An Optimal Algorithm for the Distinct Elements Problem

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation

Published Version
doi:10.1145/1807085.1807094

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:13820438

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
An Optimal Algorithm for the Distinct Elements Problem

Daniel M. Kane *
Harvard University
One Oxford Street
Cambridge, MA 02138
dankane@math.harvard.edu

Jelani Nelson †
MIT CSAIL
32 Vassar Street
Cambridge, MA 02139
minilek@mit.edu

David P. Woodruff
IBM Almaden Research Center
650 Harry Road
San Jose, CA 95120
dpwoodru@us.ibm.com

ABSTRACT

We give the first optimal algorithm for estimating the number of distinct elements in a data stream, closing a long line of theoretical research on this problem begun by Flajolet and Martin in their seminal paper in FOCS 1983. This problem has applications to query optimization, Internet routing, network topology, and data mining. For a stream of indices in \(\{1, \ldots, n\} \), our algorithm computes a \((1 \pm \varepsilon)\)-approximation using an optimal \(O(\varepsilon^{-2} + \log(n)) \) bits of space with \(2/3 \) success probability, where \(0 < \varepsilon < 1 \) is given. This probability can be amplified by independent repetition. Furthermore, our algorithm processes each stream update in \(O(1) \) worst-case time, and can report an estimate at any point midstream in \(O(1) \) worst-case time, thus settling both the space and time complexities simultaneously.

We also give an algorithm to estimate the Hamming norm of a stream, a generalization of the number of distinct elements, which is useful in data cleaning, packet tracing, and database auditing. Our algorithm uses nearly optimal space, and has optimal \(O(1) \) update and reporting times.

Categories and Subject Descriptors: F.2.0 [Analysis of Algorithms and Problem Complexity]: General; H.2.m [Database Management]: Miscellaneous

General Terms: Algorithms, Theory

Keywords: distinct elements, streaming, query optimization, data mining

1. INTRODUCTION

Estimating the number of distinct elements in a data stream is a fundamental problem in network traffic monitoring, query optimization, data mining, and several other database areas. For example, this statistic is useful for selecting a minimum-cost query plan [33], database design [18], OLAP [30, 34], data integration [10, 14], and data warehousing [1].

In network traffic monitoring, routers with limited memory track statistics such as distinct destination IPs, requested URLs, and source-destination pairs on a link. Distinct elements estimation is also useful in detecting Denial of Service attacks and port scans [2, 17]. In such applications the data is too large to fit at once in main memory or too massive to be stored, being a continuous flow of data packets. This makes small-space algorithms necessary. Furthermore, the algorithm should process each stream update (i.e., packet) quickly to keep up with network speeds. For example, Estan et al [17] reported packet header information being produced at .5GB per hour while estimating the spread of the Code Red worm, for which they needed to estimate the number of distinct Code Red sources passing through a link.

Yet another application is to data mining: for example, estimating the number of distinct queries made to a search engine, or distinct users clicking on a link or visiting a website. Distinct item estimation was also used in estimating connectivity properties of the Internet graph [32].

We formally model the problem as follows. We see a stream \(i_1, \ldots, i_m \) of indices \(i_j \in [n] \), and our goal is to compute \(F_0 = |\{i_1, \ldots, i_m\}| \), the number of distinct indices that appeared, using as little space as possible. Since it is known that exact or deterministic computation of \(F_0 \) requires linear space [3], we settle for computing a value \(\tilde{F}_0 \in [(1-\varepsilon)F_0, (1+\varepsilon)F_0] \) for some given \(0 < \varepsilon < 1 \) with probability \(2/3 \), over the randomness used by the algorithm. This probability can be amplified by independent repetition.

The problem of space-efficient \(F_0 \)-estimation is well-studied, beginning with the work of Flajolet and Martin [20], and continuing with a long line of research, [3, 4, 5, 6, 9, 12, 16, 17, 19, 23, 24, 26, 36]. In this work, we finally settle both the space- and time-complexities of \(F_0 \)-estimation by giving an algorithm using \(O(\varepsilon^{-2} + \log(n)) \) bits of space, with worst-case update and reporting times \(O(1) \). By update time, we mean the time to process a stream token, and by reporting time, we mean the time to output an estimate of \(F_0 \) at any point in the stream. Our space upper bound matches the known lower bounds [3, 26, 36] up to a constant factor, and the \(O(1) \) update and reporting times are clearly optimal. A detailed comparison of our results to those in previous work is given in Figure 1. There is a wide spectrum of time/space tradeoffs but the key points are that none of the previous
algorithms achieved our optimal \(O(e^{-2} + \log n)\) bits of space, and the only ones to achieve optimal \(O(1)\) update and/or reporting time had various restrictions, e.g., the assumption of access to a random oracle (that is, a truly random hash function) and/or a small constant additive error in the estimate. The best previous algorithms without any assumptions are due to Bar Yossef et al. [4], who provide algorithms with various tradeoffs (Algorithms I, II, and III in Figure 1).

We also give a new algorithm for estimating \(L_0\), also known as the Hamming norm of a vector [13], with optimal running times and near-optimal space. This problem is a generalization of \(F_0\)-estimation to the case when items can be removed from the stream. While \(F_0\)-estimation is useful for a single stream or for taking unions of streams if there are no deletions, \(L_0\)-estimation can be applied to a pair of streams to measure the number of unequal item counts. This makes it more flexible than \(F_0\), and can be used in applications such as maintaining ad-hoc communication networks amongst cheap sensors [25]. It also has applications to data cleaning to find columns that are mostly similar [14]. Even if the rows in the two columns are in different orders, stream-cleaning to find columns that are mostly similar [14] is more flexible than \(F_0\) in the case of \(L_0\)-estimation, since in the latter case an index \(i\) in the stream corresponds to the update \((i, 1)\) in an \(L_0\)-estimation problem.

We give an \(L_0\)-estimation algorithm with \(O(1)\) update and reporting times, using \(O(e^{-2} \log(n)/(\log(1/\varepsilon) + \log \log(mM)))\) bits of space, both of which improve upon the previously best known algorithm of Ganguly [22], which had \(O(\log(1/\varepsilon))\) update time and required \(O(e^{-2} \log(n) \log(mM))\) space. Our update and reporting times are optimal, and the space is optimal up to the \(\log(1/\varepsilon) + \log \log(mM)\) term due to known lower bounds [3, 27]. Furthermore, unlike with Ganguly’s algorithm, our algorithm does not require that \(x_i \geq 0\) for each \(i\) to operate correctly.

1.1 Overview of our algorithms

Our algorithms build upon several techniques given in previous works, with added twists to achieve our stated performance. In for example [4], it was observed that if one somehow knows ahead of time a value \(R = \Theta(F_0)\), refining to \((1 \pm \varepsilon)\)-approximation becomes easier. For example, [4] suggested a “balls and bins” approach to estimating \(F_0\) given such an \(R\). The key intuition is that when hashing \(A\) balls randomly into \(K\) bins, the number of bins hit by at least one ball is highly concentrated about its expectation, and treating this expectation as a function of \(A\) then inverting provides a good approximation to \(A\) with high probability for \(A = \Theta(K)\). Then if one samples each index in \([n]\) with probability \(2^{-R/\log(K/K)}\), in expectation the number of distinct items surviving is \(\Theta(K)\), at which point the balls-and-bins approach can be simulated by hashing indices (the “balls”) into entries of a bitvector (the “bins”).

Following the above scheme, an estimate of \(F_0\) can be obtained by running a constant-factor approximation in parallel to obtain such an \(R\) at the end of the stream, and meanwhile performing the above scheme for geometrically increasing guesses of \(R\), one of which must be correct to within a constant factor. Thus, the bits tracked can be viewed as a bitmatrix: rows corresponding to \(\log(n)\) levels of subsampling, and columns corresponding to entries in the bitvector. At the end of the stream, upon knowing \(R\), the estimate from the appropriate level of subsampling is used. Such a scheme with \(K = \Theta(1/\varepsilon^2)\) works, and gives \(O(e^{-2} \log(n))\) space, since there are \(\log(n)\) levels of subsampling.

It was then first observed in [16] that, in fact, an estimator can be obtained without maintaining the full bitmatrix above. Specifically, for each column they gave an estimator that required only maintaining the deepest row with its bit set to 1. This allowed them to collapse the bitmatrix above to \(O(e^{-2} \log \log(n))\) bits. Though, their estimator and analysis required access to a purely random hash function.

Our \(F_0\) algorithm is inspired by the above two algorithms of [4, 16]. We give a subroutine \textsc{RoughEstimator} using \(O(\log(n))\) space which with high probability, simultaneously provides a constant-factor approximation to \(F_0\) at all times in the stream. Previous subroutines gave a constant factor approximation to \(F_0\) at any particular point in the stream with probability \(1 - \delta\) using \(O(\log(n) \log(1/\delta))\) space; a good approximation at all times then required setting \(\delta = 1/m\) to apply a union bound, thus requiring \(O(\log(n) \log(m))\) space. The next observation is that if \(R = \Theta(F_0)\), the largest row index with a 1 bit for any given column is heavily concen-

<table>
<thead>
<tr>
<th>Paper</th>
<th>Space</th>
<th>Update Time</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>[20]</td>
<td>(O(\log n))</td>
<td>(O(\log n))</td>
<td>Assumes random oracle, constant (\varepsilon)</td>
</tr>
<tr>
<td>[4]</td>
<td>(O(\log n))</td>
<td>(O(e^{-2}))</td>
<td>Only works for constant (\varepsilon)</td>
</tr>
<tr>
<td>[24]</td>
<td>(O(e^{-2} \log n))</td>
<td>(O(\log n))</td>
<td>Algorithm I in the paper</td>
</tr>
<tr>
<td>[5]</td>
<td>(O(e^{-3} \log n))</td>
<td>(O(e^{-3}))</td>
<td>Algorithm II in the paper</td>
</tr>
<tr>
<td>[4]</td>
<td>(O(e^{-2} \log \log n + \log(\log(1/\varepsilon)))</td>
<td>(O(e^{-2}))</td>
<td>Algorithm III in the paper</td>
</tr>
<tr>
<td>[10]</td>
<td>(O(e^{-2} \log \log n + \log n))</td>
<td>(-)</td>
<td>Assumes random oracle, additive error</td>
</tr>
<tr>
<td>[17]</td>
<td>(O(e^{-2} \log n))</td>
<td>(-)</td>
<td>Assumes random oracle</td>
</tr>
<tr>
<td>[6]</td>
<td>(O(e^{-2} \log n))</td>
<td>(O(1))</td>
<td>Optimal</td>
</tr>
<tr>
<td>This work</td>
<td>(O(e^{-2} + \log n))</td>
<td>(O(1))</td>
<td>(O(1))</td>
</tr>
</tbody>
</table>

Figure 1: Comparison of our algorithm to previous algorithms on estimating the number of distinct elements in a data stream.
trated around the value $\log(F_0/K)$. Thus, if we bitpack the K counters and store their offsets from $\log(R/K)$, we expect to only use $O(K)$ space for all counters combined. Whenever R changes, we update all our offsets.

There are of course obvious obstacles in obtaining $O(1)$ running times, such as the occasional need to decrement all K counters (when R increases), or to locate the starting position of a counter in a bitpacked array when reading and writing entries. For the former, we use a “variable-bit-length array” data structure [7], and for the latter we use an approach inspired by the technique of deamortization of global rebuilding (see [29, Ch. 5]). Furthermore, we analyze our algorithm without assuming a truly random hash function, and show that a combination of fast k-wise independent hash functions [35] and uniform hashing [31] suffice to have sufficient concentration in all probabilistic events we consider.

Our L_0-estimation algorithm also uses subsampling and a balls-and-bins approach, but needs a different subroutine for obtaining the value R, and for representing the bitmatrix. Specifically, if one maintains each bit as a counter and tests for the counter being non-zero, frequencies of opposite sign may cancel to produce 0 and give false negatives. We instead store the dot product of frequencies in each counter with a random vector over a suitably large finite field. We remark that Ganguly’s algorithm [22] is also based on a balls-and-bins approach, but on viewing the number of bins hit by exactly one ball (and not at least one ball), and the source of his algorithm’s higher complexity stems from technical issues related to this difference.

1.2 Preliminaries

Throughout this paper, all space bounds are given in bits. We always use m to denote stream length and $[n]$ to denote the universe (the notation $[n]$ represents $\{1,\ldots,n\}$). Without loss of generality, we assume n is a power of 2, and $\varepsilon \leq \varepsilon_0$ for some fixed constant $\varepsilon_0 > 0$. In the case of L_0, M denotes an upper bound on the magnitude of updates to the x_i. We use the standard word RAM model, and running times are measured as the number of standard machine word operations (integer arithmetic, bitwise operations, and bitshifts). We assume a word size of at least $\Omega(\log(nmM))$ bits to be able to manipulate counters and indices in constant time.

For reals $A, B, \varepsilon \geq 0$, we use the notation $A = (1 \pm \varepsilon)B$ to denote that $A \in [(1 - \varepsilon)B, (1 + \varepsilon)B]$. We use $\lfloor b \rfloor$ to denote the (0-based index of) the least significant bit of a nonnegative integer b when written in binary. For example, $\lfloor 6 \rfloor = 1$. We define $\lfloor b \rfloor_0 = \log(n)$. All our logarithms are base 2 unless stated otherwise. We also use $\mathcal{H}_H(U, V)$ to denote some k-wise independent hash family of functions mapping U into V. Using known constructions [11], a random $h \in \mathcal{H}_H(U, V)$ can be represented in $O(k \log(\|U\| + |V|))$ bits when $|U|, |V|$ are powers of 2, and computed in the same amount of space. Also, henceforth, whenever we discuss picking an $h \in \mathcal{H}_H(U, V)$, it should be understood that h is being chosen as a random element of $\mathcal{H}_H(U, V)$.

When discussing F_0, for $m \geq n$ we use $I(t)$ to denote $\{i_1, \ldots, i_k\}$, and define $F_0(t) = |I(t)|$. We sometimes use I to denote $I(m)$ so that $F_0 = F_0(m) = |I|$. In the case of L_0-estimation, we use $I(t)$ to denote the i with $x_i \neq 0$ at time t. For an algorithm which outputs an estimate \hat{F}_0 of F_0, we let $F_0(t)$ be its estimate after only seeing the first t updates (and similarly for L_0). More generally, for any variable y kept as part of the internal state of any of our algorithms, we use $y(t)$ to denote the contents of that variable at time t.

Lastly, we analyze our algorithm without any idealized assumptions, such as access to a cryptographic hash function, or to a hash function which is truly random. Our analyses all take into account the space and time complexity required to store and compute the types of hash functions we use.

2. Balls and Bins with Limited Independence

In the analysis of the correctness of our algorithms, we require some understanding of the balls and bins random process with limited independence. We note that [4] also required a similar analysis, but was only concerned with approximately preserving the expectation under bounded independence whereas we are also concerned with approximately preserving the variance. Specifically, consider throwing a set of A balls into K bins at random and wishing to understand the random variable X being the number of bins receiving at least one ball. This balls-and-bins random process can be modeled by choosing a random hash function $h \in \mathcal{H}_H([A], [K])$, i.e. h acts fully independently on the A balls, and letting $X = \{i \in [K] : h^{-1}(i) \neq \emptyset\}$. When analyzing our F_0 algorithm, we require an understanding of how X behaves when $h \in \mathcal{H}_H([A], [K])$ for $k < A$.

Henceforth, we let X_i denote the random variable indicating that at least one ball lands in bin i under a truly random hash function h, so that $X = \sum_{i=1}^K X_i$.

The following fact is standard.

FACT 1. $E[X] = K \left(1 - \left(1 - \frac{1}{K} \right)^A \right)$

The proof of the following lemma is deferred to the full version due to space constraints.

LEMMA 1. If $100 \leq A \leq K/20$, then $\text{Var}[X] < 4A^2/K$.

We now state a lemma that k-wise independence for small k suffices to preserve $E[X]$ to within $1 + \varepsilon$, and to preserve $\text{Var}[X]$ to within an additive ε^2. We note that item (1) in the following lemma was already shown in [4, Lemma 1] but with a stated required of $k = \Omega(\log(1/\varepsilon))$, though their proof actually seems to only require $k = \Omega(\log(1/\varepsilon)/\log(\log(1/\varepsilon)))$. Our proof of item (1) also only requires this k, but we require dependence on K in our proof of item (2). The proof of the following lemma is in Section A.1, and is via approximate inclusion-exclusion.

LEMMA 2. There exists some constant ε_0 such that the following holds for $\varepsilon \leq \varepsilon_0$. Let A balls be mapped into K bins using a random $h \in \mathcal{H}_{\{A\times k\}}([A], [K])$, where $k = c \log(K/\varepsilon)/\log(\log(K/\varepsilon))$ for some sufficiently large constant $c > 0$. Suppose $1 \leq A \leq K$. For $i \in [K]$, let X'_i be an indicator variable which is 1 if and only if there exists at least one ball mapped to bin i by h. Let $X' = \sum_{i=1}^K X'_i$. Then the following hold:

1. $E[X'] - E[X] \leq \varepsilon E[X]$
2. $\text{Var}[X'] - \text{Var}[X] \leq \varepsilon^2$

We now give a consequence of the above lemma.
LEMMA 3. There exists a constant \(\varepsilon_0 \) such that the following holds. Let \(X' \) be as in Lemma 2, and also assume \(100 \leq A \leq K/20 \) with \(K = 1/\varepsilon^2 \) and \(\varepsilon \leq \varepsilon_0 \). Then

\[
\Pr[|X' - E[X]|] \leq 8\varepsilon E[X] \geq 4/5
\]

PROOF. Observe that

\[
E[X] \geq (1/\varepsilon^2) \left(1 - A \varepsilon^2 + \left(\frac{A}{2} \right) \varepsilon^4 \right)
\]

\[
= (1/\varepsilon^2) \left(A \varepsilon^2 - \frac{A}{2} \varepsilon^4 \right)
\]

\[
\geq (39/40) A,
\]

since \(A \leq 1/(20\varepsilon^2) \).

By Lemma 2 we have \(E[X'] \geq (1 - \varepsilon) E[X] > (9/10) A \), and additionally using Lemma 1 we have that \(\text{Var}[X'] \leq \text{Var}[X] + \varepsilon^2 \leq 5\varepsilon^2 A^2 \). Let \(\varepsilon' = 7\varepsilon \). Applying Chebyshev’s inequality,

\[
\Pr[|X' - E[X']|] \geq (10/11) \varepsilon^2 E[X']
\]

\[
\leq \text{Var}[X']/(10(11)^2 (\varepsilon')^2 E[X'])
\]

\[
\leq 5 \cdot A^2 \varepsilon'^2/(10(11)^2 (\varepsilon')^2 E[X])
\]

\[
< (13/2)\varepsilon^2/(10/11)^2 \varepsilon^2 < 1/5
\]

Thus, with probability at least 1/5, by the triangle inequality and Lemma 2 we have \(|X' - E[X]| \leq |X' - E[X']| + |E[X'] - E[X]| \leq 8\varepsilon E[X] \). \(\square \)

3. \(F_0 \) ESTIMATION ALGORITHM

In this section we describe our \(F_0 \)-estimation algorithm. Our algorithm requires, in part, a constant-factor approximation to \(F_0 \) at every point in the stream in which \(F_0 \) is sufficiently large. We describe a subroutine \textsc{RoughEstimator} in Section 3.1 which provides this, using \(O(\log(n)) \) space, then we give our full algorithm in Section 3.2.

We remark that the algorithm we give in Section 3.2 is space-optimal, but is not described in a way that achieves \(O(1) \) worst-case update and reporting times. In Section 3.4, we describe modifications to achieve optimal running times while preserving space-optimality.

We note that several previous algorithms could give a constant-factor approximation to \(F_0 \) with success probability 2/3 using \(O(\log(n)) \) space. To understand why our guarantees from \textsc{RoughEstimator} are different, we should pay particular attention to the quantizers. In previous algorithms, it was guaranteed that there exists a constant \(c > 0 \) such that at any particular point \(t \) in the stream, with probability at least 1 - \(\delta \) the output \(\hat{F}_0(t) \) is in \([F_0(t), cF_0(t)] \), with the space used being \(O(\log(n)\log(1/\delta)) \). To then guarantee \(\hat{F}_0(t) \in [F_0(t), cF_0(t)] \) for all \(t \in [m] \) with probability 2/3, one should set \(\delta = 1/(3m) \) to then union bound over all \(t \), giving an overall space bound of \(O(\log(n)\log(m)) \). Meanwhile, in our subroutine \textsc{RoughEstimator}, we ensure that with probability 2/3, \(\hat{F}_0(t) \in [F_0(t), cF_0(t)] \) for all \(t \in [m] \) simultaneously, and the overall space used is \(O(\log(n)) \).

3.1 RoughEstimator

We now show that \textsc{RoughEstimator} (Figure 2) with probability 1 - o(1) (as \(n \to \infty \)) outputs a constant-factor approximation to \(F_0(t) \) for every \(t \) in which \(F_0(t) \) is sufficiently large. That is, if our estimate of \(F_0(t) \) is \(\hat{F}_0(t) \),

\[
\Pr[|t \in [m] \text{ s.t. } F_0(t) \geq K_{RE} \text{, } \hat{F}_0(t) = \Theta(F_0(t))] \leq 1 - o(1),
\]

where \(K_{RE} \) is as in Figure 2.

THEOREM 1. With probability 1 - o(1), the output \(\hat{F}_0(t) \) of \textsc{RoughEstimator} satisfies \(F_0(t) \leq \hat{F}_0(t) \leq 8F_0(t) \) for every \(t \in [m] \) with \(F_0(t) \geq K_{RE} \) simultaneously. The space used is \(O(\log(n)) \).

PROOF. We first analyze space. The counters in total take \(O(K_{RE}\log\log(n)) = O(\log(n)) \) bits. The hash functions \(h_i^r, h_i' \) each take \(O(\log(n)) \) bits. The hash functions \(h_i' \) take \(O(K_{RE}\log(K_{RE})) = O(\log(n)) \) bits.

We now analyze correctness.

LEMMA 4. For any fixed point \(t \) in the stream with \(F_0(t) \geq K_{RE} \), and fixed \(j \in [3] \), with probability 1 - \(O(1/K_{RE}) \) we have \(F_0(t) \leq \hat{F}_0(t) \leq 4F_0(t) \).

PROOF. The algorithm \textsc{RoughEstimator} of Figure 2 can be seen as taking the median output of three instantiations of a subroutine, where each subroutine has \(K_{RE} \) counters \(C_1, \ldots, C_{K_{RE}} \), hash functions \(h_1, h_2, h_3 \), and defined quantities \(T_r(t) = \{ i : C_i(t) \geq r \} \), where \(C_i(t) \) is the state of counter \(C_i \) at time \(t \). We show that this subroutine outputs a value \(\hat{F}_0(t) \in [F_0(t), 4F_0(t)] \) with probability 1 - \(O(1/K_{RE}) \).

Define \(L_r(t) \leq I(t) \) as the set of \(i \in I(t) \) with \(\text{lsb}(h_1(i)) \geq r \). Note \(|I_r(t)| \) is a random variable, and

\[
\Pr[|I_r(t)|] = \frac{F_0(t)}{2^r}, \quad \text{Var}[|I_r(t)|] = \frac{F_0(t)}{2^r} - \frac{F_0(t)}{2^{2r}} \leq E[|I_r(t)|],
\]

with the latter using 2-wise independence of \(h_1 \). Then by Chebyshev’s inequality,

\[
\Pr\left[|I_r(t)| - \frac{F_0(t)}{2^r} \geq q \cdot \frac{F_0(t)}{2^r} \right] \leq \frac{1}{q^2 \cdot E[|I_r(t)|]}. \tag{1}
\]

Since \(F_0(t) \geq K_{RE} \), there exists an \(r' \in [0, \log n] \) such that \(K_{RE}/2 \leq E[|I_{r'}(t)|] < K_{RE} \). We condition on the event \(E \) that \(K_{RE}/3 \leq L_{r'}(t) \leq 4K_{RE}/3 \), and note

\[
\Pr[E] = 1 - O(1/K_{RE})
\]

by Eq. (1). We also condition on the event \(E' \) that for all \(r'' > r' + 1 \), \(L_{r''}(t) \leq 7K_{RE}/24 \). Applying Eq. (1) with \(r = r'' + 2 \) and using that \(L_{r''}(t) \leq L(t) \),

\[
\Pr[E'] \geq 1 - O(1/K_{RE})
\]

We now define two more events. The first is the event \(E'' \) that \(T_{r'}(t) \geq pK_{RE} \). The second is the event \(E''' \) that \(T_{r''}(t) < pK_{RE} \) for all \(r'' > r' + 1 \). Note that if \(E'' \land E''' \) holds, then \(F_0(t) \leq \hat{F}_0(t) \leq 4F_0(t) \). We now show that these events hold with large probability.

Define the event \(A \) that the indices in \(I_r(t) \) are perfectly hashed under \(h_2 \), and the event \(A' \) that the indices in \(I_{r'+1}(t) \) are perfectly hashed under \(h_2 \). Then

\[
\Pr[A \land E'] \geq 1 - O(1/K_{RE})
\]

and similarly for \(\Pr[A' \land E'] \).

Note that, conditioned on \(E \land A \), \(T_r(t) \) is distributed exactly as the number of non-empty bins when throwing \(|I_r(t)| \) balls uniformly at random into \(K_{RE} \) bins. This is
1. Set $K_{RE} = \max\{8, \log(n)/\log\log(n)\}$.
2. Initialize $3K_{RE}$ counters $C^{t'}_1, \ldots, C^{t'}_{3K_{RE}}$ to -1 for $j \in [3]$.
3. Pick random $h^{t'}_j \in \mathcal{H}_2([n], [0, n-1])$, $h^{t'}_j \in \mathcal{H}_2([n], [K_{RE}^3], [K_{RE}])$ for $j \in [3]$.
4. Update(i): For each $j \in [3]$, set $C^{t'}_j(h^{t'}_j(i)) \leftarrow \max\left\{C^{t'}_j(h^{t'}_j(i)), \log(h^{t'}_j(i))\right\}$.
5. Estimator: For integer $r \geq 0$, define $T^{t'}_r = \{|i : C^{t'}_j(i) \geq r\}$.

Thus, overall, $E[T^{t'}_r(t) | \mathcal{E} \land \mathcal{A}] = \left(1 - \left(1 - \frac{1}{K_{RE}}\right)^{|T^{t'}_r(t)|}\right) K_{RE}$.

The same argument applies for the conditional expectation $E[T^{t'}_r(t) | \mathcal{E} \land \mathcal{A}']$ for $r'' > r' + 1$. Call these conditional expectations $E_{r''}$. Then since $(1 - 1/n)/e \leq (1 - 1/n)^{n} \leq 1/e$ for all real $n \geq 1$ (see Proposition B.3 of [28]), we have that $E_{r''} / K_{RE}$ lies in the interval

$$\left[\left(1 - e^{-\frac{|T^{t'}_r(t)|}{K_{RE}}}, \left(1 - e^{-\frac{|T^{t'}_r(t)|}{K_{RE}}\left(1 - \frac{1}{K_{RE}}\right)^{\frac{|T^{t'}_r(t)|}{K_{RE}}}\right)\right)\right.$$

Thus for $r'' > r' + 1$,

$$E_{r''} \leq \left(1 - e^{-7/24}\right)\left(1 - \frac{1}{K_{RE}}\right)^{7/24} K_{RE}, \quad \text{and}$$

$$E_{r''} \geq \left(1 - e^{-1/3}\right) K_{RE}.$$

A calculation shows that $E_{r''} < 0.99 E_{r'}$ since $K_{RE} \geq 8$.

By negative dependence in the balls and bins random process (see [15]), the Chernoff bound applies to $T(t)$ and thus

$$\Pr[|T_r(t) - E_r| \geq e E_{r'} \mid \mathcal{E} \land \mathcal{A}] \leq 2e^{-e^2 E_{r'}/3}$$

for any $e > 0$, and thus by taking ϵ a small enough constant,

$$\Pr[|E''| \mid \mathcal{E} \land \mathcal{A}] \geq 1 - e^{-O(K_{RE})}$$

We also have, for $r'' > r' + 1$,

$$\Pr[|E''| \mid \mathcal{E} \land \mathcal{A}'] \geq \Pr[|T_{r''}(t) \geq \rho K_{RE} | \mathcal{E}' \land \mathcal{A}'] \geq 1 - e^{-O(K_{RE})}.$$

Thus, overall,

$$\Pr[|E''| \land \mathcal{A}'] \geq \Pr[|E''| \land \mathcal{A}' \land \mathcal{A} \land \mathcal{A}'] \geq \Pr[|E''| \land \mathcal{A}] + \Pr[|E''| \land \mathcal{A}'] - 1 = \Pr[|E''| \land \mathcal{A} \land \mathcal{A}'] - \Pr[|\mathcal{A} | \mathcal{E}] \cdot \Pr[|E' | \mathcal{A}] + \Pr[|E''| \land \mathcal{A}' \land \mathcal{A}] \cdot \Pr[|\mathcal{A}' | \mathcal{E}] \cdot \Pr[|E' | \mathcal{A}'] - 1 \geq 1 - O(1/K_{RE})$$

Now, note that for any $t \in [m]$, if $\tilde{F}_0(t)$ is a 4-approximation to $F_0(t)$ for at least two values of j, then $\tilde{F}_0(t) \in [F_0(t), 4F_0(t)]$. Thus by Lemma 4, $\tilde{F}_0(t) \in [F_0(t), 4F_0(t)]$ with probability $1 - O(1/K_{RE}^2)$. Let t_r be the first time in the stream when $F_0(t_r) = 2^r$ (if no such time exists, let $t_r = \infty$). Then by a union bound, our estimate of $F_0(t_r)$ is in $[F_0(t_r), 4F_0(t_r)]$ at all t_r for $r \in [0, \log n]$ with probability $1 - O(\log(n)/K_{RE}^2) = 1 - o(1)$. Now, observe that our estimates $\tilde{F}_0(t)$ can only ever increase with t. Thus, if our estimate is in $[F_0(t_r), 4F_0(t_r)]$ at all points t_r, then it is in $[F_0(t), 8F_0(t)]$ for all $t \in [m]$. This concludes our proof.

3.2 Full algorithm

In this section, we analyze our main algorithm (Figure 3), which $(1 \pm O(\varepsilon))$-approximates F_0 with 11/20 probability. We again point out that the implementation described in Figure 3 is not our final algorithm which achieves $O(1)$ update and reporting times; the final optimal algorithm is a modification of Figure 3, described in Section 3.4. We assume throughout that $F_0 \geq K/32$ and deal with the case of small F_0 in Section 3.3. The space used is $O(e^{-2} + \log(n))$ bits. Note that the 5/8 can be boosted to 1 – δ for arbitrary $\delta > 0$ by running $O(\log(1/\delta))$ instantiations of our algorithm in parallel and returning the median estimate of F_0. Also, the $O(\varepsilon)$ term in the error guarantee can be made ε by running the algorithm with $\varepsilon = \varepsilon/C$ for a sufficiently large constant C. Throughout this section, we without loss of generality assume n is larger than some constant n_0, and $1/e^2 \geq C \log(n)$ for a constant C of our choice, and is a power of 2. If one desires a $(1 - \varepsilon)$-approximation for $\varepsilon > 1/\sqrt{C \log(n)}$, we simply run our algorithm with $\varepsilon = 1/\sqrt{C \log(n)}$, which worsens our promised space bound by at most a constant factor.

The algorithm of Figure 3 works as follows. We maintain $K = 1/e^2$ counters C_1, \ldots, C_K as well as three values A, b, ε. Each index is hashed to some level between 0 and $\log(n)$, based on the least significant bit of its hashed value, and is also hashed to one of the counters. Each counter maintains the deepest level of an item that was hashed to it. Up until this point, this information being kept is identical as in the LogLog [16] and HyperLogLog [19] algorithms (though our analysis will not require that the hash functions be truly random). The value ε keeps track of the amount of storage required to store all the C_i, and our algorithm fails if this value ever becomes much larger than a constant times K (which we show does not happen with large probability).
1. Set $K = 1/\varepsilon^2$.
2. Initialize K counters C_1, \ldots, C_K to -1.
3. Pick random $h_1 \in \mathcal{H}_2([n], [0, n - 1])$, $h_2 \in \mathcal{H}_2([n], [K^3])$, $h_3 \in \mathcal{H}_2([K^3], [K])$ for $k = \Omega(\log(1/\varepsilon)/\log\log(1/\varepsilon))$.
4. Initialize $A, b, \text{est} = 0$.
5. Run an instantiation RE of RoughEstimator.
6. Update(i):
 - Set $x \leftarrow \max\{C_{h_3(h_2(i))}, \text{lsh}(h_1(i)) - b\}$.
 - Set $A \leftarrow A - \lfloor \log(2 + C_{h_3(h_2(i))}) \rfloor + \lfloor \log(2 + x) \rfloor$.
 - If $A > 3K$, Output FAIL.
 - Set $C_{h_3(h_2(i))} \leftarrow x$. Also feed i to RE.
 - Let R be the output of RE.

 if $R > 2^{\text{est}}$:
 - (a) $\text{est} \leftarrow \log(R)$; $b_{\text{new}} \leftarrow \max(0, \text{est} - \log(K/32))$.
 - (b) For each $j \in [K]$, set $C_j \leftarrow \max\{-1, C_j + b - b_{\text{new}}\}$
 - (c) $b \leftarrow b_{\text{new}}$. $A \leftarrow \sum_{j=1}^{K} \lfloor \log(C_j + 2) \rfloor$.

7. Estimator: Define $T = \{j : C_j \geq 0\}$. Output $F_0 = 2^h \cdot \frac{\ln(1 - \frac{x}{K})}{\ln(1 - \frac{1}{K})}$.

Figure 3: F_0 algorithm pseudocode. With probability $11/20$, $F_0 = (1 \pm O(\varepsilon))F_0$. The value est is such that 2^{est} is a $O(1)$-approximation to F_0, and is obtained via RoughEstimator, and b is such that we expect $F_0(t)/2^b$ to be $O(K)$ at all points t in the stream. Each C_j then actually holds the offset (from b) of the deepest level of an item that was hashed to it; if no item of level b or deeper hashed to C_j, then C_j stores -1. Furthermore, the counters are bitpacked so that C_j only requires $O(1 + \log(C_j))$ bits of storage (Section 3.4 states a known data structure which allows the bitpacked C_j to be stored in a way that supports efficient reads and writes).

Theorem 2. The algorithm of Figure 3 uses $O(\varepsilon^{-2} + \log(n))$ space.

Proof. The hash functions h_1, h_2 each require $O(\log(n))$ bits to store. The hash function h_3 takes $O(\log(\log(K))) = O(\log^2(1/\varepsilon))$ bits. The value b takes $O(\log\log n)$ bits. The value A never exceeds the total number of bits to store all counters, which is $O(\varepsilon^{-2} \log(n))$, and thus A can be represented in $O(\log(1/\varepsilon) + \log(\log(n)))$ bits. The counters C_j never in total consume more than $O(1/\varepsilon^2)$ bits by construction, since we output FAIL if they ever would. \qed

Theorem 3. The algorithm of Figure 3 outputs a value which is $(1 \pm O(\varepsilon))F_0$ with probability at least $11/20$ as long as $F_0 \geq K/32$.

Proof. Let $F_0^\text{RE}(t)$ be the estimate of F_0 offered by RE at time t. Throughout this proof we condition on the event E that $F_0(t) \leq F_0^\text{RE}(t) \leq 8F_0(t)$ for all $t \in [m]$, which occurs with probability $1 - o(1)$ by Theorem 1.

We first show that the algorithm does not output FAIL with large probability. Note A is always $\sum_{i=1}^{m} \lfloor \log(C_i + 2) \rfloor$, and we must thus show that with large probability this quantity is at most $3K$ at all points in the stream. Let $A(t)$ be the value of A at time t (before running steps (a)-(c)), and similarly define $C_j(t)$. We condition on the randomness used by RE, which is independent from the remaining parts of the algorithm. Let t_1, \ldots, t_{r-1} be the points in the stream where the output of RE changes, i.e., $F_0^\text{RE}(t_j - 1) \neq F_0^\text{RE}(t_j)$ for all $j \in [r - 1]$, and define $t_r = m$. We note that $A(t)$ takes on its maximum value for $t = t_j$ for some $j \in [r]$, and thus it suffices to show that $A(t_j) \leq 3K$ for all $j \in [r]$. We furthermore note that $r \leq \log(n) + 3$ since $F_0^\text{RE}(t)$ is weakly increasing, only increases in powers of 2, and is always between 1 and $8F_0 \leq 8n$ given that E occurs. Now,

$$A(t) \leq K + \sum_{i=1}^{K} \log(C_i(t) + 2)$$

$$\leq K + K \cdot \log \left(\frac{\sum_{i=1}^{K} C_i(t)}{K} + 2 \right)$$

with the last inequality using concavity of the logarithm and Jensen’s inequality. It thus suffices to show that, with large probability, $\sum_{i=1}^{K} C_i(t_j) \leq 2K$ for all $j \in [r]$.

Fix some $t = t_j$ for $j \in [r]$. For $i \in I(t)$, let $X_i(t)$ be the random variable $\max\{-1, \text{lsh}(h_1(i)) - b\}$, and let $X(t) = \sum_{i \in I(t)} X_i(t)$. Note $\sum_{i \in I(t)} C_i(t) \leq X(t)$, and thus it suffices to lower bound $\Pr[X(t) \leq 2K]$.

We have that $X_i(t)$ equals s with probability $1/2^{b+s+1}$ for $0 \leq s < \log(n) - b$, equals $\log(n) - b$ with probability $1/n$, and equals -1 with the remaining probability mass. Thus

$$E[X(t)] = F_0(t) \cdot \left(\frac{\log(n) - b - 1}{1/n + \sum_{s=0}^{\log(n)-b-1} 2^{-(b+s+1)}} \right) = F_0(t)/2^b.$$

Furthermore, by choice of h_1 the $X_i(t)$ are pairwise independent, and thus $\text{Var}[X(t)] \leq E[X(t)]$ since $\text{Var}[X_i(t)] \leq E[X_i(t)]$. Then by Chebyshev’s inequality,

$$\Pr[X(t) > 2K] \leq \frac{F_0(t)}{2^b \cdot (2K - F_0(t))/2^b)^2}$$

Conditioned on E, $K/256 \leq F_0(t)/2^b \leq K/32$, implying the above probability is at most $1/32K$. Then by a union bound over all t_j for $j \in [r]$, we have that $X(t) \leq 2K$ for all $j \in [r]$ with probability at least $1 - r/(32K) \geq 1 - 1/32$ by our assumed upper bound on ε, implying we output FAIL with probability at most $1/32$.

We now show that the output from Step 7 in Figure 3 is
(1 ± O(ε))F₀ with probability 11/16. Let A be the algorithm in Figure 3, and let A' be the same algorithm, but without the third line in the update rule (i.e., A' never outputs FAIL). We first show that the output F₀ of A' is (1 ± O(ε))F₀ with probability 5/8. Let I₀ be the set of indices i ∈ I such that lsb(i) ≥ b. Then E[|I₀|] = F₀/2b, and Var[|I₀|] ≤ E[|I₀|], with the last inequality in part using pairwise independence of h₁. We note that conditioned on Ė, we have

\[K/256 \leq E[|I₀|] \leq K/32 \]

Let Ė' be the event that K/300 ≤ |I₀| ≤ K/20. Then by Chebyshev's inequality,

\[\Pr[Ē' \mid Ė] \geq 1 - O(1/K) = 1 - o(1). \]

Also, if we let Ė'' be the event that I₀ is perfectly hashed under h₂, then pairwise independence of h₂ gives

\[\Pr[Ē'' \mid Ė'] \geq 1 - O(1/K) = 1 - o(1). \]

Now, conditioned on Ė' ∩ Ė'', we have that T is a random variable counting the number of bins hit by at least one ball under a k-wise independent hash function, where there are \(B = |I₀| \) balls, K bins, and \(k = \Omega(\log(K/ε)/\log\log(K/ε)) \). Then by Lemma 3, \(T = (1 ± 8ε)(1 - (1 - 1/K)^B)K \) with 4/5 probability, in which case

\[\ln(1 - T/K) = \ln((1 - 1/K)^B ± 8ε(1 - (1 - 1/K)^B)) \]

Conditioned on Ė', (1 - (1 - 1/K)^B) = Θ(1), and thus the above is

\[\ln((1 ± O(ε))(1 - (1 - 1/K)^B)) = B \ln(1 - 1/K) ± O(ε) \]

since \(\ln(1 + x) = O(|x|) \) for \(|x| < 1/2 \), and thus

\[F₀ = B \cdot 2b ± O(ε \cdot 2b K). \]

Conditioned on Ė, we have that \(2b \leq 256F₀/K \), and thus the error term in Eq. (2) is \(O(f₀) \). Also, \(E[B] = F₀/2b \), which is at least \(K/256 \) conditioned on Ė. Thus by pairwise independence of h₁, Chebyshev's inequality implies

\[\Pr[|B - E[B]| \geq c/\sqrt{K}] \leq \frac{E[|B|]}{(c^2/K) \cdot E[|B|]^2} \leq \left(\frac{16}{c} \right)^2 \]

since \(\text{Var}[B] \leq E[|B|] \), which we can make an arbitrarily small constant by setting \(c \) to be a large constant. Note that \(1/\sqrt{K} \) is just \(ε \), and thus we have that \(B = (1 ± O(ε))F₀/2b^K \) with arbitrarily large constant probability.

Putting everything together, we have that, conditioned on Ė ∩ Ė' ∩ Ė'', \(F₀ = (1 ± O(ε))F₀ \) with probability at least 4/5 - \(δ \) for any constant \(δ > 0 \) of our choice, e.g. \(δ = 1/5 \). Since \(\Pr[Ė \mid Ė \cap Ė' \cap Ė''] \geq 1 - o(1) \), we thus have

\[\Pr[F₀ = (1 ± O(ε))F₀] \geq 3/5 - o(1). \]

Note our algorithm in Figure 3 succeeds as long as (1) we do not output FAIL, and (2) \(F₀ = (1 ± O(ε))F₀ \), and thus overall we succeed with probability at least \(1 - \frac{5}{3} - o(1) - \frac{1}{32} > \frac{24}{32} \). □

3.3 Handling small \(F₀ \)

In Section 3.2, we assumed that \(F₀ = Ω(K) \) for \(K \geq 1/ε² \) (specifically, \(F₀ \geq K/32 \)). In this subsection, we show how to deal with the case that \(F₀ \) is small, by running a similar (but simpler) algorithm to that of Figure 3 in parallel.

The case \(F₀ < 100 \) can be dealt with simply by keeping the first 100 distinct indices seen in the stream in memory, taking \(O(\log(n)) \) space.

For the case \(F₀ ≥ 100 \) we can apply Lemma 3 as was done in the proof of Theorem 3. We maintain \(K' = 2K \) bits \(B₁, ..., B_K \) in parallel, initialized to 0. When seeing an index \(i \) in the stream, in addition to carrying out Step 6 of Figure 3, we also set \(B_{h(i) + (i/2^b)} \) to \(1 \) (\(h(i) \) can be taken to have range \(K' = 2K \), and its evaluation can be taken modulo \(K \) when used in Figure 3 to have a size-\(K \) range). Let \(t₀ \) be the smallest \(t \in [m] \) with \(F₀(t) = K'/64 \), and \(t₁ \) be the smallest \(t \in [m] \) with \(F₀(t) = K'/32 \) (if no such \(t \) exist, set them to \(∞ \)). Define \(T₀(t) = \{ i : B_i(t) = 1 \} \), and define \(F₀(t) = \ln(1 - T₀(t)/K'')/\ln(1 - K'/1) \). Then by similar calculations as in Theorem 3 and a union bound over \(t₀, t₁ \), \(\Pr[F₀(t) = (1 ± O(ε))F₀(t) \mid i \in \{0,1\}] \) is at least \(1 - 2 \cdot (1/5) - o(1) = 3/5 - o(1) \). Noting that \(F₀(t) \) monotonically increases with \(t \), we can do the following: for \(t \) with \(F₀(t) \geq K'/32 = K/16 \), we output the estimator from Figure 3; else, we output \(F₀(t) \). We summarize this section with the following theorem.

Theorem 4. Let \(δ > 0 \) be any fixed constant, and \(ε > 0 \) be given. There is a subroutine requiring \(O((ε^2 + \log(n))) \) space with which probability 1 - \(δ \) satisfies the property that there is some \(t' \in [m] \) satisfying: (1) for any fixed \(t < t' \), \((1 ± O(ε))F₀ \) is output, and (2) for any \(t ≥ t' \) the subroutine outputs LARGE, and we are guaranteed \(F₀(t) ≥ 1/(16ε^2) \).

3.4 Running time

In this subsection we discuss an implementation of our \(F₀ \) algorithm in Figure 3 with \(O(1) \) update and reporting times. We first state a few theorems from previous works.

Theorem 5 (Brodinik [8], Friedman and Willard [21]). The least and most significant bits of an integer fitting in a machine word can be computed in constant time.

The next two theorems give hash families which have strong independence properties while only requiring \(O(1) \) evaluation time (recall that the \(k \)-wise independent hash functions of Carter and Wegman require \(Θ(k) \) evaluation time).

Theorem 6 (Pagh and Pagh [31, Theorem 1.1]). Let \(S \subseteq U = [u] \) be a set of \(z \geq 1 \) elements, and let \(V = [v] \), with \(1 < v ≤ u \). Suppose the machine word size is \(Ω(\log(u)) \). For any constant \(c > 0 \) there is word RAM algorithm that, using time \(\log(z) \log(Ω(v)) \) and \(O(\log(ζ) + \log(Ω(z)) \) bits of space, selects a family \(H \) of functions from \(U \) to \(V \) (independent of \(S \)) such that:

1. With probability 1 - \(O(1/z^ε) \), \(H \) is \(z \)-wise independent when restricted to \(S \).
2. \(H \) can be represented by a RAM data structure using \(O(z \log(Ω(v))) \) bits of space, and \(H \) can be evaluated in constant time after an initialization step taking \(O(z) \) time.

The following is a corollary of Theorem 2.16 in [35].

Theorem 7 (Siegel [35]). Let \(U = [u] \) and \(V = [v] \) with \(u = v' \) for some constant \(c ≥ 1 \), where the machine word size is \(Ω(\log(v)) \). Suppose one wants a \(k \)-wise independent hash family \(H \) of functions mapping \(U \) to \(V \) for \(k(v) = v'^{c} \). For any constant \(ε > 0 \) there is a randomized procedure for constructing such a \(H \) which succeeds
which does not increase our space bound for
RoughEstimator (Theorem 1) only relied on the
h^*_i being uniform on some unknown set of
\mathcal{H} in Theorem 6 with $z = 2K_{RE}$, $a = K_{RE}$, $v = K_{RE}$. The constant c in Item 1 of Theorem 6 is chosen to be 1, so that each h^*_i is uniform on any given subset of z items of $[a]$ with probability
$1 - O(1/K_{RE})$. Note that the proof of correctness of RoughEstimator (Theorem 1) only relied on the
h^*_i being uniform on some unknown set of $4K_{RE}/3 < 2K_{RE}$ indices with probability
$1 - O(1/K_{RE})$ (namely, those indices in $I_r(t)$). The space required to store any $h \in \mathcal{H}$ is $z \log(v) = O(\log(n))$, which does not increase our space bound for
RoughEstimator. Updates then require computing a least significant
bit, and computing the h^*_i, h^*_j, h^*_k, all taking constant time.

For reporting time, in addition to the information main-
tained in Figure 2, we also maintain three sets of counters
A^*_i, A^*_j, A^*_k for $j \in [3]$. For a fixed j, the A^*_j store
$T_{r,j}$ for an r we now specify. Roughly speaking, for the values
of t where $F_0(t) > K_{RE}$, r will be such that, conditioned
on RoughEstimator working correctly, 2^r will always be
in $[F_0(t)/2, 2F_0(t)]$. We then alter the estimator of
RoughEstimator to being 2^r+1.

Note that, due to Theorem 4, the output of RoughEsti-
imator does not figure into our final F_0-estimator until
$F_0(t) \geq (1 - O(\varepsilon))/32^2$, and thus the output of the al-
gorithm is irrelevant before this time. We start off with
$r = \log((1/32^2)) = \log(1/32^2)$.

Note that A^*_i, A^*_j, A^*_k can be main-
tained in constant time during updates. At some point
t_{i}, the estimator from Section 3.3 will declare that
$F_0(t_{i}) = (1 + O(\varepsilon))/32^2$, at which point we are assured $F_0(t) \geq (1 - O(\varepsilon))/32^2 \geq \log(n)$ (assuming ε is smaller than some constant,
and assuming $1/\varepsilon^2 \geq 64 \log(n)$). Similarly, we also have $F_0(t_{i}) \leq 1/(8 \varepsilon^2) \leq 4 \log(n)$. Thus, by our choice of r,
or conditioned on the event that RoughEstimator of
Figure 2 succeeds (i.e., outputs a value in $[F_0(t)/2, 2F_0(t)]$ for all t with $F_0(t) \geq K_{RE}$), we can determine the median
across the j of the largest r^* such that $T_{r,j} \geq K_{RE}$ from
the A^*_j and set $r(t) = r^*$ so that $2^r(t)$ is in $[F_0(t), 2F_0(t)]$.

Our argument henceforth is inductive: conditioned on the output
of RoughEstimator from Figure 2 being correct (always in $[F_0(t)/8, 8F_0(t)]$, $2^r(t)$ will always be in $[F_0(t)/2, 8F_0(t)]$
for all $t \geq t_{i}$, which we just saw is true for $t = t_{i}$. Note
that conditioned on RoughEstimator being correct, its esti-
mate of F_0 cannot jump by a factor more than 8 at any
given point in the stream. Furthermore, if this happens, we
will detect it since we store up to A^*_j. Thus, whenever we
find that the estimate from RoughEstimator changed (say
from 2^{r^*} to 2^{r^*}), we increment r by $r^* - r^*$ and set each A^*_j
$A^*_j \uparrow \ldots \uparrow r^*$ for $i \leq 4 + r^* - r^*$.
For $4 + r^* - r^* < i \leq 4$, we re-
compute A^*_j from scratch, by looping over the K_{RE} counters
C_i. This requires $O(K_{RE})$ work, but note that since $t \geq t_{i}$, there must be at least K_{RE} updates before $F_0(t)$ doubles, and thus we can afford to do $O(1)$ work toward this looping
per update. In the meantime 2^r cannot fall below $F_0/2$.}

We will use the following “variable-bit-length array” data
structure to implement the array C of counters in Figure 3,
which has entries whose binary representations may have
unequal lengths. Specifically, in Figure 3, the bit representa-
tion of C_i requires $O(1 + \log(C_i + 2))$ bits.

Definition 1 (Blandford, Blelloch [7]). A variable-bit-
length array (VLA) is a data structure implementing an
array C_1, \ldots, C_n supporting the following operations: (1)
update(i, x) sets the value of C_i to x, and (2) read(i) re-
turns C_i. Unlike in standard arrays, the C_i are allowed
to have bit-representations of varying lengths, and we use
$\text{len}(C_i)$ to represent the length of the bit-representation of
C_i.

Theorem 8 (Blandford and Blelloch [7]). There is
a VLA data structure using $O(n + \sum \text{len}(C_i))$ space to
store n elements, supporting worst-case $O(1)$ updates and reads,
under the assumptions that (1) $\text{len}(C_i) \leq w$ for all i, and
(2) $w \geq \log(M)$. Here w is the machine word size,
and M is the amount of memory available to the VLA.

We now give a time-optimal version of Figure 3.

Theorem 9. The algorithm of Figure 3 can be imple-
mented with $O(1)$ worst-case update and reporting times.

Proof. For update time, we select h_3 from the hash
family of Theorem 7, which requires $O(1/\varepsilon^2)$ space for
arbitrarily small $\varepsilon > 0$ of our choosing (say, $\varepsilon = 1$),
and thus this space is dominated by other parts of the algorithm.
We then can evaluate h_1, h_2, h_3 in constant time, as well as compute
the required least significant bit in constant time. Updating
A requires computing the ceiling of a base-2 logarithm,
but this is just a most significant bit computation which we can
do in $O(1)$ time. We can also read and write the C_i
in constant time whilst using the same asymptotic space by
Theorem 8.

What remains is to handle the if statement for when
$R > 2^{r^*}$. Note that a naïve implementation would require
$O(K_{RE})$ time. Though this if statement occurs infrequently
enough that one could show $O(1)$ amortized update time, we
instead show the stronger statement that an implemen-
tation is possible with $O(1)$ worst case update time.
The idea is similar to that in the proof of Lemma 5: when b_{new}
changes, it cannot change more than a constant number of
times again in the next $O(1)$ updates, and so we can spread
the $O(K_{RE})$ required work over the next $O(1)$ stream updates,
doing a constant amount of work each update.

Specifically, note that b_{new} only ever changes for times t when
$R(t) > 2^{r_{new}(t)} \geq K/16$, conditioned on the subrouti-
e of Theorem 4 succeeding, implying that $F_0(t) \geq K/256,$
and thus there must be at least $K/256$ updates for $F_0(t)$
to double. Since RoughEstimator always provides an 8-
approximation, est can only increase by at most 3 in the next
$K/256$ stream updates. We will maintain a primary
and secondary instantiation of our algorithm, and only the
primary receives updates. Then in cases where $R > 2^{r^*}$
and b_{new} changes from b, we copy a sufficiently large con-
stant number of the C_i (specifically, $3 \cdot 256$ for each of
the next $K/256$ updates, from the primary to secondary struc-
ture, performing the update $C_i \leftarrow \max(-1, C_i + b_{new} - b_{new})$ in
the secondary structure. If RoughEstimator fails and est
changes by more than 3 in the next $K/256$ updates, we
output FAIL. Meanwhile, during this copy phase, we
process new stream updates in both the primary and secondary structures, and we answer updates from the primary structure. The analysis of correctness remains virtually unchanged, since the value 2^i corresponding to the primary structure still remains a constant-factor approximation to F_0 during this copy phase.

For reporting time, note we can maintain T = \{i : C_i \geq 0\} during updates, and thus the reporting time is the time to compute a natural logarithm, which can be made O(1) via a small lookup table (see Section A.2).

4. L_0 ESTIMATION ALGORITHM

Here we give an algorithm for estimating L_0, the Hamming norm of a vector updated in a stream.

Our L_0 algorithm is based on the approach to F_0 estimation in Figure 4. In this approach, we maintain a (log(n) × K) bit-matrix A, and upon receiving an update i, we subsample i to the row determined by the lsb of a hash evaluation, then evaluate another hash function to tell us a column and set the corresponding bit of A to 1. Note that our algorithm from Section 3 is just a space-optimized implementation of this approach. Specifically, in Figure 3 we obtained a c-approximation R to F_0 via RoughEstimator for c = 8. The value b we maintained was just max(0, log(32R/K)). Then rather than explicitly maintaining A, we instead maintained counters C_i which allowed us to deduce whether A_{b,j} = 1 (specifically, A_{b,j} = 1 if C_i = 0).

The proof of correctness of the approach in Figure 4 is thus essentially identical to that of Theorem 3 (in fact simpler, since we do not have to upper bound the case of outputting FAIL), so we do not repeat it here. Thus, we only need show that the approach in Figure 4 can be implemented for some constant c ≥ 1 in the context of L_0-estimation. Specifically, we must show that (a) the bit-matrix A can be maintained (with large probability), and (b) we can implement the oracle in Step 4 of Figure 4 to give a c-approximation to L_0 for some constant c ≥ 1.

We first show (a), that we can maintain the bit-matrix A with large probability. In fact, note our estimate of L_0 only depends on one particular row i^* = log(16R/K) of A, so we need only ensure that we maintain row i^* with large constant probability. We first give two facts.

FACT 2. Let t, r > 0 be integers. Pick h ∈ \mathcal{H}_2([r], [t]). For any S ⊂ [r], E(\sum_1^s (h_i(i)^{1/2}l^{\mathbb{Z}^2})) \leq |S|^{2/(2t)}.

PROOF. Write |S| = s. Let X_{i,j} indicate h(i) = j. By linearity of expectation, the desired expectation is then

\[t \sum_{i \leq r} E[X_{i,1}]E[X_{i,1}] = \frac{t}{2} \leq s^2/2t. \]

□

FACT 3. Let \mathbb{F}_q be a finite field and v ∈ \mathbb{F}_q^d be a non-zero vector. Then, a random w ∈ \mathbb{F}_q^d gives Pr[w \cdot v = 0] = 1/q, where v · w is the inner product over \mathbb{F}_q.

PROOF. The set of vectors orthogonal to v is a linear subspace V ⊂ \mathbb{F}_q^d of dimension d − 1 and thus has q^{d−1}−1 points. Thus, Pr[w ∈ V] = 1/q. □

LEMMA 6. There is a scheme which represents each A_{i,j} using O(log(1/\varepsilon) + log log(mM)) bits such that, for i^* = log(16R/K), the (i^*)th row of A can be recovered with probability 2/3. Furthermore, the update time and time to recover any A_{i,j} are both O(1).

PROOF. We represent each A_{i,j} as a counter B_{i,j} of O(log(K) + log log(mM)) bits. We interpret A_{i,j} as being the bit “1” if B_{i,j} is non-zero; else we interpret A_{i,j} as 0. The details are as follows. We choose a prime p randomly in [D, D^2] for D = 100K log(mM). Notice that for mM larger than some constant, by standard results on the density of primes there are at least K^2 log^2(K) primes in the interval [D, D^2]. Since every frequency x_i is at most mM in magnitude and thus has at most log(mM) prime factors, non-zero frequencies remain non-zero modulo p with probability 1 − O(1/K^2), which we condition on occurring. We also randomly pick a vector u ∈ \mathbb{F}_p^m and h_q ∈ \mathcal{H}_2([K]^3, [K]). Upon receiving an update (u, v), we increment B_{h_q(h_2(i)), h_q(h_2(i))} by v · u_{h_q(h_2(i))}, then reduce modulo p.

Define I_r = \{i ∈ I : lsb(i) = i^*\}. Note that conditioned on \mathbb{R} ∈ [L_0, cL_0], we have E[I_r] ≤ K/32, and also condition on occurring.

By Fact 3 with \mathbb{R} \in I_r, we instead maintained counters, \mathbb{R} \in I_r, and reporting times. The space used is O(1) update and reporting times. The space used is O(log(n) log log(mM)).
Note that, as with our F_0 algorithm, we also need to have an algorithm which provides a $(1 \pm \varepsilon)$-approximation when $L_0 \ll 1/\varepsilon^2$. Just as in Section 3.3, this is done by handling the case of small L_0 in two cases separately: detecting and estimating when $L_0 \leq 100$, and $(1 \pm \varepsilon)$-approximating L_0 when $L_0 > 100$. In the former case, we can compute L_0 exactly with large probability by perfect hashing (see Lemma 8 in Section A.3). In the latter case, we use the same scheme as in Section 3.3, but using Lemma 6 to represent our bit array.

Putting everything together, we have the following.

Theorem 10. There is an algorithm for $(1 \pm \varepsilon)$-approximating L_0 using space $O(\varepsilon^{-2} \log(n)/(1/\varepsilon) + \log\log(mM))$, with $2/3$ success probability, and with $O(1)$ update and reporting times.

Acknowledgments

We thank Nir Ailon, Erik Demaine, Piotr Indyk, T.S. Jayram, Swastik Kopparty, Rasmus Pagh, Mihai Pătrașcu, and the authors of [6] for valuable discussions and references.

5. REFERENCES

2. A. Akella, A. Bharambe, M. Reiter, and S. Seshan. Detecting and estimating when $L_0 \leq 100$, and $(1 \pm \varepsilon)$-approximating L_0 when $L_0 > 100$. In the former case, we can compute L_0 exactly with large probability by perfect hashing (see Lemma 8 in Section A.3). In the latter case, we use the same scheme as in Section 3.3, but using Lemma 6 to represent our bit array.

Putting everything together, we have the following.

Theorem 10. There is an algorithm for $(1 \pm \varepsilon)$-approximating L_0 using space $O(\varepsilon^{-2} \log(n)/(1/\varepsilon) + \log\log(mM))$, with $2/3$ success probability, and with $O(1)$ update and reporting times.

Acknowledgments

We thank Nir Ailon, Erik Demaine, Piotr Indyk, T.S. Jayram, Swastik Kopparty, Rasmus Pagh, Mihai Pătrașcu, and the authors of [6] for valuable discussions and references.

5. REFERENCES

35. A. Siegel. On universal classes of extremely random algorithms.
of h and is equal to

$$\left(1 - f(A_i) + O\left(\frac{A_i}{k+1}\right)\right) \left(1 + f(A_j) + O\left(\frac{A_j}{k+1}\right)\right) = X_iX_j + O\left(\frac{A_i}{k+1} + \frac{A_j}{k+1}\right) \leq \frac{X_iX_j}{k+1}.$$

We can now analyze the error using $2(k+1)$-wise independence. The expectation of each term in the error is calculated as before, except for products of the form

$$\left(\frac{A_i}{k+1}\right) \left(\frac{A_j}{k+1}\right).$$

The expected value of this is

$$\left(\frac{A}{k+1}\right)^2 K^{-2(k+1)} \leq \left(\frac{eA}{K(k+1)}\right)^2 (k+1)^{2(k+1)}.$$

Thus, for $k = c\log(K/\epsilon)/\log(K/\epsilon)$ for sufficiently large c', each summand in the error above is bounded by $\epsilon^3/(6K^2)$, in which case $|E[X_iX_j] - E[X_i'X_j']| \leq \epsilon^3/K^2$. We can also make c' sufficiently large so that $|E[X] - E[X']| \leq \epsilon^3/K^2$. Now, we have

$$|\text{Var}[X'] - \text{Var}[X]| \leq |E[X] - E[X']|^2 + 2\max_{i<j} |E[X_iX_j] - E[X_i'X'_j]| + |E^2[X] - E^2[X']| \leq \epsilon^3/K^2 + \epsilon^2 + \epsilon^2 K^2 (2\epsilon^2/\epsilon^3 + (\epsilon^3/K^2)^2) \leq 5\epsilon^3$$

which is at most 2ϵ for ϵ sufficiently small. \qed

A.2 A compact lookup table for the natural logarithm

Lemma 7. Let $K > 4$ be a positive integer, and write $\gamma = 1/\sqrt{K}$. It is possible to construct a lookup table requiring $O(\gamma^{-1} \log(1/\gamma))$ bits such that $\ln(1 - c/K)$ can then be computed with relative accuracy γ in constant time for all integers $c \in [4K/5]$.

Proof. We set $\gamma' = \gamma/15$ and discretize the interval $[1, 4K/5]$ geometrically by powers of $(1 + \gamma')$. We precompute the natural algorithm evaluated at $1 - \rho/K$ for all discretization points ρ, with relative error $\gamma/3$, creating a table A taking space $O(\gamma^{-1} \log(1/\gamma))$. We answer a query $\ln(1 - c/K)$ by outputting the natural logarithm of the closest discretization point in A. First, we argue that the error from this output is small enough. Next, we argue that the closest discretization point can be found in constant time.
For the error, the output is up to $(1 \pm \gamma/3)$,
\[
\ln(1 - (1 + \gamma)c/K) = \ln(1-c/K + 5\gamma c/K) \\
= \ln(1-c/K) + 5\gamma c/K \\
= \ln(1-c/K) + \gamma c/3(K).
\]
Using the fact that $|\ln(1-z)| > z/(1-z)$ for $0 < z < 1$, we have that $|\ln(1-c/K)| \geq c/(K-c) \geq c/K$. Thus,
\[
(1 \pm \gamma/3)(\ln(1-c/3(K)) \pm \gamma c/K) = (1 \pm \gamma/3)^2 \ln(1-c/K) = (1 \pm \gamma/3)\ln(1-c/K).
\]

Now, for finding the discretization point, note we need to look up $A[\ln(1+\gamma),(c)] = A[\ln((c)/(\gamma c))]$, where $\alpha' = \log(1+\gamma)$ (note, we can compute $\log(1+\gamma) = \alpha'$ in pre-processing). Now, write $c = d \cdot 2^k$ where $k = \lceil \log(c) \rceil$ and thus $1 \leq d < 2$. We can compute k in $O(1)$ time since it is the most significant bit of c. We know $\log_{1+\gamma}(c) = \log(d \cdot 2^k)/(\alpha' c/k) = k/(\alpha' c) + \log(d)/(\alpha' c)$. Now, the derivative of the log function in the range $[1,2]$ is sandwiched between two constants. Thus, if we discretize $[1,2]$ evenly into $O(\alpha' c)$ buckets and store the log of a representative of each bucket in a lookup table B, we can additively $O(\alpha' c)$-approximate $\log(d)$ by table lookup of $B[[d-1)/\alpha']$. So now we have computed
\[
\frac{k}{\alpha' c} + \log(d)/(\alpha' c) = \frac{k}{\alpha' c} + \log(d)/(\alpha' c) + O(1).
\]
This $O(1)$ can be taken to be arbitrarily small, say at most $1/3$, by tuning the constant in the discretization. So we know the correct index to look at in our index table A up to $\pm 1/3$; since indices are integers, we are done. \hfill \Box

A.3 A Rough Estimator for L_0-estimation

We describe here a subroutine RoughLOEstimator which gives a constant-factor approximation to L_0 with probability $9/16$. First, we need the following lemma which states that when L_0 is at most some constant c, it can be computed exactly in small space. The lemma follows by picking a random prime $\rho = \Theta(\log(mM) \log(mM))$ and pairwise independently hashing the universe into $[\Theta(c^2)]$ buckets. Each bucket is a counter which tracks the sum of frequencies modulo ρ of updates to universe items landing in that bucket. The estimate of L_0 is then the total number of non-zero counters, and the maximum estimate after $O(\log(1/\eta))$ trials is finally output. This gives the following.

Lemma 8. There is an algorithm which, given the promise that $L_0 \leq c$, outputs L_0 exactly with probability at least $1 - \eta$ using $O(c^2 \log \log(mM))$ space, in addition to needing to store $O(\log(1/\eta))$ independently chosen pairwise independent hash functions mapping $[n]$ into $[c^2]$. The update and reporting times are $O(1)$.

Now we describe RoughLOEstimator. We pick a function $h : [n] \rightarrow [n]$ at random from a pairwise independent family. For each $0 \leq i \leq \log(n)$ we create a substrand S^i consisting of those $x \in [n]$ with $\text{lsb}(h(x)) = i$. Let $L_0(S)$ denote L_0 of the substrand S. For each S^i we run an instantiation B_i of Lemma 8 with $c = 141$ and $\eta = 1/16$. All instantiations share the same $O(\log(1/\eta))$ hash functions $h^1, \ldots, h^{\text{lsb}(\log(1/\eta))}$

To obtain our final estimate of L_0 for the entire stream, we find the largest value of j for which B^j declares $L_0(S^j) > 8$. Our estimate of L_0 is $\tilde{L}_0 = 2^j$. If no such j exists, we estimate $L_0 = 1$.

Theorem 11. RoughLOEstimator with probability at least 9/16 outputs a value \tilde{L}_0, satisfying $L_0 \leq \tilde{L}_0 \leq 110L_0$. The space used is $O(\log(n) \log(\log(mM)))$, and the update and reporting times are $O(1)$.

Proof. The space to store h is $O(\log(n))$. The $\Theta(\log(1/\eta))$ hash functions h^j in total require $O(\log(1/\eta) \log n) = O(\log n)$ bits to store since $1/\eta = O(1)$. The remaining space to store a single B^j for a level is $O(\log(\log(mM)))$ by Lemma 8, and thus storing all B^j across all levels requires $O(\log(n) \log(\log(mM)))$ space.

As for running time, upon receiving a stream update (x,v), we first hash x using h, taking time $O(1)$. Then, we compute $\text{lsb}(h(x))$, also in constant time. Now, given our choice of η for B^j, we can update B^j in $O(1)$ time by Lemma 8.

To obtain $O(1)$ reporting time, we again use the fact that we can compute the least significant bit of a machine word in constant time. We maintain a single machine word z of at least $\log(n)$ bits and treat it as a bit vector. We maintain that the jth bit of z is 1 if $L_0(S^j)$ is reported to be greater than 8 by B^j. This property can be maintained in constant time during updates. Constant reporting time then follows since finding the deepest level j with greater than 8 reported elements is equivalent to computing $\text{lsb}(z)$.

Now we prove correctness. Observe that $E[L_0(S^j)] = L_0(2^{j+1})$ when $j < \log n$ and $E[L_0(S^j)] = L_0(2^j) = L_0/n$ when $j = \log n$. Let j^* be the largest j satisfying $E[L_0(S^j)] \geq 1$ and note that $1 \leq E[L_0(S^{j^*})] \leq 2$. For any $j > j^*$, $\Pr[L_0(S^j) > 8] < 1/(8 \cdot 2^{j-j^*})$ by Markov’s inequality. Thus, by a union bound, the probability that any $j > j^*$ has $L_0(S^j) > 8$ is at most $(1/8) \cdot \sum_{j^*-1}^{j^*} 2^{-j} = 1/4$. Now, let $j^{**} > j^*$ be the largest j such that $E[L_0(S^j)] > 55$, if such a j exists. Since we increase the j by powers of 2, we have $55 \leq E[L_0(S^{j^{**}})] < 110$. Note that h is pairwise independent, so $\text{Var}[L_0(S^{j^{**}})] \leq E[L_0(S^{j^{**}})]$. For this range of $E[L_0(S^{j^{**}})]$, we then have by Chebyshev’s inequality that
\[
\Pr \left[\left| L_0(S^{j^{**}}) - E[L_0(S^{j^{**}})] \right| \geq 3 \sqrt{E[L_0(S^{j^{**}})]} \right] \leq 1/9.
\]
If $|L_0(S^{j^{**}}) - E[L_0(S^{j^{**}})]| < 3 \sqrt{E[L_0(S^{j^{**}})]}$, then $32 < 55 - 3 \times 55 < L_0(S^{j^{**}}) < 110 + 3 \times 110 < 142$ since $55 \leq E[L_0(S^{j^{**}})] < 110$.

So far we have shown that with probability at least 3/4, $L_0(S^{j^*}) \leq 8$ for all $j > j^*$. Thus, for these j the B^j will estimate L_0 of the corresponding substrand to be at most 8, and we will not output $\tilde{L}_0 = 2^j$ for $j > j^*$. On the other hand, we know for j^* (if it exists) that with probability at least 8/9, S^{j^*} will have $32 < L_0(S^{j^*}) < 142$. By our choice of $c = 141$ and $\eta = 1/16$ in the B^j, B^{j^*} will output a value $L_0(S^{j^*}) > L_0(S^{j^*})/4 > 8$ with probability at least $1 - \left((1/9 + 1/16) / 13/16\right)$ by Lemma 8. Thus, with probability at least $1 - (3/16 + 1/4) = 9/16$, we output $\tilde{L}_0 = 2^j$ for some $j^* < j \leq j^*$, which satisfies $110 \cdot 2^j \leq \tilde{L}_0 \leq 2^{j^*}$. If such a j^* does not exist, then $\tilde{L}_0 < 55$, and 1 is a 55-approximation in this case. \hfill \Box