An Optimal Algorithm for the
Distinct Elements Problem

The Harvard community has made this
article openly available. Please share
how this access benefits you. Your story matters

Citation

Published Version
doi:10.1145/1807085.1807094

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:13820438

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
An Optimal Algorithm for the Distinct Elements Problem

Daniel M. Kane *
Harvard University
One Oxford Street
Cambridge, MA 02138
dankane@math.harvard.edu

Jelani Nelson †
MIT CSAIL
32 Vassar Street
Cambridge, MA 02139
minilek@mit.edu

David P. Woodruff
IBM Almaden Research Center
650 Harry Road
San Jose, CA 95120
dpwoodru@us.ibm.com

ABSTRACT

We give the first optimal algorithm for estimating the number of distinct elements in a data stream, closing a long line of theoretical research on this problem begun by Flajolet and Martin in their seminal paper in FOCS 1983. This problem has applications to query optimization, Internet routing, network topology, and data mining. For a stream of indices in \{1, \ldots, n\}, our algorithm computes a (1 ± ε)-approximation using an optimal $O(\varepsilon^{-2} + \log(n))$ bits of space with 2/3 success probability, where 0 < ε < 1 is given. This probability can be amplified by independent repetition. Furthermore, our algorithm processes each stream update in $O(1)$ worst-case time, and can report an estimate at any point midstream in $O(1)$ worst-case time, thus settling both the space and time complexities simultaneously.

We also give an algorithm to estimate the Hamming norm of a stream, a generalization of the number of distinct elements, which is useful in data cleaning, packet tracing, and database auditing. Our algorithm uses nearly optimal space, and has optimal $O(1)$ update and reporting times.

Categories and Subject Descriptors: F.2.0 [Analysis of Algorithms and Problem Complexity]: General; H.2.m [Database Management]: Miscellaneous

General Terms: Algorithms, Theory

Keywords: distinct elements, streaming, query optimization, data mining

1. INTRODUCTION

Estimating the number of distinct elements in a data stream is a fundamental problem in network traffic monitoring, query optimization, data mining, and several other database areas. For example, this statistic is useful for selecting a minimum-cost query plan [33], database design [18], OLAP [30, 34], data integration [10, 14], and data warehousing [1].

In network traffic monitoring, routers with limited memory track statistics such as distinct destination IPs, requested URLs, and source-destination pairs on a link. Distinct elements estimation is also useful in detecting Denial of Service attacks and port scans [2, 17]. In such applications the data is too large to fit at once in main memory or too massive to be stored, being a continuous flow of data packets. This makes small-space algorithms necessary. Furthermore, the algorithm should process each stream update (i.e., packet) quickly to keep up with network speeds. For example, Estan et al [17] reported packet header information being produced at .5GB per hour while estimating the spread of the Code Red worm, for which they needed to estimate the number of distinct Code Red sources passing through a link.

Yet another application is to data mining: for example, estimating the number of distinct queries made to a search engine, or distinct users clicking on a link or visiting a website. Distinct item estimation was also used in estimating connectivity properties of the Internet graph [32].

We formally model the problem as follows. We see a stream i_1, \ldots, i_m of indices $i_j \in [n]$, and our goal is to compute $F_0 = |\{i_1, \ldots, i_m\}|$, the number of distinct indices that appeared, using as little space as possible. Since it is known that exact or deterministic computation of F_0 requires linear space [3], we settle for computing a value $F_0 \in \left[(1 - \varepsilon)F_0, (1 + \varepsilon)F_0 \right]$ for some given 0 < ε < 1 with probability 2/3, over the randomness used by the algorithm. This probability can be amplified by independent repetition.

The problem of space-efficient F_0-estimation is well-studied, beginning with the work of Flajolet and Martin [20], and continuing with a long line of research, [3, 4, 5, 6, 9, 12, 16, 17, 19, 23, 24, 26, 36]. In this work, we finally settle both the space- and time-complexities of F_0-estimation by giving an algorithm using $O(\varepsilon^{-2} + \log(n))$ bits of space, with worst-case update and reporting times $O(1)$. By update time, we mean the time to process a stream token, and by reporting time, we mean the time to output an estimate of F_0 at any point in the stream. Our space upper bound matches the known lower bounds [3, 26, 36] up to a constant factor, and the $O(1)$ update and reporting times are clearly optimal. A detailed comparison of our results to those in previous work is given in Figure 1. There is a wide spectrum of time/space tradeoffs but the key points are that none of the previous...
algorithms achieved our optimal $O(\varepsilon^{-2} + \log n)$ bits of space, and the only ones to achieve optimal $O(1)$ update and/or reporting time had various restrictions, e.g., the assumption of access to a random oracle (that is, a truly random hash function) and/or a small constant additive error in the estimate. The best previous algorithms without any assumptions are due to Bar Yossef et al [4], who provide algorithms with various tradeoffs (Algorithms I, II, and III in Figure 1).

We also give a new algorithm for estimating L_0, also known as the Hamming norm of a vector [13], with optimal running times and near-optimal space. This problem is a generalization of F_0-estimation to the case when items can be removed from the stream. While F_0-estimation is useful for a single stream or for taking unions of streams if there are no deletions, L_0-estimation can be applied to a pair of streams to measure the number of unequal item counts. This makes it more flexible than F_0, and can be used in applications such as maintaining ad-hoc communication networks amongst cheap sensors [25]. It also has applications to data cleaning to find columns that are mostly similar [14]. Even if the rows in the two columns are in different orders, streaming algorithms for L_0 can quickly identify similar columns. As with F_0, L_0-estimation is also useful for packet tracing and database auditing [13].

Formally, in this problem there is a vector $x = (x_1, \ldots, x_n)$ which starts as the 0 vector, and we receive updates of the form $(i, v) \in [n] \times \{-M, \ldots, M\}$ in a stream (M is some positive integer). The update (i, v) causes the change $x_i \leftarrow x_i + v$. At the end of the stream, we should output $(1 \pm \varepsilon)L_0$ with probability at least $2/3$, where $L_0 = \{i : x_i \neq 0\}$.

Note that L_0-estimation is a generalization of F_0-estimation, since in the latter case an index i in the stream corresponds to the update $(i, 1)$ in an L_0-estimation problem.

We give an L_0-estimation algorithm with $O(1)$ update and reporting times, using $O(\varepsilon^{-2} \log n (\log (1/\varepsilon) + \log \log (mM)))$ bits of space, both of which improve upon the previously best known algorithm of Ganguly [22], which had $O(\log (1/\varepsilon))$ update time and required $O(\varepsilon^{-2} \log (n) \log (mM))$ space. Our update and reporting times are optimal, and the space is optimal up to the $\log (1/\varepsilon) + \log \log (mM)$ term due to known lower bounds [3, 27]. Furthermore, unlike with Ganguly’s algorithm, our algorithm does not require that $x_i \geq 0$ for each i to operate correctly.

1.1 Overview of our algorithms

Our algorithms build upon several techniques given in previous works, with added twists to achieve our stated performance. In for example [4], it was observed that if one somehow knows ahead of time a value $R = \Theta(F_0)$, refining to $(1 \pm \varepsilon)$-approximation becomes easier. For example, [4] suggested a “balls and bins” approach to estimating F_0 given such an R. The key intuition is that when hashing A balls randomly into K bins, the number of bins hit by at least one ball is highly concentrated about its expectation, and treating this expectation as a function of A then inverting provides a good approximation to A with high probability for $A = \Theta(K)$. Then if one subsamples each index in $[n]$ with probability $2^{-\log (K/K)}$, in expectation the number of distinct items surviving is $\Theta(K)$, at which point the balls-and-bins approach can be simulated by hashing indices (the “balls”) into entries of a bitvector (the “bins”).

Following the above scheme, an estimate of F_0 can be obtained by running a constant-factor approximation in parallel to obtain such an R at the end of the stream, and meanwhile performing the above scheme for geometrically increasing guesses of R, one of which must be correct to within a constant factor. Thus, the bits tracked can be viewed as a bitmatrix: rows corresponding to $\log(n)$ levels of subsampling, and columns corresponding to entries in the bitvector. At the end of the stream, upon knowing R, the estimate from the appropriate level of subsampling is used. Such a scheme with $R = \Theta(1/\varepsilon^2)$ works, and gives $O(\varepsilon^{-2} \log (n))$ space, since there are $\log (n)$ levels of subsampling.

It was first observed in [16] that, in fact, an estimator can be obtained without maintaining the full bitmatrix above. Specifically, for each column they gave an estimator that required only maintaining the deepest row with its bit set to 1. This allowed them to collapse the bitmatrix above to $O(\varepsilon^{-2} \log (\log(n)))$ bits. Though, their estimator and analysis required access to a purely random hash function.

Our F_0 algorithm is inspired by the above two algorithms of [4, 16]. We give a subroutine ROUGHESTIMATE using $O(\log(n))$ space which with high probability, simultaneously provides a constant-factor approximation to F_0 at all times in the stream. Previous subroutines gave a constant factor approximation to F_0 at any particular point in the stream with probability $1 - \delta$ using $O(\log(n) \log(1/\delta))$ space; a good approximation at all times then required setting $\delta = 1/m$ to apply a union bound, thus requiring $O(\log(n) \log(m))$ space. The next observation is that if $R = \Theta(F_0)$, the largest row index with a 1 bit for any given column is heavily concen-

<table>
<thead>
<tr>
<th>Paper</th>
<th>Space</th>
<th>Update Time</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>[20]</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>Assumes random oracle, constant ε</td>
</tr>
<tr>
<td>[4]</td>
<td>$O(\log n)$</td>
<td>$O(\varepsilon^{-2})$</td>
<td>Only works for constant ε</td>
</tr>
<tr>
<td>[24]</td>
<td>$O(\varepsilon^{-2} \log n)$</td>
<td>$O(\varepsilon^{-2})$</td>
<td></td>
</tr>
<tr>
<td>[5]</td>
<td>$O(\varepsilon^{-3} \log n)$</td>
<td>$O(\varepsilon^{-3})$</td>
<td></td>
</tr>
<tr>
<td>[4]</td>
<td>$O(\varepsilon^{-2} \log \log n)$</td>
<td>$O(\varepsilon^{-2})$</td>
<td>Algorithm I in the paper</td>
</tr>
<tr>
<td>[4]</td>
<td>$O(\varepsilon^{-2} \log \log n + \log(\varepsilon^{-1}), \log(\log n) \log n)$</td>
<td>$O(\varepsilon^{-2} \log \log n + \log(\varepsilon^{-1}))$</td>
<td>Algorithm II in the paper</td>
</tr>
<tr>
<td>[4]</td>
<td>$O(\varepsilon^{-3} \log \log n + \log n)$</td>
<td>$O(\varepsilon^{-3} \log \log n)$</td>
<td></td>
</tr>
<tr>
<td>[6]</td>
<td>$O(\varepsilon^{-2} \log n)$</td>
<td>$O(\varepsilon^{-2} \log \log n + \log n)$</td>
<td>Assumes random oracle, additive error</td>
</tr>
<tr>
<td>[6]</td>
<td>$O(\varepsilon^{-2} \log \log n + \log n)$</td>
<td>$O(\varepsilon^{-2} \log \log n + \log n)$</td>
<td></td>
</tr>
<tr>
<td>[19]</td>
<td>$O(\varepsilon^{-3} \log \log n + \log n)$</td>
<td>$O(\varepsilon^{-3} \log \log n)$</td>
<td></td>
</tr>
<tr>
<td>This work</td>
<td>$O(\varepsilon^{-2} + \log n)$</td>
<td>$O(\varepsilon^{-2} + \log n)$</td>
<td>Assumes random oracle, additive error</td>
</tr>
</tbody>
</table>

Figure 1: Comparison of our algorithm to previous algorithms on estimating the number of distinct elements in a data stream.
trated around the value \(\log(F_0/K) \). Thus, if we \textit{bitpack} the \(K \) counters and store their offsets from \(\log(R/K) \), we expect to only use \(O(K) \) space for all counters combined. Whenever \(R \) changes, we update all our offsets.

There are of course obvious obstacles in obtaining \(O(1) \) running times, such as the occasional need to decrement all \(K \) counters (when \(R \) increases), or to locate the starting position of a counter in a bitpacked array when reading and writing entries. For the former, we use a “variable-bit-length array” data structure [7], and for the latter we use an approach inspired by the technique of deamortization of global rebuilding (see [29, Ch. 5]). Furthermore, we analyze our algorithm without assuming a truly random hash function, and show that a combination of fast \(k \)-wise independent hash functions [35] and uniform hashing [31] suffice to have sufficient concentration in all probabilistic events we consider.

Our \(L_0 \)-estimation algorithm also uses subsampling and a balls-and-bins approach, but needs a different subroutine for obtaining the value \(R \), and for representing the bitmatrix. Specifically, if one maintains each bit as a counter and tests the counter being non-zero, frequencies of opposite sign may cancel to produce 0 and give false negatives. We instead store the dot product of frequencies in each counter with a random vector over a suitably large finite field. We remark that Ganguly’s algorithm [22] is also based on a balls-and-bins approach, but needs a different subroutine for receiving at least one ball. This balls-and-bins random process can be modeled by choosing a random hash function \(h \in \mathcal{H}_k([A],[K]) \), i.e. \(h \) acts fully independently on the \(A \) balls, and letting \(X_i = \{ i \in [K]: h^{-1}(i) \notin \emptyset \} \). When analyzing our \(F_0 \) algorithm, we require an understanding of how \(X \) behaves when \(h \in \mathcal{H}_k([A],[K]) \) for \(k \ll A \).

Henceforth, we let \(X_i \) denote the random variable indicating that at least one ball lands in bin \(i \) under a truly random hash function \(h \), so that \(X = \sum_{i=1}^K X_i \).

The following fact is standard.

FACT 1. \(\mathbb{E}[X] = K \left(1 - \left(1 - \frac{1}{K} \right)^A \right) \)

The proof of the following lemma is deferred to the full version due to space constraints.

LEMMA 1. If \(100 \leq A \leq K/20 \), then \(\mathbb{Var}[X] < 4A^2/K \).

We now state a lemma that \(k \)-wise independence for small \(k \) suffices to preserve \(\mathbb{E}[X] \) to within \(1 + \varepsilon \), and to preserve \(\mathbb{Var}[X] \) to within an additive \(\varepsilon^2 \). We note that item (1) in the following lemma was already shown in [4, Lemma 1] but with a stated requirement of \(k = \Omega(\log(1/\varepsilon)) \), though their proof actually seems to only require \(k = \Omega(\log(1/\varepsilon)/\log(\log(1/\varepsilon))) \). Our proof of item (1) also only requires this \(k \), but we require dependence on \(K \) in our proof of item (2). The proof of the following lemma is in Section A.1, and is via approximate inclusion-exclusion.

LEMMA 2. There exists some constant \(\varepsilon_0 \) such that the following holds for \(\varepsilon \leq \varepsilon_0 \). Let \(A \) balls be mapped into \(K \) bins using a random \(h \in \mathcal{H}_{k(A+1)}([A],[K]) \), where \(k = c \log(K/\varepsilon)/\log(\log(K/\varepsilon)) \) for a sufficiently large constant \(c > 0 \). Suppose \(1 \leq A \leq K \). For \(i \in [K] \), let \(X_i' \) be an indicator variable which is 1 if and only if there exists at least one ball mapped to bin \(i \) by \(h \). Let \(X' = \sum_{i=1}^K X_i' \). Then the following hold:

1. \(|\mathbb{E}[X'] - \mathbb{E}[X]| \leq 2\varepsilon \mathbb{E}[X] \)
2. \(\mathbb{Var}[X'] - \mathbb{Var}[X] \leq \varepsilon^2 \)

We now give a consequence of the above lemma.
LEMMA 3. There exists a constant ε_0 such that the following holds. Let X' be as in Lemma 2, and also assume $100 \leq A \leq K/20$ with $K = 1/\varepsilon^2$ and $\varepsilon \leq \varepsilon_0$. Then
\[
\Pr[|X' - E[X]| \geq \varepsilon E[X]] \geq 4/5
\]
· Proof. Observe that
\[
E[X] \geq (1/\varepsilon^2) \left(1 - \left(1 - A\varepsilon^2 + \frac{(2)^2}{2}\right)\right)
\]
\[
= \left(\frac{1}{\varepsilon^2}\right) \left(-\frac{1}{2}\right)\varepsilon^2
\]
\[
\geq \left(\frac{39/40}{A}\right)
\]
since $A \leq 1/(20\varepsilon^2)$.

By Lemma 2 we have $E[X'] \geq (1 - \varepsilon)E[X] > (9/10)A$, and additionally using Lemma 1 we have that $\text{Var}[X'] \leq \text{Var}[X] + \varepsilon^2 \leq 5\varepsilon^2 A^2$. Set $\varepsilon' = 7\varepsilon$. Applying Chebyshev's inequality,
\[
\Pr[|X' - E[X]| \geq \text{(10/11)}\varepsilon E[X']]
\]
\[
\leq \text{Var}[X']/(\text{(10/11)}^2(\varepsilon')^2 E[X'])
\]
\[
\leq 5 \cdot A^2 \varepsilon^2/(\text{(10/11)}^2(\varepsilon')^2(9/10) A^2)
\]
\[
< (13/2)^2 \varepsilon^2/(\varepsilon')^2
\]
\[
\leq 1/5
\]
Thus, with probability at least 1/5, by the triangle inequality and Lemma 2 we have $|X' - E[X]| \leq |X' - E[X']| + |E[X'] - E[X]| \leq 8\varepsilon E[X]$. \qed

3. F_0 ESTIMATION ALGORITHM

In this section we describe our F_0-estimation algorithm. Our algorithm requires, in part, a constant-factor approximation to F_0 at every point in the stream in which F_0 is sufficiently large. We describe a subroutine ROUGHESTIMATOR in Section 3.1 which provides this, using $O(\log(n))$ space, then we give our full algorithm in Section 3.2.

We remark that the algorithm we give in Section 3.2 is space-optimal, but is not described in a way that achieves $O(1)$ worst-case update and reporting times. In Section 3.4, we describe modifications to achieve optimal running times while preserving space-optimality.

We note that several previous algorithms could give a constant-factor approximation to F_0 with success probability 2/3 using $O(\log(n))$ space. To understand why our guarantees from ROUGHESTIMATOR are different, one should pay particular attention to the quantifiers. In previous algorithms, it was guaranteed that there exists a constant $c > 0$ such that at any particular point in the stream, with probability at least $1 - \delta$ the output $F_0(t)$ is in $[F_0(t), cF_0(t)]$, with the space used being $O(\log(n) \log(1/\delta))$. To then guarantee $F_0(t) \in [F_0(t), cF_0(t)]$ for all $t \in [m]$ with probability 2/3, one should set $c = 1/(3m)$ to then union bound over all t, giving an overall space bound of $O(\log(n) \log(m))$. Meanwhile, in our subroutine ROUGHESTIMATOR, we ensure that with probability 2/3, $F_0(t) \in [F_0(t), cF_0(t)]$ for all $t \in [m]$ simultaneously, and the overall space used is $O(\log(n))$.

3.1 RoughEstimator

We now show that ROUGHESTIMATOR (Figure 2) with probability $1 - o(1)$ (as $n \to \infty$) outputs a constant-factor approximation to $F_0(t)$ for every t in which $F_0(t)$ is sufficiently large. That is, if our estimate of $F_0(t)$ is $\tilde{F}_0(t)$, then
\[
\Pr[\forall t \in [m] \text{ s.t. } F_0 \geq K_{RE}, \tilde{F}_0(t) = \Theta(F_0(t))] = 1 - o(1)
\]
where K_{RE} is as in Figure 2.

THEOREM 1. With probability $1 - o(1)$, the output \tilde{F}_0 of ROUGHESTIMATOR satisfies $F_0(t) \leq \tilde{F}_0(t) \leq 8F_0(t)$ for every $t \in [m]$ with $F_0(t) \geq K_{RE}$ simultaneously. The space used is $O(\log(n))$.

Proof. We first analyze space. The counters in total take $O(\log(n)) = O(\log(n))$ bits. The hash functions h_1, h_2, h_3 each take $O(\log(n))$ bits. The hash functions h_1', h_2', h_3' each take $O(\log(\log(n)))$ bits.

We now analyze correctness.

LEMMA 4. For any fixed point t in the stream with $F_0(t) \geq K_{RE}$, and fixed $j \in [3]$, with probability $1 - O(1/K_{RE})$ we have $F_0(t) \leq \tilde{F}_0(t) \leq 4 F_0(t)$

Proof. The algorithm ROUGHESTIMATOR of Figure 2 can be seen as taking the median output of three instantiations of a subroutine, where each subroutine has K_{RE} counter $C_1, \ldots, C_{K_{RE}}$, hash functions h_1, h_2, h_3, and defined quantities $T_{r'}(t) = \{i : C_i(t) \geq r\}$, where $C_i(t)$ is the state of counter C_i at time t. We show that this subroutine outputs a value $F_0(t) \leq \tilde{F}_0(t), 4F_0(t)$ with probability $1 - O(1/K_{RE})$.

Define $I_r(t) \subseteq I(t)$ as the set of $i \in I(t)$ with $\text{lsb}(h_1(i)) \geq r$. Note $|I_r(t)|$ is a random variable, and
\[
\text{Pr}[|I_r(t)|] = \frac{\tilde{F}_0(t)}{F_0(t)} \cdot \text{Var}[|I_r(t)|] = \frac{\tilde{F}_0(t)}{F_0(t)} - \frac{\tilde{F}_0(t) - 2F_0(t)}{2F_0(t)} \leq \text{E}[|I_r(t)|]
\]
with the latter using 2-wise independence of h_1. Then by Chebyshev's inequality,
\[
\Pr[|I_r(t)| - \tilde{F}_0(t) - F_0(t)] \leq \frac{1}{q^2} \cdot \text{E}[|I_r(t)|]
\]
by Eq. (1). We also condition on the event E' that for all $r'' > r' + 1$, $I_{r''}(t) \leq 7K_{RE}/24$. Applying Eq. (1) with $r = r' + 2$ and using that $I_{r+1}(t) \subseteq I_r(t)$,
\[
\Pr[|E'| \leq 1 - O(1/K_{RE})
\]
We now define two more events. The first is the event E'' that $T_{r'}(t) \geq pK_{RE}$. The second is the event E''' that $T_{r''}(t) < pK_{RE}$ for all $r'' > r' + 1$. Note that if $E'' \cap E'''$ holds, then $F_0(t) \leq \tilde{F}_0(t) \leq 4F_0(t)$. We now show that these events hold with large probability.

Define the event A that the indices in $I_r(t)$ are perfectly hashed under h_2, and the event A' that the indices in $I_{r+1}(t)$ are perfectly hashed under h_2. Then
\[
\Pr[A \cup E'] \leq 1 - O(1/K_{RE})
\]
and similarly for $\Pr [A' \cup E']$. Note that, conditioned on $E \land A$, $T_{r'}(t)$ is distributed exactly as the number of non-empty bins when throwing $|I_r(t)|$ balls uniformly at random into K_{RE} bins. This is
Figure 2: RoughEstimator pseudocode. With probability $1 - o(1)$, $\hat{F}_0(t) = \Theta(\check{F}_0(t))$ at every point t in the stream for which $F_0(t) \geq K_{RE}$. The value ρ is $0.99 \cdot (1 - e^{-1/3})$.

Now, note that for any $t \in [m]$, if $\hat{F}_0^2(t)$ is a 4-approximation to $F_0(t)$ for at least two values of j, then $\hat{F}_0(t) \in [\hat{F}_0^2(t), 4F_0(t)]$. Thus by Lemma 4, $\hat{F}_0(t) \in [F_0(t), 4F_0(t)]$ with probability $1 - O(1/K_{RE}^2)$. Let t_r be the first time in the stream when $F_0(t_r) = 2^r$ (if no such time exists, then $t_r = \infty$). Then by a union bound, our estimate of $F_0(t_r)$ is in $[F_0(t_r), 4F_0(t_r)]$ at all t_r for $r \in [0, \log n]$ with probability $1 - O(\log(n)/K_{RE}^2)$. If no such r exists, $\hat{F}_0^2 = -1$.

This concludes our proof.

3.2 Full algorithm

In this section we analyze our main algorithm (Figure 3), which $(1 \pm O(\varepsilon))$-approximates F_0 with 11/20 probability. We again point out that the implementation described in Figure 3 is not our final algorithm which achieves $O(1)$ update and reporting times; the final optimal algorithm is a modification of Figure 3, described in Section 3.4. We assume throughout that $F_0 \geq K_{RE}/32$ and deal with the case of small F_0 in Section 3.3. The space used is $O(e^{-2} \log(n))$ bits. Note that the 5/8 can be boosted to $1 - \delta$ for arbitrary $\delta > 0$ by running $O(1/\delta)$ instantiations of our algorithm in parallel and returning the median estimate of F_0. Also, the $O(\varepsilon)$ term in the error guarantee can be made ε by running the algorithm with $\varepsilon' = \varepsilon/C$ for a sufficiently large constant C. Throughout this section we without loss of generality assume n is larger than some constant n_0 and $1/\varepsilon^2 \geq C \log(n)$ for a constant C of our choice, and is a power of 2. If one desires a $(1 + \varepsilon)$-approximation for $\varepsilon > \sqrt{\log(n)}$, we simply run our algorithm with $\varepsilon = 1/\sqrt{\log(n)}$, which worsens our promised space bound by at most a constant factor.

The algorithm of Figure 3 works as follows. We maintain $K = 1/\varepsilon^2$ counters C_1, \ldots, C_K as well as three values A, b, est. Each index is hashed to some level between 0 and $\log(n)$, based on the least significant bit of its hashed value, and is also hashed to one of the counters. Each counter maintains the deepest level of an item that was hashed to it. Up until this point, this information being kept is identical as in the LogLog [16] and HyperLogLog [19] algorithms (though our analysis will not require that the hash functions be truly random). The value A keeps track of the amount of storage required to store all the C_i, and our algorithm fails if this value ever becomes much larger than a constant times K (which we show does not happen with large probability).
1. Set $K = 1/\varepsilon^2$.
2. Initialize K counters C_1, \ldots, C_K to 0.
3. Pick random $h_1 \in \mathcal{H}_2([n], [0, n-1]), h_2 \in \mathcal{H}_2([n], [K^3]), h_3 \in \mathcal{H}_k([K^3], [K])$ for $k = \Theta((\log(1/\varepsilon))/\log(1/\varepsilon))$.
4. Initialize $A, b, \epsilon_{\text{est}} = 0$.
5. Run an instantiation RE of RoughEstimator.
6. **Update(i):** Set $x \leftarrow \max(C_{h_3(h_2(i))}, \text{lsb}(h_1(i)) - b)$.
 - Set $A \leftarrow A - \left\lfloor \log(2 + C_{h_3(h_2(i))}) \right\rfloor + \left\lfloor \log(2 + x) \right\rfloor$.
 - If $A > 3K$, Output FAIL.
 - Set $C_{h_3(h_2(i))} \leftarrow x$. Also feed i to RE.
 - Let R be the output of RE.
 - if $R > 2^{\epsilon_{\text{est}}}$:
 - (a) $\text{est} \leftarrow \log(R); \ b_{\text{new}} \leftarrow \max(0, \text{est} - \log(K/32))$.
 - (b) For each $j \in [K]$, set $C_j \leftarrow \max(-1, C_j + b - b_{\text{new}})$.
 - (c) $b \leftarrow b_{\text{new}}, A \leftarrow \sum_{j=1}^{K} \left\lfloor \log(C_j + 2) \right\rfloor$.

7. **Estimator:** Define $T = \{ j : C_j \geq 0 \}$. Output $\bar{F}_0 = 2^b \cdot \frac{\ln(1 - \frac{32}{3})}{\ln(1 - \frac{32}{3})}$.

Figure 3: F_0 algorithm pseudocode. With probability $11/20$, $\bar{F}_0 = (1 \pm O(\varepsilon))F_0$.

The value est is such that $2^{\epsilon_{\text{est}}}$ is a $O(1)$-approximation to F_0, and is obtained via RoughEstimator, and b is such that we expect $F_0(t)/2^b$ to be $O(K)$ at all points in the stream. Each C_i then actually holds the offset (from b) of the deepest level of an item that was hashed to it; if no item of level b or deeper hashed to C_i, then C_i stores -1. Furthermore, the counters are bitpacked so that C_i only requires $O(1 + \log(C_i))$ bits of storage (Section 3.4 states a known data structure which allows the bitpacked C_i to be stored in a way that supports efficient reads and writes).

Theorem 2. The algorithm of Figure 3 uses $O(\varepsilon^{-2} + \log(n))$ space.

Proof. The hash functions h_1, h_2 each require $O(\log(n))$ bits to store. The hash function h_3 takes $O(k \log(K)) = O(\log^2(1/\varepsilon))$ bits. The value b takes $O(\log(n))$ bits. The value A never exceeds the total number of bits to store all counters, which is $O(\varepsilon^{-2}\log(n))$, and thus A can be represented in $O(\log(1/\varepsilon) + \log(n))$ bits. The counters C_j never in total consume more than $O(1/\varepsilon^2)$ bits by construction, since we output FAIL if they ever would.

Theorem 3. The algorithm of Figure 3 outputs a value which is $(1 \pm O(\varepsilon))F_0$ with probability at least $11/20$ as long as $F_0 \geq K/32$.

Proof. Let $\bar{F}_0(t)$ be the estimate of F_0 offered by RE at time t. Throughout this proof we condition on the event E that $F_0(t) \leq \bar{F}_0(t) \leq 8F_0(t)$ for all $t \in [n]$, which occurs with probability $1 - o(1)$ by Theorem 1.

We first show that the algorithm does not output FAIL with large probability. Note A is always $\sum_{i=1}^{K} \log(C_i + 2]$), and we must thus show that with large probability this quantity is at most $3K$ at all points in the stream. Let $A(t)$ be the value of A at time t (before running steps (a)-(c)), and similarly define $C_j(t)$. We condition on the randomness used by RE, which is independent from the remaining parts of the algorithm. Let t_1, \ldots, t_{r-1} be the points in the stream where the output of RE changes, i.e $\bar{F}_0(t_j - 1) \neq \bar{F}_0(t_j)$ for all $j \in [r - 1]$, and define $t_r = m$. We note that $A(t)$ takes on its maximum value for $t = t_j$ for some $j \in [r]$, and thus it suffices to show that $A(t_j) \leq 3K$ for all $j \in [r]$. We furthermore note that $r \leq \log(n) + 3$ since $\bar{F}_0(t)$ is weakly increasing, only increases in powers of 2, and is always between 1 and $8F_0 \leq 8n$ given that E occurs. Now,

$$A(t) \leq K + \sum_{i=1}^{K} \log(C_i(t) + 2) \leq K + K \cdot \log \left(\frac{\sum_{i=1}^{K} C_i(t)}{K} + 2 \right)$$

with the last inequality using concavity of the logarithm and Jensen’s inequality. It thus suffices to show that, with large probability, $\sum_{i=1}^{K} C_i(t_j) \leq 2K$ for all $j \in [r]$. Fix some $t = t_j$ for $j \in [r]$. For $i \in I(t)$, let $X_i(t)$ be the random variable $\max\{-1, \text{lsb}(h_1(i)) - b\}$, and let $X(t) = \sum_{i \in I(t)} X_i(t)$. Note $\sum_{i=1}^{K} C_i(t) \leq X(t)$, and thus it suffices to lower bound $\Pr[X(t) \leq 2K]$.

We have that $X(t)$ equals s with probability $1/2^{b+s+1}$ for $0 \leq s < \log(n) - b$, equals $\log(n) - b$ with probability $1/n$, and equals 1 with the remaining probability mass. Thus

$$\mathbb{E}[X(t)] \leq F_0(t) \cdot \left(\frac{\log(n) - b - 1}{n} + \sum_{s=0}^{\log(n)-b-1} 2^{-s(b+s+1)} \right) = F_0(t)/2^b.$$

Furthermore, by choice of h_1 the $X_i(t)$ are pairwise independent, and thus $\text{Var}[X(t)] \leq \mathbb{E}[X(t)]$ since $\text{Var}[X_i(t)] \leq \mathbb{E}[X_i(t)]$. Then by Chebyshev’s inequality,

$$\Pr[X(t) > 2K] \leq \frac{F_0(t)}{2^b \cdot (2K - F_0(t)/2^b)^2}.$$

Conditioned on E, $K/256 \leq F_0(t)/2^b \leq K/32$, implying the above probability is at most $1/32K$. Then by a union bound over all t_j for $j \in [r]$, we have that $X(t) \leq 2K$ for all $j \in [r]$ with probability at least $1 - r/32K \geq 1 - 1/32$ by our assumed upper bound on ε, implying we output FAIL with probability at most $1/32K$.

We now show that the output from Step 7 in Figure 3 is
(1 ± O(ε))F₀ with probability 11/16. Let A be the algorithm in Figure 3, and let A' be the same algorithm, but without the third line in the update rule (i.e., A' never outputs FAIL). We first show that the output \hat{F}_0 of A' is $(1 ± O(\epsilon))F₀$ with probability 5/8. Let $I₀$ be the set of indices $i ∈ I$ such that $\text{lsb}(i) ≥ b$. Then $E[I₀] = F₀/2^b$, and $\text{Var}[|I₀|] ≤ E[|I₀|]$, with the last inequality in part using pairwise independence of $h₁$. We note that conditioned on \mathcal{E}, we have

Let \mathcal{E}' be the event that $K/300 ≤ |I₀| ≤ K/20$. Then by Chebyshev’s inequality,

$$\Pr[|\mathcal{E}'| | \mathcal{E}] ≥ 1 − O(1/K) = 1 − o(1).$$

Also, if we let \mathcal{E}'' be the event that $I₀$ is perfectly hashed under $h₂$, then pairwise independence of $h₂$ gives

$$\Pr[\mathcal{E}' | \mathcal{E}''] ≥ 1 − O(1/K) = 1 − o(1).$$

Now, conditioned on $\mathcal{E}' \land \mathcal{E}''$, we have that T is a random variable counting the number of bits hit by at least one ball under a k-wise independent hash function, where there are $B = |I₀|$ balls, K bins, and $k = O(\log(K/ε)/\log\log(K/ε))$. Then by Lemma 3, $T = (1 ± 8ε)(1 − (1 − 1/K)^b)K$ with 4/5 probability, in which case

$$\ln(1 − T/K) = \ln((1 − 1/K)^b ± 8ε(1 − (1 − 1/K)^b))$$

Conditioned on \mathcal{E}', $(1 − 1/K)^b = O(1)$, and thus the above is $\ln((1 ± O(ε))(1 − 1/K)^b) = B \ln(1 − 1/K) ± O(ε)$ since $\ln(1 + x) = O(|x|)$ for $|x| < 1/2$, and thus

$$\hat{F}_0 = B \cdot 2^b ± O(ε \cdot 2^K).$$

(2)

Conditioned on \mathcal{E}, we have that $2^b ≤ 256F₀/K$, and thus the error term in Eq. (2) is $O(εF₀)$. Also, $E[B] = F₀/2^b$, which is at least $K/256$ conditioned on \mathcal{E}. Thus by pairwise independence of $h₁$, Chebyshev’s inequality implies

$$\Pr[|B − E[B]| ≥ c/\sqrt{K}] ≤ \frac{E[B]}{(c/\sqrt{K})^2} ≤ \left(\frac{16}{c}
ight)^2$$

since $\text{Var}[B] ≤ E[B]$, which we can make an arbitrarily small constant by setting c to be a large constant. Note that $1/\sqrt{K}$ is just $ε$, and thus we have that $B = (1 ± O(ε))F₀/2^b$ with arbitrarily large constant probability.

Putting everything together, we have that conditioned on $\mathcal{E} \land \mathcal{E}' \land \mathcal{E}''$, $\hat{F}_0 = (1 ± O(ε))F₀$ with probability at least $4/5 − δ$ for any constant $δ > 0$ of our choice, e.g., $δ = 1/5$. Since $\Pr[\mathcal{E} \land \mathcal{E}' \land \mathcal{E}'' | \mathcal{E}] ≥ 1 − o(1)$, we thus have

$$\Pr[\hat{F}_0 = (1 ± O(ε))F₀] ≥ 3/5 − o(1).$$

Note our algorithm in Figure 3 succeeds as long as 1 do not output FAIL, and (2) $\hat{F}_0 = (1 ± O(ε))F₀$, and thus overall we succeed with probability at least $1 − \frac{5}{3} − o(1) − \frac{1}{12} > \frac{21}{24}$. □

3.3 Handling small $F₀$

In Section 3.2, we assumed that $F₀ = Ω(K)$ for $K = 1/ε^2$ (specifically, $F₀ ≥ K/32$). In this subsection, we show how to deal with the case that $F₀$ is small, by running a similar (but simpler) algorithm to that of Figure 3 in parallel.

We first note that $F₀ < 100$ can be dealt with simply by keeping the first 100 distinct indices seen in the stream in memory, taking $O(\log(n))$ space.

For the case $F₀ ≥ 100$ we can apply Lemma 3 as was done in the proof of Theorem 3. We maintain $K = 2K$ bits $B₁, \ldots, B_K$ in parallel, initialized to 0. When seeing an index i in the stream, in addition to carrying out Step 6 of Figure 3, we also set $B_{h_s(i) + c}$ to 1 (h_s can be taken to have range $K = 2K$, and its evaluation can be taken modulo K when used in Figure 3 to have a size-K range).

Let $t₀$ be the smallest $t ∈ [m]$ with $F₀(t) = K'/64$, and $t₁$ be the smallest $t ∈ [m]$ with $\hat{F}_0(t) = K'/32$ (if no such t_i exist, set them to $∞$). Define $T₀$ as $\{|i : B_i(t₀) = 1\}$, and define $\hat{F}_0(t) = \ln(1 − T₀(t)/K'/\ln(1 − 1/K'))$. Then by similar calculations as in Theorem 3 and a union bound over $t₀, t₁$, $\Pr[\hat{F}_0(t₁) = (1 ± O(ε))F₀(t₁)$ for $i ∈ \{0, 1\}]$ is at least $1 − 2/(1/5) − o(1) = 3/5 − o(1)$. Noting that $\hat{F}_0(t)$ monotonically increases with t, we can do the following: for t with $\hat{F}_0(t) ≥ K'/32 = K/16$, we output the estimator from Figure 3; else, we output $\hat{F}_0(t)$. We summarize this section with the following theorem.

Theorem 4. Let $δ > 0$ be any fixed constant, and $ε > 0$ be given. There is a subroutine requiring $O(ε^{-2} + \log(n))$ space with probability $1 − δ$ that satisfies the property that there is some $t ∈ [m]$ satisfying: (1) for any fixed $t < t'$, $(1 ± O(ε))F₀$ is output, and (2) for any $t ≥ t'$ the subroutine outputs LARGE, and we are guaranteed $\hat{F}_0(t) ≥ 1/(16ε^2).$}

3.4 Running time

In this subsection we discuss an implementation of our $F₀$ algorithm in Figure 3 with $O(1)$ update and reporting times. We first state a few theorems from previous works.

Theorem 5. (Brodkin [8], Friedman and Willard [21]). The least and most significant bits of an integer fitting in a machine word can be computed in constant time.

The next two theorems give hash families which have strong independence properties while only requiring $O(1)$ evaluation time (recall that the k-wise independent hash functions of Carter and Wegman require $Θ(k)$ evaluation time).

Theorem 6. (Pagh and Pagh [31, Theorem 1.1]). Let $S ⊂ U = [u]$ be a set of $z > 1$ elements, and let $V = [v]$, with $1 < v ≤ u$. Suppose the machine word size is $Ω(\log(u))$. For any constant $c > 0$ there is word RAM algorithm that, using time $\log(z) \log^{O(1)}(v)$ and $O(\log(z) + \log(u))$ bits of space, selects a family H of functions from U to V (indeed of S) such that:

1. With probability $1 − O(1/z^c 5)$, H is z-wise independent when restricted to S.

2. Any $h ∈ H$ can be represented by a RAM data structure using $O(\log(\log(v)))$ bits of space, and h can be evaluated in constant time after an initialization step taking $O(\log(z))$ time.

The following is a corollary of Theorem 2.16 in [35].

Theorem 7. (Siegel [35]). Let $U = [u]$ and $V = [v]$ with $u = v'\cdot$ for some constant $c ≥ 1$, where the machine word size is $Ω(\log(v'))$. Suppose one wants a $k(ε)$-wise independent hash family H of functions mapping U to V for $k(ε) = v^{ε^c}$. For any constant $ε > 0$ there is a randomized procedure for constructing such an H which succeeds
with probability $1 - 1/\varepsilon^r$, taking v^r bits of space. A random $h \in \mathcal{H}$ can be selected using v^r bits of random seed, and h can be evaluated in $O(1)$ time.

We now describe a fast version of RoughEstimator.

Lemma 5. RoughEstimator can be implemented with $O(1)$ worst-case update and reporting times, at the expense of only giving a 16-approximation to $F_0(t)$ for every $t \in [m]$ with $F_0(t) \geq K_{RE}$, for K_{RE} as in Figure 2.

Proof. We first discuss update time. We replace each h_k^j with a random function from the hash family \mathcal{H} of Theorem 6 with $z = 2K_{RE}$, $a = K_{RE}^3$, $v = K_{RE}$. The constant c in Item 1 of Theorem 6 is chosen to be 1, so that each h_k^j is uniform on any given subset of z items of $[a]$ with probability $1 - O(1/K_{RE})$. Note that the proof of correctness of RoughEstimator (Theorem 1) only relied on the h_k^j being uniform on some unknown set of 4 indices with probability $1 - O(1/K_{RE})$ (namely, those indices in $L_r(t)$). The space required to store any $h \in \mathcal{H}$ is $z \log(v) = O(\log(n))$, which does not increase our space bound for RoughEstimator. Updates then require computing a least significant bit, and computing the $h_k^j, h_k^j, h_1^j, h_2^j, h_3^j$ all taking constant time.

For reporting time, in addition to the information maintained in Figure 2, we also maintain three sets of counters $A_1^j, A_2^j, A_3^j, A_4^j$ for $j \in [3]$. For a fixed j, the A_i^j store $T_{i,j}$, for an r we now specify. Roughly speaking, for the values of r where $F_0(t) \geq K_{RE}$, r will be such that, conditioned on RoughEstimator working correctly, r will always be in $[F_0(t)/2, 8F_0(t)]$. We then alter the estimator of RoughEstimator to being 2^{r+1}.

Note that, due to Theorem 4, the output of RoughEstimator does not figure into our final F_0-estimator until $F_0(t) \geq (1 - O(1)/32\varepsilon^r)$, and thus the output of the algorithm is irrelevant before this time. We start off with $r = \log(1/32\varepsilon^r)$. Note that $A_3^j, A_4^j, A_2^j, A_1^j$ can be maintained in constant time during updates. At some point t_1, the estimator from Section 3.3 will declare that $F_0(t_1) = (1 \pm O(1))/32\varepsilon^r$, at which point we are assured $F_0(t_1) \geq 1/(64\varepsilon^r) \geq \log(n)$ (assuming ε is smaller than some constant, and assuming $1/\varepsilon^r \geq (64 \log(n))$). Similarly, we also have $F_0(t_1) \leq 1/(16\varepsilon^r) \leq 4 \log(n)$. Thus, by our choice of r, and conditioned on the event that RoughEstimator of Figure 2 succeeds (i.e., outputs a value in $[F_0(t), 8F_0(t)]$ for all t with $F_0(t) \geq K_{RE}$), we can determine the median across the j of the largest r such that $T_{i,j} \geq \log(K_{RE})$ from the A_i^j and set $r(t) = r^j$ so that $2^{r(t)}$ is in $[F_0(t), 8F_0(t)]$.

Our argument henceforth is inductive: conditioned on the output of RoughEstimator from Figure 2 being correct (always in $[F_0(t), 8F_0(t)]$), $2^{r(t)}$ will always be in $[F_0(t)/2, 8F_0(t)]$ for all $t \geq t_1$, which we just saw is true for $t = t_1$. Note that conditioned on RoughEstimator being correct, its estimate of F_0 cannot jump by a factor more than 8 at any given point in the stream. Furthermore, if this happens, we will detect it since we store up to A_4^j. Thus, whenever we find that the estimate from RoughEstimator changed (say from $2^{r'}$ to $2^{r''}$), we increment r by $r'' - r'$ and set each A_i^j to $A_i^{j+2r''-r'}$, for $i \leq 4 + r'' - r'$. For $1 + r'' - r' < i \leq 4$, we recompute A_i^j from scratch, by looping over the K_{RE} counters C_i. This requires $O(K_{RE})$ work, but note that since $t \geq t_1$, there must be at least K_{RE} updates before $F_0(t)$ doubles, and thus we can afford to do $O(1)$ work toward this looping per update. In the meantime 2^t cannot fall below $F_0/2$. □

We will use the following “variable-bit-length array” data structure to implement the array C of counters in Figure 3, which has entries whose binary representations may have unequal lengths. Specifically, in Figure 3, the bit representation of C_i requires $O(1 + \log(C_i + 2))$ bits.

Definition 1 (Blandford, Blelloch [7]). A variable-bit-length array (VLA) is a data structure implementing an array C_1, \ldots, C_n supporting the following operations: (1) update(i, x) sets the value of C_i to x, and (2) read(i) returns C_i. Unlike in standard arrays, the C_i are allowed to have bit-representations of varying lengths, and we use $\text{len}(C_i)$ to represent the length of the bit-representation of C_i.

Theorem 8 (Blandford and Blelloch [7]). There is a VLA data structure using $O(n + \sum \text{len}(C_i))$ space to store n elements, supporting worst-case $O(1)$ updates and reads, under the assumptions that (1) $\text{len}(C_i) \leq w$ for all i, and (2) $\omega \geq \log(M)$. Here w is the machine word size, and M is the amount of memory available to the VLA.

We now give a time-optimal version of Figure 3.

Theorem 9. The algorithm of Figure 3 can be implemented with $O(1)$ worst-case update and reporting times.

Proof. For update time, we select h_3 from the hash family of Theorem 7, which requires $O(1/\varepsilon^r)$ space for arbitrarily small $\varepsilon > 0$ of our choosing (say, $\varepsilon = 1$), and thus this space is dominated by other parts of the algorithm. We then can evaluate h_1, h_2, h_3 in constant time, as well as compute the required least significant bit constant in bit time. Updating A requires computing the ceiling of a base-2 logarithm, but this is just a most significant bit computation which we can do in $O(1)$ time. We can also read and write the C_i in constant time whilst using the same asymptotic space by Theorem 8.

What remains is to handle the if statement for when $R > 2^{2t}$. Note that a naive implementation would require $O(K)$ time. Though this if statement occurs infrequently enough that one could show $O(1)$ amortized update time, we instead show the stronger statement that an implementation is possible with $O(1)$ worst case update time. The idea is similar to that in the proof of Lemma 5: when b_{now} changes, it cannot change more than a constant number of times again in the next $O(K)$ updates, and we can spread the $O(K)$ required work over the next $O(K)$ stream updates, doing a constant amount of work each update.

Specifically, note that b_{now} only ever changes for times t when $R(t) > 2^{2t}$, conditioned on the subroutine of Theorem 4 succeeding, implying that $F_0(t) \geq K/256$, and thus there must be at least $K/256$ updates for $F_0(t)$ to double. Since RoughEstimator always provides an 8-approximation, est can only increase by at most 3 in the next $K/256$ stream updates. We will maintain a primary and secondary instantiation of our algorithm, and only the primary receives updates. Then in cases where $R > 2^{2t}$ and b_{now} changes from 0, we copy a sufficiently large constant number of the C_i (specifically, $3 \cdot 256$ for each of the next $K/256$ updates, from the primary to secondary structure, performing the update $C_i \leftarrow \max\{1, C_i + b_{now}\}$ in the secondary structure. If RoughEstimator fails and est changes by more than 3 in the next $K/256$ updates, we output FAIL. Meanwhile, during this copy phase, we
process new stream updates in both the primary and secondary structures, and we answer updates from the primary structure. The analysis of correctness remains virtually unchanged, since the value 2^i corresponding to the primary structure still remains a constant-factor approximation to F_0 during this copy phase.

For reporting time, note we can maintain $T = \{ t : C_t \geq 0 \}$ during updates, and thus the reporting time is the time to compute a natural logarithm, which can be made $O(1)$ via a small lookup table (see Section A.2).

4. L_0 ESTIMATION ALGORITHM

Here we give an algorithm for estimating L_0, the Hamming norm of a vector updated in a stream.

Our L_0 algorithm is based on the approach to F_0 estimation in Figure 4. In this approach, we maintain a $\log(n) \times K$ bit-matrix A, and upon receiving an update i, we subsample i to the row determined by the lsb of a hash evaluation, then evaluate another hash function to tell us a column and set the corresponding bit of A to 1. Note that our algorithm from Section 3 is just a space-optimized implementation of this approach. Specifically, in Figure 3 we obtained a c-approximation R to F_0 via RoughEstimator for $c = 8$. The value b we maintained was just $\max\{0, \log(32R/K)\}$. Then rather than explicitly maintaining A, we instead maintained counters C_i which allowed us to deduce whether $A_{b,j} = 1$ (specifically, $A_{b,j} = 1$ if $C_i = 0$).

The proof of correctness of the approach in Figure 4 is thus essentially identical to that of Theorem 3 (in fact simpler, since we do not have to upper bound the case of outputting FAIL), so we do not repeat it here. Thus, we need only show that the approach in Figure 4 can be implemented for some constant $c \geq 1$ in the context of L_0-estimation. Specifically, we must show that (a) the bit-matrix A can be maintained (with large probability), and (b) we can implement the oracle in Step 4 of Figure 4 to give a c-approximation to L_0 for some constant $c \geq 1$.

We first show (a), that we can maintain the bit-matrix A with large probability. In fact, note our estimate of L_0 only depends on one particular row $i^* = \log(16R/K)$ of A, so we need only ensure that we maintain row i^* with large constant probability. We first give two facts.

FACT 2. Let $t, r > 0$ be integers. Pick $h \in \mathcal{H}_{2}[r, [t]]$. For any $S \subseteq [t]$, $E[\sum_{i=1}^{t} (h(i)^{(r)}(S))^{2}] \leq |S|^2/(2r)$.

PROOF. Write $|S| = s$. Let $X_{s,J}$ indicate $h(i) = j$. By linearity of expectation, the desired expectation is then

$$t \sum_{i < i'} E[X_{s,i} \mid E[X_{s,i'}]] = t \left(\frac{s}{2} \right) \frac{1}{t} \leq \frac{s^2}{2t}.$$

FACT 3. Let \mathbb{F}_q be a finite field and $v \in \mathbb{F}_q^d$ be a non-zero vector. Then, a random $w \in \mathbb{F}_q^d$ gives $Pr_w[v \cdot w = 0] = 1/q$, where $v \cdot w$ is the inner product over \mathbb{F}_q.

PROOF. The set of vectors orthogonal to v is a linear subspace $V \subseteq \mathbb{F}_q^d$ of dimension $d - 1$ and thus has q^{d-1} points. Thus, $Pr_w[w \in V] = 1/q$.

LEMMMA 6. There is a scheme which represents each $A_{i,j}$ using $O(\log(1/\epsilon) + \log(\log(mM)))$ bits such that, for $i^* = \log(16R/K)$, the i^*th row of A can be recovered with probability 2/3. Furthermore, the update time and time to recover any $A_{k,j}$ are both $O(1)$.

PROOF. We represent each $A_{i,j}$ as a counter $B_{i,j}$ of $O(\log(K) + \log(\log(mM)))$ bits. We interpret $A_{i,j}$ as being the bit “1” if $B_{i,j}$ is non-zero; else we interpret $A_{i,j}$ as 0. The details are as follows.

We choose a prime p randomly in $[D, D^2]$ for $D = 100K \log(mM)$. Notice that for mM larger than some constant, by standard results on the density of primes there are at least $K^2 \log^2(mM)$ primes in the interval $[D, D^2]$. Since every frequency x_i is at most mM in magnitude and thus has at most $\log(\log(mM))$ prime factors, non-zero frequencies remain non-zero modulo p with probability $1 - O(1/K^2)$, which we condition on occurring. We also randomly pick a vector $u \in \mathbb{F}_p^n$ and $h_4 \in \mathcal{H}_4([K^3],[K])$. Upon receiving an update (i, v), we increment $B_{h_4(h_i(i))} - h_3(h_4(i))$ by $v \cdot u_{h_4(h_2(i))}$; then reduce modulo p.

Define $I_r = \{ i \in I : \text{lsb}(i) = i^* \}$. Note that conditioned on $R \in [L_0, cL_0]$, we have $E[I_r] \leq K/32$, and $Pr[I_r, j^* \leq K/20] = 1 - O(1/K) = 1 - o(1)$ by Chebyshev’s inequality. Then conditioned on this event occurring, also, since the range of h_2 is of size K^2, the indices in I_r are perfectly hashed with probability $1 - O(1/K) = 1 - o(1)$, which we also condition on occurring.

Let Q be the event that p does not divide any $|x_i|$ for $i \in I_r$. Then by a union bound, $Pr[Q] = 1 - O(1/K)$.

Let Q' be the event that $h_3(h_2(j)) \neq h_3(h_2(j'))$ for distinct $j, j' \in I_r$ with $h_3(h_2(j)) = h_3(h_2(j'))$.

Henceforth, we also condition on both Q and Q' occurring, which we later show holds with good probability. Define J as the set of $j \in [K]$ such that $h_3(h_2(j)) = j$ for at least one $i \in I_r$, so that to properly represent the $A_{i,j}$ we should have $B_{i,j}$ non-zero iff $j \in J$. For each $j \in J, B_{i,j}$ can be viewed as maintaining the dot product of a non-zero vector v, the frequency vector x restricted to coordinates in I_r which hashed to j, with a random vector w, namely, the projection of u onto coordinates in I_r that hashed to j. The vector v is non-zero since we condition on Q, and w is random since we condition on Q'.

Now, let $X_{j,J}$ be a random variable indicating that $h_3(h_2(j)) = h_3(h_2(j'))$ for distinct $j, j' \in I_r$. Let $X = \sum_{j \in J} X_{j,J}$. By Fact 2 with $r = K^3, t = K$, and $s = |I_r| < K/20$, we have $E[X] \leq K/800$. Let $Z = \{(j,j') \in J^2 : h_3(h_2(j)) = h_3(h_2(j'))\}$. For $(j,j') \in Z$ let $Y_{j,j'}$ be a random variable indicating $h_3(h_2(j)) = h_3(h_2(j'))$, and let $Y = \sum_{(j,j') \in Z} Y_{j,j'}$. Then by pairwise independence of h_4, and the fact that we conditioned on I_r, being perfectly hashed under h_2, we have $E[Y] = \sum_{(j,j') \in Z} Pr[h_3(h_2(j)) = h_3(h_2(j'))] = |Z|/K$.

Note $|Z| = X$. Conditioned on $X \leq 20E[X] \leq K/40$, which happens with probability at least $19/20$ by Markov’s inequality, we have that $E[Y] \leq |Z|/K \leq 1/40$, so that $Pr[Y \leq 1] \leq 1/40$. Thus, Q' holds with probability at least $(19/20) \cdot (39/40) > 7/8$.

Finally, by Fact 3 with $q = p$, and union bounding over all K counters $B_{i,j}$, no $B_{i,j}$ for $j \in J$ is 0 with probability $1 - K/p \geq 99/100$. Thus, our scheme overall succeeds with probability $(7/8) \cdot (99/100) - o(1) > 2/3$.

We next show (b) in Section A.3, i.e. give an algorithm providing an $O(1)$-approximation to L_0 with $O(1)$ update and reporting times. The space used is $O(\log(n) \log(\log(mM)))$.

1. Set $K = 1/\varepsilon^2$.

2. Instantiate a $\log(n) \times K$ bit-matrix A, initializing each $A_{i,j}$ to 0.

3. Pick random $h_1 \in \mathcal{H}_2([n], [0, n-1]), h_2 \in \mathcal{H}_4([n], [K^2]), h_3 \in \mathcal{H}_5([K^2], [K])$ for $k = \Omega(\log(1/\varepsilon)/\log(1/\varepsilon))$.

4. Obtain a value $v \in [F_0, cF_0]$ from some oracle, for some constant $c \geq 1$.

5. **Update(i):** Set $A_{h_1(i), h_2(h_2(i))} \leftarrow 1$.

6. **Estimator:** Define $T = \{j \in [K]: A_{h_3(16R/K), j} = 1\}$. Output $\hat{F}_0 = \frac{3R}{K} \ln(1 - \frac{T}{\varepsilon})$.

Figure 4: An algorithm skeleton for F_0 estimation.

Note that, as with our F_0 algorithm, we also need to have an algorithm which provides a $(1 \pm \varepsilon)$-approximation when $L_0 \ll 1/\varepsilon^2$. Just as in Section 3.3, this is done by handling the case of small L_0 in two cases separately: detecting and estimating when $L_0 \leq 1$, and $(1 \pm \varepsilon)$-approximating L_0 when $L_0 > 100$. In the former case, we can compute L_0 exactly with large probability by perfect hashing (see Lemma 8 in Section A.3). In the latter case, we use the same scheme as in Section 3.3, but using Lemma 6 to represent our bit array.

Putting everything together, we have the following.

Theorem 10. There is an algorithm for $(1 \pm \varepsilon)$-approximating L_0 using space $O(\varepsilon^{-2} \log(n)/(\log(1/\varepsilon) + \log(\log(mM))))$, with 2/3 success probability, and with $O(1)$ update and reporting times.

Acknowledgments

We thank Nir Ailon, Erik Demaine, Piotr Indyk, T.S. Jayram, Swastik Kopparty, Rasmus Pagh, Mihai Pătraşcu, and the authors of [6] for valuable discussions and references.

REFERENCES

APPENDIX

A. APPENDIX

A.1 Expectation and variance analyses for balls and bins with limited independence

The following is a proof of Lemma 2. Below, X corresponds to the random variable which is the number of bins receiving at least one ball when tossing A balls into K independently at random.

Lemma 2 (restatement). There exists some constant e_0 such that the following holds for $e \leq e_0$. Let A balls be mapped into K bins using a random $h \in \mathcal{H}_{2(k+1)}([A],[K])$, where $k = c \log K \log(K/e)$ for a sufficiently large constant $c > 0$. Suppose $1 \leq A \leq K$. For $i \in [K]$, let X_i be an indicator variable which is 1 if and only if there exists at least one ball mapped to bin i by h. Let $X = \sum_{i=1}^K X_i$.

Then the following hold:

1. $|E[X] - E[X_i]| \leq e E[X]$
2. $\text{Var}[X] - \text{Var}[X_i] \leq e^2$

Proof. Let A_n be the random variable number counting the number of balls in bin i when picking $h \in \mathcal{H}_{2(k+1)}([A],[K])$. Define the function:

$$f_k(n) = \sum_{i=0}^k (-1)^i \binom{n}{i}$$

We note that $f_k(0) = 1$, $f_k(n) = 0$ for $1 \leq n \leq k$ and $|f_k(n)| \leq \binom{n+1}{k+1}$ otherwise. Let $f(n) = 1$ if $n = 0$ and 0 otherwise. We now approximate X_i as $1 - f_k(A_i)$. We note that this value is determined entirely by k-wise independence of h. We note that this is also

$$1 - f(A_i) = O\left(\binom{A_i}{k+1}\right) = X_i \pm O\left(\binom{A_i}{k+1}\right).$$

The same expression holds for the X_i, and thus both $E[X]$ and $E[X_i]$ are sandwiched inside an interval of size bounded by twice the expected error. To bound the expected error we can use $(k+1)$-independence. We have that the expected value of $\binom{A_i}{k+1}$ is $\frac{A_i}{k+1}$ ways of choosing $k + 1$ of the balls times the product of the probabilities that each ball is in bin i. This is

$$\binom{A}{k+1} K^{-(k+1)} = \left(\frac{e A}{K(k+1)}\right)^{k+1} \leq \frac{A}{K} (e(k+1))^{-k+1},$$

with the last inequality using that $A \leq K$. Thus, $|E[X_i] - E[X]| \leq e^2 A/K$ for $k = c \log(1/e)/\log(1/e)$ for sufficiently large constant c. In this case $E[X] - E[X_i] \leq e^2 A \leq \varepsilon E[X]$ for ε smaller than some constant since $E[X] = \Omega(A)$ for $A < K$.

We now analyze $\text{Var}[X]$. We approximate X_i, X_j as $(1 - f_k(A_i))(1 - f_k(A_j))$. This is determined by $2k$-independence of h and is equal to

$$\left(1 - f(A_i) \pm O\left(\binom{A_i}{k+1}\right)\right) \left(1 - f(A_j) \pm O\left(\binom{A_j}{k+1}\right)\right)$$

$$= X_i X_j \pm O\left(\binom{A_i}{k+1} + \binom{A_j}{k+1} + \binom{A_i}{k+1} \binom{A_j}{k+1}\right).$$

We can now analyze the error using $2(k+1)$-independence. The expectation of each term in the error is calculated as before, except for products of the form

$$\binom{A_i}{k+1} \binom{A_j}{k+1}.$$

The expected value of this is

$$\left(\frac{A}{k+1}\right)^2 K^{-2(k+1)} \leq \frac{e A}{K(k+1)} 2^{2(k+1)}.$$

Thus, for $k = c' \log(K/e)/\log(1/e)$ for sufficiently large $c' > 0$, each summand in the error above is bounded by $e^3/(6K^2)$, in which case $|E[X] - E[X_i], E[X_i] - E[X]| \leq e^3/K^2$. We can also make c' sufficiently large so that $|E[X] - E[X_i]| \leq e^3/K^2$. Now, we have

$$\text{Var}[X] - \text{Var}[X_i] \leq \frac{|E[X] - E[X_i]|}{2} + K(k-1) \cdot \max_{i,j} \left|E[X_i X_j] - E[X_i] E[X_j]\right|$$

$$+ \left|E[X] - E[X_i] - E[X_i] E[X_i]\right|$$

$$\leq \varepsilon^3/K^2 + \varepsilon^3 + E^2[X] (2e^3/K^2 + (e^3/K^2)^2)$$

which is at most e^2 for ε sufficiently small. □

A.2 A compact lookuptable for the natural logarithm

Lemma 7. Let $K > 4$ be a positive integer, and write $\gamma = 1/\sqrt{K}$. It is possible to construct a lookup table requiring $O(\gamma^{-1} \log(1/\gamma))$ bits such that $\ln(1 - c/K)$ can then be computed with relative accuracy γ in constant time for all integers $c \in [4K/5]$.

Proof. We set $\gamma' = \gamma/15$ and discretize the interval $[1, 4K/5]$ geometrically by powers of $(1 + \gamma)$. We precompute the natural algorithm evaluated at $1 - \rho/K$ for all discretization points ρ, with relative error $\gamma/3$, creating a table A taking space $O(\gamma^{-1} \log(1/\gamma))$. We answer a query $\ln(1 - c/K)$ by outputting the natural logarithm of the closest discretization point in A. First, we argue that the error from this output is small enough. Next, we argue that the closest discretization point can be found in constant time.
For the error, the output is up to \((1 ± γ/3)\),
\[
\ln(1 - (1 ± γ)c/K) = \ln(1 - c/K ± γc/K) = \ln(1 - c/K) ± 5γc/K = \ln(1 - c/K) ± γc/3K.
\]
Using the fact that \(|\ln(1 - z)| ≥ z/(1 - z)\) for \(0 < z < 1\), we have that \(|\ln(1 - c/K)| ≥ c/(K - c) ≥ c/K\). Thus,
\[
(1 ± γ/3)(\ln(1 - c/(3K)) ± γc/K) = (1 ± γ/3)\ln(1 - c/K).
\]

Now, for finding the discretization point, note we need to look up \(A[\log(1 + γ, c)] = A[\log(c)/(αγ')]\), where \(αγ' = \log(1 + γ)\) (note, we can compute \(\log(1 + γ)\) in pre-processing). Now, write \(c = d · 2^k\) where \(k = \log(c)\) and thus \(1 ≤ d < 2\). We can compute \(k\) in \(O(1)\) time since it is the most significant bit of \(c\). We know \(\log_{1+γ}(c) = \log(d · 2^k)/(αγ') = k/(αγ') + \log(d)/(αγ')\). Now, the derivative of the log function in the range \([1, 2]\) is sandwiched between two constants. Thus, if we discretize \([1, 2]\) evenly into \(O(γ')\) buckets and store the log of a representative of each bucket in a lookup table \(B\), we can additively \(O(γ')\)-approximate \(\log(d)\) by table lookup of \(B[[d - 1]/γ']\). So now we have computed
\[
k/(αγ') + \log(d)/(αγ') + O(1).
\]
This \(O(1)\) can be taken to be arbitrarily small, say at most \(1/3\), by tuning the constant in the discretization. So we know the correct index to look at in our index table \(A\) up to \(±1/3\); since indices are integers, we are done. □

A.3 A Rough Estimator for \(L_0\)-estimation

We describe here a subroutine \textsc{RoughLOEstimator} which gives a constant-factor approximation to \(L_0\) with probability at least \(9/16\). First, we need the following lemma which states that when \(L_0\) is at most some constant \(c\), it can be computed exactly in small space. The lemma follows by picking a random prime \(p = Θ(\log(mM) \log(\log(mM)))\) and pairwise independently hashing the universe into \(Ω(c^2)\) buckets. Each bucket is a counter which tracks the sum of frequencies modulo \(p\) of updates to universe items landing in that bucket. The estimate of \(L_0\) is then the total number of non-zero counters, and the maximum estimate after \(O(\log(1/η))\) trials is finally output. This gives the following.

Lemma 8. There is an algorithm which, when given the promise that \(L_0 ≤ c\), outputs \(L_0\) exactly with probability at least \(1 - η\) using \(O(c^2 \log(\log(mM)))\) space, in addition to needing to store \(O(\log(1/η))\) independently chosen pairwise independent hash functions mapping \(n\) into \(c^2\). The update and reporting times are \(O(1)\).

Now we describe \textsc{RoughLOEstimator}. We pick a function \(h : [n] → [n]\) at random from a pairwise independent family. For each \(0 ≤ j ≤ log(n)\) we create a substream \(S'\) consisting of those \(x \in [n]\) with \(\text{lsb}(h(x)) = j\). Let \(L_0(S')\) denote \(L_0\) of the substream \(S\). For each \(S'\) we run an instantiation \(B_j\) of Lemma 8 with \(c = 141\) and \(η = 1/16\). All instantiations share the same \(O(\log(1/η))\) hash functions \(h_1, \ldots, h_{\log(1/η)}\).

To obtain our final estimate of \(L_0\) for the entire stream, we find the largest value of \(j\) for which \(B^j\) declares \(L_0(S') > 8\). Our estimate of \(L_0\) is \(\tilde{L}_0 = 2^j\). If no such \(j\) exists, we estimate \(L_0 = 1\).

Theorem 11. \textsc{RoughLOEstimator} with probability at least \(9/16\) outputs a value \(L_0\) satisfying \(L_0 ≤ \tilde{L}_0 ≤ 110L_0\). The space used is \(O(\log(n) \log(\log(mM)))\), and the update and reporting times are \(O(1)\).

Proof. The space to store \(h\) is \(O(\log(n))\). The \(Θ(\log(1/η))\) hash functions \(h^j\) in total require \(O(\log(1/η) \log(n)) = O(\log(n))\) bits to store since \(1/η = O(1)\). The remaining space to store a single \(B^j\) for a level is \(O(\log(\log(mM)))\) by Lemma 8, and thus storing all \(B^j\) across all levels requires \(O(\log(n) \log(\log(mM)))\) space.

For running time, upon receiving a stream update \((x, v)\), we first hash \(x\) using \(h\), taking time \(O(1)\). Then, we compute \(\text{lsb}(h(x))\), also in constant time. Now, given our choice of \(η\) for \(B^j\), we can update \(B^j\) in \(O(1)\) time by Lemma 8.

To obtain \(O(1)\) reporting time, we again use the fact that we can compute the least significant bit of a machine word in constant time. We maintain a single machine word \(z\) of at least \(\log(n)\) bits and treat it as a bit vector. We maintain that the \(j\)th bit of \(z\) is \(1\) if \(L_0(S') \geq 8\) is reported to be greater than \(8\) by \(B^j\). This property can be maintained in constant time during updates. Constant reporting time then follows since finding the deepest level \(j\) with greater than \(8\) reported elements is equivalent to computing \(\text{lsb}(z)\).

Now we prove correctness. Observe that \(E[L_0(S')] = L_0/2^{j+1}\) when \(j = \log(n)\) and \(E[L_0(S')] = L_0/2^j = L_0/n\) when \(j = \log(n)\). Let \(j^\ast\) be the largest \(j\) satisfying \(E[L_0(S')] ≥ 1\) and note that \(1 ≤ E[L_0(S')] ≤ 2\). For any \(j > j^\ast\), \(P_r[L_0(S') > 8] < 1/(8 · 2^{j^\ast - j - 1})\) by Markov’s inequality. Thus, by a union bound, the probability that any \(j > j^\ast\) has \(L_0(S') > 8\) is at most \((1/8) · \sum_{j = j^\ast}^{∞} 2^{(j - j^\ast - 1)} = 1/4\). Now, let \(j^\ast < j^*\) be the largest \(j\) such that \(E[L_0(S')] ≥ 55\), if such a \(j\) exists. Since we increase the \(j\) by powers of \(2\), we have \(55 ≤ E[L_0(S') ≤ 110\). Note that \(j^\ast\) is pairwise independent, so \(\text{Var}[E[L_0(S')] ≤ E[L_0(S')]^2\). For this range of \(E[L_0(S')]\), we then have by Chebyshev’s inequality that
\[
Pr \left[|L_0(S^\ast') - E[L_0(S^\ast')]| ≥ 3 \sqrt{E[L_0(S^\ast')]^2}\right] ≤ 1/9.
\]
If \(|L_0(S^\ast') - E[L_0(S^\ast')]| < 3 \sqrt{E[L_0(S^\ast')]^2}\), then \(32 < 55 - 3 \sqrt{55} ≤ L_0(S^\ast') ≤ 110 + 3 \sqrt{110} < 142\) since \(55 ≤ E[L_0(S') ≤ 110\).

So far we have shown that with probability at least \(3/4\), \(L_0(S') ≤ 8\) for all \(j > j^\ast\). Thus, for these \(j\) the \(B^j\) will estimate \(L_0\) of the corresponding substreams to be at most \(8\), and we will not output \(\tilde{L}_0 = 2^j\) for \(j > j^\ast\). On the other hand, we know for \(j^\ast\) (if it exists) that with probability at least \(8/9\), \(S^\ast'\) will have \(32 ≤ L_0(S^\ast') ≤ 142\). By our choice of \(c = 141\) and \(η = 1/16\), we can conclude that \(B^j\) output a value \(L_0(S^\ast') ≤ L_0(S^\ast') / 4 > 8\) with probability at least \(1 - (3/9 + 1/16) > 13/16\) by Lemma 8. Thus, with probability at least \(1 - (3/9 + 1/4) = 9/16\), we output \(\tilde{L}_0 = 2^j\) for some \(j^\ast ≤ j ≤ j^*\), which satisfies \(110 · 2^j ≤ L_0 ≤ 2^j\). If such a \(j^\ast\) does not exist, then \(L_0 ≤ 55\), and 1 is a 55-approximation in this case. □