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Summary

Schizophrenia is a highly heritable disorder. Genetic risk is conferred by a large number of alleles,

including common alleles of small effect that might be detected by genome-wide association

studies. Here, we report a multi-stage schizophrenia genome-wide association study of up to

36,989 cases and 113,075 controls. We identify 128 independent associations spanning 108

conservatively defined loci that meet genome-wide significance, 83 of which have not been

previously reported. Associations were enriched among genes expressed in brain providing

biological plausibility for the findings. Many findings have the potential to provide entirely novel

insights into aetiology, but associations at DRD2 and multiple genes involved in glutamatergic

neurotransmission highlight molecules of known and potential therapeutic relevance to

schizophrenia, and are consistent with leading pathophysiological hypotheses. Independent of

genes expressed in brain, associations were enriched among genes expressed in tissues that play

important roles in immunity, providing support for the hypothesized link between the immune

system and schizophrenia.

Schizophrenia has a life time risk of around 1%, and is associated with substantial morbidity

and mortality as well as personal and societal costs.1-3 Although pharmacological treatments

are available for schizophrenia, their efficacy is poor for many patients.4 All available

antipsychotic drugs are thought to exert their main therapeutic effects through blockade of

Correspondence and requests for materials should be addressed to Michael O’Donovan: odonovanmc@cardiff.ac.uk or
odonovanmc@cf.ac.uk.
Contributions The individual studies or consortia contributing to the GWAS meta-analysis were led by R.A., O.A.A, D.H.R.B.,
A.D.B., E. Bramon, J.D.B., A.C., D.A.C., S.C., A.D., E. Domenici, H.E., T.E., P.V.G., M.G., H.G., C.M.H., N.I., A.V.J., E.G.J.,
K.S.K., G.K., J. Knight, T. Lencz, D.F.L., Q.S.L., J.Liu, A.K.M., S.A.M., A. McQuillin, J.L.M., P.B.M., B.J.M., M.M.N., M.C.O’D.,
R.A.O., M.J.O., A. Palotie, C.N.P., T.L.P., M.R., B.P.R., D.R., P.C.S., P. Sklar., D.St.C., P.F.S., D.R.W., J.R.W., J.T.R.W. and T.W.
Together with the core statistical analysis group led by M.J.D. comprising S.R., B.M.N., and P.A.H., this group comprised the
management group led by M.C.O’D. who were responsible for the management of the study and the overall content of the manuscript.
Additional analyses and interpretations were contributed by E.A., B.B-S., D.K., KH.F., M. Fromer, H.H., P.L., P.B.M., S.M.P.,
T.H.P., N.R.W., and P.M.V. The phenotype supervisory group comprised A.C., A.H.F., P.V.G., K.K.K., and B.J.M., D.A.C. led the
candidate selected genes subgroup comprised of M.J.D., E. Dominici, J.A.K., A.M.H., M.C.O’D., B.P.R., D.R., E.M.S. and P. Sklar.
Replication results were provided by S.S., H.S., and K.S. The remaining authors contributed to the recruitment, genotyping, or data
processing for the contributing components of the meta-analysis. A.C., M.J.D., B.M.N., S.R., P.F.S. and M.C.O’D. took responsibility
for the primary drafting of the manuscript which was shaped by the management group. All other authors had sight of, had the
opportunity to comment on, and approved the final draft.

URLs: Results can be downloaded from the Psychiatric Genomics Consortium website (http://pgc.unc.edu) and visualized using
Ricopili (http://www.broadinstitute.org/mpg/ricopili). Genotype data for the samples where the ethics permit deposition are available
upon application from the NIMH Genetics Repository (https://www.nimhgenetics.org).

Competing Financial Interests: Several of the authors are employees of the following pharmaceutical companies; Pfizer (C.R.S.,
J.R.W., H.S.X.), F. Hoffman-La Roche (E.D., L.E.), Eli Lilly (D.A.C., Y.M., L.N.) and Janssen (S.G., D.W., Q.S.L.; also N.C. an ex-
employee). Others are employees of deCODE genetics (S.S., H.S., K.S.). None of these companies influenced the design of the study,
the interpretation of the data, the amount of data reported, or financially profit by publication of the results which are pre-competitive.
The other authors declare no competing interests.

Europe PMC Funders Group
Author Manuscript
Nature. Author manuscript; available in PMC 2015 January 24.

Published in final edited form as:
Nature. 2014 July 24; 511(7510): 421–427. doi:10.1038/nature13595.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://pgc.unc.edu
http://www.broadinstitute.org/mpg/ricopili
https://www.nimhgenetics.org


the type 2 dopaminergic receptor5,6 but, since the discovery of this mechanism over 60 years

ago, no new antipsychotic drug of proven efficacy has been developed based on other target

molecules. Therapeutic stasis is in large part a consequence of the fact that the

pathophysiology of schizophrenia is unknown. Identifying the causes of schizophrenia is

therefore a critical step towards improving treatments and outcomes for those with the

disorder.

High heritability points to a major role for inherited genetic variants in the aetiology of

schizophrenia. 7,8 While risk variants range in frequency from common to extremely rare9,

estimates10,11 suggest half to a third of the genetic risk of schizophrenia is indexed by

common alleles genotyped by current genome-wide association study (GWAS) arrays. Thus,

GWAS is potentially an important tool for understanding the biological underpinnings of

schizophrenia.

To date, around 30 schizophrenia-associated loci10-23 have been identified through GWAS.

Postulating that sample size is one of the most important limiting factors in applying GWAS

to schizophrenia, we created the Schizophrenia Working Group of the Psychiatric Genomics

Consortium (PGC). Our primary aim was to combine all available schizophrenia samples

with published or unpublished GWAS genotypes into a single, systematic analysis.24 Here,

we report the results of that analysis, including at least 108 independent genomic loci that

exceed genome-wide significance. Some of the findings support leading pathophysiological

hypotheses of schizophrenia or targets of therapeutic relevance, but most of the findings

provide novel insights.

128 Independent Associated Loci

We obtained genome-wide genotype data from which we constructed 49 ancestry matched,

non-overlapping case-control samples (46 of European and three of East Asian ancestry,

34,241 cases and 45,604 controls) and 3 family-based samples of European ancestry (1,235

parent affected-offspring trios) (Supplementary Table 1 and Supplementary text). These

comprise the primary PGC GWAS dataset. Genotypes from all studies were processed by

the PGC using unified quality control procedures followed by imputation of SNPs and

insertion-deletions using the 1000 Genomes Project reference panel.25 In each sample,

association testing was conducted using imputed marker dosages and principal components

(PCs) to control for population stratification. The results were combined using an inverse-

weighted fixed effects model.26 After quality control (imputation INFO score ≥ 0.6, MAF ≥

0.01, and successfully imputed in ≥ 20 samples), we considered around 9.5 million variants.

The results are summarized in Figure 1. To enable acquisition of large samples, some groups

ascertained cases via clinician diagnosis rather than a research-based assessment and

provided evidence of the validity of this approach (Supplementary text).11,13 Post-hoc

analyses revealed the pattern of effect sizes for associated loci was similar across different

assessment methods and modes of ascertainment (Extended Data Figure 1), supporting our a

priori decision to include samples of this nature.

For the subset of LD (linkage disequilibrium)-independent SNPs with P < 1×10−6 in the

meta-analysis, we next obtained results from deCODE genetics (1,513 cases and 66,236
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controls of European ancestry). We define LD-independent SNPs as those with low LD (r2 <

0.1) to a more significantly associated SNP within a 500 kb window. Given high LD in the

extended MHC region spans ~8 Mb, we conservatively include only a single MHC SNP to

represent this locus. The deCODE data were then combined with those from the primary

GWAS to give a dataset of 36,989 cases and 113,075 controls. In this final analysis, 128

LD-independent SNPs surpassed genome-wide significance (P ≤ 5×10−8) (Supplementary

Table 2).

As in meta-analyses of other complex traits which identified large numbers of common risk

variants, 27,28 the test statistic distribution from our GWAS deviates from the null (Extended

Data Figure 2). This is consistent with the previously documented polygenic contribution to

schizophrenia. 10,11 The deviation in the test statistics from the null (λGC = 1.47, λ1000 =

1.01) is only slightly less than expected (λGC = 1.56) under a polygenic model given fully

informative genotypes, the current sample size, and the lifetime risk and heritability of

schizophrenia.29

Multiple additional lines of evidence allow us to conclude the deviation between the

observed and null distributions in our primary GWAS indicates a true polygenic

contribution to schizophrenia. First, applying a novel method 30 that uses LD information to

distinguish between the major potential sources of test statistic inflation, we found our

results are consistent with polygenic architecture but not population stratification (Extended

Data Figure 3). Second, for 78% of 263 LD-independent SNPs with P <1×10−6 in the case-

control GWAS, the risk alleles from were overrepresented in cases in the independent

samples from deCODE (P = 5.6 ×10−21). This degree of consistency between the primary

GWAS and the replication data is highly unlikely to occur by chance (P = 1×10−9). (Note

the tested alleles surpassed the P < 10−6 threshold in our GWAS before we added either the

trios or deCODE data to the meta-analysis. This trend test is therefore independent of the

primary case-control GWAS). Third, analysing the 1,235 parent-proband trios, we again

found excess transmission of the schizophrenia-associated allele at 69% of the LD-

independent SNPs with P <1×10−6 in the case-control GWAS. This is again unlikely to

occur by chance (P = 1×10−9) and additionally excludes population stratification as fully

explaining the associations that surpassed our threshold for seeking replication. Fourth, we

used the trios trend data to estimate the expected proportion of true associations at P

<1×10−6 in the discovery GWAS, allowing for the fact that half of the index SNPs are

expected to show the same allelic trend in the trios by chance, and that some true

associations will show opposite trends given the limited number of trio samples

(Supplementary Material). Given the observed trend test results, around 67% (95% CI

64%-73%) or N = 176 of the associations in the scan at P <1×10−6 are expected to be true,

and therefore the number of associations that will ultimately be validated from this set of

SNPs will be considerably more than those that now meet genome-wide significance. Taken

together, these analyses indicate that the observed deviation of test statistics from the null

primarily represents polygenic association signal, and that the considerable excess of

associations at the tail of extreme significance largely correspond to true associations.

Independently associated SNPs do not translate to well-bounded chromosomal regions.

Nevertheless, it is useful to define physical boundaries for the SNP associations to identify
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candidate risk genes. We defined an associated locus as the physical region containing all

SNPs correlated at r2 > 0.6 with each of the 128 index SNPs. Associated loci within 250 kb

of each other were merged. This resulted in 108 physically distinct associated loci, 83 of

which have not been previously implicated in schizophrenia and therefore harbour potential

novel biological insights into disease aetiology (Supplementary Table 3; regional plots in

Supplementary Figure 1). The significant regions include all but 5 loci previously reported

as genome-wide significant in large samples (Supplementary Table 3).

Characterization of Associated Loci

Of the 108 loci, 75% include protein-coding genes (40% a single gene) and a further 8% are

within 20 kb of a gene (Supplementary Table 3). Notable associations relevant to major

hypotheses of the aetiology and treatment of schizophrenia include DRD2 (the target of all

effective antipsychotic drugs) and multiple genes (e.g. GRM3, GRIN2A, SRR, GRIA1)

involved in glutamatergic neurotransmission and synaptic plasticity. In addition,

associations at CACNA1C, CACNB2, and CACNA1I, which encode voltage-gated calcium

channel subunits, extend previous findings implicating members of this family of proteins in

schizophrenia and other psychiatric disorders. 11,13,31,32 Genes encoding calcium channels,

and proteins involved in glutamatergic neurotransmission and synaptic plasticity have been

independently implicated in schizophrenia by studies of rare genetic variation, 33-35

suggesting convergence at a broad functional level between studies of common and rare

genetic variation. We highlight in the supplementary text genes of particular interest within

associated loci with respect to current hypotheses of schizophrenia aetiology or treatment

(although we do not imply these genes are necessarily the causal elements).

For each of the schizophrenia associated loci, we identified a credible causal set of SNPs

(for definition see Supplementary text). 36 In only 10 instances (Supplementary Table 4) was

the association signal credibly attributable to a known nonsynonymous exonic

polymorphism. The apparently limited role of protein coding variants is consistent both with

exome sequencing findings 33 and with the hypothesis that most associated variants detected

by GWAS exert their effects through altering gene expression rather than protein

structure37,38 and with the observation that schizophrenia risk loci are enriched for

expression quantitative trait loci (eQTL).39

To try to identify eQTLs that could explain associations with schizophrenia, we merged the

credible causal set of SNPs defined above with eQTLs from a meta-analysis of human brain

cortex eQTL studies (N=550) and an eQTL study of peripheral venous blood (N=3754)40

(Supplementary Text). Multiple schizophrenia loci contained at least one eQTL for a gene

within 1 Mb of the locus (Supplementary Table 4). However, in only 12 instances was the

eQTL plausibly causal (two in brain, and nine in peripheral blood, one in both). This low

proportion suggests that if most risk variants are regulatory, available eQTL catalogs do not

yet provide power, cellular specificity, or developmental diversity to provide clear

mechanistic hypotheses for follow-up experiments.
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Brain and Immunity

To further explore the regulatory nature of the schizophrenia associations, we mapped the

credible sets (N=108) of causal variants onto sequences with epigenetic markers

characteristic of active enhancers in 56 different tissues and cell lines (Supplementary Text).

Schizophrenia associations were significantly enriched at enhancers active in brain (Figure

2) but not in tissues unlikely to be relevant to schizophrenia (e.g., bone, cartilage, kidney,

and fibroblasts). Brain tissues used to define enhancers consist of heterogeneous populations

of cells. Seeking greater specificity, we contrasted genes enriched for expression in neurons

and glia using mouse ribotagged lines41. Genes with strong expression in multiple cortical

and striatal neuronal lineages were were enriched for associations, providing support for an

important neuronal pathology in schizophrenia (Extended Data Figure 4) but this is not

statistically more significant than, or exclusionary of, contributions from other lineages42.

Schizophrenia associations were also strongly enriched at enhancers that are active in tissues

with important immune functions, particularly B-lymphocyte lineages involved in acquired

immunity (CD19 and CD20 lines, Figure 2). These enrichments remain significant even

after excluding the extended MHC region and regions containing brain enhancers

(enrichment P for CD20 <10−6), demonstrating that this finding is not an artefact of

correlation between enhancer elements in different tissues and not driven by the strong and

diffuse association at the extended MHC. Epidemiological studies have long hinted at a role

for immune dysregulation in schizophrenia, the present findings provide genetic support for

this hypothesis. 43

Aiming to develop additional biological hypotheses beyond those that emerge from

inspection of the individual loci, we further undertook a limited mining of the data through

gene-set analysis. However, since there is no consensus methodology by which such

analyses should be conducted, nor an established optimal significance threshold for

including loci, we sought to be conservative, using only two of the many available

approaches44,45 and restricting analyses to genes within genome-wide significant loci.

Neither approach identified gene-sets that were significantly enriched for associations after

correction for the number of pathways tested (Supplementary Table 5) although nominally

significantly enrichments were observed among several predefined candidate pathways

(Extended Data Table 1). A fuller exploratory analysis of the data will be presented

elsewhere.

Overlap with rare mutations

CNVs associated with schizophrenia overlap with those associated with ASD and

intellectual disability9 as do genes with deleterious de novo mutations. 34 Here, we find

significant overlap between genes in the schizophrenia GWAS associated intervals and those

with de novo nonsynonymous mutations in schizophrenia (P=0.0061) (Extended Data Table

2), suggesting that mechanistic studies of rare genetic variation in schizophrenia will be

informative for schizophrenia more widely. We also find evidence for overlap between

genes in schizophrenia GWAS regions and those with de novo nonsynonymous mutations in
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intellectual disability (P=0.00024) and ASD (P=0.035), providing further support for the

hypothesis that these disorders have partly overlapping pathophysiologies.9,34

Polygenic Risk Score Profiling

Previous studies have shown that risk profile scores (RPS) constructed from alleles showing

modest association with schizophrenia in a discovery GWAS can predict case-control status

in independent samples, albeit with low sensitivity and specificity.10,11,16 This finding was

robustly confirmed in the present study. The estimate of Nagelkerke R2 (a measure of

variance in case-control status explained) depends on the specific target dataset and

threshold (PT) for selecting risk alleles for RPS analysis (Extended Data Figure 5 & 6a).

However, using the same target sample as earlier studies and PT =0.05, R2 is now increased

from 0.03 (reference10) to 0.184 (Extended Data Figure 5). Assuming a liability-threshold

model, a lifetime risk of 1%, independent SNP effects, and adjusting for case-control

ascertainment, RPS now explains about 7% of variation on the liability scale46 to

schizophrenia across the samples (Extended Data Figure 6b), about half of which (3.4%) is

explained by genome-wide significant loci.

We also evaluated the capacity of RPS to predict case-control status using a standard

epidemiological approach to a continuous risk factor. We illustrate this in three samples,

each with different ascertainment schemes (Figure 3). The Danish sample is population-

based (i.e. inpatient and outpatient facilities), the Sweden sample is based on all cases

hospitalized for schizophrenia in Sweden, and the MGS study was ascertained specially for

genetic studies from clinical sources in the US and Australia. We grouped individuals into

RPS deciles and estimated the odds ratios for affected status for each decile with reference

to the lowest risk decile. The odds ratios increased with greater number of schizophrenia risk

alleles in each sample, maximizing for the tenth decile in all samples: Denmark 7.8 (95% CI

4.4-13.9), Sweden 15.0 (95% CI 12.1-18.7), and MGS 20.3 (95% CI 14.7-28.2). Given the

need for measures that index liability to schizophrenia,47,48 the ability to stratify individuals

by RPS offers new opportunities for clinical and epidemiological research. Nevertheless, we

stress that the sensitivity and specificity of RPS do not support its use as a predictive test.

For example in the Danish epidemiological sample, the area under the receiver operating

curve is only 0.62 (Extended Data Figure 6c, Supplementary Table 6).

Finally, seeking evidence for non-additive effects on risk, we tested for statistical interaction

between all pairs of 125 autosomal SNPs that reached genome-wide significance. P-values

for the interaction terms were distributed according to the null, and no interaction was

significant after correction for multiple comparisons. Thus, we find no evidence for epistatic

or non-additive effects between the significant loci (Extended Data Figure 7). It is possible

that such effects could be present between other loci, or occur in the form of higher order

interactions.

Discussion

In the largest molecular genetic study of schizophrenia ever conducted, or indeed of any

neuropsychiatric disorder, we demonstrate the power of GWAS to identify large numbers of
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risk loci. We also show that the use of alternative ascertainment and diagnostic schemes

designed to rapidly increase sample size does not inevitably introduce a crippling degree of

heterogeneity. That this is true for a phenotype like schizophrenia where there are no

biomarkers or supportive diagnostic tests provides grounds to be optimistic about applying

GWAS to other disorders where diagnosis is similarly clinician-based, and recruitment

traditionally constrained by the need for expensive and time consuming assessments.

We further show that the associations are not randomly distributed across genes of all

classes and function; rather they converge upon genes that are expressed in certain tissues

and cellular types. The findings include molecules that are the current, or the most

promising, targets for therapeutics, and point to systems that align with the predominant

aetiological hypotheses of the disorder. This suggests that the many novel findings we report

also provide a aetiologically relevant foundation for mechanistic and treatment development

studies. We additionally find overlap between genes affected by rare variants in

schizophrenia and those within GWAS loci, and broad convergence in the functions of some

of the clusters of genes implicated by both sets of genetic variants, particularly genes related

to abnormal glutamatergic synaptic and calcium channel function. How variation in these

genes impact function to increase risk for schizophrenia cannot be answered by genetics, but

the overlap strongly suggests that common and rare variant studies are complementary

rather than antagonistic, and that mechanistic studies driven by rare genetic variation will be

informative for schizophrenia.

Extended Data

Extended Data Figure 1. Homogeneity of Effects Across Studies
Plot of the first two principal components (PC) from principal components analysis (PCA)

of the logistic regression β coefficients for autosomal genome-wide significant associations.

The input data were the β coefficients from 52 samples for 112 independent SNP

associations (excluding 3 chrX SNPs and 13 SNPs with missing values in Asian samples).
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PCAs were weighted by the number of cases. Each circle shows the location of a study on

PC1 and PC2. Circle size and colour are proportional to the number of cases in each sample

(larger and redder circles correspond to more cases). Most samples cluster. Outliers had

either small numbers of cases (“small”) or were genotyped on older arrays. Abbreviations.

a500 (Affymetrix 500K); a5 (Affymetrix 5.0). Studies that did not use conventional research

interviews are in the central cluster (CLOZUK, Sweden, and Denmark-Aarhus studies).

Extended Data Figure 2. Quantile-quantile plot
Quantile-quantile plot of GWAS meta-analysis. Expected −log10(P) -values are those

expected under the null hypothesis. For clarity, we avoided expansion of the Y-axis by

setting association P-values < 10−12 to 10−12. The shaded area surrounded by a red line

indicates the 95% confidence interval under the null. Lambda is the observed median χ2 test

statistic divided by the median expected χ2 test statistic under the null.
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Extended Data Figure 3. LD Score regression consistent with polygenic inheritance
The relationship between marker χ2 association statistics and linkage disequilibrium (LD) as

measured by the LD Score. LD Score is the sum of the r2 values between a variant and all

other known variants within a 1 cM window, and quantifies the amount of genetic variation

tagged by that variant. Variants were grouped into 50 equal-sized bins based on LD Score

rank. LD Score Bin and Mean χ2 denotes mean LD score and test statistic for markers each

bin. We simulated (Supplementary Text) test statistics under two scenarios: (a) no true

association, inflation due to population stratification (b) polygenic inheritance (λGC =1.32),

in which we assigned independent and identically distributed per-normalized-genotype

effects to a randomly selected subset of variants. Panel (c) present results from the PGC

schizophrenia GWAS (λGC =1.48). The real data are strikingly similar to the simulated data

summarized in (b) but not (a). The intercept estimates the inflation in the mean χ2 that

results from confounding biases, such as cryptic relatedness or population stratification.
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Thus, the intercept of 1.066 for the schizophrenia GWAS suggests that ~90% of the inflation

in the mean χ2 results from polygenic signal. The results of the simulations are also

consistent with theoretical expectation (see Supplementary Text).

Extended Data Figure 4. Enrichment of Associations in Tissues and Cells
Genes whose transcriptional start is nearest to the most associated SNP at each

schizophrenia-associated locus were tested for enriched expression in a) purified brain cell

subsets obtained from mouse ribotagged lines41. The red dotted line indicates P=0.05.

Extended Data Figure 5. MGS Risk Profile Score Analysis
Polygenic risk profile score (RPS) analyses using the MGS18 sample as target, and deriving

risk alleles from three published schizophrenia datasets (X-axis): ISC (2615 cases and 3338

controls) 10, PGC1 (excluding MGS, 9320 cases and 10,228 controls) 16, and the current

meta analysis (excluding MGS) with 32,838 cases and 44,357 controls. Samples sizes differ

slightly from original publication due to different analytical procedures. This shows the

increasing RPS prediction with increasing training dataset size reflecting improved precision
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of estimates of the SNP effect sizes. The proportion of variance explained (Y-axis;

Nagelkerke’s R2) was computed by comparison of a full model (covariates + RPS) score to

a reduced model (covariates only). Ten different P-value thresholds (PT) for selecting risk

alleles are denoted by the colour of each bar (legend above plot). For significance testing,

see the bottom legend which denotes the P-value for the test that R2 is different from zero.

All numerical data and methods used to generate these plots are available in Supplementary

Tables 6, 7, and Supplementary Text.

Extended Data Figure 6. Risk Profile Score Analysis
We defined 40 target subgroups of the primary GWAS dataset and performed 40 leave-one-

out GWAS analyses (see Supplementary Material) from which we derived risk alleles for

RPS analysis (X-axis) for each target subgroup. a) The proportion of variance explained (Y-

axis; Nagelkerke’s R2) was computed for each target by comparison of a full model

(covariates + RPS) score to a reduced model (covariates only). For clarity, 3 different P-
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value thresholds (PT) are presented denoted by the colour of each bar (legend above plot) as

for Extended Data Figure 5 but for clarity we restrict to fewer P-value thresholds (PT of

5×10−8, 1×10−4, and 0.05) and removed the significance values. (b) The proportion of

variance on the liability scale from risk scores calculated at the PT 0.05 with 95% CI bar

assuming baseline population disease risk of 1%. (C) Area under the receiver operating

curve (AUC). All numerical data and methods used to generate these plots are available in

Supplementary Tables 6, 7, and Supplementary Text.

Extended Data Figure 7. Epistasis
Quantile-quantile plot for all pair-wise (N=7750) combinations of the 125 independent

autosomal genome-wide significant SNPs tested for non-additive effects on risk using case-

control datasets of European ancestry (32,405 cases and 42,221 controls). We included as

covariates the principal components from the main analysis as well as a study indicator. The

interaction model is described by:

X1 and X2 are genotypes at the two loci, X1*X2 is the interaction between the two genotypes

modeled in a multiplicative fashion, X4 is the vector of principal components, X5 is the

vector of study indicator variables. Each β is the regression coefficient in the generalized

linear model using logistic regression. The overall distribution of P-values did not deviate

from the null and the smallest P-value (4.28×10−4) did not surpass the Bonferroni correction

threshold (p=0.05/7750= 6.45×10−6). The line x=y indicates the expected null distribution

with the grey area bounded by red lines indicating the expected 95% confidence interval for

the null.
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Extended Data Table 1
ALIGATOR and INRICH

Gene sets that have been reported to be enriched for schizophrenia associations and or rare

mutations were tested for enrichment for genome wide significant associations using

ALIGATOR44 and INRICH45. Specifically, we tested the glutamatergic postsynaptic

proteins comprising activity-regulated cytoskeleton-associated protein (ARC) and N-methyl-

d-aspartate receptor (NMDAR) complexes33-35, other curated synaptic gene-sets14,51,

targets of fragile X mental retardation protein (FMRP) 33-35, calcium channels 11,33, and

TargetScan predicted MIR137 sets11,16. The MIR137 TargetScan sets contain

computationally predicted conserved miRNA target sites in 3′UTRs of human genes52. The

current version is v6, but the version used in the prior PGC SCZ report16 was based on v5

(filtered for a probability of conserved targeting > 0.9). We report the results of both

analyses for consistency with previous work. The association at the extended MHC complex

was not included given the extensive linkage disequilibrium at this region spans large

numbers of genes. NA means that the pathway in question contained fewer than 2 significant

genes (for ALIGATOR) or regions (INRICH).

SET ALIGATOR INRICH

Postsynaptic sets

 ARC NA 1

 NMDAR NA 0.458

Curated pre- and postsynaptic sets

 Cell adhesion and trans8 synaptic signalling 0.902 0.44

 Structural plasticity NA NA

 Excitability NA NA

FMRP sets

 FMRP 0.0066 5.00E-05

MIR137 sets

 Targetscan v5 with PCT > 0.9 0.0371 0.0103

 Targetscan v6.2 0.059 0.0024

Calcium signalling sets

 CACN* channel subunits 0.0338 0.022
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Extended Data Table 2
de novo overlap

Test of overlap between genes mapping to schizophrenia-associated loci in the present study

and genes affected by nonsynonymous (NS) de novo mutations. Enrichment was calculated

using the dnenrich permutation framework as described34. Genes within the GWS loci were

weighted by 1/N, where N is the number of coding genes within each associated locus. The

observed test statistic (stat) is the sum of weights of genes impacted by de novo mutations.

The expected test statistics are calculated by averaging over 50,000 permuted de novo

mutation sets. Genes within schizophrenia-associated loci affected by de novo mutations are

listed (multiple hits listed in parentheses). Cohorts: SCZ = schizophrenia, ID = intellectual

disability, ASD = autism spectrum disorder. All mutations analysed annotated according to a

unified system (see supplementary tables 1 and 2 of ref34). Genes with LoF de novo

mutations are underlined and in italics.

Disease group NS (N) P
0 NS in
PGC2

loci
Observed (stat) Expected (stat) Genes

SCZ 702 0.0061 25 10.97 5.27

CACNACI(x2) CCDC39
CDCH(x2) CRCL CUL3
DPEP2 DPYD(x2) EP300

ESAM GRIN2A LRP1
NCAN PDCDCC PTPRF
RIMSC SBNOC SGSM2

SLC7A6 STAGC
TMEM2C9 ZDHHC5

ZNF536

ID 141 0.00002 11 6.87 1.05

GRIAC GRIN2A(x2)
LRPC NEKC NGEF

SATB2 SREBF2 STAGC
TCFH(x2)

ASD 789 0.035 19 9.99 5.93

APH1A CNOTC CSMDC
CUL3 CYPC7AC

CYP26BC EPHX2 LRPC
MAPK3 MEF2C MPP6

MYOC5A NISCH
PBRMC PRKDC RIMS1

TSNAREC WDR55
ZNF80HA

Controls 434 0.15 16 4.88 3.28

ANKRDHH CCCorf87
CCDC39 CDK2APC

CHRMH DPEP2 EP300
LRPC LRRCH8

MAN2AC MYOCA
OSBPL3 RAIC SF3BC

SREBF2 TLE3

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Manhattan plot
Manhattan plot of the discovery genome-wide association meta-analysis of 49 case control

samples (34,241 cases and 45,604 controls) and 3 family based association studies (1,235

parent affected-offspring trios). The x-axis is chromosomal position and the y-axis is the

significance of association (−log10(P)).The red line shows the genome-wide significance

level (5×10−8). SNPs in green are in LD with the index SNPs (diamonds) which represent

independent genome-wide significant associations.
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Figure 2. Enrichment in enhancers
Cell and tissue type specific enhancers were identified using ChIP-seq datasets (H3K27ac

signal) from 56 cell line and tissue samples (Y-axis). We defined cell and tissue type

enhancers as the top 10% of enhancers with the highest ratio of reads in that cell or tissue

type divided by the total number of reads. Enrichment of credible causal associated SNPs

from the schizophrenia GWAS was compared with frequency matched sets of 1000

Genomes SNPs (Supplementary Text). The X-axis is the −log10(P) for enrichment. P-values

are uncorrected for the number of tissues/cells tested. A −log10(P) of roughly 3 can be
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considered significant after Bonferroni correction. Descriptions of cell and tissue types at the

Roadmap Epigenome website (http://www.roadmapepigenomics.org).
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Figure 3. Odds ratio by risk score profile
Odds ratio for schizophrenia by risk score profile (RPS) decile in the Sweden (Sw1-6),

Denmark (Aarhus), and Molecular Genetics of Schizophrenia studies (Supplementary text).

Risk alleles and weights were derived from ‘leave one out’ analyses in which those samples

were excluded from the GWAS meta-analysis (Supplementary text). The threshold for

selecting risk alleles was PT < 0.05. The RPS were converted to deciles (1=lowest,

10=highest RPS), and nine dummy variables created to contrast deciles 2-10 to decile 1 as
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the reference. Odds ratios and 95% confidence intervals (bars) were estimated using logistic

regression with PCs to control for population stratification.
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