G. E. Blelloch. Compact dictionaries for
variable-length keys and data with applications. ACM Trans.
Alg., 4(2), 2008.

[8] A. Brodnik. Computation of the least significant set bit. In
Proc. ERK, 1993.

[9] J. Brody and A. Chakrabarti. A multi-round communication
lower bound for gap hamming and some consequences. In Proc.
CCC, pages 358–368, 2009.

[10] P. Brown, P. J. Haas, J. Myllymaki, H. Pirahesh, B. Reinwald,
and Y. Sismanis. Toward automated large-scale information
integration and discovery. In Data Management in a
Connected World, pages 161–180, 2005.

[11] L. Carter and M. N. Wegman. Universal classes of hash
functions. J. Comput. Syst. Sci., 18(2):143–154, 1979.

[12] E. Cohen. Size-estimation framework with applications to
transitive closure and reachability. J. Comput. Syst. Sci.,
55(3):441–453, 1997.

[13] G. Cormode, M. Datar, P. Indyk, and S. Muthukrishnan.
Comparing data streams using hamming norms (how to zero
in). IEEE Trans. Knowl. Data Eng., 15(3):529–540, 2003.

[14] T. Dasu, T. Johnson, S. Muthukrishnan, and V. Shkapenyuk.
Mining database structure; or, how to build a data quality
browser. In SIGMOD, pages 240–251, 2002.

[15] D. P. Dubhashi and D. Ranjan. Balls and bins: A study in
negative dependence. Random Struct. Algorithms,
13(2):99–124, 1998.

[16] M. Durand and P. Flajolet. Loglog counting of large
cardinalities (extended abstract). In Proc. ESA, pages
605–617, 2003.

[17] C. Estan, G. Varghese, and M. E. Fisk. Bitmap algorithms for
counting active flows on high-speed links. IEEE/ACM Trans.
Netw., 14(5):925–937, 2006.

[18] S. J. Finkelstein, M. Schkolnick, and P. Tiberio. Physical
database design for relational databases. ACM Trans.
Database Syst., 13(1):91–128, 1988.

[19] P. Flajolet, E. Fusy, O. Gandouet, and F. Meunier.
Hyperloglog: The analysis of a near-optimal cardinality
estimation algorithm. Disc. Math. and Theor. Comp. Sci.,
AH:127–146, 2007.

[20] P. Flajolet and G. N. Martin. Probabilistic counting
algorithms for data base applications. J. Comput. Syst. Sci.,
31(2):182–209, 1985.

[21] M. L. Fredman and D. E. Willard. Surpassing the information
theoretic bound with fusion trees. J. Comput. Syst. Sci.,
47(3):424–436, 1993.

[22] S. Ganguly. Counting distinct items over update streams.
Theor. Comput. Sci., 378(3):211–222, 2007.

[23] P. B. Gibbons. Distinct sampling for highly-accurate answers
to distinct values queries and event reports. In VLDB, pages
541–550, 2001.

[24] P. B. Gibbons and S. Tirthapura. Estimating simple functions
on the union of data streams. In Proc. SPAA, pages 281–291,
2001.

[25] P. Indyk. Algorithms for dynamic geometric problems over
data streams. In Proc. STOC, pages 373–380, 2004.

[26] P. Indyk and D. P. Woodruff. Tight lower bounds for the
distinct elements problem. In Proc. FOCS, pages 283–, 2003.

[27] D. M. Kane, J. Nelson, and D. P. Woodruff. On the exact
space complexity of sketching and streaming small norms. In
Proc. SODA, pages 1161–1178, 2010.

[28] R. Motwani and P. Raghavan. Randomized Algorithms.
Cambridge University Press, 1995.

[29] M. H. Overmars. The Design of Dynamic Data Structures.
Springer, 1983.

[30] S. Padmanabhan, B. Bhattacharjee, T. Malkemus, L. Cranston,
and M. Huras. Multi-dimensional clustering: A new data
layout scheme in db2. In SIGMOD, pages 637–641, 2003.

[31] A. Pagh and R. Pagh. Uniform hashing in constant time and
optimal space. SIAM J. Comput., 38(1):85–96, 2008.

[32] C. R. Palmer, G. Siganos, M. Faloutsos, and C. Faloutsos. The
connectivity and fault-tolerance of the internet topology. In
NRDM Workshop, 2001.

[33] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A.
Lorie, and T. G. Price. Access path selection in a relational
database management system. In SIGMOD, pages 23–34, 1979.

[34] A. Shukla, P. Deshpande, J. F. Naughton, and K. Ramasamy.
Storage estimation for multidimensional aggregates in the
presence of hierarchies. In Proc. VLDB, pages 522–531, 1996.

[35] A. Siegel. On universal classes of extremely random

constant-time hash functions. SIAM J. Computing,
33(3):505–543, 2004.

[36] D. P. Woodruff. Optimal space lower bounds for all frequency
moments. In Proc. SODA, pages 167–175, 2004.

APPENDIX
A. APPENDIX

A.1 Expectation and variance analyses for balls
and bins with limited independence

The following is a proof of Lemma 2. Below, X corre-
sponds to the random variable which is the number of bins
receiving at least one ball when tossing A balls into K inde-
pendently at random.
Lemma 2 (restatement). There exists some constant ε0

such that the following holds for ε ≤ ε0. Let A balls be
mapped into K bins using a random h ∈ H2(k+1)([A], [K]),
where k = c log(K/ε)/ log log(K/ε) for a sufficiently large
constant c > 0. Suppose 1 ≤ A ≤ K. For i ∈ [K], let X ′i
be an indicator variable which is 1 if and only if there exists
at least one ball mapped to bin i by h. Let X ′ =

PK
i=1 X

′
i.

Then the following hold:

(1). |E[X ′]−E[X]| ≤ εE[X]

(2). Var[X ′]−Var[X] ≤ ε2

Proof. Let Ai be the random variable number counting
the number of balls in bin i when picking h ∈ H2(k+1)([A], [K]).
Define the function:

fk(n) =

kX
i=0

(−1)i

n

i

!

We note that fk(0) = 1, fk(n) = 0 for 1 ≤ n ≤ k and
|fk(n)| ≤

`
n
k+1

´
otherwise. Let f(n) = 1 if n = 0 and 0

otherwise. We now approximate Xi as 1− fk(Ai). We note
that this value is determined entirely by k-wise independence
of h. We note that this is also

1− f(Ai)±O

Ai
k + 1

!!
= Xi ±O

Ai
k + 1

!!
.

The same expression holds for theX ′i, and thus both E[X ′i]
and E[Xi] are sandwiched inside an interval of size bounded
by twice the expected error. To bound the expected error
we can use (k+1)-independence. We have that the expected
value of

`
Ai
k+1

´
is
`
A
k+1

´
ways of choosing k + 1 of the balls

times the product of the probabilities that each ball is in bin
i. This is

A

k + 1

!
K−(k+1) ≤

„
eA

K(k + 1)

«k+1

≤ A

K
·(e(k+1))−(k+1),

with the last inequality using that A ≤ K. Thus, |E[Xi] −
E[X ′i]| ≤ ε2A/K for k = c log(1/ε)/ log log(1/ε) for suffi-
ciently large constant c. In this case |E[X]−E[X ′]| ≤ ε2A ≤
εE[X] for ε smaller than some constant since E[X] = Ω(A)
for A ≤ K.

We now analyze Var[X ′]. We approximate XiXj as (1−
fk(Ai))(1−fk(Aj)). This is determined by 2k-independence

of h and is equal to
1− f(Ai)±O

Ai
k + 1

!!!
1− f(Aj)±O

Aj
k + 1

!!!

= XiXj ±O

Ai
k + 1

!
+

Aj
k + 1

!
+

Ai
k + 1

!
Aj
k + 1

!!

We can now analyze the error using 2(k + 1)-wise inde-
pendence. The expectation of each term in the error is cal-
culated as before, except for products of the form

Ai
k + 1

!
Aj
k + 1

!
.

The expected value of this is
A

k + 1, k + 1

!
K−2(k+1) ≤

A

k + 1

!2

K−2(k+1)

≤
„

eA

K(k + 1)

«2(k+1)

.

Thus, for k = c′ log(K/ε)/ log log(K/ε) for sufficiently large
c′ > 0, each summand in the error above is bounded by
ε3/(6K2), in which case |E[XiXj]−E[XiXj]| ≤ ε3/K2. We
can also make c′ sufficiently large so that |E[X]−E[X ′]| ≤
ε3/K2. Now, we have

Var[X ′]−Var[X]

≤ |(E[X]−E[X ′]) + 2
X
i<j

(E[XiXj]−E[X ′iX
′
j])

− (E2[X]−E2[X ′])|
≤ |E[X]−E[X ′]|

+K(K − 1) ·max
i<j
|E[XiXj]−E[X ′iX

′
j]|

+ |E2[X]−E2[X ′]|
≤ ε3/K2 + ε3 + E2[X](2ε3/K2 + (ε3/K2)2)

≤ 5ε3

which is at most ε2 for ε sufficiently small.

A.2 A compact lookuptable for the natural log-
arithm

Lemma 7. Let K > 4 be a positive integer, and write
γ = 1/

√
K. It is possible to construct a lookup table requir-

ing O(γ−1 log(1/γ)) bits such that ln(1 − c/K) can then be
computed with relative accuracy γ in constant time for all
integers c ∈ [4K/5].

Proof. We set γ′ = γ/15 and discretize the interval
[1, 4K/5] geometrically by powers of (1 + γ′). We precom-
pute the natural algorithm evaluated at 1 − ρ/K for all
discretization points ρ, with relative error γ/3, creating a
table A taking space O(γ−1 log(1/γ)). We answer a query
ln(1− c/K) by outputting the natural logarithm of the clos-
est discretization point in A. First, we argue that the error
from this output is small enough. Next, we argue that the
closest discretization point can be found in constant time.

For the error, the output is up to (1± γ/3),

ln(1− (1± γ′)c/K) = ln(1− c/K ± γ′c/K)

= ln(1− c/K)± 5γ′c/K

= ln(1− c/K)± γc/(3K).

Using the fact that | ln(1− z)| ≥ z/(1− z) for 0 < z < 1, we
have that | ln(1− c/K)| ≥ c/(K − c) ≥ c/K. Thus,

(1± γ/3)(ln(1− c/(3K))± γc/K) = (1± γ/3)2 ln(1− c/K)

= (1± γ) ln(1− c/K).

Now, for finding the discretization point, note we need to
look up A[

˚
log1+γ′(c)

ˇ
] = A[dlog(c)/(aγ′)e], where aγ′ =

log(1 + γ′) (note, we can compute log(1 + γ′) = aγ′ in pre-
processing). Now, write c = d · 2k where k = blog(c)c and
thus 1 ≤ d < 2. We can compute k in O(1) time since
it is the most significant bit of c. We know log1+γ′(c) =

log(d · 2k)/(aγ′) = k/(aγ′) + log(d)/(aγ′). Now, the deriva-
tive of the log function in the range [1, 2) is sandwiched
between two constants. Thus, if we discretize [1, 2) evenly
into O(γ′−1) buckets and store the log of a representative of
each bucket in a lookup table B, we can additively O(γ′)-
approximate log(d) by table lookup of B[b(d− 1)/γ′c]. So
now we have computed

k/(aγ′)+(log(d) +O(γ′))/(aγ′)

= k/(aγ′) + log(d)/(aγ′)±O(1).

This O(1) can be taken to be arbitrarily small, say at most
1/3, by tuning the constant in the discretization. So we
know the correct index to look at in our index table A up
to ±1/3; since indices are integers, we are done.

A.3 A Rough Estimator for L0-estimation
We describe here a subroutine RoughL0Estimator which

gives a constant-factor approximation to L0 with probability
9/16. First, we need the following lemma which states that
when L0 is at most some constant c, it can be computed
exactly in small space. The lemma follows by picking a ran-
dom prime p = Θ(log(mM) log log(mM)) and pairwise in-
dependently hashing the universe into [Θ(c2)] buckets. Each
bucket is a counter which tracks the sum of frequencies mod-
ulo p of updates to universe items landing in that bucket.
The estimate of L0 is then the total number of non-zero
counters, and the maximum estimate after O(log(1/η)) tri-
als is finally output. This gives the following.

Lemma 8. There is an algorithm which, when given the
promise that L0 ≤ c, outputs L0 exactly with probability at
least 1 − η using O(c2 log log(mM)) space, in addition to
needing to store O(log(1/η)) independently chosen pairwise
independent hash functions mapping [n] into [c2]. The up-
date and reporting times are O(1).

Now we describe RoughL0Estimator. We pick a func-
tion h : [n] → [n] at random from a pairwise independent
family. For each 0 ≤ j ≤ log(n) we create a substream Sj
consisting of those x ∈ [n] with lsb(h(x)) = j. Let L0(S)
denote L0 of the substream S. For each Sj we run an in-
stantiation Bj of Lemma 8 with c = 141 and η = 1/16.
All instantiations share the same O(log(1/η)) hash functions

h1, . . . , hO(log(1/η)).
To obtain our final estimate of L0 for the entire stream, we

find the largest value of j for which Bj declares L0(Sj) > 8.

Our estimate of L0 is L̃0 = 2j . If no such j exists, we
estimate L̃0 = 1.

Theorem 11. RoughL0Estimator with probability at
least 9/16 outputs a value L̃0 satisfying L0 ≤ L̃0 ≤ 110L0.
The space used is O(log(n) log log(mM)), and the update
and reporting times are O(1).

Proof. The space to store h isO(logn). The Θ(log(1/η))
hash functions hi in total requireO(log(1/η) logn) = O(logn)
bits to store since 1/η = O(1). The remaining space to store
a single Bj for a level is O(log log(mM)) by Lemma 8, and
thus storing allBj across all levels requiresO(log(n) log log(mM))
space.

As for running time, upon receiving a stream update (x, v),
we first hash x using h, taking time O(1). Then, we com-
pute lsb(h(x)), also in constant time. Now, given our choice
of η for Bj , we can update Bj in O(1) time by Lemma 8.

To obtain O(1) reporting time, we again use the fact that
we can compute the least significant bit of a machine word
in constant time. We maintain a single machine word z of
at least log(n) bits and treat it as a bit vector. We maintain
that the jth bit of z is 1 iff L0(Sj) is reported to be greater
than 8 by Bj . This property can be maintained in constant
time during updates. Constant reporting time then follows
since finding the deepest level j with greater than 8 reported
elements is equivalent to computing lsb(z).

Now we prove correctness. Observe that E[L0(Sj)] =
L0/2

j+1 when j < logn and E[L0(Sj)] = L0/2
j = L0/n

when j = log n. Let j∗ be the largest j satisfying E[L0(Sj)] ≥
1 and note that 1 ≤ E[L0(Sj

∗
)] ≤ 2. For any j > j∗,

Pr[L0(Sj) > 8] < 1/(8 · 2j−j
∗−1) by Markov’s inequality.

Thus, by a union bound, the probability that any j > j∗

has L0(Sj) > 8 is at most (1/8) ·
P∞
j−j∗=1 2−(j−j∗−1) = 1/4.

Now, let j∗∗ < j∗ be the largest j such that E[L0(Sj)] ≥ 55,
if such a j exists. Since we increase the j by powers of 2, we
have 55 ≤ E[L0(Sj

∗∗
)] < 110. Note that h is pairwise inde-

pendent, so Var[L0(Sj
∗∗

)] ≤ E[L0(Sj
∗∗

)]. For this range of

E[L0(Sj
∗∗

)], we then have by Chebyshev’s inequality that

Pr
h
|L0(Sj

∗∗
)−E[L0(Sj

∗∗
)]| ≥ 3

p
E[L0(Sj∗∗)]

i
≤ 1/9.

If |L0(Sj
∗∗

)−E[L0(Sj
∗∗

)]| < 3
p

E[L0(Sj∗∗)], then

32 < 55− 3
√

55 < L0(Sj
∗∗

) < 110 + 3
√

110 < 142

since 55 ≤ E[L0(Sj
∗∗

)] < 110.
So far we have shown that with probability at least 3/4,

L0(Sj) ≤ 8 for all j > j∗. Thus, for these j the Bj will
estimate L0 of the corresponding substreams to be at most
8, and we will not output L̃0 = 2j for j > j∗. On the other
hand, we know for j∗∗ (if it exists) that with probability at

least 8/9, Sj
∗∗

will have 32 < L0(Sj
∗∗

i) < 142. By our choice

of c = 141 and η = 1/16 in the Bj , Bj
∗∗

will output a value

L̃0(Sj
∗∗

i) ≥ L0(Sj
∗∗

i)/4 > 8 with probability at least 1 −
(1/9 + 1/16) > 13/16 by Lemma 8. Thus, with probability

at least 1−(3/16+1/4) = 9/16, we output L̃0 = 2j for some
j∗∗ ≤ j ≤ j∗, which satisfies 110 ·2j < L0 ≤ 2j . If such a j∗∗

does not exist, then L0 < 55, and 1 is a 55-approximation
in this case.

