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A Methodology for Operationalizing Enterprise 

Architecture and Evaluating Enterprise IT Flexibility 

Abstract 

We propose a network-based methodology for analyzing a firm’s enterprise architecture.  

Our methodology uses “Design Structure Matrices” (DSMs) to capture the coupling between 

components in the architecture, including both business and technology-related elements.  It 

addresses the limitations of prior work, in that it i) is based upon the actual architecture “in-use” 

as opposed to planned or “idealized” versions; ii) identifies discrete layers in a firm’s 

architecture associated with different technologies (e.g., applications, servers and databases); iii) 

reveals the main “flow of control” within an architecture (i.e., the set of inter-connected 

components); and iv) generates measures of architecture that can be used to predict performance.   

We demonstrate the application of our methodology using a novel dataset developed with the 

division of a large pharmaceutical firm.  The dataset consists of all components in the enterprise 

architecture, the observed dependencies between them, and estimated costs of change for 

software applications within this architecture.  We show that measures of the architecture derived 

from a DSM predict the cost of change for software applications.  In particular, applications that 

are tightly coupled to other components in the architecture cost more to change.  The analysis 

also shows that the measure of coupling that best predicts the cost of change is one that captures 

all direct and indirect connections between components (i.e., it captures the potential for changes 

to propagate via all possible paths between components).  Our work represents an important step 
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in making the concept of enterprise architecture more operational, thereby improving a firm’s 

ability to understand and improve its architecture over time. 

1. Introduction 

As information becomes more pervasive in the economy, information systems in firms 

are becoming increasingly more complex. Initially, information systems were designed to 

automate back-office functions and provide data to support managerial decision-making. The 

role of these systems was expanded to coordinate the flow of production in factories and supply 

chains.  The invention of the personal computer led to the creation of client-server systems, 

which enhanced the productivity of office workers and middle managers. Finally, the arrival of 

the Internet brought a need to support web-based communication, e-commerce, and online 

communities. Today, even a moderate-size business maintains information systems comprising 

hundreds of applications and many databases, running on geographically distributed hardware 

platforms, serving multiple clients. These systems must be secure, reliable, flexible, and capable 

of evolving when new opportunities arise. 

“Enterprise architecture” (EA) is the name given to a set of frameworks, processes and 

concepts that are used to manage an enterprise’s information system infrastructure.  For example, 

TOGAF®, the most-cited framework in this field, was developed by a consortium of firms to 

provide a standardized approach to the design and management of information systems within 

and across organizations (TOGAF, 2009).1 It provides a way of visualizing, understanding and 

planning for the needs of diverse stakeholders in a seamless and cost-effective way.  

Unfortunately, despite the increasing adoption of EA frameworks such as TOGAF by firms, 

                                                 
1 http://pubs.opengroup.org/architecture/togaf9-doc/arch/ (viewed 11/3/14). 
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making changes to systems, adding new functionality, and/or integrating different systems (e.g., 

as in a merger) are often not straightforward tasks.  The empirical evidence for this, and EA 

research in general, is mixed at best (Buckl et al., 2009; Seppänen et al., 2009; Dietz & 

Hoogervorst, 2011). Changes made to one component can create unexpected disruptions in 

seemingly distant parts of the enterprise (Vakkuri, 2013).  In essence, when dealing with 

complex systems, changes propagate in unexpected ways, increasing the costs of adaptation and 

reducing flexibility.  This suggests the need for a method to better operationalize enterprise 

architecture, in a way that generates a deeper understanding of the actual design “in-use.” 

Several EA frameworks have proposed using matrices to display the relationships among 

various components of an information system, in an attempt to make EA more operational (e.g., 

TOGAF, 2009).  Unfortunately, it is not clear how these matrices should be combined to 

generate specific managerial insights (e.g., how to improve the system).  Furthermore, the 

information used to construct them reflects an idealized view of how a system should function, 

rather than data on how it currently functions.  Finally, these matrices do not yield quantitative 

measures of architecture that can be used to analyze performance; they are primarily descriptive, 

not prescriptive, in nature.  This paper seeks to address these challenges.   

Specifically, prior work has demonstrated the efficacy of using a Design Structure Matrix 

or DSM—a square matrix that captures the interactions among components—as a tool for 

visualizing, measuring and characterizing the architecture of complex products (Steward, 1981).  

We apply this DSM methodology to analyze a firm’s information systems architecture, which 

comprises many interdependent elements, including business groups, applications, databases and 

hardware.  Our data is drawn from work with a large pharmaceutical company (Dreyfus, 2009). 

We use this data to i) describe how an enterprise architecture DSM is constructed, ii) show that 
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this DSM reveals the layered structure of a firm’s architecture, and iii) highlight how the 

components in this architecture can be classified into different groups – Core, Peripheral, Shared 

and Control – based upon the way that they are coupled to the rest of the system.  The Core, 

Shared and Control components comprise the main “flow of control” in the architecture. 

We demonstrate the application of our methodology by analyzing the impact of different 

levels of component coupling on the cost of change for software applications.  Specifically, we 

use multiple measures of coupling derived from the enterprise architecture DSM to predict the 

cost of change.  The results show the cost to change “Core” applications, which are tightly 

coupled to other system components, are significantly higher than the cost to change 

“Peripheral” applications, which are only loosely connected to other components.   We find that 

the measure of coupling which best predicts the cost of change is one that captures all of the 

direct and indirect connections between components in the architecture.  In sum, it is important 

to account for all the possible paths by which changes may propagate between two components, 

even if these components are not directly connected. 

The main contribution of this paper lies in developing an operational methodology for 

analyzing enterprise architecture that addresses the limitations of prior work.  Specifically, we 

show how dependency-matrices, which have previously been applied to the study of product 

architecture, can be used to gain insight into enterprise architecture.  We demonstrate the 

application of our methodology by analyzing a novel dataset from a real firm, encompassing 

comprehensive information about all system components and the interdependencies between 

them. We conclude by relating our findings to prior literature and discussing the implications of 

our methods for practicing managers. 
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The paper is organized as follows. Section 2 reviews the literature and motivates our 

approach.  Section 3 introduces our dataset and describes how an enterprise architecture DSM is 

constructed.  Section 4 shows how this DSM is used to classify components into groups based 

upon their coupling within the system.  Section 5 demonstrates the application of our 

methodology to predicting the cost of software change.  Section 6 describes our conclusions. 

2. Literature Review and Motivation 

 This section reviews the enterprise architecture literature, with the aim of understanding 

the limitations of current approaches, and the criteria by which new methods should be assessed. 

We then describe recent work on the visualization and measurement of complex software 

systems using network-based approaches, with a focus on the use of DSMs. 

2.1 Enterprise Architecture 

Enterprise Architecture is commonly defined as a tool for achieving alignment between a 

firm’s business strategy and its IT infrastructure. For example, MIT’s Center for Information 

Systems Research defines EA as “the organizing logic for business processes and IT 

infrastructure reflecting the integration and standardization requirements of the company's 

operating model” (Weill, 2007).  Prior work tends to emphasize conceptual models, tools and 

frameworks that attempt to achieve this alignment (e.g., Aier and Winter, 2009).  EA analysis is 

not limited to IT systems, but encompasses the relationship with and support of business entities. 

This overarching perspective is present in the ISO/IEC/IEEE 42010:2011 standard, which 

defines architecture as “the fundamental organization of a system, embodied in its components, 

their relationships to each other and the environment, and the principles governing its design and 

evolution” (ISO/IEC, 2011).  Ultimately, EA targets a holistic and unified scope of organization 
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(Rohloff, 2008; Tyler, 2006).  Hence most research has focused on the “strategic” implications 

of EA efforts (Tamm, 2011; Aier, 2014, Boh & Yellin, 2007; Ross & Weill, 2006). 

If the integration of IT and business concerns is one defining aspect of EA, a model-

based methodology is another. As the name hints, architectural descriptions are central in EA. 

These descriptions include entities that cover a broad range of phenomena, such as 

organizational structure, business processes, software and data, and IT infrastructure (Lankhorst, 

2009; Winter & Fischer, 2007; Jonkers, 2006). A large number of frameworks have been 

proposed, detailing the entities and relationships between them that should be part of this effort 

(e.g., TOGAF, 2009; Lankhorst, 2009; DoDAF, 2007; MODAF 2008).  However, considerable 

diversity exists, in terms of the primary unit of analysis and terminology adopted by each.  For 

example, various frameworks focus on i) Stakeholders and Aspects to be considered (Zachman, 

1987); ii) Viewpoints and Concerns to be analyzed (TOGAF, 2009); and iii) Objects and 

Attributes to be modeled (Lagerström et al., 2009).  This lack of consistency is likely one reason 

for the limited success reported for EA efforts in studies of practice (Roeleven, 2010). 

EA frameworks have been shown to be a useful decision-support tool when focused on 

the needs of specific decision-makers (Johnson and Ekstedt, 2007).  For example, researchers at 

the KTH Royal Institute of Technology have applied a uniform methodology to model how EA 

affects the dimensions of security, interoperability, availability, modifiability and data accuracy 

(Sommestad et al., 2013; Ullberg et al., 2011; Franke et al., 2014; Lagerström et al., 2010; 

Närman et al., 2011). These narrower models help stakeholders understand how EA affects 

specific performance attributes, generating insight into current and future states.  Nevertheless, 

these models remain difficult to understand and implement, limiting their practical impact. 
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Several EA frameworks have proposed using matrices to display the relationships among 

various components of an information system, in an attempt to make EA more operational.  For 

example, TOGAF recommends preparing nine separate matrices at different points in the 

development of a firm’s architecture,2 which are used to track the linkages and dependencies 

between various parts of the system.  Unfortunately, it is not clear how these matrices should be 

combined to generate managerial insights (e.g., how to improve).  Furthermore, the information 

used to construct them reflects an idealized view of how a system should function, rather than 

how it actually functions.  Finally, these matrices do not yield quantitative measures of 

architecture that can be used to analyze performance; they are primarily descriptive in nature. 

In sum, operationalizing enterprise architecture in a robust and reliable way, that allows 

firms to analyze and improve their systems, has proven an elusive goal.  A diverse range of 

frameworks exists, each employing different units of analysis and terminology. Furthermore, 

these frameworks are conceptual in nature, generating few quantitative measures that can be used 

to analyze performance.  Finally, these frameworks focus on idealized versions of a firm’s 

architecture, rather than actual data from the architecture “in-use.”  While some recent studies 

attempt to operationalize EA at a granular level (e.g., Mocker, 2009; Dreyfus and Wyner, 2011), 

there is as yet little consensus on a general methodology for how this should be achieved. 

2.1.1 Enterprise Architecture and “Layers” 

While there exists a diverse range of enterprise architecture frameworks, one of the 

themes they have in common is the concept of “layers” (Adomavicius, 2008; Yoo et al, 2010; 

Simon et al, 2013).  Simon et al. (2013) describe enterprise architecture management as dealing 

with different layers, including business, information, application, and technology layers. Yoo et 
                                                 
2 http://pubs.opengroup.org/architecture/togaf9-doc/arch/chap35.html (viewed 11/3/14) 
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al. (2010) argue that pervasive digitization has given birth to a “layered-modular” architecture, 

comprising devices, network technologies, services and content. Finally, Adomavicius et al. 

(2008) discuss the concept of an IT “ecosystem,” highlighting the different roles played by 

products and applications, component technologies and infrastructure technologies. 

While studies differ in the ways that they classify layers in a firm’s enterprise 

architecture, they do share common underlying assumptions.  First, layering reflects a division of 

the functions provided by a system into units, such that these units can be designed, developed, 

used and updated independently.  Second, layering establishes a design “hierarchy” (Clark, 

1985) such that each layer tends to interact only with layers immediately above or below it, 

reducing complexity.  Finally, the direction of interdependencies between layers is such that 

higher layers “use” lower layers, but not the reverse, limiting the potential for changes to 

propagate (Gao and Iyer, 2006).  For example, a software application on a desktop computer 

“uses” (i.e., depends upon) functions provided by the operating system layer below it.  However, 

the operating system does not (in general) depend upon the applications that use it. This has 

important implications for the propagation of changes.  Changes to the operating system may 

impact applications, but changes to applications will not, in general, impact the operating system. 

The importance of layering in the literature suggests that any methodology for 

operationalizing EA should be able to identify the layered structure of the enterprise architecture.  

2.1.2 Enterprise Architecture and Firm Performance 

Much of the literature on EA has focused on frameworks that align business needs with 

IT capabilities and the processes by which such frameworks are implemented.  Surprisingly 

however, there has been little work to explore the performance benefits of EA, using empirical 
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data on the actual outcomes achieved by firms.  Indeed, Tamm et al. (2011) found that of the top 

50 articles on enterprise architecture (as ranked by citation count) only 5 provided any empirical 

data that sought to explain the link between EA efforts and improved performance outcomes.   

Many authors note it is difficult to directly assess the quality of a firm’s architecture.  

Hence empirical studies linking enterprise architecture to performance tend to focus on assessing 

the quality of outputs from EA planning processes (e.g., the quality of the documentation) or the 

quality of the EA planning process itself (e.g., how effectively did the firm set goals, define tasks 

and govern the effort) (Kluge et al., 2006; Aier et al., 2011; Lagerström et al., 2011; Schmidt and 

Buxmann, 2011).  This approach means that it is difficult to differentiate between firms that 

follow similar EA planning processes, but which arrive at different outcomes.  A more robust 

method for operationalizing EA should be able to discern between such situations. 

Studies that make claims about the performance benefits of EA tend to cite a range of 

“enablers” that mediate firm outcomes.  Recurring themes include better organizational 

alignment, improved information quality and availability, optimized resource allocation across 

the business portfolio, and increased complementarities between resources (Tamm et al., 2011).  

The most consistent theme that emerges in the literature however is the role of EA in facilitating 

flexibility.  In an influential paper, Samburmathy at al (2003) argue that the strategic value of 

information technology investments in firms is defined by their impact on agility, creating 

“digital options” and “entrepreneurial alertness” (i.e., understanding and exploiting new 

opportunities). Duncan (1995) explores the factors that contribute to flexibility, showing that 

managers associate this feature with the attributes of compatibility, connectivity, and modularity.  

Schmidt and Buxmann (2011) measure these four attributes, and show that a rigorous and 

comprehensive enterprise architecture planning process is associated with self-reported 
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improvements on each one.  Finally, Sambamurthy and Zmud (2000) suggest the new organizing 

logic for EA is the “platform,” which encompasses a “flexible combination of resources, routines 

and structures” that meets the needs of both current and future IT-enabled functionalities. 

This discussion suggests that any methodology for operationalizing EA should capture 

data on the architecture in-use by a firm, not merely the processes and documents by which it 

was developed.  Furthermore, the measures output from this methodology should facilitate the 

analysis of important outcomes, including the extent to which the architecture enables flexibility.  

For this reason, we chose to demonstrate the application of our methodology by analyzing the 

cost of change for the software applications within a firm’s enterprise architecture. 

2.2 Network-based Approaches to System Architecture 

Many prior studies have characterized the architecture of complex systems using network 

representations and metrics (Holland, 1992; Kauffman, 1993; Barabasi, 2009).  In particular, 

they focus on identifying the linkages that exist between different elements (nodes) in a system 

(Simon, 1962; Alexander, 1964). A key concept that emerges in this literature is that of 

modularity, which refers to the way that a system’s architecture can be decomposed into 

different parts. Although there are many definitions of modularity, authors agree on its 

fundamental features: the interdependence of decisions within modules, the independence of 

decisions between modules, and the hierarchical dependence of modules on components that 

embody standards and design rules (Mead and Conway, 1980; Baldwin and Clark, 2000). 

Studies that use network methods to measure modularity typically focus on analyzing the 

level of coupling between different elements in a system.3  The use of graph theory and network 

                                                 
3 For software systems, this notion is linked with that of cohesion (Dhama, 1995). Well-designed software 

applications have high levels of cohesion (within modules) and low levels of coupling (across modules). 
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measures to analyze coupling in software systems has a long history (Hall and Preiser, 1984). 

Many authors show that measures of direct component coupling predict important parameters 

such as defects and productivity (Stevens et al., 1974; Henry and Kafura, 1981; Fenton and 

Melton, 1990; Chidamber and Kemerer, 1994; Briand et al., 1999; Allen et al., 2007).  Despite 

this, no clear consensus has emerged on exactly how coupling should be defined in software 

systems, or which are the best coupling metrics to use for predicting performance.  In recent 

years, a number of studies have adopted coupling measures derived from social network theory 

to analyze software systems (Dreyfus and Wyner, 2011; Wilkie and Kitchenham, 2000; Myers, 

2003; Jenkins and Kirk, 2007).  However, such measures suffer from well-known limitations that 

make their application to technical systems difficult to apply and interpret consistently. For 

example, social network measures tend to assume that dependencies are symmetric.  In technical 

systems, many important dependencies are asymmetric, meaning the direction of coupling is 

important. 

2.1.2 Design Structure Matrices (DSMs) 

An increasingly popular network-based method used for analyzing technical systems is 

the “Design Structure Matrix” or DSM (Steward, 1981; Eppinger et al., 1994; MacCormack et 

al., 2006; Sosa et al., 2012).  A DSM displays the structure of a complex system using a square 

matrix, in which the rows and columns represent system elements, and the dependencies between 

elements are captured in off-diagonal cells.   Baldwin et al. (2014) show that DSMs can be used 

to visualize the “hidden structure” of software systems, by analyzing the level of coupling for 

each component, and classifying them into similar categories based upon the results.  
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Metrics that capture the level of coupling for each component can be calculated from a 

DSM and used to understand system structure. For example, MacCormack et al. (2006) and 

LaMantia et al. (2008) use DSMs and the metric “propagation cost” to compare software system 

architectures, and to track the evolution of software systems over time.  MacCormack et al. 

(2012) show that the architecture of technical systems tends to “mirror” that of the organizations 

from which they have evolved. Sturtevant (2013) shows that software components with high 

levels of coupling tend to experience more defects, take more time to adapt and are associated 

with high employee turnover.  And Ozkaya (2012) shows that metrics derived from DSMs can 

be used to assess the value released by “re-factoring” designs with poor architectural properties.  

In a recent case study, Lagerström et al. (2013) applied DSMs to study a firm’s enterprise 

architecture – in which a large number of interdependent software applications have relationships 

with other types of components, such as business groups, schemas, servers, databases and other 

infrastructure elements.  In this paper, we formalize and extend this approach, then demonstrate a 

practical application of the method, by analyzing how measures from a DSM predict flexibility. 

2.2.1 Design Structure Matrices and Change Propagation 

A DSM captures all of the dependencies that exist between components in a system. If 

component A depends directly upon component B, then any change made to B may affect A.  

These two components are “coupled.” But using a DSM, we can also analyze the indirect 

dependencies between components, which reflect the potential for changes to propagate in a 

system via a “chain” of dependencies.  For example, if component B, in turn, depends upon 

component C, then a change to C may affect B, which in turn, might affect A.  Therefore, A and 

C are also “coupled,” but indirectly.  The level of indirect coupling in a system provides an 
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indication of the degree to which changes can propagate through a system.  Prior work has 

shown that measures of indirect coupling predict both the level of defects and the ease (or 

difficulty) with which a system can be adapted (MacCormack, 2010; Sturtevant, 2013). 

A DSM is not the only network analysis technique that can reveal both direct and indirect 

dependencies between components.  In contrast to techniques such as social network analysis 

however a DSM also captures information on the direction of dependencies.   This distinction is 

important, given dependencies in technical systems are typically not symmetric.  In the example 

above, A depends upon B, but that does not imply that B also depends upon A.  As such, a 

change to B may propagate to A, whereas component A could be changed with no impact on B.  

A DSM captures the direction of dependencies, allowing us to determine the “flow of control” in 

a system (i.e., the direction in which chains of dependencies are likely to propagate).  Hence we 

can discern between systems that are hierarchical in nature (i.e., there exists a strict ordering of 

components) versus those that are cyclical in nature (i.e., the components are mutually 

interdependent).  Hierarchy and cyclicality are critical constructs for understanding how changes 

might propagate in complex systems.  DSMs can be used to reveal these characteristics. 

3. Constructing an Enterprise Architecture DSM 

3.1 The Empirical Context 

We illustrate our methodology by using a real-world example of a firm’s enterprise 

architecture.  The aim is to make these methods concrete and to demonstrate that they provide 

insight into how real world systems operate.  Using real-world data also provides validation that 

our methods of data collection and analysis are able to scale for practical use in the field.  
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Our study site is the research division of a US biopharmaceutical company “BioPharma”. 

At this company, “IT Service Owners” are responsible for the divisional information systems, 

and provide project management, systems analysis, and limited programming services to the 

organization. Data were collected by examining strategy documents, having IT service owners 

enter architectural information into a repository, using automated system scanning techniques, 

and conducting a survey. Details of the data collection protocols are reported in Dreyfus (2009).  

Our BioPharma dataset includes information on 407 architectural components and 1,157 

dependencies between them. The architectural components are divided into: eight “business 

groups;” 191 “software applications;” 92 “schemas;” 49 “application servers;” 47 “database 

instances;” and 20 “database hosts”. These components form a layered architecture, typical of 

modern information systems, as we will show later.  Note that “business groups” are 

organizational units not technical objects. The dependence of particular business groups on 

specific software applications and infrastructure is integral to studies of enterprise architecture. 

We consider business groups part of the enterprise architecture, and include them in our analysis.  

We capture data on four types of dependency between components – uses, communicates 

with, runs on, and instantiates. Business units use applications; Applications communicate with 

each other, use schemas, and run on application servers. Schemas in turn instantiate database 

instances that run on database hosts. Importantly, of these four dependency types, “uses”, 

“instantiates” and “runs on” possess a specific direction (i.e., they are asymmetric dependencies).  

In contrast, “communicates with” is a bi-directional (i.e., symmetric) dependency.  

Dependency data for the BioPharma enterprise architecture was obtained using a 

combination of manual and automated methods. In particular, interviews were conducted with 

the IT director and surveys were conducted with IT Service Owners. This information was then 
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supplemented with the use of open-source and custom tools to monitor the server and network 

traffic in the system. Data on processes and communication links was then manually aggregated 

to the level of the individual component (Dreyfus, 2009). Importantly, many links discovered 

using automatic tools had been overlooked by or were unknown to the IT Service Owners.  This 

indicates that the theoretical (i.e., documented) system architecture can deviate substantially 

from the actual architecture “in use,” validating the broader motivation for our work.  

Finally, for a subset of the software applications in the enterprise architecture, data was 

collected on the cost of making changes (discussed in Section 5).  Prior work used these data to 

explore the predictive power of social network metrics (Dreyfus and Wyner, 2011).  We depart 

from this prior work in that we i) introduce a formal methodology, based upon DSMs, by which 

to visualize and measure the firm’s enterprise architecture, and ii) demonstrate the application of 

this methodology to analyzing the cost of making changes to the software applications, using 

measures of the firm’s architecture that are derived directly from the DSM. 

3.2 Constructing the DSM 

A DSM is a way of representing a network. Rows and columns of the matrix denote 

nodes in the network; off-diagonal entries indicate linkages between the nodes. In the analysis of 

complex systems, the rows, columns, and main diagonal elements of a DSM correspond to the 

components of the system—in this case, business groups and technical resources (e.g., software 

applications, databases, hosts etc.).  Hence the first question we must answer is what kinds of 

linkages between components should be captured, and how should these be counted? 

The influential computer scientist David Parnas argued that the most important form of 

linkage is a directed relationship that he calls “depends on” or “uses” (Parnas, 1972). If B uses A, 



OPERATIONALIZING ENTERPRISE ARCHITECTURE APRIL 21, 2015 
 

Copyright ©  2015, Alan MacCormack, Robert Lagerstrom, David Dreyfus, Carliss Y. Baldwin 

Working papers are in draft form.  This working paper is distributed for purposes of comment and discussion only.  It may not be 
reproduced without permission of the copyright holder. Copies of working papers are available from the author. 
 

then A fulfills a need for B. If the design of A changes, then B’s need may go unfulfilled. B’s 

own behavior may then need to change to accommodate the change in A. Thus change 

propagates in the opposite direction to use.  Importantly, Parnas stresses that use is not 

symmetric. If B uses A, but A does not use B, then B’s behavior can change without affecting A. 

(We ignore the potential for indirect paths between A and B in this example.)  As noted earlier, a 

DSM reveals this asymmetry – the marks in the rows denote one direction of the use relationship 

and the marks in the columns denote the other.  If usage is symmetric (i.e., B uses A and A uses 

B), the marks will be symmetric around the main diagonal of the DSM.  

Whether use proceeds from row to column or column to row is a matter of choice.  There 

is no standard approach among DSM scholars. However, just as cars should drive on the left or 

the right to avoid collision, firms should adopt one or the other convention to avoid confusion. In 

our methodology, we define use as proceeding from row to column.  That is, our DSMs show 

how the components in a given row use (i.e., depend upon) the components in a given column. 

More generally, for the ith component in a system one looks at the ith element along the main 

diagonal. To identify the components that it depends upon, one looks along its row. To identify 

the components that depend upon it, one looks up and down its column. 

In a layered architecture, a second convention determines the ordering of layers from top 

to bottom. One can place the “users” in higher layers and the objects of use in lower layers or 

vice versa. Most EA layer diagrams display the users at the top. In constructing DSMs, however, 

we depart from this practice, and place users below the objects that they use. Our reasons for 

doing this are based upon the concept of “design sequence” as described below. 

When used as a planning tool in a design process, a DSM indicates a possible sequence 

of design tasks, i.e., which components should be designed before which others. In general, it is 
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intuitive and desirable to place the first design tasks at the top of a DSM, with later tasks below. 

In sum, the first components to be designed should be those that other components depend on. 

For example, suppose that B uses A. A’s design should be complete before B’s design is begun. 

Reversing this ordering runs the risk that B will have to be redesigned to comply with changes in 

A. Reflecting this sequence in a DSM, we place the “most used” layers on the top and the 

“users” of these layers towards the bottom. This convention ensures that design rules and 

requirements, which affect subsequent design choices, always appear at the top of the DSM.  

The next question to answer is how should dependencies between elements be counted?  

Should the matrix cells contain only binary information, indicating a linkage, or ordinal values?  

Consider when the components of a system are complex entities (e.g., like applications, schemas 

and servers), there can be multiple ways that each component uses or depends upon the others.  

For example, Application B may make different types of requests of Application A.  It is 

possible to count those different requests and assume a linkage is “stronger” when the number of 

requests (or request types) is higher. Similarly, following Sharman and Yassine (2007, 2004), 

one can interpret the off-diagonal entries in a DSM as indicating the probability that a change to 

one component will cause a change to another. In this scenario, a value of “1” would indicate the 

certainty of change, while lesser values would indicate merely the possibility of change.  

While these are plausible arguments, they are difficult to apply in practice. Establishing 

the strength of a linkage, or the probability that a change in one component requires a change in 

the other, requires a deep level of knowledge, which rarely exists in an enterprise setting. 

Further, allocating different strengths or weights to dependencies can give a false sense of 

precision in a DSM analysis. The existence of a dependency between two elements, no matter 

how many ways this dependency is expressed, or how frequently it is observed in operation, 
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merely signifies the potential for changes to propagate between these elements.  As a 

consequence, we use a binary DSM as the baseline for analyzing enterprise architecture.4 

A layered DSM showing the BioPharma enterprise architecture is presented in Figure 1. 

The matrix is binary with marks in the off-diagonal cells indicating a direct dependency from 

row to column (and hence a change vulnerability from column to row).  White space indicates 

there is no direct dependency between elements. To set the order of layers we use knowledge of 

the logical relationships between components.  Usage flows from business groups (at the bottom) 

to applications, from applications to schemas and application servers, from schemas to database 

instances and from database instances to database hosts (at the top). Within layers, we order 

components using the component ID, an arbitrary numbering scheme. Note that “communicates 

with,” the dependency captured between software applications in our data, is bi-directional, 

hence the marks in the rows and columns of this layer are symmetric around the main diagonal. 

                                                 
4 We note further research might examine how the strength of linkages or change probabilities could be 

used to build Enterprise Architecture DSMs that possess greater predictive power than simple binary versions. 
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Figure 1 A DSM displaying BioPharma’s layered Enterprise Architecture 

 

Summing the row entries for a given component in the DSM measures the direct 

outgoing coupling of that component—the number of other components that it uses. We call this 

measure the direct “fan-out” dependency of the component. Summing the column entries 

measures the direct incoming coupling of that component – the number of other components that 

use it. We call this measure the direct “fan-in” dependency of the component. White space to the 

right of a given layer indicates that components in the layer do not depend on layers below. 

White space to the left indicates that components in the layer do not depend on layers above.  

On the whole, the DSM confirms that this enterprise architecture displays a good 

separation of concerns: for the most part, schemas act as an interface between applications and 

the database instances and hosts. Schemas are also efficiently managed: one schema may serve 
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several applications and one application may make use of several schemas. There are two 

exceptions, however, as indicated by the two circles, where specific applications appear to 

directly use a database instance or a database host. These exceptions may indicate poor 

encapsulation or non-standard practices, and hence would be worth investigating further. 

It is important to note that this DSM combines several diagrams and matrices that are part 

of TOGAF’s approach to enterprise architecture (TOGAF, 2009). The mapping from business 

groups to applications (at the bottom of the DSM) corresponds to the “Application/Organization 

Matrix.” The square submatrix of applications corresponds to the “Application Interaction 

Matrix” (AIM). The mapping from applications to schemas and servers (to the left of the AIM) 

corresponds to the “Application Technology Matrix.” Finally, the mapping from schemas to 

database instances and database instances to database hosts contains the information needed to 

construct the “Application/Data Matrix,” while also showing how the use of data by applications 

operates through particular schemas and database instances.   For these reasons, we believe that 

our methodology constitutes an important step towards making this framework more operational.    

We note that the Application Interaction Matrix (AIM) is the largest submatrix in this 

DSM.  It shows the dependencies caused by interactions between the software applications in the 

enterprise’s portfolio. In this dataset, dependencies between software applications are captured 

by the term “communicates with,” which does not possess directionality (i.e., we do not know 

which application is requesting a computation and which is performing it). Hence the AIM is 

symmetric.  In general however, capturing information about directionality is always desirable.  

In particular, one application may always ask for a computation, and another may always supply 

the result. This distinction would be obscured if all dependencies were merely assumed to be 
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symmetric. However, if applications switch roles, sometimes requesting and sometimes 

supplying computational services, a symmetric dependency would in fact be warranted.  

4. Analyzing an Enterprise Architecture DSM 

Figure 1 displays the layered structure of the enterprise architecture, but does not reveal 

other important architectural characteristics such as indirect coupling, cyclic coupling, hierarchy, 

or the presence of “core” and “peripheral” components.   Matrix operations can be applied to a 

DSM to analyze these additional features.  Specifically, the transitive closure of the matrix 

reveals indirect dependencies among components in addition to the direct dependencies 

(Sharman et al., 2002; Sharman and Yassine, 2004; MacCormack et al., 2006). That is, if C 

depends on B and B depends on A, transitive closure reveals that C depends on A.  

Applying the procedure of transitive closure to a DSM results in what is called the 

“Visibility” matrix (MacCormack et al., 2006; Baldwin et al., 2014).  The visibility matrix 

captures all of the direct and indirect dependencies between elements.  In a similar fashion to the 

DSM, row sums of the Visibility matrix, called “visibility fan-out” (VFO) measure the direct and 

indirect outgoing dependencies for a component. Column sums, called “visibility fan-in” (VFI) 

measure the direct and indirect incoming dependencies for a component. In a layered enterprise 

architecture, like the one observed in BioPharma, components at the top of the DSM will have 

high VFI and components at the bottom of the DSM will have high VFO.  Critically, in cases 

where the systems layers are not known a priori, the Visibility matrix can be sorted using VFI 

and VFO to reveal the hierarchical relationships among components/layers.5  

                                                 
5 We note that while matrix methods can reveal the hierarchical relationships among components, they will 

not be able to tease apart discrete groups of components that have equivalent positions in the hierarchy.  
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VFI and VFO can be used to identify “cyclic groups” of components, each of which is 

directly or indirectly connected to all others in the group.  Mathematically, members of the same 

cyclic group all have the same VFI and VFO measures, given they are all connected directly or 

indirectly to each other.  Thus we can identify cyclic groups in a system by sorting on these 

measures after performing a transitive closure on the DSM (Baldwin et al., 2014). Large cyclic 

groups are problematic for system designers, given changes to a component may propagate via a 

chain of dependencies to many other components.  In such a structure, the presence of cyclicality 

means that there is no guarantee that the design process (or a design change) will converge on a 

globally acceptable solution that satisfies all components (Alexander, 1964; Steward, 1981).  

The density of the Visibility matrix, called Propagation Cost, provides a measure of the 

level of coupling for the system as a whole. Intuitively, the greater the density of the Visibility 

matrix, the more ways there are for changes to propagate, and thus the higher the cost of change. 

Large differences in propagation cost are observed across systems of similar size and function 

(MacCormack et al., 2012).  Yet empirical evidence also suggests that refactoring efforts aimed 

at making a design more modular can lower propagation cost substantially (MacCormack et al., 

2006; Akaikine, 2009). These findings suggest that at least for software, architecture is not 

dictated solely by system function, but varies widely, at the discretion of a system’s architects. 

Prior work has shown that the components in a system can be classified into different 

groups according to the levels of coupling they exhibit, as captured by VFI and VFO.  

Specifically, Baldwin et al. (2014) use DSMs to analyze the structure of 1286 releases from 17 

distinct software applications. They find the majority of systems exhibit a “core-periphery” 

structure, characterized by a single dominant cyclic group of components (the “Core”) that is 

large relative to the system as a whole as well as to other cyclic groups.  They show that the 
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components in such systems can be divided into four groups – Core, Peripheral, Shared and 

Control – that share similar properties in terms of coupling.  In such systems, dependencies (i.e., 

“usage”) flow from Control components, through Core components, to Shared components.  This 

represents the main “flow of control” in the system.  Peripheral components, by contrast, lie 

outside the main flow of control, given they are weakly connected to other system components. 

We constructed the Visibility Matrix for BioPharma, and applied the classification 

methodology described in Baldwin et al. (2014) to the resulting data for VFI and VFO (see Table 

1).  We find that the firm’s enterprise architecture has a core-periphery structure, with 132 

“Core” components (i.e., components that are mutually interdependent).  Furthermore, all of the 

Core components in the system are software applications (but note, not all software applications 

are classified as Core).  Each of the layers in the enterprise architecture identified in Figure 1 has 

some components that are part of the main flow of control, and others in the “Periphery.” In 

total, 2/3 of the components in the architecture are part of the main flow and 1/3 are peripheral. 

We believe managers will find this type of classification scheme useful to set priorities, allocate 

resources, analyze costs, and understand potential differences in resource productivity. 

Table 1: Distribution of Components in the Architecture by Layer and Category. 
 

 Shared Core Control Periphery 
Database hosts 8 0 0 12 

Database instances 15 0 0 32 
Application servers 27 0 0 22 

Schemas 83 0 0 9 
Software application 0 132 0 59 

Business groups 0 0 7 1 
TOTAL 272 135 

Percent of Total 66% 34% 
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Figure 2 shows a reorganized view of BioPharma’s DSM, organized first, by type of 

component (i.e., Shared, Core, Periphery, Control) and second, by enterprise architecture layer. 

We call this the “core-periphery” view of the enterprise architecture DSM.  Components in 

Shared, Core or Control categories are directly or indirectly connected to all Core components 

(and potentially, other components not in the Core) and hence represent the main flow of control.  

Thus each main-flow component is connected to at least 132 other components (though the 

direction of these dependencies will vary by category). In contrast, the highest level of coupling 

(i.e., visibility fan-in or visibility fan-out) for any peripheral component is only 7. Hence the 

indirect coupling levels of components in the main flow and the periphery are dramatically 

different.  Assuming the level of component coupling is related to the cost of change, as Parnas 

(1972) suggests, main-flow components will cost significantly more to change than components 

in the periphery.  We investigate this argument empirically in the following section. 

 

Figure 2:  Reorganized DSM showing Main Flow and Peripheral Components. 
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5. Using the Enterprise Architecture DSM to Predict Performance 

In this section, we demonstrate the application of our methodology to the analysis of 

system performance. In particular, we examine the relationship between measures of component 

coupling derived from a DSM and the costs of component change.  We focus on the cost of 

change, given that this is a direct measure of flexibility, the most common theme that emerges in 

the literature on enterprise architecture.  Our analysis uses a subset of the data from BioPharma, 

for which information on the cost of change is available.  Specifically, we predict the cost of 

change for software applications in the enterprise architecture.  We begin by developing several 

hypotheses about the relationship between component coupling and the cost of change.  

5.1 The Relationship between Coupling and the Cost of Change  

In the previous section, we show that BioPharma’s enterprise architecture is comprised of 

components with very different levels of coupling. In complex systems, heterogeneous levels of 

component coupling are the rule, not the exception (e.g., Lagerström, et al. 2014; Baldwin et al., 

2014; Akaikine, 2010; Sturtevant, 2013). However, little empirical evidence exists about how 

different measures of coupling relate to the costs of change for a system’s components. These 

costs determine the flexibility of a firm to evolve and adapt its IT systems. 

Design theory predicts that the more coupled a component is, the more difficult and 

expensive it will be to change (Simon, 1962). However, the components of a system can be 

connected in different ways.  Specifically, they can be connected directly or indirectly; and they 

can be connected hierarchically or cyclically. Furthermore, components that are hierarchically 

connected may be at the top or the bottom of the hierarchy, whereas components that are 
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cyclically connected may be members of a large or a small cyclic group.  Measures of these (and 

other) types of coupling can be derived from an enterprise architecture DSM. 

In this study, we examine the performance impact of three related coupling measures: 

(1) The level of Direct Coupling for each component, which is calculated by summing 

the entries in the rows and columns of the enterprise architecture DSM. 

(2) The level of Indirect Coupling for each component, captured here by its classification 

as being either a Core or Peripheral component (Baldwin et al, 2014). 

(3) The Closeness Centrality for a component, a metric from social network theory, 

which can be calculated for Core components (i.e., those in the same network).6 

In our dataset, data on the cost of change was available only for software applications, 

whose dependency relationships are defined to be symmetric.  Hence it was not possible to 

explore the impact of differences between the number of “incoming” and “outgoing” 

dependencies, nor differences in the hierarchical classification of components (a symmetric DSM 

contains Core and Peripheral elements, but no Shared or Control elements).  In general however, 

our method allows the exploration of these issues, in cases where dependencies are asymmetric.    

Different measures of coupling are likely to be correlated.  Specifically, components with 

high levels of direct coupling are more likely to be members of the Core.  Furthermore, closeness 

centrality is only defined for components in the Core (i.e., those in the same network). 7  Finally, 

Core components with high levels of direct coupling are more likely to have higher closeness 

                                                 
6 Closeness centrality captures how “close” a component is to other components in a network. But it can 

only be calculated for symmetric networks.  If A depends upon B, but B does not depend upon A, then the path 
length from A to B, and from B to A will differ.  Centrality cannot capture these subtleties.  It assumes dependencies 
are symmetric, which is not the norm in technical systems, but is true for software applications at BioPharma. 

7 In prior work, the closeness centrality for elements that have no connections to others is sometimes 
assumed to be zero (i.e., denoting an infinite path between these and other elements). 
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centrality. These relationships mean that we must be sensitive to issues of multi-collinearity.  To 

address this issue, we conduct our analysis in two stages. First, we explore the differential impact 

of Direct and Indirect coupling in predicting the cost of change for software applications.  Then, 

for the subset of Core components in the system, we test whether the measure of closeness 

centrality provides additional explanatory power. 

Stage 1: Direct versus Indirect coupling. Following Chidamber and Kemerer (1994), 

we define direct coupling (DC) as the number of direct dependencies between a software 

application and all others.  Note that because software dependencies are defined as symmetric, 

the number of incoming and outgoing dependencies is identical. The level of indirect coupling is 

captured by whether a software application forms part of the largest cyclic group (i.e., the Core) 

in the system. All members of the Core have the same number of direct and indirect 

dependencies.  Core membership is revealed through transitive closure of the DSM.8   

Design theory predicts that higher levels of direct coupling will be associated with higher 

costs to change. The theory of change propagation predicts that higher levels of indirect coupling 

(as measured by membership of the Core) will also lead to higher costs to change.  These effects 

might be additive, or they might be substitutes. We thus state the following hypotheses: 

H1: Direct Coupling (DC) is positively associated with change cost (CC). 
 
H2: Core membership (CORE) is positively associated with change cost (CC). 
 
H3: Direct Coupling (DC) and Core membership (CORE), considered together, explain 
more of the variation in change cost (CC) than either measure considered alone. 

 
We test these hypotheses by performing OLS regressions for the impact of Direct 

Coupling and Core membership on the cost of change, both individually and together. 

                                                 
8 We note there was only one cyclic group in this dataset, thus components not in the Core were not part of 

any cyclic group.  In general however, there might be other, smaller, cyclic groups in the enterprise architecture. 
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Stage 2: Coupling within the Core.  For Core components, closeness centrality (CENT) 

is found by calculating the minimum path length from that component to all other components, 

summing those path lengths and taking the inverse of this sum (Bounova and de Weck, 2012). 

The higher this number, the more “central” is the component.  Our final hypothesis explores the 

possibility that that closeness centrality explains variations in change cost for all components that 

are part of the same cyclic group (i.e., they possess the same high level of indirect coupling): 

H4: For components that are members of the Core, closeness centrality (CENT) is 
positively associated with change cost (CC). 

  
We test this hypothesis by performing an OLS regression for the impact of closeness 

centrality on the cost of change only for Core components. 

5.2 Dependent Variable: The Cost of Change for a Component 

To demonstrate our methodology, we use data on the cost of change for software 

applications.  Focusing on a single layer of the firm’s enterprise architecture (i.e., as opposed to 

all layers) allowed us to i) identify a specific respondent for data collection, ii) request 

quantitative data from these respondents, and iii) ensure the data was comparable across units. 

The cost to change each application was assessed via a survey sent to IT Service Owners. 

Respondents were asked to estimate the time, in person-years, to perform five operations:  

deploy, upgrade, replace, decommission, and integrate.  Operations were defined as follows: “A 

component is deployed when it is put into production for the first time; a component is upgraded 

when it is replaced by a new version of the same component; a component is replaced when the 

existing component is removed from the information system and a new component with similar 

functionality is added to the information system; a component is decommissioned when it is 
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removed from the information system; and a component is integrated when modifications are 

made to it that enable it to 'talk' to another component” (Dreyfus, 2009).9   

We received survey responses for 99 software applications. The change cost estimates 

ranged from less than one-person-month to over two-person-years. Respondents could also 

indicate that the time to perform a given operation was unknown. Applications for which all 

change costs were unknown were removed from the dataset, resulting in a final sample of 77 

applications.10  For these applications, we combined the change cost estimates for different 

operations into a single measure, by calculating the mean change cost for operations where a 

response was provided.  The Cronbach’s alpha for this aggregate measure was 0.78.11 

5.3 Control Variables 

Change costs may be affected by a number of factors that are unrelated to architecture, 

including the source of the component, the users of the component, its internal structure, and 

whether it was the focus of active development at the time of the survey. In addition, the 

respondent’s experience with a given component might affect the appraisal of change cost in a 

systematic way. Hence data on the following variables were collected and included as controls: 

(1) VENDOR indicates whether an application is developed by a vendor (1) or in-house 

(0). One component missing data for this variable was assigned a value of 0.5.12 

(2) CLIENT indicates whether an application is accessed by end-users (1) or not (0). 

                                                 
9 Specifically, we asked respondents to estimate whether the effort (in person-years) required for each 

operation fell into the following ranges:  <0.10, 0.10-0.249, 0.25-0.49, 0.50-0.99, 1.00-1.99, and > 2.00.  The 
resulting dependent variable was an integer ranging from 1 to 6.  For details, see Dreyfus, 2009.  

10 In prior work, Dreyfus (2009) and Dreyfus and Wyner (2011) use different screening criteria, resulting in 
a sample of 62 responses for analysis.  We discuss the sensitivity of results to different screening criteria later. 

11 Where the estimate of change cost for an operation is missing, we substitute the mean level of change 
cost for that operation from all respondents to calculate Cronbach’s alpha.  Other ways of treating missing values 
result in a minimum value for alpha of 0.66 (acceptable) to a maximum value of 0.89 (extremely good). 

12 Omitting the one application with no data provided about vendor did not change the results. 
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(3) COMP indicates whether an application is focused on computation (1) or not (0).  

(4) NTIER indicates whether an application has an N-tier architecture (1) or some other 

type of architecture, such as client-server or monolithic (0). 

(5) ACTIVE indicates whether, at the time of the survey, the component was being 

actively enhanced (1) or was in maintenance mode (0). 

(6) RES_EXP measures the respondent’s experience with the application in question (less 

than one year = 1; 1 – 5 years = 2; More than 5 years =3). 

5.4 Empirical Data 

Table 2 presents the correlation matrix for our variables.  Consistent with our hypotheses, 

both direct coupling (DC) and CORE are positively correlated with change cost. They are also 

correlated with each other (0.52).  In this table, we include data on closeness centrality (CENT) 

for the entire sample of 77 applications, substituting a value of 0 for the 19 components not in 

the Core.  Hence we observe an extremely high correlation (0.96) between CORE and CENT. 

Among the control variables, Active components tend to have higher change costs. 

Vendor provided components tend to have lower change costs, have lower centrality, are more 

likely to perform computations, are less likely to have N-tier architectures, and are more likely to 

be Active. Components with N-tier architectures tend to be more highly coupled by all measures. 

Table 2 Descriptive Statistics and Correlation Matrix. 
Mean  St.Dev  #  CC  DC  CORE  CENT  VENDOR  CLIENT  COMP  NTIER  ACTIVE  RES_EXP 

CC  2.46  1.22  77  1  0.33**  0.33*  0.35**  ‐0.23*  ‐0.06  ‐0.11  0.17  0.31**  0.08 

DC  3.58  2.83  77  0.33**  1  0.52***  0.68***  ‐0.19  0.1  0.01  0.39***  0.21  ‐0.08 

CORE  0.75  0.43  77  0.33**  0.52***  1  0.96***  ‐0.17  0.11  ‐0.04  0.37***  0.06  ‐0.19 

CENT  1.73  1.03  77  0.35**  0.68***  0.96***  1  ‐0.26*  0.14  ‐0.04  0.46***  0.12  ‐0.15 

VENDOR  0.41  0.49  77  ‐0.23*  ‐0.19  ‐0.17  ‐0.26*  1  ‐0.06  0.39***  ‐0.52***  0.35**  0.1 

CLIENT  0.71  0.45  77  ‐0.06  0.1  0.11  0.14  ‐0.06  1  0.15  0.27*  0.05  ‐0.11 

COMP  0.39  0.49  77  ‐0.11  0.01  ‐0.04  ‐0.04  0.39***  0.15  1  ‐0.21  ‐0.05  0.12 

NTIER  0.53  0.5  77  0.17  0.39***  0.37***  0.46***  ‐0.52***  0.27*  ‐0.21  1  0.08  ‐0.14 
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ACTIVE  0.26  0.44  77  0.31**  0.21  0.06  0.12  0.35**  0.05  ‐0.05  0.08  1  0.18 

RES_EXP  2.04  0.84  77  0.08  ‐0.08  ‐0.19  ‐0.15  0.1  ‐0.11  0.12  ‐0.14  0.18  1 

  

* p<0.05, ** p<0.01, and ***p<0.001 

 

5.5 Empirical Results 

The results of our regression tests are presented in Table 3.  Model 1 contains only 

controls, showing that two of them are significant: Vendor provided applications tend to have 

lower change costs and Active applications tend to have higher change costs.  The control 

variables alone explain 18% of the variation in change cost across applications. 

Our second hypothesis, H2 predicts that direct coupling is associated with change cost, a 

relationship suggested by the correlations reported above. In Model 2 however, which includes 

control variables, we find direct coupling is only a relatively weak predictor of change cost (p-

value = .06). This model explains 21% of the variation in change cost across applications.  In 

Model 3, we find CORE is a highly significant predictor of change cost (p-value = .005).  This 

model explains 26% of the variation in change cost across components.  

Table 3 Regression Models 

Dependent variable: Change Cost (Average) 

Sample:  Full    Core only 

Test #  (1)  (2)  (3)  (4)    (5)  (6) 

Hypothesis  H1  H2  H3,H4    H5 

DC  0.10†  0.04      

CORE  0.89**  0.77*      

CENT    ‐0.76 

VENDOR  ‐1.21**  ‐1.10**  ‐1.19**  ‐1.14**    ‐1.40**  ‐1.67*** 

CLIENT  ‐0.29  ‐0.26  ‐0.27  ‐0.26    ‐0.69†  ‐0.71* 

COMP  0.28  0.17  0.22  0.18    0.22  0.34 

NTIER  ‐0.17  ‐0.33  ‐0.43  ‐0.47    ‐0.44  ‐0.34 

ACTIVE  1.37***  1.19**  1.30***  1.23***    1.69***  1.92*** 

RES_EXP  0.01  0.04  0.09  0.09    ‐0.01  0.01 
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Constant  2.77***  2.47***  2.11***  2.06***    3.45***  5.10*** 

Adj. Rsquare  0.18  0.21  0.26  0.25    0.25  0.27 

f  3.75**  3.87**  4.75***  4.21***    4.17**  3.94** 

Observations  77  77  77  77    58  58 

  

† p<0.1, * p<0.05, ** p<0.01, and ***p<0.001 

 

In Model 4, we include both direct coupling and CORE in the regression, but only CORE 

is significant. This model explains 25% of the variation in change cost across applications, a 

reduction from Model 3.  In sum, H1 and H2 are supported by our results, but H3 is rejected.  

Specifically, adding direct coupling to a model that already includes CORE makes the model 

worse.  CORE is the strongest predictor; the power that direct coupling has as an explanatory 

variable in Model 1 is accounted for by its correlation with CORE. 

In models 5 and 6, we analyze only the 59 components in the Core (the largest cyclic 

group of components). Model 5 contains only control variables, and produces results consistent 

with model 1. Model 6 includes the measure of closeness centrality, which is not significant. 

Hence closeness centrality provides no additional explanatory power in predicting change cost, 

over and above that provided by Core.  We therefore reject hypothesis H4. 

5.6 Robustness Checks 

We performed a number of checks to assess whether our results were sensitive to other 

assumptions or specifications of variables. First, we note that our basic specification did not 

control for the size of components, a variable that could plausibly affect the cost of changes. 

Data on component size (measured by the number of lines of code and files in each) was 

available for a subsample of 60 applications (Dreyfus, 2009).  We ran our models on this smaller 
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sample, including these as controls. The controls were insignificant, while the results for our 

explanatory variables were consistent with those reported above.13  

We conducted a test to explore the possibility that transformations of direct coupling 

might better predict change cost, given this variable has a skewed distribution and is truncated at 

zero. Specifically, we included the natural log of direct coupling in models, instead of the raw 

value.  We found the transformed variable had more explanatory power than the raw variable 

(i.e., its use improved the results in Model 2). However, it still explained less of the variation in 

change cost than CORE, hence was insignificant when included in a model with CORE.   

Finally, we explored whether direct coupling, or its natural log, contribute to explaining 

the variation in change cost among only Core components (as we did for centrality). Appendix A 

reports the results of three models predicting change cost, the first being a model with controls, 

the second adding direct coupling, and the third adding the natural log of direct coupling. Direct 

coupling is not statistically significant in any model. This suggests that in this dataset, CORE is 

the most parsimonious and powerful measure of coupling that explains the cost of change.  

Neither direct coupling, nor centrality, contributes additional explanatory power in our models. 

6. Discussion and Conclusions 

The main contribution of this paper is in developing a robust and repeatable network-

based methodology by which to operationalize a firm’s enterprise architecture. The methodology 

is consistent with prior work in this area, and addresses several limitations in this work. 

Specifically, it i) integrates the consideration of business and IT related attributes; ii) identifies 

the distinct layers in the architecture associated with different types of entity (e.g., applications 

                                                 
13 Note, some of the significance levels declined as a result of the decrease in sample size and hence power. 
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versus databases); iii) reveals the main “flow of control” within the architecture and its 

associated layers and; iv) generates measures of the architecture that can be used to predict 

system performance.  We demonstrate the application of this methodology using a novel real-

world dataset, and show that it generates insights that could not have been gained from the 

inspection of documents or processes traditionally associated with the EA literature.  

A second contribution of this paper lies in the specific results we report using our 

methodology to analyze enterprise architecture. Specifically, we explore the relationship between 

different measures of coupling derived from a DSM, and the cost of change for applications.  We 

find the measure of coupling that best predicts change cost is not the number of direct 

dependencies for a component, but all of its direct and indirect dependencies with others.  Once 

the variations in change cost explained by this measure are accounted for, other measures of 

coupling add no further explanatory power.  This suggests a firm’s flexibility to adapt its IT 

infrastructure is driven mainly by the potential for changes to propagate from one component to 

others via chains of dependencies. This data is not apparent merely by inspection of a 

component’s “nearest neighbors.”  Rather, our findings lend support to the methods we employ, 

which focus on understanding all of the indirect paths that exist between components. 

For managers, our methodology provides a clear picture of the actual instantiated 

architecture that they must manage, as opposed to the planned or idealized versions often found 

in documents depicting a firm’s enterprise architecture.  The insights generated should prove 

useful in several ways, including i) helping to plan the allocation of resources to different 

components, based upon information on the relative ease/difficulty of change; ii) monitoring the 

evolution of the architecture over time, as new components and/or dependencies are introduced 
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(e.g., when a new firm is acquired) and; iii) identifying opportunities to improve the architecture, 

for example, by reducing coupling, and hence reducing the cost of change for components. 

Ironically, in this era of “big data,” the lack of appropriately granular data is the largest 

barrier to the systematic investigation of enterprise architecture using our methodology. 

Specifically, at a minimum, firms need to capture data on the dependencies between different 

components in the enterprise architecture, and the way that these dependencies evolve over time. 

To put this data to use, they must systematically capture performance data about the cost of 

change, defect rates, and productivity by component. In most organizations we know, this type of 

data does not exist. In some, efforts have been made to collect data manually.  However, there 

are many challenges associated with this approach, including the lack of incentive to provide 

accurate and timely information.  In our study, we found substantial omissions in the data 

collected via survey, in comparison to the automated tools used to uncover system dependencies. 

In essence, many firms do not actually know the “real” enterprise architecture that they possess.  

Eppinger and Browning (2012) state: “for most product DSM models, the data collection 

requires at least some amount of direct discussion with subject matter experts in order to draw 

out the tacit and system-level knowledge that may not be captured in the documentation.” 

However, manual methods of dependency extraction are labor-intensive, and limit the scale, 

precision and accuracy of analyses. The ideal solution is to develop more automated ways to 

detect and capture important dependencies between components in a firm’s enterprise 

architecture. 14  This implies the need for some level of investment by firms who wish to adopt 

                                                 
14 E.g., in software, automatic dependency extractors supplied by commercial vendors can be used to create 

DSMs with no manual effort needed (e.g., Cataldo et al., 2006; MacCormack et al., 2006, 2012; Sosa et al., 2013.) 
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these methods. However, we believe the benefits associated with these investments would more 

than offset the costs, given the increase in understanding of architecture that would result. 

For the academy, this study contributes to the field of enterprise architecture in several 

ways.  First, it makes what has previously been a rather conceptual area more concrete, providing 

a method to analyze a firm’s actual architecture in-use, rather than examining the processes and 

documents through which it is managed. Second, it provides a way to operationalize frameworks 

like TOGAF (2009), by defining how the matrices they include can be quantified and analyzed. 

Finally, our methodology outputs metrics that capture the level of coupling between different 

components in a firm’s architecture, thereby revealing the main “flow of control” in a system.  

Our work opens up the potential for further empirical research that could explore the 

relationship between enterprise architecture and performance in a deeper way.  Within 

organizations, work might focus on the relationship between measures of coupling, and a variety 

of performance measures relevant to individual components in the architecture (e.g., reliability, 

defects, productivity, turnover and/or cost).  In contrast, studies across organizations might be 

directed at revealing how measures of enterprise architecture affect firm-level performance.  The 

latter area is particularly promising, given prior literature argues there is a strong linkage 

between certain types of architecture and flexibility or agility.  One might ask, for example, 

whether loosely coupled enterprise architectures, in general, facilitate a more rapid response to 

business challenges?  Or are there subtle nuances to account for, with respect to different layers 

in the architecture (e.g., is the use of shared databases a best practice)?  This methodology allows 

us to answer such questions, with an approach that can be replicated across studies. 

Our analysis is subject to a number of limitations that must be considered when assessing 

generalizability.  In particular, the data to demonstrate our methods came from a single firm.  
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Hence more work is needed to provide validation of these methods across different contexts.  

Furthermore, questions remain as to the different layers/components that should be included in 

the analysis of enterprise architecture, and the types of dependency that exist between them.  For 

example, we may find that different types of dependency (e.g., “uses” versus “communicates 

with”) predict different dimensions of performance (e.g., cost to change versus defects).   

Similarly, we may find that different measures of coupling (e.g., direct versus indirect coupling) 

may predict performance differently in different contexts.   Ultimately, our methods provide a 

platform to enable others to answer questions that until now have gone unanswered.  As such, we 

hope that future researchers will improve and evolve these methods, in order that we benefit 

from the cumulative nature of academic knowledge. 
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Appendix A:  Models Predicting Change Cost only for Core Components 
 

MODEL  1 2 3  

DC 0.03  

DC(ln) 0.09  

VENDOR -1.40** -1.37** -1.37**  

CLIENT -0.69† -0.68† -0.68†  

COMP 0.22 0.20 0.21  

NTIER -0.44 -0.47 -0.46  

ACTIVE 1.69*** 1.64*** 1.65***  

RES_EXP -0.01 0.00 -0.00  

   

Constant 3.45*** 3.35*** 3.34***  

Adj. Rsquare 0.25 0.24 0.24  

f 4.17** 3.55 3.52  

Observations 58 58 58  

† p<0.1, * p<0.05, ** p<0.01, and ***p<0.001 
 


