Global Budget and Radiative Forcing of Black Carbon Aerosol: Constraints from Pole-to-Pole (HIPPO) Observations across the Pacific

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>doi:10.1002/2013JD020824</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:13849017</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA</td>
</tr>
</tbody>
</table>
Global budget and radiative forcing of black carbon aerosol: Constraints from pole-to-pole (HIPPO) observations across the Pacific

Qiaqiao Wang,1 Daniel J. Jacob,1,2 J. Ryan Spackman,3,4 Anne E. Perring,5,6 Joshua P. Schwarz,5,6 Nobuhiro Moteki,7 Eloïse A. Marais,2 Cui Ge,8 Jun Wang,8 and Steven R. H. Barrett9

Received 3 September 2013; revised 4 December 2013; accepted 5 December 2013; published 14 January 2014.

[1] We use a global chemical transport model (GEOS-Chem) to interpret aircraft curtain observations of black carbon (BC) aerosol over the Pacific from 85°N to 67°S during the 2009–2011 HIAPER (High-Performance Instrumented Airborne Platform for Environmental Research) Pole-to-Pole Observations (HIPPO) campaigns. Observed concentrations are very low, implying much more efficient scavenging than is usually implemented in models. Our simulation with a global source of 6.5 Tg a⁻¹ and mean tropospheric lifetime of 4.2 days (versus 6.8 ± 1.8 days for the Aerosol Comparisons between Observations and Models (AeroCom) models) successfully simulates BC concentrations in source regions and continental outflow and captures the principal features of the HIPPO data but is still higher by a factor of 2 (1.48 for column loads) over the Pacific.

It underestimates BC absorbing aerosol optical depths (AAODs) from the Aerosol Robotic Network by 32% on a global basis. Only 8.7% of global BC loading in GEOS-Chem is above 5 km, versus 21 ± 11% for the AeroCom models, with important implications for radiative forcing estimates. Our simulation yields a global BC burden of 77 Gg, a global mean BC AAOD of 0.0017, and a top-of-atmosphere direct radiative forcing (TOA DRF) of 0.19 W m⁻², with a range of 0.17–0.31 W m⁻² based on uncertainties in the BC atmospheric distribution. Our TOA DRF is lower than previous estimates (0.27 ± 0.06 W m⁻² in AeroCom, 0.65–0.9 W m⁻² in more recent studies). We argue that these previous estimates are biased high because of excessive BC concentrations over the oceans and in the free troposphere.

1. Introduction

[2] Black carbon (BC) is of climatic interest as a strong absorber of solar radiation both in the atmosphere [Jacobson, 2001; Koch, 2001; Quinn et al., 2008] and after deposition to snow [Warren and Wiscombe, 1985; Flanner et al., 2007; McConnell et al., 2007]. Estimates of BC radiative forcing have large uncertainties reflecting, in part, poor knowledge of atmospheric concentrations [Bond et al., 2013]. Here we use a global chemical transport model (GEOS-Chem CTM) to interpret aircraft observations of BC from the National Science Foundation HIAPER (High-Performance Instrumented Airborne Platform for Environmental Research) Pole-to-Pole Observations (HIPPO) deployments over the remote Pacific from 85°N to 67°S in 2009–2011. We show that...
the data provide important constraints on BC radiative forcing, implying that recent estimates of the direct radiative forcing (DRF) may be too high.

[3] DRF at the top-of-atmosphere (TOA DRF) of BC refers to the change in the top-of-atmosphere energy balance due to absorption and scattering of solar radiation by atmospheric BC. Global TOA DRF estimates in the literature range from 0.05 to 1.0 W m$^{-2}$ [Jacobson, 2000, 2001; Schulz et al., 2006; Ramanathan and Carmichael, 2008; Bond et al., 2013; Myhre et al., 2013], with recent estimates favoring the upper end of that range [Chung et al., 2012; Bond et al., 2013]. This can be compared to a present-day radiative forcing from CO$_2$ of 1.82 W m$^{-2}$ in recent Intergovernmental Panel on Climate Change (IPCC) report in 2013 (Working Group I Contribution to the IPCC Fifth Assessment Report Climate Change 2013: The physical science basis: Summary for policymakers, http://www.climatechange2013.org/images/uploads/WGIAR5-SPM_Approved27Sep2013.pdf).

[4] Uncertainty in the global burden and distribution of BC is a major factor of variability in DRF estimates [Bond et al., 2013]. Due to limited observations of BC concentrations, particularly in the free troposphere and over the oceans, radiative forcing estimates have been mainly based on model simulations. Estimates by the IPCC report are predominately based on the AeroCom (Aerosol Comparisons between Observations and Models, http://aerocom.met.no/) ensemble of global models [Schulz et al., 2006; Myhre et al., 2013]. However, there are order-of-magnitude disagreements between AeroCom models and observations in the remote and upper troposphere [Koch et al., 2009; Schwarz et al., 2010; Schwarz et al., 2013]. This can critically affect DRF estimates [Zarzycki and Bond, 2010; Samset and Myhre, 2011].

[5] The order-of-magnitude model errors in simulating BC concentrations in the remote troposphere could reflect errors in emission, transport, or wet scavenging which is the main BC sink. Global BC emission inventories such as that from Bond et al. [2007] have regional uncertainties of only about a factor of 2–3 as indicated by comparisons with observations in source regions [Park et al., 2003; Koch et al., 2007; Wang et al., 2011; Fu et al., 2012; Leibensperger et al., 2012]. Evaluation of global models using 222Rn observations shows that transport alone is unlikely to induce errors of much more than a factor of 2 in the remote and upper troposphere [Jacob et al., 1997]. Wet scavenging thus appears to be the largest cause of model error in the remote troposphere [Schwarz et al., 2010; Liu et al., 2011; Kipling et al., 2013]. Global models generally use crude parameterizations of the scavenging process [Balkanski et al., 1993; Rasch et al., 2000]. Additional uncertainties specific to BC scavenging relate to its hydrophilicity [Park et al., 2005; Riemer et al., 2010; Liu et al., 2011] and its potential to serve as cloud condensation nucleus (CCN) or ice nucleus (IN) [Croft et al., 2010; Liu et al., 2011; Wang et al., 2011]. Systematic model errors caused by scavenging will grow with distance from source regions.

[6] Global observations of absorption aerosol optical depth (AAOD) are available from the Aerosol Robotic Network (AERONET) surface network [Dubovik et al., 2002] and from satellites [Remer et al., 2005; Torres et al., 2007]. These have been used to constrain radiative forcing estimates and to evaluate models [Sato et al., 2003; Koch et al., 2009; Chung et al., 2012; Bond et al., 2013]. However, their value is limited because of high uncertainty in single-scattering albedo (ω_0) retrievals at low AOD [Dubovik et al., 2002], clear-sky bias, and difficulty in distinguishing between BC and other light-absorbing constituents. In addition, AERONET observations are mainly confined to continents, and satellite retrievals are subject to cloud contamination [Chung et al., 2005].

[7] Aircraft observations can provide important constraints for the vertical and oceanic distribution of BC. The HIAPER Pole-to-Pole Observations (HIPPO) aircraft program [Wofsy et al., 2011] offers a unique resource. It involved near-continuous vertical profiling by the HIAPER aircraft from the surface to 8 km (with occasional forays to 14 km altitude) over the Pacific from 85°N to 67°S. Five deployments were conducted over the 2009–2011 period. Measurements included BC mass concentrations from a single-particle soot photometer (SP2) instrument [Schwarz et al., 2010; Schwarz et al., 2013] together with a number of gases [Wofsy et al., 2011]. Here we present a detailed simulation of the HIPPO BC observations with the GEOS-Chem CTM, examining the constraints that these observations provide on the model representation of scavenging and BC source attribution on a global scale. From there we draw implications for BC radiative forcing. GEOS-Chem has been used before with success to simulate BC observations in source regions [Park et al., 2006; Mao et al., 2011; Wang et al., 2011; Leibensperger et al., 2012] as well as vertical profiles from aircraft campaigns in Asian outflow [Park et al., 2005], North America [Drury et al., 2010] and the Arctic [Wang et al., 2011].

2. Model Description

[8] We use the GEOS-Chem CTM version 8-01-04 (http://geos-chem.org) driven by assimilated meteorological data from the Goddard Earth Observing System (GEOS-5) of the NASA Global Modeling and Assimilation Office. The GEOS-5 data have 6 h temporal resolution (3 h for surface quantities and mixing depths), 47 vertical layers, and 0.5° × 0.667° horizontal resolution. We degrade the horizontal resolution to 2° × 2.5° for input to GEOS-Chem. We initialize the model with a 12 year spinup to reach steady state in the stratosphere, followed by simulation of January 2009 to September 2011 for comparison to observations.

[9] The simulation of BC in GEOS-Chem was originally described by Park et al. [2003]. BC is emitted by fuel (fossil fuel and biofuel) combustion and open fires. We assume that 80% of freshly emitted BC is hydrophobic [Cooke et al., 1999; Park et al., 2003] and convert it to hydrophilic with an e-folding time of 1 day which yields a good simulation of BC export efficiency in continental outflow [Park et al., 2005]. The wet deposition scheme for aerosols in GEOS-Chem was originally described by Liu et al. [2001]. In Wang et al. [2011], we introduced several improvements, in particular for snow and cold clouds, to simulate ARCTAS (Arctic Research of the Composition of the Troposphere from Aircraft and Satellites) aircraft observations over the Arctic. Here we make further updates to the wet scavenging scheme as described below. Dry deposition is an additional minor sink for BC and its implementation in GEOS-Chem follows a standard resistance-in-series scheme [Wesely, 1989] as implemented by Wang et al. [1998]. The global annual
mean dry deposition velocity for BC in GEOS-Chem is 0.10 cm s\(^{-1}\), typical of current models [Reddy and Boucher, 2004; Huang et al., 2010].

2.1. Wet Deposition

The standard scheme for aerosol scavenging in GEOS-Chem [Liu et al., 2001; Wang et al., 2011] includes scavenging in convective updrafts, as well as in-cloud and below-cloud scavenging from anvil and large-scale precipitation. Here we modify the scheme by (1) scavenging hydrophobic aerosol (including hydrophobic BC) in convective updrafts, since this would take place by impaction [Ekman et al., 2004], and (2) scavenging water-soluble aerosol (including hydrophilic BC) from cold clouds by homogeneous freezing of solution droplets at \(T < 237\) K [Friedman et al., 2011].

The GEOS-5 meteorological archive provides 3-D entrainment/detrainment convective mass fluxes with 6-h temporal resolution. These are treated in GEOS-Chem as a single convective updraft for each model grid square. As air rises in the updraft over a distance \(\Delta z\) between two successive model layers, aerosol incorporated in the cloud water is scavenged down to the bottom of the updraft. The fraction \(f\) of aerosol mass scavenged from the updraft is given by

\[
f = 1 - e^{-ak\Delta z}
\]

where \(k\) is a coefficient for conversion of cloud water to precipitation with values of \(5 \times 10^{-4} m^{-1}\) over land and \(10^{-3} m^{-1}\) over ocean, and \(a\) is the fraction of aerosol mass incorporated in cloud water. In the original scheme of Liu et al. [2001] and Wang et al. [2011], \(a\) accounts for nucleation scavenging and is set to 1 for water-soluble aerosols (excluding hydrophobic BC) at \(T \geq 258\) K, and for ice nuclei (IN) at \(T < 258\) K. It is set to 0 in other cases. Only dust and hydrophobic BC can serve as IN [Wang et al., 2011]. The ability of hydrophobic BC to serve as IN is highly uncertain: some studies find it to be an efficient IN [Gorbunov et al., 2001; Fornea et al., 2009] but others not [Koehler et al., 2009; Friedman et al., 2011]. Our assumption here may overestimate the scavenging of hydrophobic BC in cold clouds, but this has little consequence for our purposes since the hydrophobic fraction of BC is very small due to the short \(e\)-folding time for conversion to hydrophilic in the model.

In our present simulation we set a minimum value of 0.5 for \(a\) to account for impaction scavenging. While nucleation scavenging dominates the removal of water-soluble aerosols, impaction scavenging still provides an important mechanism for the removal of hydrophobic aerosols during convective updrafts as indicated by a cloud-resolving model study [Ekman et al., 2004]. Similar treatment (in-cloud scavenging ratio of 0.4 for accumulation-mode insoluble aerosols) is used in the aerosol-climate model ECHAM5-HAM [Croft et al., 2010]. This update increases removal of hydrophobic aerosols (including hydrophobic BC) but has little effect on water-soluble aerosols which are already efficiently removed by nucleation scavenging.

We also distinguish between homogeneous and heterogeneous freezing nucleation for cold clouds (\(T < 258\) K). At \(258\) K \(\geq T > 237\) K, we assume that heterogeneous nucleation dominates ice formation and thus \(a = 1\) only for IN (\(a = 0.5\) for other aerosols). At \(T < 237\) K, we assume that homogeneous nucleation takes place with \(a = 1\) for both water-soluble aerosol and IN.

Aerosol scavenging by anvil and large-scale precipitation takes place both in cloud and below cloud in the fraction of the grid box experiencing precipitation. For in-cloud scavenging, the original scheme incorporates all water-soluble aerosols at \(T \geq 258\) K or all IN at \(T < 258\) K into clouds followed by efficient scavenging when cloud water is converted to precipitation. Now we introduce homogeneous freezing nucleation for in-cloud removal and incorporate 100% of water-soluble aerosol and IN into clouds at \(T \leq 237\) K, same as for convective updrafts. This may overestimate scavenging as updrafts in large-scale clouds are weaker than in deep convection. However, it has little effect in our simulation as the amount of precipitation occurring at \(T < 237\) K is very small (see sensitivity simulation in the supporting information). Below-cloud scavenging remains as described by Wang et al. [2011].

The above updates improve the simulation of HIPPO data, as shown in the supporting information, without compromising the simulation of other BC data sets as shown below. As the updates also affect simulation of other aerosols, we conducted a \(^{222}\)Rn-\(^{210}\)Pb simulation to test the general model representation of aerosol deposition. We find a lifetime of tropospheric \(^{210}\)Pb aerosol against deposition of 8.6 days, as compared to a best estimate of 9 days constrained by observations [Liu et al., 2001].
Table 1. Global Emission of Black Carbon in 2009a

<table>
<thead>
<tr>
<th>Source</th>
<th>Emission (Tg C a⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel</td>
<td>4.9</td>
</tr>
<tr>
<td>North America (172.5–17.5°W, 24–88°N)</td>
<td>0.29</td>
</tr>
<tr>
<td>Europe (17.5°W–30°E, 50–88°N)</td>
<td>0.63</td>
</tr>
<tr>
<td>Russia (30–172.5°E, 50–88°N)</td>
<td>0.22</td>
</tr>
<tr>
<td>Asia (60–152.5°E, 0–50°N)</td>
<td>2.7</td>
</tr>
<tr>
<td>Australia (90.0–155.0°E, 0–40°S)</td>
<td>0.15</td>
</tr>
<tr>
<td>Africa (17.5°W–60.0°E, 55°S–33°N)</td>
<td>0.45</td>
</tr>
<tr>
<td>Rest of the world</td>
<td>0.43</td>
</tr>
<tr>
<td>Aviationc</td>
<td>0.0060</td>
</tr>
<tr>
<td>Open Firesd</td>
<td>1.6</td>
</tr>
<tr>
<td>North America (172.5–17.5°W, 24–88°N)</td>
<td>0.056</td>
</tr>
<tr>
<td>Europe (17.5°W–30°E, 33–88°N)</td>
<td>0.0027</td>
</tr>
<tr>
<td>Russia (30–172.5°E, 33–88°N)</td>
<td>0.086</td>
</tr>
<tr>
<td>South Asia (60–152.5°E, 0–33°N)</td>
<td>0.18</td>
</tr>
<tr>
<td>Australia (90.0–155.0°E, 0–40°S)</td>
<td>0.19</td>
</tr>
<tr>
<td>Africa (17.5°W–60.0°E, 55°S–33°N)</td>
<td>0.92</td>
</tr>
<tr>
<td>Rest of the world</td>
<td>0.13</td>
</tr>
<tr>
<td>Total</td>
<td>6.5</td>
</tr>
</tbody>
</table>

aValues are annual means. Different regional definitions are used for fuel combustion and open fire sources in Eurasia to improve the model separation between source types.

bIncluding fossil fuel and biofuel. Values are from Zhang et al. [2009] for Asia and Bond et al. [2007] for the rest of the world but with doubling for Russia and 30% decrease for North America (see text).

cAEIC aircraft emission inventory of Simone et al. [2013].

dGFED3 inventory of van der Werf et al. [2010].

2.2. Emissions

[16] Figure 1 shows the global emissions of BC in 2009 in the model, separately for fuel and open fire sources. Table 1 gives regional annual totals. Fuel emissions are from Bond et al. [2007] for the year 2000 with modifications for Russia, North America, and Asia. We double the emissions in Russia to account for rapid economic growth since 2000 and as needed to match BC surface observations in the Arctic [Wang et al., 2011]. We decrease North American emissions by 30% to match the observed 2000–2009 decline of surface concentrations in the U.S. [Leibensperger et al., 2012]. For Asia we use the Zhang et al. [2009] inventory for 2006, which is 50% higher annually than Bond et al. [2007] over China and has greatest difference in winter-spring. Aviation emissions are from Simone et al. [2013]. Fire emissions are from the GFED3 (Global Fire Emissions Database version 3) inventory for 2009–2011 with 3 h resolution [van der Werf et al., 2010].

3. Evaluation in Source Regions and Continental Outflow

[17] Before examining model results over the remote Pacific, it is important to evaluate the model sources and export by comparison with observations in source regions and continental outflow. Figure 2 compares annual mean surface air concentrations of BC in the model with network observations from the U.S., China, and Europe. These three regions account for over half of the global fuel BC source. For the U.S., we use 2009 data from the rural IMPROVE (Interagency Monitoring of Protected Visual Environments) network (http://vista.cira.colostate.edu/improve/Data/IMPROVE/AsciiData.aspx). For China and Europe, we do not have network observations for 2009 and therefore use the data for other years: Zhang et al. [2008] for rural/regional sites in China in 2006 and the BC/OC campaign in Europe in 2002–2003 (http://tarantula.nilu.no/projects/ccc/emepdata.html).

[18] We diagnose for each source region the normalized mean bias NMB = Σ(Mᵢ – Oᵢ)/ΣOᵢ, where sums are over the ensemble of sites i, and Mᵢ and Oᵢ are the modeled and observed values. NMB values are −27% for China, −28% for Europe, and −12% for the U.S. Underestimation in China mainly occurs in western China, likely associated with underestimates in the use of low-quality fuels for heating [Fu et al., 2012]. For eastern China, the NMB is −13%. Underestimation in Europe is mainly due to 3 (out of 12) sites in northern Italy and Belgium. Without these three sites, the NMB would be +7%.

[19] Figure 3 evaluates the model simulation of continental outflow with aircraft observations through the depth of the troposphere over the U.S., the Pacific Rim, and the Arctic. Observations over the U.S. are from the ensemble of HIPPO data (Figure 4, green lines). Observations for Asian outflow are from the A-FORCE aircraft campaign conducted over the Yellow Sea, the East China Sea, and the western Pacific in March–April 2009 [Oshima et al., 2012]. Observations in
the Arctic are from the ARCTAS aircraft campaign in April 2008 [Jacob et al., 2010; Wang et al., 2011]. Observations for individual flights are averaged over the 3-D GEOS-Chem grid, and corresponding model results are sampled along the flight tracks at the same time and location. We then use median of the observed and simulated data in 1 km altitude bins to generate the vertical profiles. We exclude observations in the stratosphere.

Figure 3. Median vertical profiles of BC concentrations in continental outflow regions. Aircraft observations in 1 km altitude bins (black) are compared to GEOS-Chem model values sampled along the flight tracks (red). The U.S. profile is from the ensemble of HIPPO observations shown as green lines in Figure 4. The Asian outflow profile is from the A-FORCE campaign conducted over the Yellow Sea, the East China Sea, and the western Pacific Ocean in March–April 2009 [Oshima et al., 2012]. Observations in the Arctic are from the ARCTAS campaign in April 2008 as described by Wang et al. [2011]. Note differences in linear scales between panels.

Figure 4. BC concentrations over the central Pacific (west of 140°W) as a function of altitude and latitude for the five HIPPO deployments (red lines on the maps). Observations are compared to GEOS-Chem model results sampled along the flight tracks. Flight tracks over the U.S. (green lines) are not included here but are used for model comparison to observations in Figure 3. Flight tracks over the East Pacific and Canada (black lines) are not used. The observations are averaged over the GEOS-Chem grid and time step of 15 min.
4. BC Distributions Over the Central Pacific

Figure 4 shows latitude-altitude curtains of BC concentrations for the five HIPPO deployments across the Central Pacific. The SP2 instrument detects particles in the 90–600 nm size range, estimated to represent ~90% of total BC mass. An upward correction of 10% is applied to the observations to account for BC mass contained in particles below the SP2 limit of detection [Schwarz et al., 2010]. Observations for individual flights are averaged over the 3-D GEOS-Chem grid, and corresponding model results are sampled along the flight tracks at the same time and location. We focus here on the Central Pacific (Figure 4, red lines) and exclude observations in the stratosphere as diagnosed by \([\text{O}_3]/[\text{CO}] > 1.25 \text{ mol mol}^{-1}\) [Hudman et al., 2007] and in fire plumes (\([\text{CH}_3\text{CN}] > 200 \text{ parts per trillion (ppt)}\)) for ARCTAS. All concentrations henceforth are given for standard conditions of temperature and pressure (STP), so that ng m\(^{-3}\) STP is a mixing ratio unit.

[20] Figure 3 indicates order-of-magnitude decreases of observed BC concentrations from the boundary layer to the free troposphere over the U.S. and in Asian outflow, reflecting scavenging and dilution during continental ventilation [Oshima et al., 2012]. The model successfully reproduces these decreases. Observations over the Arctic in spring show a mid-troposphere maximum driven by Russian fire effluents and Asian outflow in warm conveyor belts (WCBs) [Matsui et al., 2011]. The model again provides a successful simulation, comparable to that shown in Wang et al. [2011] where further analysis of model results for the Arctic is presented. Overall, any biases shown in Figure 3 are relatively small compared to the literature range of model errors for the remote troposphere [Shindell et al., 2008; Koch et al., 2009].

[21] Figure 6 shows relationships of BC and CO concentrations in HIPPO from the March–April 2010 deployment in the tropics and northern midlatitudes. Model results (right column) are compared to observations (left column). Correlation coefficients and slopes of reduced-major-axis (RMA) regressions are shown for the tropics.

Figure 5. Probability density functions of observed and simulated BC concentrations for the ensemble of HIPPO Central Pacific flight tracks (Figure 4). Dashed lines show the medians.

\(([\text{O}_3]/[\text{CO}] > 1.25 \text{ mol mol}^{-1})\) [Hudman et al., 2007] and in fire plumes (\([\text{CH}_3\text{CN}] > 200 \text{ parts per trillion (ppt)}\)) for ARCTAS. All concentrations henceforth are given for standard conditions of temperature and pressure (STP), so that ng m\(^{-3}\) STP is a mixing ratio unit.

\([20]\) Figure 3 indicates order-of-magnitude decreases of observed BC concentrations from the boundary layer to the free troposphere over the U.S. and in Asian outflow, reflecting scavenging and dilution during continental ventilation [Oshima et al., 2012]. The model successfully reproduces these decreases. Observations over the Arctic in spring show a mid-troposphere maximum driven by Russian fire effluents and Asian outflow in warm conveyor belts (WCBs) [Matsui et al., 2011]. The model again provides a successful simulation, comparable to that shown in Wang et al. [2011] where further analysis of model results for the Arctic is presented. Overall, any biases shown in Figure 3 are relatively small compared to the literature range of model errors for the remote troposphere [Shindell et al., 2008; Koch et al., 2009].

Figure 6. Relationships of BC and CO concentrations in HIPPO from the March–April 2010 deployment in the tropics and northern midlatitudes. Model results (right column) are compared to observations (left column). Correlation coefficients and slopes of reduced-major-axis (RMA) regressions are shown for the tropics.
Tropical concentrations are generally highest near the surface, northern and southern midlatitudes, peak concentrations are from midlatitudes, but peak near the surface in winter when reentrants because of the vertical dependence of radiative forcing (Figure 5) because the columns are weighted more by high aspheric latitudes than the bias in median concentrations, with consistent slopes, reflecting transport of fire effluents from South Asia. By contrast, there is no correlation at northern midlatitudes, either in the observations or the model.

Figure 7 compares simulated and observed BC columns as a function of latitude for different seasons. The columns were computed by integrating vertical profiles from the surface to 10 km in 10° latitude bands. The latitudinal structure was previously discussed in the context of Figure 4. Maximum and minimum columns span 3 orders of magnitude. Northern Hemisphere columns are highest in March–April when Asian outflow is strongest [Liu et al., 2003]. That is also the period when Southern Hemisphere columns are lowest (wet season in southern tropics). The model reproduces the observed latitudinal and seasonal variation in Figure 7 with \(r = 0.92 \) and a mean positive bias of 48%. The column bias is relatively smaller than the bias in median concentrations (Figure 5) because the columns are weighted more by high concentrations where the model performs better. Note that radiative forcing due to BC does not scale linearly with columns because of the vertical dependence of radiative forcing efficiency [Samset and Myhre, 2011; Samset et al., 2013].

Figure 8 shows median vertical profiles of observed and model BC concentrations for different latitudes and seasons. In the Arctic, BC concentrations tend to increase with altitude in spring and fall, reflecting WCB transport from midlatitudes, but peak near the surface in winter when transport from midlatitudes takes place at low altitudes. At northern and southern midlatitudes, peak concentrations are generally in the free troposphere because of WCB lifting. Tropical concentrations are generally highest near the surface because of scavenging by deep convection. The model fails to reproduce the steep vertical gradient observed in the tropics, suggestive of insufficient scavenging.

We find that the overall high model bias in simulating the HIPPO BC data cannot be readily corrected. It is not due to sources or transport, as discussed above, and presumably reflects errors in scavenging. Our assumption of a fixed 1 day time scale for conversion from hydrophobic to hydrophilic BC is obviously simplistic, and more detailed model treatments have been proposed [Liu et al., 2005; Stier et al., 2005], but one would expect largest sensitivity to this assumption in continental outflow where the model performs well (Figure 3). Assuming BC to be hydrophilic at emission does not actually have much effect in the simulation of continental outflow [Park et al., 2005], and we further reduce this effect in our simulation by scavenging hydrophobic BC by impaction in convective updrafts (see section 2.1).

We can increase the scavenging efficiency in the model by adjustment of other parameters but there is no simple adjustment that improves the ensemble of the HIPPO data, as described in the supporting information, and that does not also compromise other aspects of the model aerosol simulation. It is possible that the model underestimates the frequency of precipitation events in the free troposphere, which would cumulatively affect model results in very remote air. This would be an issue with the GEOS-5 precipitation fields rather than the scavenging parameterization. In any case, our model performs much better in simulating the HIPPO BC data than the ensemble of AeroCom models [Schwarz et al., 2010; Schwarz et al., 2013]. Combined with our successful simulation of BC in source regions and continental outflow (section 3), this provides a basis to use the model for BC source attribution and radiative forcing estimates.

5. Global BC Distribution and Source Attribution

Figure 9 shows the zonal annual mean distribution of BC in GEOS-Chem and the contributions from different
sources in 2009. The ITCZ minimum along the HIPPO flight tracks is not seen in the zonal mean due to the influence of tropical continents. Minima in the zonal mean are instead at high southern latitudes and in the tropical upper troposphere. Fuel combustion dominates in the Northern Hemisphere while open fires are more important in the Southern Hemisphere. Aircraft are important only in the northern stratosphere. We find BC concentrations of 0.4–6 ng m\(^{-3}\) STP at 200–100 hPa, consistent with HIPPO observations in the stratosphere [Schwarz et al., 2013].

[30] We compute in the model a global atmospheric BC burden of 77 Gg for 2009, of which 0.9 Gg is in the stratosphere. Open fires contribute 31% of the tropospheric burden. The tropospheric lifetime of BC against deposition is 4.2 days. Wet deposition accounts for 77% of the global sink (the rest is from dry deposition), and this is within the range of 63%–94% in previous studies [Koch, 2001; Liu et al., 2005; Stier et al., 2005; Jacobson, 2012]. Our lifetime is shorter than the range of 4.9–11.4 days in the AeroCom models [Schulz et al., 2006; Koch et al., 2009], consistent with our better performance in the simulation of HIPPO and other remote data. The global lifetime of BC is closely related to the efficiency of transport to the free troposphere, where the lifetime is long because of infrequent precipitation. We find in GEOS-Chem that 33% of the BC burden is in the free troposphere above 2 km and 8.7% is above 5 km. In comparison, the AeroCom models have 21 ± 11% of BC above 5 km [Schulz et al., 2006]. This has important implications for radiative forcing because BC in the free troposphere is more likely to be above clouds and thus has a large radiative forcing efficiency [Samset and Myhre, 2011; Samset et al., 2013].

6. Global BC AAOD and Radiative Forcing

[31] Figure 10 shows the global annual mean distribution of BC AAOD (here and after, AAOD is for a wavelength of 550 nm) in the model and compares with observations from the AERONET. We compute the AAOD in the model as a product of the BC column and a constant mass absorption coefficient (MAC) of 11.3 m\(^2\) g\(^{-1}\) based on atmospheric observations and thus accounting for appropriate mean mixing with other aerosol types [Bond and Bergstrom, 2006]. The model results are for 2009. The observed BC AAODs are 1996–2011 averages from AERONET level 2.0 data together with level 1.5 data for low-AOD conditions so as to minimize sampling bias (ftp://ftp-projects.zmaw.de/aerocom/aeronet/STATISTICS/grd_1203/). BC AAOD is retrieved by applying the refractive index for total aerosol to fine-mode aerosol (particles with diameter < 1 μm) and assuming all fine-mode AAOD to be from BC.

[32] The model gives a global mean BC AAOD of 0.0017. Comparison to the AERONET sites in Figure 10 indicates a

Figure 9. Annual zonal mean concentrations of BC simulated by GEOS-Chem for 2009 as a function of latitude and pressure, with contributions from different source types.

Figure 10. Global distribution of BC absorbing aerosol optical depth (AAOD) at 550 nm. Annual mean model values for 2009 (background) are compared to AERONET observations for 1996–2011 (circles). The AERONET data were obtained from ftp://ftp-projects.zmaw.de/aerocom/aeronet/STATISTICS/grd_1203/.
global normalized mean bias (NMB) of -32% relative to the AERONET data. The bias is less in extratropical northern latitudes (-22%) than in the tropics (-65%). Part of the tropical bias could reflect interannual variability of fires, as GFED3 BC emissions from fires are 1.6 Tg a$^{-1}$ for 2009 but 2.1 ± 0.40 Tg a$^{-1}$ for the 1996–2011 average. The NMB in the tropics would decrease to -50% with model results for 2010 (open fire emissions of 2.3 Tg a$^{-1}$). Randerson et al. [2012] argued that the GFED3 inventory is globally too low by 26% because it underestimates small fires.

[33] The oceans account for 41% of global BC AAOD in the model. The AERONET data are almost exclusively over continents, but there are a few island sites (Figure 10). Comparison to these sites shows a high model bias over the northern Pacific, consistent with HIPPO, but a low bias over the tropical oceans, which is inconsistent with HIPPO.

[34] There are large uncertainties associated with the AERONET BC AAOD data. Bond et al. [2013] argued that values should be increased by 75% through better coarse-mode refractive index assumptions. On the other hand, Chang et al. [2012] argued that organic carbon (OC) aerosol accounts for 20% of fine-mode absorption. Combining factors in these two studies would imply a multiplicative factor of 1.4 (1.75×0.8) to the AERONET data in Figure 10 and a model NMB of -51% (a factor of 2). AERONET observes only under clear skies but comparison of clear-sky to all-sky conditions in our model suggests that the resulting bias is insignificant (3%), consistent with the results of Bond et al. [2013].

[35] Figure 11 shows the global distribution of annual TOA DRF based on 3-D fields of BC concentrations with 6 h resolution for the year 2009 in GEOS-Chem. The global mean TOA DRF is 0.19 W m$^{-2}$. The forcing calculation follows Wang et al. [2008] but with improvement in the treatment of cloud effects [Wang et al., 2013]. The cloud data are from GEOS-5 with 6 h resolution; global mean cloud cover is 58%, consistent with a best estimate of 65% from the International Satellite Cloud Climatology Project (http://isccp.giss.nasa.gov/climanal1.html). A four-stream broadband radiative transfer model (RTM), using monthly mean surface reflectance data [Koelemeijer et al., 2003], is employed for the forcing calculation. The RTM is applied to the solar spectrum for six bands ranging from 0.2 to 4 μm. It assumes that BC particles are spherical with a refractive index at 550 nm of $1.76 \pm 0.47 μm$. The low refractive imaginary index (compared to that of the void fraction line in the work of Bond and Bergstrom [2006]) would underestimate MAC, while the low density (compared to $1.7–1.9$ g cm$^{-3}$ suggested by Bond and Bergstrom [2006]) would overestimate it. Therefore, the derived MAC for BC of 11.3 m2 g$^{-1}$ at 550 nm (consistent with our AAOD calculation) is comparable to the MAC recommended by Bond and Bergstrom [2006] and Bond et al. [2013].

[36] The global distribution of TOA DRF generally follows the AAOD pattern in Figure 10 but with elevated forcing in polar regions. This reflects higher aerosol forcing efficiency (AFE, defined as the TOA DRF normalized by BC AAOD) associated with high surface albedo and high solar zenith angle [Samset and Myhre, 2011]. The oceans
account for 41% of the global AAOD and 36% of the TOA DRF. The AFE tends to be lower than average over the oceans because the surface is dark.

[37] We can estimate the uncertainty in our TOA DRF estimate associated with the global BC distribution. The model shows little bias relative to in situ observations in source regions and continental outflow. It is however too high relative to the HIPPO data (+48% column mean bias) and too low relative to the AERONET AAOD data (possibly a factor of 2 as discussed above). We cannot reconcile these opposite biases with our model. If we discount the AERONET data and decrease the model AAOD over the oceans by 32% to correct the HIPPO overestimate, we obtain as lower bound a global BC AAOD of 0.0014 and TOA DRF of 0.17 W m\(^{-2}\). If we discount the in situ continental data and increase the model AAOD over land by a factor of 2 to match the AERONET data with corrections from Bond et al. [2013] and Chung et al. [2012], we obtain as upper bound a global BC AAOD of 0.0026 and TOA DRF of 0.31 W m\(^{-2}\). There are additional uncertainties related to the mixing state of BC and the radiative transfer model. Comparisons to previous studies are presented in the next section.

7. Comparison With Previous Studies

[38] Previous studies of BC radiative forcing have used various models to simulate the global distribution of BC, sometimes in combination with constraints from AERONET and satellite observations. Table 2 compiles results from recent studies and from the AeroCom activity Phase I [Schulz et al., 2006], which intercompared results from eight models. AeroCom Phase II [Myhre et al., 2013] has results similar to Phase I but only reports forcing for fuel BC (not including open fires) and so is not included in the table.

[39] We see from Table 2 that our best estimate of 0.19 W m\(^{-2}\) for BC radiative forcing is below the range of previous studies. To understand the differences, we can express the DRF as the product of four driving variables [Bond et al., 2013]:

\[\text{DRF} = \text{Emission} \times \text{Lifetime} \times \text{MAC} \times \text{AFE} \]

(2)

[40] Our global emission of BC (6.5 Tg a\(^{-1}\)) is similar to the AeroCom value of 6.3 Tg a\(^{-1}\), 30% lower than the Jacobson [2012] value, and much lower than the Bond et al. [2013] value of 17 Tg a\(^{-1}\) which was scaled to match AERONET AAOD observations. An emission of 17 Tg a\(^{-1}\) cannot be reconciled with the ensemble of in situ observations presented here, at least in the context of GEOS-Chem. It would produce a large positive bias in source regions, in continental outflow, and in the HIPPO data. Correcting for this bias would require a very short BC lifetime (less than 3 days).

[41] We compute a global tropospheric lifetime of 4.2 days for BC in GEOS-Chem, much lower than 6.8 ± 1.8 days in AeroCom and 6.1 days in Bond et al. [2013]. This reflects our modifications to the GEOS-Chem wet scavenging scheme to better match the HIPPO observations while retaining consistency with other observations. Prior to these modifications, the tropospheric lifetime of BC in GEOS-Chem was 5.9 days [Wang et al., 2011]. The longer lifetime in the AeroCom models is likely responsible for their order-of-magnitude overestimates of the HIPPO data [Schwarz et al., 2010; Schwarz et al., 2013]. This has important implications because a longer BC lifetime allows for a greater load at high altitude where the BC radiative forcing efficiency is high. Jacobson [2012] gave even shorter lifetime of 3.2 days and reproduced HIPPO observations in January 2009, although the comparison was conducted for the whole data set and was weighted toward source regions, including U.S. and Central America (see flight tracks in Figure 4).

[42] We obtain an atmospheric load for BC of 0.15 mg m\(^{-2}\) (77 Gg), consistent with the Jacobson [2012] value of 0.18 mg m\(^{-2}\) but much lower than the AeroCom value of 0.23 ± 0.07 mg m\(^{-2}\), the Jacobson [2000] value of 0.45 mg m\(^{-2}\), or the Bond et al. [2013] value of 0.55 mg m\(^{-2}\). Our estimate of the atmospheric load is most consistent with the ensemble of in situ observations presented in this paper. It underestimates the AERONET observations by as much as a factor 2 but there is large uncertainty in these observations as discussed above. The AERONET data provide little information over the oceans and no information on the vertical distribution of BC, which is critical for the DRF calculation. The fraction of the global BC load residing above 5 km is 8.7% in GEOS-Chem but 21 ± 11% in the AeroCom models for Phase I [Schulz et al., 2006] and 23 ± 11% for Phases I and II [Samset et al., 2013]. The contribution to global DRF from BC above 5 km is 13% in GEOS-Chem but 41 ± 14% in Samset et al. [2013].

[43] Our global BC AAOD estimate (0.0017) is consistent with AeroCom (0.0018 ± 0.0008) but this reflects their assumption of a small MAC (7.9 m\(^2\) g\(^{-1}\)). It is now considered that 11 m\(^2\) g\(^{-1}\) (as used in our work) is more appropriate [Bond and Bergstrom, 2006; Bond et al., 2013]. Jacobson [2012] found an even larger MAC (16 m\(^2\) g\(^{-1}\)) by accounting for conditions of high relative humidity (RH) and inferred from there a BC AAOD of 0.0028. Applying MAC of 16 m\(^2\) g\(^{-1}\) in our study would reduce our model bias compared with AERONET BC AAOD, and result in an AAOD of 0.0024 and DRF of 0.27 W m\(^{-2}\). However, accounting for high-RH environments is very uncertain in global models because of subgrid variability and related cloud formation [Adams et al., 2001]. Other studies in Table 2 give much higher values for BC AAOD (0.0060–0.0077), reflecting their use of AERONET constraints over land but also excessive BC concentrations over the oceans that would vastly overestimate the HIPPO data.

[44] Our AFE of 114 W m\(^{-2}\) reflects application of the Wang et al. [2008, 2013] RTM to our global 3-D BC concentration fields. It is higher than the value of Chung et al. [2012] (84 W m\(^{-2}\)) but lower than other reported values in Table 2 (134–168 W m\(^{-2}\)). Differences in AFE may reflect in part differences in model clouds and aerosol optical properties, but also the vertical distribution of BC [Samset et al., 2013; Stier et al., 2013]. Our lower AFE relative to AeroCom is consistent with our lower fraction of BC in the upper troposphere, supported by the aircraft data.

8. Conclusions

[45] We used the GOES-Chem chemical transport model (CTM) to interpret extensive vertical profiles of black carbon (BC) concentrations from the HIPPO campaign in five deployments across the central Pacific from 85°N to 67°S during 2009–2011. Our goal was to better understand the
factors controlling BC concentrations in the remote troposphere and the implications for BC radiative forcing.

[46] The HIPPO observations indicate very low BC concentrations over the Pacific, particularly in the tropics where values are often less than 0.1 ng m$^{-2}$ STP through the depth of the troposphere. Reproducing these observations requires more efficient wet scavenging of BC than is usually implemented in models. We find that a GEOSS-Chem simulation with global BC source of 6.5 Tg a$^{-1}$, and an improved representation of scavenging leading to a tropospheric BC lifetime of 4.2 days, reproduces the general features of the HIPPO data although it is biased high by a factor of 2 in median concentrations and 1.48 in column load. It also provides a successful simulation of BC concentrations in northern midlatitudes source regions and continental outflow. Comparison to global AERONET absorbing aerosol optical depth (AAOD) data indicates a mean underestimate of 32%, although the magnitude of this bias depends on the assumptions in the AERONET product.

[47] It appears from the HIPPO data that BC concentrations over the remote oceans, and in particular in the upper troposphere, are considerably lower than in the AeroCom CTMs commonly used for BC radiative forcing estimates. Reproducing these low concentrations in GEOSS-Chem required an increase in the efficiency of BC scavenging, consistent with findings in other model studies [Jacobson, 2012; Kipling et al., 2013]. Longer BC lifetimes in the AeroCom models (6.8 ± 1.8 days) allow more BC to reach the free troposphere where its radiative forcing efficiency is larger. We find in GEOSS-Chem that 8.7% of the BC load is in the free troposphere above 5 km, compared to 21 ± 11% in the AeroCom models.

[48] We combined our global 3-D distribution of BC concentrations with a radiative transfer model to infer a global top-of-atmosphere DRF for BC of 0.19 W m$^{-2}$, with an uncertainty range of 0.17 - 0.31 W m$^{-2}$ based on uncertainty in the BC atmospheric distribution. This is lower than the estimate of 0.27 ± 0.06 W m$^{-2}$ from the AeroCom models [Schulz et al., 2006] and much lower than more recent estimates of 0.65–0.9 W m$^{-2}$ [Chung et al., 2012; Bond et al., 2013]. We find that the difference is largely driven by the estimates of BC concentrations over the oceans and in the free troposphere. Based on the constraints offered by the HIPPO observations and consistent also with other BC data, it appears that the radiative forcing from BC is less than previously thought.

[49] Acknowledgment. This work was supported by the U.S. National Science Foundation.

References

