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Special Report

100

The American Heart Association has established the 
Cardiovascular Genome-Phenome Study (CV-GPS) as a 

means by which to achieve the goal of using modern genom-
ics and phenotyping optimally to combat cardiovascular disease 
(CVD). CVD remains the leading cause of death in the United 
States and has become a major cause of morbidity and mortal-
ity worldwide. The course of CVD begins at an early age and 
evolves throughout life. Typically, risk factor precursors (eg, 
prehypertension, borderline abnormal lipids) are first observed 
in adolescence or young adulthood. By middle age, they develop 
into full-fledged cardiometabolic risk factors and subclinical 
disease, which usually become clinically apparent in older age. 
Importantly, risk factors for CVD reflect the complex interplay 
between genetic and environmental factors and demonstrate the 
complexity of the multiple determinants of disease.

Editorial see p 17

Many of the genetic and environmental determinants of CVD 
have been identified over the past 50 years, and successful pre-
ventive and therapeutic strategies have been developed as a result. 
However, many potential genetic or acquired disease drivers 
remain unaccounted for, as illustrated by the observation that the 
major CVD risk factors combined account for only a fraction of 
the population-attributable risk.1 In addition, variations in CVD 
risk exist among individuals with similar risk profiles. Part of these 
differences may reflect differences in profiles of known risk fac-
tors that have not yet been fully refined but also individual differ-
ences in underlying genetic modifiers of such risk factors. Modern 
genomics, with its ability to provide ideally unbiased analysis of 
the entire genome, offers an approach to the ascertainment of all 
genetic determinants of CVD. Furthermore, the increasingly broad 
range of “omics” methods, including RNA-Seq, modern pro-
teomics, metabolomics, and metabonomics, provide deeper and 
more refined molecular detail by which to define an individual’s 
genome and its relationship to (patho)phenotype. Armed with 
these increasingly powerful molecular methods, modern genomics 

has yielded some new genetic targets that may account, in part, for 
the missing population-attributable risk and unexplained variation 
in risk among individuals, population subgroups, and aggregate 
populations.2 However, the conventional strategy of seeking simple 
associations between genomic loci or individual gene products and 
disease phenotype is limited (with rare exception) by the typically 
small effect sizes of given variants in a population and by a failure 
to take into consideration the networked complexity of protein-
protein interactions and their modification by environmental (epi-
genetic and posttranslational) modulators.3

These limitations of modern genomics are compounded by 
limitations of conventional phenotyping. Specific cardiovascu-
lar phenotypes have been defined on the basis of their mecha-
nistic relevance to clinical atherothrombotic vascular disease (eg, 
hypertension and hypercholesterolemia), their ease of measure-
ment in individuals and in populations, and their epidemiological 
tractability. This approach to phenotyping grew in parallel with 
the evolution of clinical trials that, by their contemporary nature, 
tend to be diagnostically overinclusive, downplaying (except by 
predefined subgroup analyses when feasible) differences in phe-
notype that may better predict outcomes or response to therapy 
(eg, subpopulation differences in response to specific antihyper-
tensive therapies). In addition, with some important exceptions 
(vide infra), many major epidemiological studies and clinical tri-
als do not collect data over time, which further limits the strength 
of association between genotype and phenotype, the ability to 
evaluate the intrasubject and intersubject variations in risk factors 
over time, and the potential dynamic effects of such variations on 
genetic susceptibility and the ability to infer causality.

In light of the dramatic expansion of genomic data, it has 
become clear that traditional phenotyping as conducted in 
conventional epidemiological cohort studies may limit the 
ability to elucidate optimally genome-phenome relationships. 
There is, therefore, a clear need to develop deep phenotyp-
ing (ie, traits that are not typically measured or traits that are 
“orthogonal” to or not directly associated with the clinical 
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phenotype under consideration) and dynamic phenotyping 
(including responses to perturbations) to capture fully the 
complexity of human disease. Furthermore, this approach to 
phenotyping coupled to modern genomics will be essential 
for achieving a truly individualized approach to the diagnosis, 
prognosis, and therapy of CVD.

With this background, there are 3 elements of note in 
CV-GPS. First, CV-GPS aims to provide a platform with which 
to integrate (virtually) existing and future CVD population 
studies. Beginning with the Framingham Heart Study (FHS) 
and the Jackson Heart Study (JHS), CV-GPS will consolidate 
available phenotypic and diverse omic data sets (genomic, tran-
scriptomic, proteomic, metabolomic, epigenomic), expanding 
these data sets with the recruitment of other population data 
sets with information on CVD. This universe of data sets will 
define the big data platform that will be used to explore test-
able hypotheses about CVD. Second, CV-GPS will facilitate 
the development of the information technology infrastructure 
necessary for handling these big data and for classifying deep 
phenotypes. Third, CV-GPS will provide core support for 
methodological analyses (novel omics platforms) and a biore-
pository (real or virtual) for biological specimens from existing 
or future population study participants. Through these mech-
anisms, CV-GPS aspires to establish a national standard for 
all genome-phenome studies, applying the most cutting-edge 
approaches to the acquisition, storage, and analysis of infor-
mation contained within this biophenorepository to deepen our 
understanding of the determinants of CVD.

The FHS as a Component of CV-GPS
Design and Component Cohorts
The FHS consists of ≈15 000 extensively phenotyped women 
and men (Figure 1). Details of the constituent cohorts, sample 
size, DNA availability, ethnic/racial composition, recruit-
ment year and ages, and follow-up are given in the Table. The 
design and sampling criteria of the FHS cohorts have been 
published previously.4–7 The cohorts span a wide range of ages 
throughout the adult life course, between 20 and 100 years 
of age. The FHS is funded by the National Heart, Lung, and 
Blood Institute (NHLBI).

Suitability of FHS for CV-GPS 
Several features of the FHS make it a valuable asset to 
CV-GPS. These resources are briefly detailed below.

Extensive Longitudinal Phenotypic Data
The FHS has routinely collected longitudinal data over the 
adult life span of each participant in its 6 constituent cohorts, 
with extensive information on serial measures of risk factors, 
subclinical disease, and clinical outcomes, including CVD; 
lung, blood, and neurological conditions (stroke and demen-
tia); and cause-specific mortality. At each FHS examination 
cycle, data are collected on blood pressure, anthropometry, 
lipids, smoking, glycemic traits and diabetes mellitus, ECG, 
and lung function. Across select serial examinations, the FHS 
has compiled multiple measures of cardiovascular structure 
and function as measured by echocardiography, cardiac com-
puted tomography (CT), cardiac and brain magnetic resonance 

imaging (MRI), carotid ultrasound, conduit artery stiffness, 
and flow-mediated dilation. Further details on the traits avail-
able are detailed in Appendix I, Item 1 and summarized in 
Figure 2.

Extensive Genotypic Data
In the 1990s and early 2000s, DNA samples were collected 
in the Original, Offspring, Third Generation, and Offspring 
Spouse cohorts of the FHS to establish an invaluable resource 
for genetic research. Most of the FHS participants with avail-
able genomic and cell line—based DNA are Offspring, Third 
Generation, and Offspring Spouses. Additionally, FHS col-
lected DNA on ≈1000 participants from the Original Cohort 
who were alive at the time of DNA collection; DNA was also 
extracted on an additional ≈500 deceased Original Cohort 
participants from available whole blood as part of the SNP 
Health Association Resource (SHARe)8 project (see below). 
At FHS, ≈9300 participants across the constituent cohorts 
underwent genome-wide genotyping of 550 000 single-nucle-
otide polymorphisms (SNPs) using the Affymetrix platform 
for the SHARe project, and >7500 individuals underwent 
genotyping of 50 000 SNPs using the Illumina Cardiochip 
in the Candidate Gene Association Resource (CARe) proj-
ect.9 With the use of extant genotypes, imputation has been 
completed of all participants to 40 million SNPs using the 
1000G Imputation. Additionally, participants in the Offspring 
and Third Generation cohorts have undergone genotyping of 
≈200 000 functional exonic variants via Illumina V1.0 Exome 
Chip. FHS has completed whole-exome sequencing in ≈2975 
participants from several projects (including the NHLBI 
GO Exome Sequence Project10 and the CHARGE targeted 
Sequencing project)11 and low-pass whole-genome sequenc-
ing (WGS) in ≈850 participants.12 Of note, the genotyping 
(including whole-exome sequencing and WGS) that has been 
conducted to date with the FHS samples in numerous NHLBI-
funded genotyping and sequencing programs has produced 
extremely high-quality sequence data with high call rates and 
low error rates. Most recently, a subsample of FHS partici-
pants has been selected to undergo WGS in a subset of its par-
ticipants as part of the NHLBI-WGS project.13 Appendix I, 
Item 2 tabulates genotypic data available at FHS.

Available Omics Data
In addition to genotype data and multiple measures of heart, 
lung, blood, and sleep phenotypes, the FHS has been actively 
collecting various omics data, including DNA methylation, 
transcriptomics (mRNA and microRNA expression in whole 

Figure 1. Design of the Framingham Heart Study, including its 
constituent cohorts.
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blood), metabolomic markers, and protein biomarkers, over 
the past 5 to 10 years. The rich FHS resources with multiple 
measures of CVD risk factors, key subclinical disease traits 
and numerous clinical CVD outcomes, extensive genotype 
data, and a variety of omics data provide an excellent basis for 
genome-phenome analysis and integrative genomics.

Family Data
With the recruitment of the Offspring and Third Generation 
cohorts, the FHS is a full-fledged family study, with 3 gen-
erations of participants. DNA is available in 1037 extended 
families consisting of 5673 individuals who are genetically 
informative for imputation to a total of 7917 family members 
across all 3 cohorts. These families will provide a rich resource 
for CV-GPS that will greatly facilitate the examination of 
genome-phenome associations across the full spectrum of CVD 
phenotypes (including risk factors and subclinical and clinical 
CVD); a wide range of other lung, blood, sleep, and neurologi-
cal traits; and a comprehensive battery of omics traits (as noted 
above). In addition, family data will provide an opportunity to 
track cosegregation of genetic and trait variation within fami-
lies, strengthening the attribution of genetic causation.

FHS Biorepositories
The FHS maintains both a genetic and a nongenetic bioreposi-
tory. FHS maintains in its genetic biorepository whole-blood 
aliquots, buffy coats, and PAXgene tubes on its cohorts at 
select examination cycles. There are 8444 unique Epstein-Barr 
virus—transformed cell lines on FHS participants, and 5823 
participants have aliquots of lymphocytes in cryogenic storage. 
The repository has >25 000 stock DNA samples extracted from 
either a cell line or a blood source. From those stock DNA 

samples, FHS has formulated stock distribution plate sets. 
Stock DNA sample concentrations are normalized, checked by 
electrophoresis on an agarose gel for visual confirmation of 
DNA quality and concentration, and then forensically geno-
typed and compared with archival forensic data, or known fam-
ily structures, to validate the identity of each DNA sample.

Currently, the FHS nongenetic biorepository contains ≈1.3 
million biospecimens of various sample types, including 
serum, plasma, buffy coat, red blood cells, and urine. Access 
to FHS biosamples from its genetic or nongenetic bioreposi-
tory requires appropriate approvals (institutional review board, 
laboratory, DNA committee, etc) and a signed data and mate-
rial distribution agreement and is consistent with the informed 
consent of its participants.

FHS Public Databases That Can Be Accessed as 
Part of CV-GPS
FHS has contributed high quality and high volume to data reposi-
tory programs such as the Database of Genotypes and Phenotypes 
(dbGaP), maintained by the National Center for Biotechnology 
Information, and the Biological Specimen and Data Repositories 
Information Coordinating Center (BioLINCC) of the NHLBI. 
FHS data can also be accessed via the parent study. All access to 
FHS data requires approval by the recipient institutional review 
board and the relevant FHS committees and must be consistent 
with the participant informed consent. All FHS data stored at the 
recipient institution must have appropriate safeguards to protect 
participant confidentiality.

FHS dbGaP Phenotypic Data Sets for Genetic 
Research
Framingham data sets and documentation are formatted 
according to dbGaP standards before submission. Each data 
set submission includes a dbGaP-formatted data set, a cod-
ing manual, a data collection protocol, related informed con-
sents, an annotated data collection form, and a funding source 
reference. Both ancillary study data sets and NHLBI FHS-
contracted data sets are posted on dbGaP. Well over 365 data 
sets were submitted by FHS by the first quarter of 2014.

FHS BioLINCC Data Sets for Nongenetic Research
Since 2000, the BioLINCC data repository has been updated 
approximately every 2 years with FHS contract—supported and 
ancillary grant—supported data and documentation. Data sets and 
documentation are formatted according to BioLINCC standards, 

Table.   The Framingham Heart Study and Its Constituent Cohorts: Cohort Characteristics

Cohort Total, n DNA, n

Ancestry, %

Year 
Recruited Age, y

Follow-Up

EA AA HA AsA Other
Examinations, 

n
Intervals, 

n
Length, 

y

Original 5209 971 100 0 0 0 0 1948–1953 28–74 32 2 >65

Offspring (and Spouses) 5124 3930 100 0 0 0 0 1971–1975 5–70 9 4–8 43

Third Generation 4095 4077 100 0 0 0 0 2002–2005 19–72 2 6 ≈10

Offspring Spouses 103 101 100 0 0 0 0 2003–2005 47–85 2 6 ≈10

Omni 1 cohort 506 493 0 28 42 24 6 1994–1998 27–78 4 4–8 ≈15–20

Omni 2 cohort 410 407 0 28 42 24 6 2003–2005 20–80 2 6 ≈10

AA indicates African American; AsA, Asian American; EA, European American; and HA, Hispanic American. 
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Figure 2. Extensive phenotypic characterization of the Framingham 
Heart Study (FHS) participants. CMS indicates Centers for 
Medicare and Medicaid Services data.
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including data sets, protocols for collection, and coding manuals. 
We propose to continue these deposits using past experience and 
expertise. Since 2000, 137 data sets and 442 corresponding docu-
mentation files have been submitted to BioLINCC.

FHS Summary
In conclusion, the large community-based cohorts with a 
3-generational family structure, accompanying minority 
cohorts with a parallel examination structure, an extensive 
catalog of available traits, and the availability of substantial 
omics resources and biosamples establish the FHS as uniquely 
suited for the American Heart Association CV-GPS initiative.

The JHS as a Component of CV-GPS
Background
The JHS is a single-site, prospective, cohort study of risk 
factors of CVD among 5301 blacks living in the Jackson, 
MS, metropolitan area. The JHS is a collaborative effort 
among 3 Jackson-area academic institutions, the University 
of Mississippi Medical Center, Jackson State University, and 
Tougaloo College. Primary goals of the JHS are to broaden the 
research on CVD risk factors in a black population, to increase 
access and participation of black populations and scientists in 
biomedical research and professions, and to implement out-
reach activities to increase awareness and to promote healthy 
lifestyles in the community.14 Three clinical examinations 
have been completed, including the baseline examination, 
examination 1 (2000–2004), examination 2 (2005–2008), and 
examination 3 (2009–2013), allowing comprehensive assess-
ment of cardiovascular health and disease of the cohort at ≈4-
year intervals. Ongoing monitoring of cardiovascular events 
and deaths among cohort participants was achieved by annual 
telephone follow-up interviews and surveillance of hospital 
discharge records and vital records. At present, the JHS is 
not conducting clinical examinations, but annual telephone 
follow-up and surveillance of the cohort for CVD events and 
deaths continue. The JHS is funded by the NHLBI and the 
National Institute on Minority Health and Health Disparities.

Design
The JHS is a cohort study of extensively phenotyped black 
women and men. The details of the cohort, including design, 
sampling, recruitment, examinations, and follow-up, are 
described elsewhere.15–17 The JHS cohort spans a wide range 
of ages throughout the adult life course, between 21 and 101 
years of age.

Suitability of JHS for CV-GPS
Several features of the JHS make it a valuable asset to CV-GPS. 
Among these resources are included extensive phenotypic and 
genotypic data, which are briefly detailed below.

Longitudinal Phenotypic Data
The JHS has collected longitudinal data among its study 
participants, with extensive information on measures of risk 
factors, subclinical disease, and clinical outcomes, including 
CVD, kidney disease, and neurological conditions (stroke and 
transient ischemic attack), as well as mortality. At each JHS 

examination cycle, data were collected on blood pressure, 
anthropometry, lipids, smoking, glycemic status, and diabetes 
mellitus. Across select serial examinations, the JHS has com-
piled multiple measures of cardiovascular structure and func-
tion as determined by echocardiography, ECG, cardiac CT, 
cardiac MRI, carotid ultrasound, and conduit artery stiffness. 
Further details on the phenotypic data available are provided 
in the Appendix II, Item 1 and are summarized in Figure 3.

Genotypic Data
At examinations 1 and 2, DNA samples were collected from con-
senting study participants to establish an invaluable resource for 
genetic research. A Family Cohort (see below) includes >1500 
participants, including cryptically related individuals identi-
fied by genetic analysis, in nearly 300 pedigrees, which vary in 
structure from sibships to cousin pairs to extended 3-generation 
families. Through the CARe project and after extensive qual-
ity control procedures, 3029 participants have genome-wide 
genotyping on the Affymetrix 6.0 platform, which interrogates 
>900 000 SNPs and has >900 000 probes for copy number 
variation. These data have been imputed to ≈37 million SNPs 
using the 1000 Genomes project reference panel (version 3, 
March 2012 release). In addition, through the CARe project, 
2948 individuals have genotyping data for ≈50 000 SNPs on the 
gene-centric Illumina Cardiochip (IBC Array), which provides 
dense tagging of ≈2100 candidate genes for CVD.9 Genotyping 
has been completed in 2790 participants for ≈240 000 uncom-
mon and rare, mainly nonsynonymous coding variants and 
other selected content of the Illumina V1.0 Exome Chip, with 
support from NHLBI R01HL107816 (principal investiga-
tor, S. Kathiresan). Exome sequencing has been completed 
for all consenting participants through 4 projects: the Exome 
Sequencing Project (NHLBI), the Minority Health Genomics 
and Translational Research Bio-Repository Database (NHLBI), 
the Type 2 Diabetes Genetic Exploration by Next-Generation 
Sequencing in Multi-Ethnic Samples Project (National Institute 
of Diabetes and Digestive and Kidney Diseases), and the Broad 
Institute MI CIP. Joint calling of all exomes was performed 
by the Broad/Kathiresan laboratory, providing, after extensive 
quality control measures, a single jointly-called exome data 
set representing 3237 JHS participants. Prior deep-coverage 
WGS has been completed for 50 participants, including 25 who 
met criteria for asthma and 25 control subjects, through the 
Consortium on Asthma Among African-Ancestry Populations 
in the Americas Project (NHLBI). Of note, the genotyping and 
sequencing that have been completed to date using JHS samples 
have produced extremely high-quality data with high call rates 
and low error rates. Appendix II, Item 2, also tabulates genotyp-
ing and sequence data available at JHS.

Available Biomarker Data
In addition to genotype data and multiple measures of heart, 
lung, blood, and sleep phenotypes, the JHS has been actively 
collecting various biomarkers data, including protein bio-
markers, over the past 5 to 10 years. The rich JHS data set, 
with multiple measures of CVD risk factors, key subclinical 
disease traits, several clinical CVD outcomes, and extensive 
genotype data, provides an excellent basis for genome-phe-
nome analysis and integrative genomics.
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Family Data
With the intentional recruitment of family members of partici-
pants selected on the basis of family size and availability, the 
JHS includes a well-developed, nested family study, with DNA 
available for 1486 genetically informative individuals in >270 
pedigrees (primarily sibships and extended families). These 
families will support the examination of genome-phenome 
associations across the full spectrum of CVD phenotypes and 
a wide range of other lung, blood, sleep, and neurological 
traits by allowing segregation and other family-based analy-
ses, particularly of uncommon and rare variants.

JHS Biorepository
The JHS maintains both a genetic and a nongenetic bioreposi-
tory, including serum, plasma, and urine aliquots, and purified 
DNA. There are ≈1500 participants with aliquots of mononu-
clear leukocytes in cryogenic storage. The repository has DNA 
samples from blood cells of >4700 participants, including 
≈3400 whose consent allows sharing of genetic data through 
controlled-access repositories such as the dbGaP. Currently, 
the JHS nongenetic biorepository contains biospecimens of 
various sample types, including serum, plasma, and urine. 
Access to JHS biosamples from its genetic or nongenetic bio-
repository requires appropriate approvals (institutional review 
board, laboratory, genetics committee, etc) and a signed data 
and material distribution agreement and is subject to stipula-
tions in the informed consent of each participant.

JHS Public Databases That Can Be Accessed as 
Part of CV-GPS
JHS has contributed high-quality and high-volume data 
to repositories such as dbGaP, maintained by the National 
Center for Biotechnology Information, and BioLINCC of the 
NHLBI. JHS data can also be accessed via the parent study. 
All access to JHS data requires approval by the recipient insti-
tutional review board and relevant JHS committees and must 
be consistent with the participant informed consent. All JHS 
data stored at the recipient institution must have appropriate 
safeguards to protect participant confidentiality.

JHS dbGaP Phenotypic Data Sets for Genetic 
Research
JHS data sets and documentation are formatted according to 
dbGaP standards before submission. Each data set submission 
includes a dbGaP-formatted data set, a coding manual, a data 

collection protocol, related informed consents, an annotated 
data collection form, and a funding source reference. NHLBI 
JHS-contracted data sets are posted on dbGaP.

JHS BioLINCC Data Sets for Nongenetic Research
Since 2000, the BioLINCC data repository has been updated 
≈3 years after completion of the examination with JHS con-
tract—supported and ancillary grant—supported data and 
documentation. Data sets and documentation are formatted 
according to BioLINCC standards, including data sets, proto-
cols for collection, and coding manuals. We propose to con-
tinue these deposits using past experience and expertise.

JHS Summary
In conclusion, a large community-based cohort of blacks, the 
extensive catalog of available traits, and the availability of sub-
stantial resources and biosamples establish the JHS as uniquely 
suited for the American Heart Association CV-GPS initiative.

Population and Cohort Studies in CVD
Cohort Studies as Population Laboratories
As illustrated by the FHS and JHS, large, observational, clinical 
studies provide an exceptional opportunity to understand better 
the cause of CVD. They have collected a wealth of information 
on large numbers of participants using rigorous standardized 
protocols. These and many other cohort and existing databases 
should be considered population laboratories that provide an 
opportunity for basic, clinical, and population science col-
leagues to propose new, cutting-edge science. The advantages of 
population laboratories for potential CV-GPS (and other) inves-
tigators include the following: (1) cost-effectiveness: research 
infrastructure is in place with cohort recruitment completed; (2) 
time efficiency: multiple predictor variables and outcome data 
are immediately available to be leveraged by CV-GPS ancillary 
study proposals; (3) temporality: cohort studies allow the evalu-
ation of predictors of cardiovascular outcomes because expo-
sures (health behaviors, risk factors, stored specimens, imaging, 
etc) were evaluated before the development of outcomes; (4) 
availability of events: validated CVD events are available in 
many cohorts (eg, myocardial infarction, heart failure, atrial 
fibrillation, cardiovascular procedures, stroke, and death); (5) 
large stored specimen repositories: most cohorts have plasma, 
serum, and DNA available for use; (6) dense genotypes: genetic 
information has been collected in most cohorts (eg, genome-
wide association study [GWAS] data, epigenetic data); (7) com-
munity-based sampling: given that cohorts are recruited from 
the community, risk factors and disease outcomes are more 
representative of the population at large; and (8) excellent col-
laborative investigators: an existing cadre of scientists familiar 
with the study are available to assist with both operational and 
scientific issues.

Overview of Current Established Studies
The CV-GPS initiative is fortunate to be able to leverage the 
excellent research infrastructure resulting from the strategic 
vision and research funding over many decades by National 
Institutes of Health/NHLBI colleagues, the hard work of cohort 
study investigators/staff, and the selfless dedication of study 

Figure 3. Extensive phenotypic characterization of the Jackson 
Heart Study (JHS) participants. DM indicates diabetes mellitus.
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participants. It should be noted that although the CV-GPS ini-
tiative has initially focused on the FHS and JHS, these studies 
represent only a subset of available cohorts. The larger set of 
cohort studies provide access to an even broader spectrum of 
characteristics such as age (ranging from childhood to the old-
est old), US race/ethnic group (ie, black, Hispanic, Chinese, 
Japanese, white, Native American, Alaska Native), phenotypic 
characteristics (health behaviors, risk factors, subclinical dis-
ease, laboratory measures, environmental factors, etc), and 
CVD states (eg, free of clinical CVD, prevalent CVD, incident 
CVD).

Some examples of major NHLBI cohorts include the 
Atherosclerosis Risk in Communities Study18 (n=15 792; age, 
45–64 years at baseline examination [1987–1989]; white and 
black participants); the Coronary Artery Risk Development in 
Young Adults Study19 (n=5115; age, 18–30 years at the base-
line examination [1985–1986]; white and black participants); 
the Cardiovascular Health Study20 (n=5888; age, ≥65 years 
at baseline examination [1990–1991]; white and black par-
ticipants); the FHS (described in detail above); the Hispanic 
Community Health Study/Study of Latinos21 (n=16 400; age, 
18–74 years at baseline examination [2008–2011]; partici-
pants are Hispanics/Latinos representing different groups of 
origin [Central Americans, Cubans, Dominicans, Mexicans, 
Puerto Ricans, and South Americans]); JHS (described in 
detail above); the Multi-Ethnic Study of Atherosclerosis22 
(n=6814; age, 45–84 years at baseline examination [2000–
2002]; participants from multiple race/ethnic groups [black, 
white, Hispanic, Chinese]); the Strong Heart Study23 (n=4500 
Native American tribal members; age, 45–74 years at baseline 
examination [1984–1988]); and the Women’s Health Initiative 
Observational Study24 (n=93 676 postmenopausal women; age, 
50–79 years at baseline examination [1991–1994]). Given that 
these cohorts differ in the populations studied (ie, age, race/
ethnicity), phenotypic characteristics evaluated, amount/types 
of stored specimens, and events observed, CV-GPS investiga-
tors should consider the suitability of different cohort studies 
for the proposed hypotheses they plan to explore.

Cohort Studies: A Legacy of Discovery
The CV-GPS program builds on an exceptional legacy of dis-
covery in population studies. Although it is clearly beyond the 
scope of this article to report all significant scientific findings 
from these studies, some noteworthy findings include the fol-
lowing: (1) identification of major risk factors for CVD in mid-
dle-aged and older adults25,26; (2) documentation of the ability to 
measure accurately risk factors in children and of the persistence 
(tracking) of risk factors from childhood into middle age27,28; (3) 
description of race/ethnic disparities in CVD and identification 
of some mechanisms for those disparities29–32; (4) identification 
of a number of dietary factors that affect CVD risk (ie, saturated 
fat, trans fats)33,34; (5) documentation of associations of active 
and passive cigarette exposure on CVD risk35,36; (6) identifica-
tion of subclinical disease markers as intermediate markers of 
CVD risk and predictors of CVD events37–39; (7) assessment of 
the importance of the neighborhood characteristics on CVD 
risk40,41; (8) identification of the importance of inflammatory 
markers on CVD risk42–44; (9) documentation of the importance 
of the diabetes and obesity epidemic on CVD risk factors and 

outcomes45–47; (10) monitoring of time trends in medical care, 
including medication use in the United States48,49; (11) identi-
fication of genetic markers for outcomes by the integration of 
dense genotyping50,51; and (12) introduction and refinement of 
risk prediction equations to allow appropriate risk stratifica-
tion for use in clinical practice.25,52,53 Although these and many 
other discoveries have resulted from prior evaluation of cohort 
study data, it should be noted that tremendous opportunities 
remain for future innovation using these population resources to 
advance science through CV-GPS and other research initiatives.

Power of Large Numbers and Value of Data Set 
Integration
Often, scientific discovery is inhibited by the lack of an appro-
priate sample size, an unsuitable study design, or a nonrepre-
sentative population. The next generation of studies will seek 
to evaluate the importance of technological advances such as 
genetics, epigenetics, and metabolomics on cardiovascular risk. 
It is important to note that GWASs have generally observed 
relatively small associations with risk factors and disease out-
comes. Thus, it is reasonable to anticipate that future research 
efforts will require the evaluation of a vast array of variables 
that may have small to modest effects on outcomes. This differs 
substantially from past work that was powered to seek associa-
tions with larger effect sizes such as traditional CVD risk fac-
tors. Pooling multiple cohort studies provides an opportunity 
to further increase sample size and study power, which is espe-
cially crucial for the investigation of both small effect sizes and 
CVD outcomes in informative subgroups. A prime example of 
this pooling is currently being explored in the genetic consor-
tium evaluating GWAS data. Given the relatively small effect 
size of single genes, it is imperative both to pool cohort data for 
primary analyses and validation of observed associations and to 
examine their interactions in the complex molecular networks 
through which they exert their effects on phenotype. Ensuring 
standardization of variables across studies is a challenge when 
data are pooled. However, a major advantage of pooling NHLBI-
funded cohort data is that, although not perfectly harmonized, 
similar methods have been used across studies to evaluate risk 
factors, survey instruments, physical measurements, and events.

Integration of Omics and New Technologies Into 
Population Studies
Recent advances have made large-scale integration of new pre-
dictor variables, such as genomics/epigenetics, metabolomics, 
and the microbiome, more economically and technologically 
feasible for large-scale implementation. Population studies pro-
vide an excellent opportunity for the rapid evaluation of these 
new technologies as a result of the availability of stored speci-
mens, existing phenotypes, and outcome data. Substantial econ-
omies of scale are gained when omics ancillary studies/variables 
are added to an existing cohort study. Incorporation of new tech-
nology not only leverages the wealth of existing data from the 
parent population study for use by the initiating investigators but 
also allows the new data to be used as variables or covariates 
for further discovery by all research colleagues. For example, a 
novel proposed biomarker for coronary atherosclerosis may also 
be evaluated as a predictor of heart failure or stroke outcomes. 
The result of these efforts will be the creation of an enhanced 
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data set available to a broad community of scientific colleagues 
that facilitates the efficient evaluation of additional scientific 
questions. Extramural funding of new science (ie, CV-GPS and 
other funding sources) that leverage existing cohorts preserves 
resources and time for omics-based discovery efforts.

Conclusions
The next generation of scientific discovery certainty requires 
the creation of large data repositories to ensure adequate sam-
ple size to detect small but important effects, computational 
platforms that seek complex interactions through analysis of 
interactive genomic and phenomic networks, multiple samples 
to allow validation of initial study findings, study diversity to 

allow the findings to be applicable to a larger universe of the 
public (age, race/ethnicity, sex, socioeconomic status, etc), and 
a user-friendly interface that makes these data more acces-
sible to the larger community of researchers. Existing cohorts 
provide much of the initial data that can be approached as the 
overall infrastructure of CV-GPS is built; importantly, new pro-
spective study populations and cohorts are encouraged to par-
ticipate in CV-GPS to ensure that all possible population-based 
genomic and phenomic data are available in one integrated site 
for optimal analytic benefit. These data requirements and aspi-
rations for comprehensive participant populations are essential 
as CV-GPS seeks to identify new determinants of the origin 
of CVD and, more important, factors that can be translated 

Appendix I
1.  FHS Phenotypic Data

Repeated measures available on participants across 65 years; 3 generations of participants: Original, Offspring, and Third Generation; entire adult life span  
from 20 to ≥100 years

Available phenotype data Examples

Clinical events (validated  
and adjudicated)

Coronary heart disease: myocardial infarction, coronary insufficiency, angina, coronary heart disease death, sudden 
coronary disease death, coronary artery bypass graft surgery, percutaneous transluminal coronary angiography
Heart failure
Stroke, transient ischemic attack
Peripheral artery disease: intermittent claudication, lower-extremity revascularization
Atrial fibrillation and electrophysiology procedures
Dementia (Alzheimer disease, vascular)
Mild cognitive impairment
Cancer

Subclinical disease  
(most measures repeated)

Ultrasound carotid intima-media thickness and carotid stenosis
Brachial reactivity/endothelial function
Tonometry: arterial stiffness and peripheral arterial tonometry
Echocardiographic structure and function (eg, left ventricular mass)
CT: coronary artery calcium, abdominal aortic calcium, mitral and aortic valve calcium
Cardiac MRI: cardiac structure, cardiac index, and aortic arch plaque
Ankle-brachial index
Walk test: low-level exercise test
Brain MRI: including gray, white, lobar/deep volumes, infarcts, microbleeds, white matter hyperintensities, 
fractional anisotropy, regional brain volumes

Pulmonary disease and sleep traits
(pulmonary function test data available  
on multiple examinations)

Spirometry and postalbuterol spirometry, diffusion capacity
CT lung measures
Sleep study and sleep questionnaire
Buccal swabs

Traditional risk factors  
(directly measured)

Systolic and diastolic blood pressures
Fasting blood glucose, hemoglobin A

1c, fasting insulin
Fasting lipids

Anthropometry  
(directly measured)

Height, weight, body mass index
Waist, hip, thigh, neck circumference
CT measures of regional adipose tissue depots: subcutaneous adipose tissue, visceral adipose tissue,  
pericardial fat, perithoracic fat
Body percent fat (dual-energy x-ray absorptiometry)

Lifestyle Diet: Willet food frequency questionnaire (calories, supplements)
Smoking
Exercise (self-report, objective measurement with accelerometry)
Alcohol intake

Measures of function Physical function and mobility
Performance: hand grip, walking speed
Cognitive function (global and multiple domains)
Depression (Center for Epidemiologic Studies Depression Scale)
Social network

(Continued)
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1.  Continued

Repeated measures available on participants across 65 years; 3 generations of participants: Original, Offspring, and Third Generation; entire adult life span  
from 20 to ≥100 years

Available phenotype data Examples

Medications All examinations

Medicare data Centers for Medicare & Medicaid Services data since 1991, including International Classification of Diseases 
codes, charges, medications, procedures on individuals ≥65 years of age enrolled in fee for service

Bone health Fractures, osteoporosis
Osteoarthritis

Circulating and urine biomarkers

 ������� Renal function Creatinine, cystatin C, microalbumin, uric acid

 ������� Inflammatory marker panel Acute-phase reactants: C-reactive protein 
Cytokines: interleukin-6, tumor necrosis factor-α, tumor necrosis factor receptor 2, osteoprotegerin
Selectins: P-selectin, CD40 ligand
Cell adhesion: intercellular adhesion molecule
Chemokines: monocyte chemoattractant protein-1
Oxidative stress: myeloperoxidase, isoprostanes
Lipoprotein-associated phospholipase A2 mass and activity

 ������� Markers of hemostasis, thrombosis Fibrinogen, factor VIIIc, von Willebrand factor, D-dimer, plasminogen activator inhibitor-1, platelet reactivity

 ������� Markers of myocardial injury Troponin I, growth differentiation factor-15, ST-2, brain natriuretic peptide, N-terminal atrial natriuretic peptide

 ������� Adipokines Leptin, leptin receptor
α-Fetuin, resistin, ghrelin
Retinol binding protein-4 
Fatty acid binding protein-4 
Adiponectin

 ������� Growth factors Insulin-like growth factor-1, insulin-like growth factor binding protein-3, vascular endothelial growth factor, 
angiopoietin-2, tie-2, brain-derived neurotrophic factor, nerve growth factor

 ������� Molecules interacting with vessel  
wall and platelets

Matrix remodeling markers: matrix metalloproteinase-9, matrix metalloproteinase-3, tissue inhibitor of matrix 
metalloproteinase-1, N-terminal propeptide of type III procollagen
Plasma homocysteine, asymmetrical dimethyl arginine 

 ������� Markers of brain injury β-Amyloid, clusterin

 ������� Lipid subfractions Lipoprotein(a), apolipoproteins A1, B48, B100, CI, CII, E, H, J

 ������� Hormones and vitamins Renin-angiotensin-aldosterone pathway
Thyroid function (eg, thyroid-stimulating hormone)
Sex steroid hormones
Vitamin D, folate, B

12, B6, vitamin E

2.  Available FHS Genetic Data

Framingham Participants With Consent for Genetic Analysis

Variable
ALL  

Cohorts
Original  
Cohort

Offspring 
Cohort

Omni  
Gr 1

Third  
Generation

Sample size 14 271 5079 5013 101 4078

CARe 7547 647 3023 0 3877 SNPs from ≈2100 candidate genes across a range of cardiovascular, 
metabolic, and inflammatory syndromes, produced as part of the 

NHLBI CARe project (phs000282.v12.p8).

CHARGES_TARGET 1095 36 957 0 102 Targeted sequencing produced as part of the CHARGE sequencing 
consortium (phs000651.v3.p8)

CHARGES_WES_FREEZE1 621 13 487 0 121 First release of whole-exome sequencing produced as part of the 
CHARGE sequencing consortium (phs000651.v3.p8)

CHARGES_WES_FREEZE3 850 13 715 0 122 Third release of whole-exome sequencing produced as part of the 
CHARGE sequencing consortium (phs000651.v3.p8))

CHARGES_WES_FREEZE4 1271 45 1107 0 119 Fourth release of whole-exome sequencing produced as part of the 
CHARGE sequencing consortium (phs000651.v3.p8)

CHARGES_WGS_FREEZE1 320 8 282 0 30 First release of WGS produced as part of the CHARGE sequencing 
consortium (phs000651.v3.p8)

(Continued)
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2.  Continued

Framingham Participants With Consent for Genetic Analysis

Variable
ALL  

Cohorts
Original  
Cohort

Offspring 
Cohort

Omni  
Gr 1

Third  
Generation

ESP 464 0 291 0 173 Whole-exome sequence data produced as part of the NHLBI GO-ESP 
project (phs000401.v6.p8)

MARSH 4112 454 1400 0 2258 Microsatellite markers used in linkage analyses (phs000342.v11.p8)

METHYLATION 2202 0 2202 0 0 Methylation data; Offspring Cohort examination 8 (phs000724.v1.p8)

NHGRI_MEDSEQ 1703 0 1703 0 0 Deep-coverage targeted resequencing and variant identification for 
216 genes in the FHS sample collection, produced as part of the 

NHLBI Medical Resequencing projects. (phs000307.v8.p8)

OMNI5 2472 0 2472 0 0 SNPs from the Illumina HumanOmni5M-4v1 array designed to target 
variation down to 1% minor allele frequency (phs000342.v11.p8)

ONEK 1342 258 1084 0 0 SNPs from 100 000 Affymetrix GeneChip in a subset of Original  
Cohort and Offspring participants of the largest 310 pedigrees in the 

FHS (phs000342.v11.p8)

PERLEGEN 1649 0 1649 0 0 SNPs in inflammatory candidate genes (phs000342.v11.p8)

PGA 1749 0 1749 0 0 SNP data of candidate genes involved in human congenital heart 
disease and cardiomyopathy (phs000342.v11.p8)

RTPCR 1943 0 1943 0 0 Reverse transcriptase—polymerase chain reaction gene expression, 
Offspring Cohort examination 8 (phs000325.v1.p5)

SABRE_EXPRESS 5622 0 2442 0 3180 Gene expression profiling of white blood cell—derived RNA to 
characterize the genomic signatures of atherosclerosis and metabolic 

syndrome (phs000363.v10.p8)

SABRE_IMMUNO 7315 0 3264 0 4051 Immunoassays of 180 circulating protein biomarkers of 
atherosclerosis and metabolic syndrome (phs000363.v10.p8)

SABRE_ITRAQ 269 0 269 0 0 iTRAQ Px data set 135 case/control pairs; iTRAQ is used in proteomics 
to study quantitative changes in the proteome (phs000363.v10.p8)

SABRE_miRNA 5718 0 2484 0 3234 MicroRNA profiling of white blood cell—derived RNA to characterize 
microRNA regulation of gene expression and the relations of 
microRNA to clinical traits and diseases (phs000363.v10.p8)

SABRE_MRM 665 0 665 0 0 Targeted multiple reaction monitoring proteomics of 33 targets 
measured in the CVD study; method for quantitative measurement of 

target proteins (phs000363.v10.p8)

SHARe 9261 1529 3747 97 3888 SNPs from Affymetrix 500 000 mapping array plus  
Affymetrix 50 000 supplemental array (phs000342.v11.p8)

SHARe_FOLLOWUP 8070 659 3295 96 4020 SNPs performed as follow-up to the SHARe GWAS  
(phs000342.v11.p8)

SHARe_IMP 8468 954 3559 95 3860 Imputed SNPs using SHARe genotypes (phs000342.v11.p8)

Appendix II
1.  JHS Phenotypic Data

JHS phenotype data: repeated measures available on participants across 10 years of follow-up

Available phenotype data Examples

Clinical events
(validated and adjudicated)

Coronary heart disease: myocardial infarction, coronary insufficiency, angina, coronary heart disease death, 
sudden coronary disease death, coronary artery bypass graft surgery, percutaneous transluminal coronary 
angiography
Heart failure
Stroke

Subclinical disease 12-Lead ECGs
Ultrasound carotid intima-media thickness and carotid stenosis
Echocardiographic structure and function (eg, left ventricular mass)
CT: coronary artery calcium, abdominal aortic calcium, mitral and aortic valve calcium
Cardiac MRI: cardiac structure, cardiac index, and aortic arch plaque
Ankle-brachial index

Pulmonary disease and sleep traits Spirometry
Sleep questionnaire

(Continued)
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1.  Continued

JHS phenotype data: repeated measures available on participants across 10 years of follow-up

Available phenotype data Examples

Eye disease Retinopathy grades

Traditional risk factors (directly measured) Systolic and diastolic blood pressures
24-Hour ambulatory blood pressure
Fasting blood glucose, hemoglobin A

1c, fasting insulin
Fasting lipids

Anthropometry (directly measured) Height, weight, body mass index
Waist, hip, thigh, neck circumference
CT measures of regional adipose tissue depots: subcutaneous adipose tissue, visceral adipose tissue,  
pericardial fat, perithoracic fat

Lifestyle Diet: food frequency questionnaire (calories, supplements)
Smoking
Exercise (self-report, objective measurement with accelerometry)
Alcohol intake

Measures of function Physical function and mobility
Cognitive function (global and multiple domains)
Depression (Center for Epidemiologic Studies Depression Scale)
Social network

Medications All 3 examinations

Medicare data Centers for Medicare & Medicaid Services data since 1991, including International Classification of Diseases 
codes, charges, medications, procedures on individuals ≥65 years of age enrolled in fee for service

Circulating and urine biomarkers

 ������� Renal function Creatinine, cystatin C, microalbumin, uric acid

 ������� Inflammatory marker panel Acute-phase reactants: C-reactive protein
Selectins: e-selectin, p-selectin

 ������� Markers of myocardial injury Brain natriuretic peptide

 ������� Adipokines Leptin
Ghrelin
Adiponectin

 ������� Molecules interacting with vessel  
wall and platelets

Plasma homocysteine

 ������� Lipid subfractions Lipoprotein(a), Vertical Auto Profile lipid panel, apolipoproteins A1 and B

 ������� Hormones and vitamins Renin
Aldosterone
Cortisol
Vitamin D, folate, B

12

 ������� Hematology Hemoglobin
Hematocrit
White blood cells
Red blood cells

 ������� Iron/iron storage Iron
Ferritin
Serum total iron-binding capacity 
Serum unsaturated iron-binding capacity 

Psychosocial

 ������� Stress Global stress
Weekly stress
Major life event
Discrimination

 ������� Negative affect Depressive symptoms
Anger
Hostility

 ������� Coping Social support
Social networks

 ������� Socioeconomic status Education
Occupation
Income
Wealth
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into new and improved diagnostic and treatment pathways for 
CVD.
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