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Identification and estimation of survivor
average causal effects
Eric J. Tchetgen Tchetgen*†

In longitudinal studies, outcomes ascertained at follow-up are typically undefined for individuals who die prior
to the follow-up visit. In such settings, outcomes are said to be truncated by death and inference about the effects
of a point treatment or exposure, restricted to individuals alive at the follow-up visit, could be biased even if as in
experimental studies, treatment assignment were randomized. To account for truncation by death, the survivor
average causal effect (SACE) defines the effect of treatment on the outcome for the subset of individuals who
would have survived regardless of exposure status. In this paper, the author nonparametrically identifies SACE
by leveraging post-exposure longitudinal correlates of survival and outcome that may also mediate the exposure
effects on survival and outcome. Nonparametric identification is achieved by supposing that the longitudinal data
arise from a certain nonparametric structural equations model and by making the monotonicity assumption that
the effect of exposure on survival agrees in its direction across individuals. A novel weighted analysis involving a
consistent estimate of the survival process is shown to produce consistent estimates of SACE. A data illustration
is given, and the methods are extended to the context of time-varying exposures. We discuss a sensitivity anal-
ysis framework that relaxes assumptions about independent errors in the nonparametric structural equations
model and may be used to assess the extent to which inference may be altered by a violation of key identifying
assumptions. © 2014 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd.

Keywords: truncation by death; principal stratification; double robust; sensitivity analysis

1. Introduction

In longitudinal studies, it sometimes happens that individuals die between follow-up visits, in which case,
unobserved outcomes that would have been ascertained during follow-up are said to be truncated by death.
It is well known that inference about the effects of a point treatment or exposure, restricted to individuals
alive at a follow-up visit, could be biased even if as in experimental studies, treatment assignment were
randomized. Similarly, it may be that a vaccine studied in a randomized trial has a protective effect
against a viral infection for some but not all individuals in the study. Then, viral load associated with
the infection would not be observed unless a person became infected, which is a post-randomization
event. As for truncation by death, an evaluation of the effects of the vaccine on viral load among infected
individuals in the study likewise could be biased. Such bias may be present, if as we expect is likely the
case in the aforementioned settings, there are downstream effects of the exposure or treatment, which
affect survival or post-randomization infection, and the outcome of interest. A more fundamental issue
is that the outcome may not be well defined for individuals who die or remain uninfected by the virus,
under either exposure status, and therefore, it is not clear that a causal effect of the exposure can be
defined for such individuals. In order to appropriately account for truncation by death, one can define the
survivor average causal effect (SACE), which is the effect of exposure on the outcome for the subset of
individuals that would have survived regardless of exposure status [1, 2]. SACE is an instance of what
is sometimes referred to as a principal strata causal effect [2–4]. An analogous principal strata causal
effect is likewise defined for the effect of vaccine on viral load, among infected individuals for whom the
vaccine has no effect on HIV infection [5–8]. Throughout the paper, we refer to these two types of effects
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Figure 1. Causal diagram associated with the nonparametric structural equations model Equations (1)–(4).

as SACE without further distinguishing between their respective contexts. In this paper, SACE is shown
to be nonparametrically identified by leveraging post-exposure longitudinal correlates of survival and
outcome that may also mediate exposure effects on survival and outcome. Nonparametric identification is
achieved by supposing that the longitudinal data arise from a certain nonparametric structural equations
model (NPSEM) [9] and by making the monotonicity assumption that the effect of exposure on survival
agrees in its direction across individuals. Under these assumptions, a novel yet simple weighted analysis
with weights involving the survival process is shown to produce consistent estimates of SACE, provided
that the survival process is estimated consistently. A number of alternative estimators are also described,
some with interesting theoretical properties. However, it is argued that these other estimators may be
more difficult to implement in practice, particularly in studies with prolonged follow-up, where the simple
weighted analysis extends with little additional computational difficulty. An illustration of the simple
weighted analysis is given in an application concerning the effects of smoking history on decline of
cognitive function in an aging population subject to truncation by death. A general sensitivity analysis
technique is described, to assess the extent to which inference might be affected by a violation of an
assumption that all common causes of survival and the outcome are fully observed. Finally, in the context
of time-updated exposures, the survivor marginal structural model (SMSM) is introduced, which amounts
to a standard marginal structural model (MSM) for the subpopulation that would survive irrespective of
treatment history. A weighted approach is described for estimating the parameters of an SMSM.

2. A simple three-occasion study

2.1. Causal diagram interpretation of biased analyses

By way of introduction, first consider a simplified version of the study of the effects of smoking on
cognitive function decline, here restricted to only three longitudinal occasions, as depicted in the causal
diagram in Figure 1.

The simplified design consists of a baseline j = 0 at which binary smoking status A is observed, and
two follow-up contacts, with cognitive function and other covariates assessed at each j = 1, 2. Until oth-
erwise stated, assume that all respondents participate at the first follow-up, and thus data 𝐂1 are collected
for all subjects at j = 1, but some individuals die before the second follow-up, with S = 1 indicating
survival. Suppose that in addition to cognitive function, 𝐂1 includes all causes of survival (S) that are
also correlated with the outcome Y , with the latter defined as cognitive decline between j = 1 and j = 2.
The assumption that we have measured important correlates of S and Y will be key to our develop-
ments. As indicated in the diagram of Figure 1, any variable in 𝐂1 may itself contain effects of smoking
that simultaneously affect survival and the outcome Y among survivors. Potential examples of exposure-
induced correlates of S and Y to consider for 𝐂1 include measures obtained at time j = 1 of alcohol
consumption, disability score, cognitive score, self-rated health, and smoking status. In addition, as indi-
cated in Figure 1, we will allow survival to be directly affected by A not through 𝐂1, and we will also
assume that death is the only source of attrition in this study. Throughout, we assume no measurement
error. The double-headed arrow between 𝐂1 and Y encodes possible unmeasured common causes of say
cognitive function at follow-up and change in cognitive function Y , the presence of which cannot be ruled
out with certainty. For instance, there is evidence for genetic determinants of Alzheimer’s disease that
suggests a genetic basis for an individual’s cognitive function over time [10]. Thus, we would expect a
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genetic-induced association between cognitive function measured at time j = 1 and cognitive decline
between j = 1 and = 2, because such genetic information was not available for adjustment in this study.
Note that while the aforementioned genetic determinant of cognitive decline cannot be directly affected
by smoking behavior, other unmeasured common causes of cognitive function and cognitive decline
might also include unknown epigenetic effects of smoking behavior and, therefore, could also be directly
affected and thus mediate the effects of smoking. For simplicity, we further assume until later sections
that all analyses are stratified by pre-exposure confounders of A, which is suppressed in the notation, such
that the effects of A on

(
𝐂1,Y , S

)
are unconfounded, and therefore, A behaves as if it were randomized.

The causal diagram in Figure 1 can be used to formalize the bias associated with an analysis of the
effects of baseline smoking status A on decline of cognitive function Y , conditional on being alive at
the end of follow-up. To understand how this bias arises, it suffices to note that by d-separation [9],
such an analysis would unblock the noncausal pathways A → S ← 𝐂1 → Y and A → 𝐂1 ↔ Y , thus
indicating an effect of smoking on cognitive decline even if there were none. One should also note that
further conditioning on 𝐂1 does not resolve the difficulty, because doing so does not block the pathway
A → 𝐂1 ↔ Y . Both of these strategies essentially fail because conditioning on S implies conditioning
on a collider on the pathway A → S ← 𝐂1 → Y as in the first strategy, but also implies conditioning on
a direct descendant of a collider on the pathway A → 𝐂1 ↔ Y , which induces noncausal associations
between A and Y [9]. Further conditioning on 𝐂1 as in the second strategy earlier does not really help
resolve this issue because it also implies conditioning on a collider on the pathway A → 𝐂1 ↔ Y .Collider
bias is invariably the pitfall, and a primary source of bias, for most analyses involving conditioning on a
post-exposure event.

2.2. Nonparametric structural equations model

The following exposition is framed around a structural equation theory of causal inference, described by
Pearl [9]. Structural equations provide a nonparametric algebraic interpretation of the diagram of Figure 1
corresponding to four functions, one for each variable on the causal graph:

A = gA(𝜀A) (1)

𝐂1 = 𝐠𝐂1

(
A, 𝜺𝐂1

)
(2)

S = gS

(
A,𝐂1, 𝜀S

)
(3)

Y =
{

gY

(
A,𝐂1, 𝜀Y

)
if S = 1

undefined if S = 0
(4)

Each of the nonparametric functions {gA,… , gY} represents a causal mechanism that determines the
value of the left variable, known as the output, from variables on the right, known as the inputs [9].
The errors

(
𝜀A, 𝜺𝐂1

, 𝜀S, 𝜀Y

)
stand for all factors not included on the graph that could possibly affect their

corresponding outputs when all other inputs are held constant. For instance, 𝜀S includes all causes of death
unrelated to cognitive function decline. To be consistent with the causal graph presented in Figure 1, we
require that the errors

(
𝜀A, 𝜀S

)
be mutually independent, and we require that they be jointly independent

of
(
𝜺𝐂1

, 𝜀Y

)
. However, as indicated by the double arrow edge in Figure 1, 𝜺𝐂1

may not be independent
of 𝜀Y . We allow all error distributions to otherwise remain arbitrary. Lack of a causal effect of a given
variable on an output is encoded by an absence of the variable from the right-hand side. For example, the
absence of a direct effect of smoking on cognitive function at the first follow-up would imply removing
A from the arguments of 𝐠𝐂1

encoding the assumption that variations in A leave 𝐂1 unchanged, as long
as 𝜺𝐂1

remains constant, which is consistent with the assumption that there is no unmeasured common
cause of smoking and cognitive function.

The last equation makes explicit the fact that Y is observed only among survivors with (S = 1),
with corresponding structural equation gY

(
A,𝐂1, 𝜀Y

)
. As stated by Pearl [9], the invariance of structural

equations permits their use as a basis for modeling causal effects and counterfactuals. In fact, to emulate
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the intervention in which one sets {A = a} for all individuals simply amounts to replacing the equation
for A with A = a, producing the following set of modified equations:

A = a (5)

𝐂1(a) = 𝐠𝐂1
(a, 𝜺𝐂1

) (6)

S(a) = gS

(
a,𝐂1(a), 𝜀𝐒

)
(7)

Y(a) =
{

gY

(
a,𝐂1(a), 𝜀Y

)
if S(a) = 1

undefined if S(a) = 0
(8)

with
(
𝐂1(a), S(a),Y(a)

)
denoting the counterfactual outcomes had smoking status been set to a (possibly

contrary to fact). We emphasize that while the model specifies a structural equation for survival, survival
is not manipulable and, together with Y , should be understood as part of the outcome produced by the
system of equations. As previously observed [11], structural equations are particularly helpful to clarify
the difficulty with interpreting the effect of smoking when truncation by death is present. Specifically,
we note that the individual effect of smoking is recovered by taking the contrast Y(a = 1) − Y(a = 0),
which clearly is defined only for individuals in the principal stratum {S(0) = S(1) = 1} and is equal to

gY

(
1,𝐂1(1), 𝜀Y

)
− gY

(
0,𝐂1(0), 𝜀Y

)
and the associated population average gives the SACE estimand denoted 𝛽:

𝛽 = E {Y(a = 1) − Y(a = 0)|S(a = 0) = S(a = 1) = 1}
= E
{

gY

(
1,𝐂1(1), 𝜀Y

)
− gY

(
0,𝐂1(0), 𝜀Y

) |S(a = 0) = S(a = 1) = 1
}

The SACE is generally not identified without additional assumptions, even under an NPSEM. At one
end of the spectrum of possible identifying assumptions, one might assume that the sharp null hypothesis
holds that for all individuals in the population, A has no individual causal effect on survival, that is,
S(a = 1) = S(a = 0) = 1 almost surely. The assumption implies that individuals who survive under an
exposure status constitute a random sample of individuals who would survive irrespective of exposure
value. Then, it is straightforward to verify that

𝛽 = E(Y|S = 1,A = 1) − E(Y|A = 0, S = 1)

In light of existing scientific evidence on harmful effects of smoking on human health, the above
identifying assumption of no individual causal effect of smoking on survival is clearly inappropriate, and
therefore, the aforementioned equation is unlikely to be correct.

At the opposite end of the spectrum of possible identifying assumptions, a strategy that is sometimes
adopted entails performing a sensitivity analysis, using data on (A, SY , S) [7,12–14], possibly also incor-
porating pre-exposure covariates [9]. A sensitivity analysis then typically involves recovering an estimate
of SACE upon making a monotonicity assumption about the effects of exposure on survival and by fixing
certain nonidendified parameters involving the joint distribution of potential outcomes to some hypothet-
ical value, which is then varied over a certain range to assess the degree to which the estimate of SACE
changes as a function of these parameters. The monotonicity assumption may sometimes be relaxed
by introducing additional sensitivity parameters [15, 16]. Worst-case scenarios of a sensitivity analysis
give rise to bounds for SACE, but such bounds typically only apply in rather simple settings [3, 17].
For instance, it is not clear whether such bounds can easily be constructed in the presence of numerous
baseline and/or time-dependent covariates and with a continuous possibly unbounded outcome.

An alternative identifying assumption that is sometimes made in the principal strata literature and
that falls somewhere in between the aforementioned extremes involves assuming that certain potential
outcome independencies about the outcome of interest and survival can be obtained upon conditioning

3604

© 2014 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. Statist. Med. 2014, 33 3601–3628



E. J. TCHETGEN TCHETGEN

on enough pre-exposure covariates, such that SACE becomes identified within levels of such covariates
Hayden et al. [18]. Zhang et al. [19] proposed to identify SACE under a parametric model using the
maximum likelihood estimation. They discussed identifiability for a mixture normal model; however, as
pointed out by Ding et al. [20], the mixture normal model may not be identifiable under the extreme case
that the probability of each latent component is the same. For instance, when the outcome of interest is
binary, even with a parametric binary mixture model, the causal parameter of interest is still not identi-
fiable without some further assumptions [20]. An alternative approach is given by Ding et al. [20] who
exploit a fairly strong form of exclusion restriction for an observed pre-exposure covariate to obtain non-
parametric identification of SACE. They essentially require that an association between the covariate in
question and survival exists solely because the former is an effect of principal strata and thus cannot be a
causal risk factor for death nor can it be affected by a common unmeasured risk factor for death. A vari-
able satisfying these rather stringent conditions may be hard to find in most health-related applications,
thus limiting the extent to which their proposed framework may be of practical use. Nolen and Hudgens
[21] proposed an elegant randomization-based approach about causal effects within principal strata—
possibly within pre-exposure covariate levels—that is particularly useful for testing the null hypothesis
of no principal strata causal effect but relies for identification and estimation away from the null, on the
assumption of a constant individual principal strata causal effect.

The aforementioned methods all share a notable limitation, in that none appears to appropriately incor-
porate risk factors of survival available in post-exposure follow-up. In our hypothetical example, it is
unclear whether these methods, including sensitivity analysis techniques, can make use of follow-up data
collected in 𝐂1 such as post-exposure cognitive function, a correlate of survival that is likely affected
by smoking status. A somewhat related context is considered by Dai et al. [22], who develop a partially
hidden Markov model for time-varying principal stratification in HIV prevential trials. Their proposed
approach however relies on a categorization of the intermediate variables into discrete event types and
therefore does not easily generalize for continuous or high-dimensional intermediate variables. Tchetgen
Tchetgen et al. [11] provide an alternative interpretation of standard inverse probability weighting for
dependent censoring, incorporating time-updated covariates. They show that under the NPSEM defined
by Equations (1–4), the causal effect identified by inverse probability weighting survivors, in fact, nat-
urally incorporates principal strata causal effects therefore formally establishing a previously unknown
relation between inverse probability weighting and principal stratification, two seemingly unrelated
analytic frameworks. However, their proposed model does not exactly identify SACE without further
assumptions. In the next section, an alternative approach is proposed that does not suffer from these
possible limitations. But first, we refine the usual definition of SACE to rule out certain pathological sit-
uations. As discussed earlier, SACE is typically defined to be the average exposure effect for individuals
that would survive irrespective of exposure. One might further refine the definition of SACE by consid-
ering a person’s survival status S(a = 1,𝐂1(a = 0)) in the hypothetical situation in which the person
smoked, but 𝐂1 behaved as if the individual did not smoke; likewise, one could consider a person’s sur-
vival status S(a = 0,𝐂1(a = 1)) in the hypothetical scenario where the person did not smoke, but 𝐂1
behaved as if the person smoked. Such ‘cross-world’ potential outcomes feature prominently in recent
literature on causal mediation analysis, where they are used for formal causal definitions of direct and
indirect effects of an exposure [23, 24]. They are formally defined by composition of functions defining
the NPSEM each possibly evaluated under different exposure values. Consider the following set of an
individual’s potential outcomes{

S(a = 0) = S(a = 0,𝐂1(a = 0)), S(a = 1,𝐂1(a = 0))
S(a = 0,𝐂1(a = 1)), S(a = 1) = S(a = 1,𝐂1(a = 1))

}
which allows further distinction between individuals who would survive irrespective of exposure, that is,
S(a = 0) = S(a = 1) = 1. For instance, it may be that a person that would survive whether exposed or
not would not survive in certain cross-world situations S(a = 1,𝐂1(a = 0)) = S(a = 0,𝐂1(a = 1)) = 0.
Such an individual would be considered rather unusual, and hereafter, the causal effect of exposure for
such a person is not further considered, and SACE is redefined to be the causal effect of exposure for
individuals that would survive regardless of exposure, including under cross-world situations:

𝜓 = E
{

Y(a = 1) − Y(a = 0)|S(a,𝐂1(a∗)) = 1; a, a∗ ∈ {0, 1}
}

If one were to a priori rule out the possibility that an individual that would survive irrespective of exposure
status could die under cross-world conditions, then it would also be that 𝜓 = 𝛽, and therefore, the

© 2014 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. Statist. Med. 2014, 33 3601–3628
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more stringent definition of SACE would match the more common definition. An alternative and perhaps
more intuitive condition for this equality is that for every survivor, absence of an individual total effect
of exposure on survival implies absence of both an individual direct effect not mediated by 𝐂1 and an
individual indirect effect of exposure mediated by 𝐂1, thus ruling out the possibility of countervailing
direct and indirect effects resulting in a null individual total effect.

2.3. Identification of survivor average causal effect

Identification of SACE requires, in addition to the NPSEM assumptions, that we make the following
assumptions:

Monotonicity assumption:

S
(
a = 1,𝐂1(a∗)

)
⩽ S
(
a = 0,𝐂1(a∗)

)
almost surely, a∗ = 0, 1

The contrast S(a = 1,𝐂1(a∗))−S(a = 0,𝐂1(a∗)) is known in the causal mediation literature as the pure
or natural direct effect of exposure, in a hypothetical situation where 𝐂1 is set to what it would be under
smoking status a∗, and captures the direct effects of exposure not mediated by 𝐂1. Thus, the assumption
states that there is no individual in the population, for whom smoking provides a protective individual
direct effect on survival.

In order to state the second assumption, consider the following subsets of individuals. Let 0 denote
the subset of individuals that would survive regardless of smoking, in a hypothetical situation where 𝐂1
would behave as if they did not smoke, that is, S(a = 0,𝐂1(a = 0)) = S(a = 1,𝐂1(a = 0)) = 1, and let
1 denote the subset of individuals that would survive irrespective of smoking, in a hypothetical situation
where 𝐂1 would behave as if they smoked, that is, S(a = 0,𝐂1(a = 1)) = S(a = 1,𝐂1(a = 1)) = 1.

Concordant survivorship assumption: 0 = 1 almost surely.

This second assumption states that individuals that would survive irrespective of smoking status, in a
hypothetical situation where 𝐂1 behaved as if they smoked, would also survive irrespective of smoking
status, in the hypothetical situation where 𝐂1 behaved as if they did not smoke and that the converse also
holds. In terminology used in causal mediation analysis, the assumption states that there is no survivor
for whom the natural direct effect of A on S is null when 𝐂1 is held at the value it would have been under
no exposure, and yet the natural direct effect when 𝐂1 is held at the value it would have been under active
exposure is non-null. Under the assumption, the converse is also ruled out. A sufficient condition for the
assumption is that A and 𝐂1 do not interact at the individual level (on the additive scale) in causing S,
however the assumption may still hold even if this were not the case. Another interesting special case
is if 𝐂1 intercepts all causal pathways between A and S, then the assumption (and monotonicity) holds
trivially because S(a = 0,𝐂1(a∗)) − S(a = 1,𝐂1(a∗)) = 0 for all a∗. This latter situation highlights the
importance of including in 𝐂1 mediating factors of the effects A on S, which may potentially interact
with exposure.

We are now ready to state our identification result:

Theorem 1
Under the NPSEM given by Equations (1)–(4), and under the monotonicity assumption, and the
concordant survivorship assumption, we have that SACE :

𝜓 = E
{

Y(a = 1) − Y(a = 0)|S(a = 0,𝐂1(a∗)) = S(a = 1,𝐂1(a∗)) = 1, a∗ = 0, 1
}

is nonparametrically identified and is given by 𝜇1 − 𝜇0, where

𝜇1 = E
{

Y(a = 1)|S(a = 0,𝐂1(a∗)) = S(a = 1,𝐂1(a∗)) = 1, a∗ = 0, 1
}

= E
{

Y(a = 1)|S(a = 0,𝐂1(a = 1)) = S(a = 1,𝐂1(a = 1)) = 1
}

= E {Y|A = 1, S = 1}
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and

𝜇0 = E
{

Y(a = 0)|S(a = 0,𝐂1(a∗)) = S(a = 1,𝐂1(a∗)) = 1, a∗ = 0, 1
}

= E
{

Y(a = 0)|S(a = 0,𝐂1(a = 0)) = S(a = 1,𝐂1(a = 0)) = 1
}

=
∫ E
(
Y|A = 0, S = 1,𝐂1 = 𝐜

)
Pr(S = 1|A = 1,𝐂1 = 𝐜)dF(𝐜|A = 0)

∫ Pr(S = 1|A = 1,𝐂1 = 𝐜)dF(𝐜|A = 0)
(9)

where F(u1|u2) stands for the CDF of U1 given U2, evaluated at U1 = u1, U2 = u2, and it is assumed that
Pr(S = 1,𝐂1 = 𝐜|A = 1)∕Pr(S = 1,𝐂1 = 𝐜|A = 0) < ∞.

Proofs of all theorems are given in the Appendix. According to the theorem, estimation of the average
survivor outcome for smoking presents no particular difficulty and can be obtained by the simple average
outcome for the exposed individuals who survived. The situation is quite different for the average survivor
outcome for the nonsmoking exposure status. The theorem states that this average can be obtained by
using the expression given in Equation (9). Intuition is gained by comparing this expression with that of
the average outcome for unexposed individuals who actually survived:

E(Y|A = 0, S = 1) =
∫ E
(
Y|A = 0, S = 1,𝐂1 = 𝐜

)
Pr(S = 1|A = 0,𝐂1 = 𝐜)dF(𝐜|A = 0)

∫ Pr
(
S = 1|A = 0,𝐂1 = 𝐜

)
dF(𝐜|A = 0)

Then, one may note that the primary distinction between these two expressions is that the conditional
survival probability for the unexposed used in both numerator and denominator of the second expression
is replaced by that for the exposed in the first expression. This substitution essentially amounts to a
form of standardization of unexposed individuals who survived, by the survival probability of exposed
individuals with similar covariate history. One should note as well that in the special instance where S is
independent of A given 𝐂1, as one might expect, the two aforementioned expressions coincide. However,
in general, the two functionals do not coincide, and the subtle difference between them has nontrivial
implications for inference. Specifically, whereas estimation of E (Y|A = 1, S = 1) is straightforward and
does not require estimating nuisance parameters, estimation of 𝜇0 is somewhat more involved.

2.4. Estimation of survivor average causal effect

As explained in the previous section, we only need to consider estimation of 𝜇0. Ideally, we may wish
to estimate the latter nonparametrically, so as to avoid potential modeling bias; however, this may
not be possible in practice. This is because, as shown below, estimation of 𝜇0 is generally not possi-
ble without involving an estimate of a subset of the following quantities {E

(
Y|A, S = 1,𝐂1

)
,Pr(S =

1|A,𝐂1), dF(𝐂1|A)}. In practice, one would probably seek to enrich to the extent possible the set of
covariates in 𝐂1 in order to ensure that all variables are included, which potentially mediate the effects
of exposure on survival and outcome simultaneously. As a result, our primary interest concerns settings
in which 𝐂1 potentially includes a large number of covariates, a subset of which is possibly continuous,
such that nonparametric methods for estimating the aforementioned density and regression models, such
as smoothing techniques, may be of limited value. Consequently, next, we present three simple estima-
tion strategies based on low-dimensional models. Let {Ê

(
Y|A, S = 1,𝐂1

)
, P̂r(S = 1|A,𝐂1), dF̂(𝐂1|A)}

denote estimates obtained using parsimonious parametric working models for the unknown conditional
mean and the two unknown conditional densities. Our first strategy entails direct substitution of unknown
quantities in (9) by their corresponding estimate, which gives

𝜇1
0 =

∫ Ê
(
Y|A = 0, S = 1,𝐂1 = 𝐜

)
P̂r(S = 1|A = 1,𝐂1 = 𝐜)dF̂(𝐜|A = 0)

∫ P̂r(S = 1|A = 1,𝐂1 = 𝐜)dF̂(𝐜|A = 0)

This estimator depends heavily on correct specification of all three models. An alternative estimator that
makes fewer assumptions is based on the following equivalent representation of 𝜇0

© 2014 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. Statist. Med. 2014, 33 3601–3628
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∫ E
(
Y|A = 0, S = 1,𝐂1 = 𝐜

)
Pr
(
S = 1|A = 1,𝐂1 = 𝐜

)
dF(𝐜|A = 0)

∫ Pr
(
S = 1|A = 1,𝐂1 = 𝐜

)
dF(𝐜|A = 0)

=
E
{
E
(
Y|A = 0, S = 1,𝐂1

)
ASdF(𝐂1|A = 0)∕dF

(
𝐂1|A = 1

)}
E
{

ASdF
(
𝐂1|A = 0

)
∕dF
(
𝐂1|A = 1

)}
which gives the estimator

𝜇2
0 =

Pn

[
Ê
(
Y|A = 0, S = 1,𝐂1

)
AS
{

dF̂(𝐂1|A = 0)∕dF̂(𝐂1|A = 1)
}]

Pn

[
AS
{

dF̂(𝐂1|A = 0)∕dF̂(𝐂1|A = 1)
}]

where Pn(⋅) = n−1∑
i(⋅)i. This second approach improves over the first in terms of robustness, because it

does not directly involve an estimate of the survival process. Finally, consider yet another representation
of 𝜇0 ∶

∫ E
(
Y|A = 0, S = 1,𝐂1 = 𝐜

)
Pr
(
S = 1|A = 1,𝐂1 = 𝐜

)
dF(𝐜|A = 0)

∫ Pr
(
S = 1|A = 1,𝐂1 = 𝐜

)
dF(𝐜|A = 0)

=
E
{

Y(1 − A)S Pr
(
S = 1|A = 1,𝐂1

)
∕ Pr
(
S = 1|A = 0,𝐂1

)}
E
{
(1 − A)S Pr

(
S = 1|A = 1,𝐂1

)
∕ Pr
(
S = 1|A = 0,𝐂1

)} (10)

which motivates the estimator

𝜇3
0 =

E

{
Y(1 − A)SP̂r

(
S = 1|A = 1,𝐂1

)
∕P̂r
(
S = 1|A = 0,𝐂1

)}
E

{
(1 − A)SP̂r

(
S = 1|A = 1,𝐂1

)
∕P̂r(S = 1|A = 0,𝐂1)

}
This last estimator has the advantage that it only requires an estimate of the survival process, and both the
outcome regression and the covariates distribution are left unrestricted. From the three approaches pre-
sented above earlier, the last is most appealing, because it involves fitting a single model, whereas the
other two approaches involve multiple models. In the next section, we show that the last strategy readily
extends to a general longitudinal design with arbitrary follow-up. We do not further consider the first two
strategies on above grounds, although in Section 5, a doubly robust approach is given, which combines
all three mentioned strategies such that consistent estimation of 𝜇0 remains possible even under partial
model misspecification, that is, when only some but not all required models are correctly specified.

3. Longitudinal studies of arbitrary length

3.1. Longitudinal nonparametric structural equations model and identification of survivor average
causal effect

We turn to the more general context of a longitudinal study with arbitrary follow-up j = 0,… J, with
J ⩾ 2 is fixed, and at each occasion j, one observes

(
Sj, Sj𝐂j

)
, where Sj indicates survival status at time

j, and 𝐂j includes covariates measured at time j. We suppose that S0 = S1 = 1, and therefore, a vector
of pre-exposure covariates 𝐂0 is measured on all individuals in the target population, and exposure A is
measured concurrently with covariates𝐂1 on all individuals in the target population. The variable𝐂J = Y
encodes the outcome measured at the end of follow-up. We consider the general NPSEM:

For j = 0

𝐂0 = 𝐠𝐂0

(
𝜺𝐂0

) (11)

for j = 1{
𝐂1 = 𝐠𝐂1

(
𝜺𝐂1

,𝐂0

)
A = gA

(
𝜀A,𝐂0

) (12)
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and for j = 2,… , J

Sj =

{
gSj

(
A,𝐂j−1, 𝜀Sj

)
if Sj−1 = 1

0 if Sj−1 = 0
(13)

𝐂j =

{
𝐠𝐂j

(
A,𝐂j−1, 𝜺𝐂j

)
if Sj = 1

undefined if Sj = 0
(14)

We assume that

𝜀A ⟂⟂
{
𝜀sj

∶ j = 2,… , J
}

and we also assume that {
𝜀A, 𝜀sj

∶ j = 2,… , J
}
⟂⟂
{
𝜺𝐂j

∶ j ⩾ 2
}

However, 𝜺𝐂j
and 𝜺𝐂j′

may be dependent, and 𝜀sj
and 𝜀sj′

may be dependent, j ≠ j′. The causal diagram of
Figure 2 depicts the observed data, generated under such an NPSEM for an individual alive at the end of
follow-up, in the special case where J = 4.We allow all error distributions to otherwise remain arbitrary.

This more general NPSEM extends the previous model, to accommodate, both confounding by pre-
exposure covariates 𝐂0, and longitudinal data 𝐂J , where 𝐂j denotes the history

(
𝐂0,… ,𝐂j

)
. Note that

because 𝐂0 and 𝐂1 are respectively prior to and concurrent with exposure A (now defined to occur at
time j = 1 to ensure proper temporal ordering with 𝐂0), they cannot be affected by exposure, and thus
𝐂0(a) = 𝐂0 and 𝐂1(a) = 𝐂1. Technically, 𝐂0 confounds the effects of A, but 𝐂1 is not considered
a confounder even though it may be correlated with A and may be used to account for survival bias.
Crucially, independence of 𝜀𝐂j−1

and 𝜀sj
implies that for individuals alive at time j−1,

(
𝐂j−2,A

)
intercepts

or blocks all noncausal pathways between 𝐂j−1 and Sj; in the language of causal graphs,
(
𝐂j−2,A

)
is said

to block all back-door paths from 𝐂j−1 to Sj.
The SACE is defined to be the causal effect of exposure on an outcome measured at the end of follow-

up, among individuals that would survive whether exposed or not, and with the covariate history, they
would have under possibly conflicting exposure status:

𝜓J = E

{
Y(a = 1) − Y(a = 0)|SJ

(
a,𝐂J−1(a∗)

)
= 1; a, a∗ ∈ {0, 1}

}

Figure 2. Causal diagram associated with the nonparametric structural equations model Equations (11)–(14) at
J = 4.

© 2014 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. Statist. Med. 2014, 33 3601–3628
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As was the case in the previous section with three time points, we likewise have that if
SJ(0,𝐂J−1(0))SJ(1,𝐂J−1(1)) = 1 implies SJ(0,𝐂J−1(1))SJ(1,𝐂J−1(0)) = 1 almost surely, then

𝜓J = E

{
Y(a = 1) − Y(a = 0)|SJ

(
a,𝐂J−1(a)

)
= SJ(a) = 1; a ∈ {0, 1}

}
which corresponds to the traditional definition of SACE.

Identification requires an extension of the monotonicity and concordant survivorship assumptions:

Sequential monotonicity assumption for point exposure:

if Sj−1

(
1,𝐂j−2(a)

)
Sj−1

(
0,𝐂j−2(a)

)
= 1 then Sj

(
1,𝐂j−1(a)

)
⩽ Sj

(
0,𝐂j−1(a)

)
almost surely; a = 0, 1, j = 1,… , J

Let 0,J denote the subset of individuals that would survive until the end of follow-up regardless of
smoking, in a hypothetical situation where 𝐂J would behave as if they did not smoke, and let 1,J denote
the subset of individuals that would survive irrespective of smoking, in a hypothetical situation where 𝐂J
would behave as if they smoked.

Concordant survivorship assumption for point exposure:

0,J = 1,J almost surely

The sequential monotonicity assumption states that for a person that would survive up to time j − 1
irrespective of smoking status, in the hypothetical situation in which his covariate history behaves as if
smoking status were fixed to a, if the person were to survive at time j when exposed and with covariate
history as if smoking status were equal to a, the person would also survive at time j, with similar covariate
history, if he were not to smoke. The concordant survivorship assumption essentially states that

SJ

(
1,𝐂J−1(0)

)
SJ

(
0,𝐂J−1(0)

)
= 1 ⇐⇒ SJ

(
1,𝐂J−1(1)

)
SJ

(
0,𝐂J−1(1)

)
= 1 almost surely

which is the natural extension of the previous concordant survivorship assumption. Let

𝜋j

(
a, 𝐜j−1

)
= Pr
(

Sj = 1|A = a,𝐂j−1 = 𝐜j−1, Sj−1 = 1
)
, j = 2,… J

Ga,j

(
𝐜j; 𝐜j−1

)
= F
(
𝐜j|A = a,𝐂j−1 = 𝐜j−1, Sj = 1

)
, j = 2,… , J − 1

G0,1

(
𝐜1; 𝐜0

)
= G1,1

(
𝐜1; 𝐜0

)
= F
(
𝐜1|𝐜0

)
G0,0

(
𝐜0; 𝐜−1

)
= G1,0

(
𝐜0; 𝐜−1

)
= F(𝐜0)

Throughout, we further assume that

J∏
k=2

𝜋k

(
1,𝐂k−1

)
G1,k−1

(
𝐂k−1;𝐂j−2

)
∕

J∏
k=2

𝜋k

(
0,𝐂k−1

)
G0,k−1

(
𝐂k−1;𝐂k−2

)
<∞

almost surely, where 𝜋k is defined in Theorem 2, and 0 < p
(
𝐂0

)
< 1 almost surely.

Then, we have the following result.

Theorem 2
Under the NPSEM given by Equations (11)–(14), the sequential monotonicity assumption, and the con-
cordant survivorship assumption for point exposure, we have that 𝜓J is nonparametrically identified and
is given by 𝜇1,J − 𝜇0,J , where

𝜇1,J = E

{
Y(a = 1)|SJ

(
a,𝐂J−1 (a∗)

)
= 1; a, a∗ ∈ {0, 1}

}
= E
(
Y|A = 1, SJ = 1

)3610
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and

𝜇0,J = E

{
Y(a = 0)|SJ

(
a,𝐂J−1 (a∗)

)
= 1; a, a∗ ∈ {0, 1}

}
=

∫ … ∫ E

(
Y|A = 0, SJ = 1,𝐂J−1 = 𝐜J−1

)∏J
j=2 𝜋j

(
1, 𝐜j−1

)∏J−1
j=0 dG0,j

(
𝐜j; 𝐜j−1

)
∫ … ∫ ∏J

j=2 𝜋j

(
1, 𝐜j−1

)∏J−1
j=0 dG0,j

(
𝐜j; 𝐜j−1

) (15)

According to the theorem, as was the case in the three-occasion example, estimation of the survivor
average outcome for smoking likewise presents no particular difficulty and can be achieved by a simple
average of the outcome of exposed individuals who survived until the end of follow-up. The theorem
states that the survivor average outcome for nonsmoking is given by the functional in Equation (15).
This formula is a generalization of Equation (9) accounting for arbitrary follow-up and pre-exposure
confounding by 𝐂0. Instead of a marginal SACE parameter, a conditional SACE parameter might be of
interest, say

𝜓J(v) = E

{
Y(a = 1) − Y(a = 0)|𝐕 = 𝐯, SJ

(
a,𝐂J−1(a∗)

)
= 1; a, a∗ ∈ {0, 1}

}
where 𝐕 ⊂ 𝐂0 is a vector of pre-exposure confounders, such that 𝐂0 = (𝐕,𝐖) with 𝐖 all components
of 𝐂0 not in 𝐕. Then, it is straightforward to verify that a corollary of Theorem 2 gives under the same
set of assumptions:

𝜓J(𝐯) = 𝜇1,J(𝐯) − 𝜇0,J(𝐯)

where

𝜇1,J(𝐯) = E
{

Y|A = 1,𝐕 = 𝐯, SJ = 1
}

𝜇0,J(v) =
∫ … ∫ E

(
Y|A = 0, SJ = 1,𝐂J−1 = 𝐜J−1

)∏J
j=2 𝜋j

(
1, 𝐜j−1

)∏J−1
j=1 dG0,j

(
𝐜j; 𝐜j−1

)
dG0,0(𝐰; 𝐯)

∫ … ∫ ∏J
j=2 𝜋j

(
1, 𝐜j−1

)∏J−1
j=1 dG0,j

(
𝐜j; 𝐜j−1

)
dG0,0(𝐰; 𝐯)

and

G0,0(𝐰; 𝐯) =
{

F(𝐰|𝐯) if 𝐖 is not empty
1 if 𝐖 is empty

3.2. Weighted estimation of models of survivor average causal effect

A simple weighted approach is given, which is consistent in the absence of model misspecification. Let{
𝜋j(⋅), j = 2,… J

}
denote a fitted model for the survival process, using a standard parametric approach;

likewise, let p(𝐂0) = Pr(A = 1|𝐂0) denote the propensity score for exposure, and p̂(𝐂0) its corresponding
estimator. Define the following estimated weights for individuals who survive until the end of follow-up:

ŴS =

∏J
k=2 𝜋k

(
1,𝐂k−1

)
∏J

k=2 𝜋k

(
A,𝐂k−1

)
ŴA =
[
p̂
(
𝐂0

)A {
1 − p̂
(
𝐂0

)}1−A
]−1

Then, let �̂�J denote the weighted ordinary least-squares estimator of the marginal effect of A on Y using
only data on individuals who survived until the end of follow-up, with individual weight equal to ŴS×ŴA.
Then, we have the following result:

© 2014 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. Statist. Med. 2014, 33 3601–3628
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Theorem 3
Suppose that the assumptions of Theorem 2 hold and that

{
𝜋j(⋅), j = 2,… J

}
and P̂(⋅) are consistent, then

�̂�J is consistent for 𝜓J .

The theorem states that 𝜓J may be estimated consistently, by weighted least-squares estimation of a
regression of Y on A among survivors at time J, with weight ŴS × ŴA. Furthermore, the estimator �̂�J is
asymptotically normal under standard regularity conditions. The weights component given by ŴA corre-
sponds to standard inverse probability-of-treatment weighting a well-known propensity score technique
to control for confounding [25, 26]. Intuitively, treatment weights create possibly fractional copies of
each individual with complete follow-up, such that in the weighted sample, 𝐂0 no longer predicts A and
therefore is not a confounder. The other component of the weights ŴS corrects for selective survival of
unexposed individuals. Intuitively, monotonicity of the effects of exposure on survival implies that unex-
posed survivors may be over-represented relative to the exposed, and thus if 𝐂0 were empty so that ŴA

could be set to 1, then because 0 < WS =
∏j

k=2 𝜋k

(
1,𝐂k−1

)
∕
∏j

k=2 𝜋k

(
A,𝐂k−1

)
⩽ 1, we would have

that the survival weight essentially adjusts the contribution of unexposed survivors downwards and does
so continuously as a function of 𝐂J .

Although the theorem identifies SACE on the additive scale, estimation using ŴS × ŴA as weight is a
universal strategy for estimating SACE on a variety of scales. For instance, the approach could be used to
estimate SACE on the multiplicative scale, or for other choice of link function, such as logit or probit link
functions. This could be achieved by simply replacing the normal equations with the corresponding set
of estimating equations one would have used in the absence of selective survivorship and by multiplying
each survivor’s contribution by the weight. The approach could also be used for quantile regression or for
weighting other standard likelihood or quasi-likelihood methods. Finally, suppose that instead of marginal
causal effects, a conditional causal effect, say 𝜓J(𝐂0), was in view. Then, suppose that one were to use

a parametric or semiparametric model E
{

Y(a)|𝐂0 = 𝐜0, SJ(a′,𝐂J−1(a∗)) = 1; for all a′, a∗ ∈ {0, 1} ; 𝜃
}

to describe the survivor average causal effect of A within levels of 𝐂o. Then, assuming the model was cor-
rect, 𝜃 could then be estimated via a weighted approach, using only the survival component of the weight
ŴS, because the regression model would already account for baseline confounding by conditioning on
𝐂0. This strategy is in fact adopted in the data illustration of the next section.

For inference about 𝜓J or 𝜓J(𝐂0), in general, one could use the nonparametric bootstrap such that the
extra variation due to first-stage estimation of the weights is appropriately accounted for. Alternatively,
one could use a consistent estimate of the large sample variance of the weighted estimator of SACE to
construct Wald-type CIs; such an estimator of the large sample variance can be computed in a manner
similar to the variance estimator given in Section 5.

4. A data application

We illustrate the new methodology in an evaluation of the effects of smoking on cognitive decline
in an aging population subject to substantial attrition due to death and dropout for other reasons [27].
In their paper, Weuve et al. [27] noted that selective attrition in this population may introduce bias into
analyses of the effects of smoking status measured at the start of follow-up on cognitive decline, for the
following reasons.

(1) An individual’s evolving health status is likely to be a common cause for attrition and cognitive
decline among survivors who do not drop out.

(2) An individual’s evolving health status is likely to mediate the causal effect of smoking on
cognitive decline.

To account for (1) and (2), Weuve et al. used inverse probability-of-attrition weights and examined the
influence of selective attrition on the estimated association of current smoking (versus never smoking)
with cognitive decline in participants of the Chicago Health and Aging Project (n = 3713), aged
65–109 years, who were current smokers or never smokers, and underwent cognitive assessments up to
five times at 3-year intervals. Only 20% of the original sample remained at the fourth follow-up, and
mortality accounted for most (∼70%) of the attrition. Weuve et al. used separate pooled logistic regres-
sions to fit predictive models of attrition due to death or study dropout across follow-up visits using
both baseline and time-updated data to construct inverse probability-of-attrition weights. We refer the
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reader to Weuve et al. for additional details on their design and analysis of the study, also see [11, 24]
for additional discussion. Similar to Weuve et al. [27], we estimated a linear mean regression model con-
trasting rates of change in cognitive scores in current versus never smokers, adjusting for the following
pre-exposure confounders in the regression: age, sex, race, education, and alcohol consumption. As rec-
ommended by Tchetgen Tchetgen et al. [28], we assumed an independence correlation structure for the
five serial measurements of cognitive function (coded as z-scores). The two main sources of attrition,
death and dropout for other reasons (denoted Dj), were modeled separately as discrete-time PH models
via pooled logistic regression. Each model included main effects for the following baseline and time-
updated variables: age, race (African American versus White), sex (male versus female), education (0–8,
9–12 referent, 13–16, and 17–30 years), alcohol consumption at the previous visit (none referent, up to 1
drink/day, 1 drink/day), social network score at the previous visit, cognitive activity at the previous visit,
disability score at the previous visit, self-rated health at the previous visit (per unit worsening in rating),
chronic cardiovascular conditions, diabetes, global cognitive score at the previous visit, and smoking sta-
tus (current versus never). A logistic model for nondeath-related censoring was also estimated using only
baseline variables. These predictive models were combined as in the study of Weuve et al. to account for
selective censoring other than death via stabilized weights [27]:

Ŵ ̈
j =
∏j

k=2 P̂r
(
Dk = 0|𝐂0,A, Sk = 1

)
∏j

k=2 P̂r
(

Dk = 0|𝐂k−1,A, Sk = 1
)

An additional set of weights was estimated to account for truncation by death using the approach
developed in Section 3.2

ŴS,j =

∏j
k=2 𝜋k

(
1,𝐂k−1

)
∏j

k=2 𝜋k

(
A,𝐂k−1

)
and the final weight Ŵ ̈

j × ŴS,j was applied at the level of observations within individuals, such that for
each person’s contribution to our analysis at time j, the weight was the product of censoring weights and
survival weights.

The CIs were obtained via the bootstrap. In unweighted analyses, current smokers’ cognitive scores
declined 0.11 standard units per decade more rapidly than never smokers’ cognitive scores (95% CI =
−0.20 to −0.02). Weighting for attrition due to dropout or death using Ŵ ̈

j × ŴS,j for weight gave an esti-
mate that was considerably larger, with smoking’s estimated 10-year rate of decline compared with non-
smoking 55% larger than in the unweighted analysis (95% CI = −0.27 to −0.07). Under the assumptions
of Theorem 2, this latter estimate may be interpreted as the survivor average causal effect of smoking on
cognitive decline conditional on pre-exposure covariates. Monotonicity in the current setting essentially
states that smoking does not offer any direct individual survival benefit not mediated by the time-varying
factors included in our analysis. We emphasize that the assumption does not rule out that there may be
certain pathways through which smoking could offer survival benefits (e.g., by alleviating depressive
symptoms in an individual with suicidal tendencies); however, according to the assumption, such path-
ways are assumed to be outweighed for each individual by the harmful health effects associated with
smoking through other pathways. We find this assumption to be credible given the overwhelming amount
of evidence of the harmful effects of smoking. The concordant survivorship assumption here essentially
states that survivors who experienced no natural direct effect of smoking (not mediated by time-updated
factors 𝐂J−1) would do so irrespective of the reference exposure value used in defining the direct effect.
This assumption may be reasonable, if one can safely assume that 𝐂J−1 captures the most important path-
ways by which smoking affects survival and that the remaining pathways not captured by 𝐂J−1 do not
have significant additive interactions with the latter. Our interpretation of our estimated effect as identi-
fying SACE is thus contingent on the extent to which this last assumption may be reasonable. Finally,
we should note that similar results were obtained for SACE when dropout for other reasons was simply
ignored by redefining the weight as ŴS,j, suggesting that most of the selection bias due to attrition was
related to death.

© 2014 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. Statist. Med. 2014, 33 3601–3628

3613



E. J. TCHETGEN TCHETGEN

5. Results on double robustness and sensitivity analysis

5.1. Double robustness

Consider the simple three-occasion setting described in Section 2. The following result gives a dou-
bly robust estimator of 𝜇0 in the three-occasion setting, which essentially combines 𝜇2

0 and 𝜇3
0 of

Section 2.4, such that consistency is obtained under a union model where either Ê
(
Y|A = 0, S = 1,𝐂1

)
and dF̂(𝐂1|A = 0) are both consistent or P̂r(S = 1|A = 0,𝐂1) is consistent, but all models are not
necessarily consistent. To state the result, consider the following estimating function:

U(𝜇0) = (1 − A)S
Pr(S = 1|A = 1,𝐂1)
Pr(S = 1|A = 0,𝐂1)

{
Y − E

(
Y|A = 0, S = 1,𝐂1

)}
+ AE
(
Y|A = 0, S = 1,𝐂1

) dF(𝐂1|A = 0)
dF(𝐂1|A = 1)

{
S − Pr

(
S = 1|A = 1,𝐂1

)}
+
{
(1 − A)E

(
Y|A = 0, S = 1,𝐂1

)
Pr
(
S = 1|A = 1,𝐂1

)
− 𝜇0

}
and define Û(𝜇0) similarly, evaluated under {Ê

(
Y|A, S = 1,𝐂1

)
, P̂r(S = 1|A,𝐂1), dF̂(𝐂1|A)}.

Theorem 4
Under the assumptions of Theorem 1, 𝜇dr

0 is doubly robust and therefore converges to 𝜇0 and is
asymptotically normal if one but not necessarily both of the following conditions hold:

(1) Ê
(
Y|A, S = 1,𝐂1

)
and dF̂(𝐂1|A = 0)∕dF̂(𝐂1|A = 1) are both consistent.

(2) P̂r(S = 1|A,𝐂1) is consistent.

where 𝜇dr
0 satisfies the estimating equation Pn

{
Û(𝜇dr

0 )
}
= 0. Furthermore, at the intersection submodel

where all estimators are consistent, 𝜇dr
0 is semiparametric efficient in the nonparametric model where no

model assumption is made, at the intersection submodel where both of the aforementioned conditions (1)
and (2) hold.

The theorem gives an estimator of 𝜇0 that is doubly robust and semiparametric efficient in the non-
parametric model where no modeling assumption is made, at the intersection submodel where all
working models are correct. This last property is sometimes called semiparametric local efficiency. At
the intersection submodel, the asymptotic variance of 𝜇dr

0 can be estimated by the simple expression

Pn

{
Û(𝜇dr

0 )2
}−1

. Interestingly, one may note that this expression is invariant to the choice of working
models and corresponding estimators. This property does not apply outside of the intersection submodel;
nonetheless, it remains possible to estimate the asymptotic variance of 𝜇dr

0 outside the intersection sub-
model. To do so, let �̂�Y , �̂�𝐂1

, and �̂�S denote the estimates of 𝜸Y , 𝜸𝐂1
, and 𝜸S, the parameters indexing

models for E
(
Y|A, S = 1,𝐂1

)
, F(𝐂1|A = 0), and Pr(S = 1|A,𝐂1), respectively. Suppose that such esti-

mates are obtained by solving a set of score equations with respective scores 𝐌Y

(
𝜸Y

)
,𝐌𝐂1

(
𝜸𝐂1

)
, and

𝐌S

(
𝜸S

)
. Let 𝐌

(
𝜸Y , 𝜸𝐂1

, 𝜸S

)
=
(
𝐌T

Y

(
𝜸Y

)
,𝐌T

𝐂1

(
𝜸𝐂1

)
,𝐌T

S

(
𝜸S

))T
and define U(𝜇0, 𝜸Y , 𝜸𝐂1

, 𝜸S) to

equal U(𝜇0) under the parametric model, such that Û(𝜇0) = U(𝜇0, �̂�Y , �̂�𝐂1
, �̂�S). Then, a standard Taylor

series expansion can be used to show that the large sample variance of 𝜇dr
0 is consistently estimated by

�̂�
−1
�̂� �̂�

−1
, where

�̂�
−1

= Pn

(
𝜕U(𝜇0, �̂�Y , �̂�𝐂1

, �̂�S)
𝜕𝜇0

|𝜇dr
0

)
�̂� = Pn

(
�̂��̂�T
)

�̂� = U
(
𝜇dr

0 , �̂�Y , �̂�𝐂1
, �̂�S

)
− Pn

⎛⎜⎜⎜⎝
𝜕U
(
𝜇dr

0 , 𝜸Y , 𝜸𝐂1
, 𝜸S

)
𝜕
(
𝜸

T
Y , 𝜸

T
𝐂1
, 𝛄T

S

)T
|(

�̂�
T
Y ,�̂�

T
𝐂1
,�̂�

T
S

)T

⎞⎟⎟⎟⎠
× Pn

(
𝜕𝐌
(
𝜸Y , 𝛄𝐂1

, 𝜸S

)
𝜕
(
𝜸Y , 𝜸𝐂1

, 𝜸S

)t |(
�̂�

T
Y ,�̂�

T
𝐂1
,�̂�

T
S

)T

)−1

𝐌
(
�̂�Y , �̂�𝐂1

, �̂�S
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5.2. Sensitivity analysis

A key assumption we have made in order to identify SACE is that there is no unmeasured common cause
of S and Y ,which is clearly encoded in the causal diagram of Figure 1 and its associated NPSEM (1)–(4).
In the current section, a sensitivity analysis technique is developed to assess the extent to which a violation
of the assumption might affect results. Unlike previous sensitivity analysis techniques for truncation by
death and related contexts [7,8,12,13], the proposed sensitivity analysis technique makes explicit use of
post-exposure covariates and therefore extends previous methods to the current more general longitudinal
context. We begin by describing the approach in the simple three-occasion study. Define the selection
bias function as follows:

t(𝐜1) = E
{

Y(a = 0)|A = 0,𝐂1(a = 0) = 𝐜1, S(a = 0) = S
(
a = 1,𝐂1(a = 0) = 𝐜1

)
= 1
}

− E
{

Y(a = 0)|A = 0,𝐂1(a = 0) = 𝐜1, S(a = 0) = 1, S
(
a = 1,𝐂1(a = 0) = 𝐜1

)
= 0
}

We have that t(⋅) = 0 under the independence assumptions encoded in the NPSEM (1)–(4); however, if
there was an unmeasured common cause of S and Y , such that 𝜀Y and 𝜀S were no longer independent,
then we would expect that t(𝐜1) ≠ 0 for some value of 𝐜1, even if all other independencies encoded in the
NPSEM continued to hold. In the smoking example, if the selection bias function is not null, we would
expect that persons with worse health status and therefore worse cognitive decline would be more likely
not to survive if they smoked, and therefore, we expect t(𝐂1) ⩽ 0. We propose to recover inferences
about SACE by assuming that the selection bias function t(𝐜1) is known, which encodes the magnitude
and direction of the unmeasured common cause of S and Y . Specifically, the sensitivity analysis considers
relaxation of the assumption that 𝐂1 includes all common causes of Y and S. To motivate the proposed
approach, suppose for the moment for the sake of exposition that 𝜋

(
a,𝐂1

)
= Pr(S|a,𝐂1) were known,

then we show in the Appendix (as a special case of the more general expression (17) given in the following
text) that

E
{

Y(a = 0)|A = 0,𝐂1(a = 0) = 𝐜1, S(a = 0) = S(a = 1,𝐂1(a = 0) = 𝐜1) = 1
}

= E
{

Y(a = 0)|A = 0,𝐂1(a = 0) = 𝐜1, S(a = 0) = 1
}
+ t(𝐜1) ×

{
1 −

𝜋
(
1, 𝐜1

)
𝜋
(
0, 𝐜1

)}

= E
{

Y|A = 0,𝐂1 = 𝐜1, S = 1
}
+ t(𝐜1) ×

{
1 −

𝜋
(
1, 𝐜1

)
𝜋
(
0, 𝐜1

)}
(16)

therefore, knowing t(𝐜1) allows one to recover the average potential outcome when unexposed in the
principal strata of survivors {S(a = 0) = S(a = 1,𝐂1(a = 0) = 𝐜1) = 1}, by adjusting
the average observed outcome in the unexposed who survived, using the aforementioned expres-
sion. The expression in the above display can then be combined with the representation of
𝜇0 = E

{
Y(a = 0)| S(a,𝐂1(a′)) = 1; a, a′ = 0, 1

}
given by Equation (10), to produce the following

modified estimator:

𝜇0(t) =
Pn

{
(1 − A)𝜋(1,𝐂1)

𝜋(0,𝐂1)
[
Y + t(𝐂1) ×

{
1 − 𝜋(1,𝐂1)

𝜋(0,𝐂1)
}]

S
}

Pn

{
(1 − A)S 𝜋(1,𝐂1)

𝜋(0,𝐂1)
}

A formal sensitivity analysis can be obtained by repeating this process and reporting inferences about
𝜇1 −𝜇0 using 𝜇1 −𝜇0(t) and a corresponding CI for each choice of t(⋅), say in a finite set of user-specified
functions  = {t𝜆(⋅) ∶ 𝜆} indexed by a finite dimensional parameter 𝜆 with t0(⋅) ∈  corresponding to
the assumption of no unmeasured common cause of Y and S, that is, t0(⋅) ≡ 0.

As is shown next, this sensitivity analysis technique readily extends to a longitudinal study with J > 3
occasions. Define the selection bias function:

tJ
(
𝐜J−1

)
= E

{
Y(a=0)|A=0,𝐂J−1(a=0)= 𝐜J−1, SJ(a=0)=SJ

(
a=1,𝐂J−1(a=0)=𝐜J−1

)
=1
}

− E

{
Y(a=0)|A=0,𝐂J−1(a=0)=𝐜J−1, SJ(a=0)=1, SJ

(
a=1,𝐂J−1(a=0)=𝐜J−1

)
=0
}

© 2014 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd. Statist. Med. 2014, 33 3601–3628
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Similar to the three-occasion setting, tJ(⋅) = 0 under the independence assumptions encoded in the
NPSEM (11)–(14); however, if there were an unmeasured common cause of the survival process and
Y among individuals alive at the end of follow-up, such that 𝜀Y and {𝜀Sj

∶ j} were no longer indepen-
dent, then we would expect that tJ(𝐜J−1) ≠ 0 for some value of 𝐜J−1, even if all other independencies
of the NPSEM were to continue to hold. Then, similar to the three-occasion derivation, one obtains the
following relation, which is derived in the Appendix:

E

{
Y(a = 0)|A = 0,𝐂J−1(a = 0) = 𝐜J−1, SJ(a = 0) = SJ(a = 1,𝐂J−1(a = 0) = 𝐜J−1) = 1

}
= E

{
Y(a = 0)|A = 0,𝐂J−1(a = 0) = 𝐜J−1, SJ(a = 0) = 1

}
+ tJ(𝐜J−1) ×

{
1 −
∏J

j=2 𝜋j

(
1, 𝐜j−1

)
∏J

j=2 𝜋j

(
0, 𝐜j−1

)}

= E

{
Y|A = 0,𝐂J−1 = 𝐜J−1, SJ = 1

}
+ tJ(𝐜J−1) ×

{
1 −
∏J

j=2 𝜋j

(
1, 𝐜j−1

)
∏J

j=2 𝜋j

(
0, 𝐜j−1

)}
(17)

This result combines with the representation of 𝜇0,J from Section 3, to produce

𝜇0,J(t) =
E
{
(1 − A)WSWA

[
Y + tJ

(
𝐜J−1

)
×
(
1 − WS

)]
SJ

}
E
{
(1 − A)SJWSWA

}
where as we recall

WS =

∏J
k=2 𝜋k

(
1,𝐂k−1

)
∏J

k=2 𝜋k

(
A,𝐂k−1

)
WA =
[
p
(
𝐂0

)A {
1 − p
(
𝐂0

)}1−A
]−1

which in turn can be used to obtain a consistent estimator. A sensitivity analysis then simply proceeds
similar to the three-occasion setting described previously.

6. Survivor marginal structural models

It is now well known that in the context of a time-varying exposure with time-varying confounding,
standard confounding adjustment techniques, such as stratification or standard regression analysis in
general cannot appropriately account for time-varying confounding and therefore can be biased for the
joint causal effects of the exposure, even under the causal null hypothesis of no exposure effect over time.
In fact, the standard use of regression models to estimate the causal effect of a time-varying exposure
can be biased even in the absence of unmeasured confounders whether or not one adjusts further for the
past history of measured covariates in the analysis, when (i) there exists a time-dependent risk factor for
the outcome, which also predicts subsequent exposure; and (ii) past exposure history predicts subsequent
risk factor level. The reason is, when both conditions (i) and (ii) hold, an analysis that does not adjust for
past covariates is biased because of the uncontrolled confounding, yet an analysis that includes current
covariates is also biased as it adjusts for a variable affected by past exposure.

The MSMs were introduced by Robins [29] to estimate the joint causal effect of a time-dependent
exposure in the presence of time-dependent confounders that are themselves intermediate variables,
affected by previous exposure. MSMs were proposed as an alternative approach to the semiparametric
g-computation algorithm estimator [1] and to g-estimation of structural nested models [29]. Robins [29]
and subsequently Hernan et al. [30] described inverse probability-of-treatment-weighted estimation of
MSMs, a method which in contrast to standard methods provides consistent estimates of causal effects
when unmeasured confounding, model misspecification, and truncation by death are absent. We extend
the results of previous sections to the context of MSMs.

3616
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First, we redefine the NPSEM to allow for time-updated exposure, and we assume no other form of
loss to follow-up is present. Let A0 = 0, such that individuals are assumed to be unexposed at start of
follow-up, and let 𝐂−1 = 0, then for j = 0,… , J ∶

𝐂j =

{
𝐠𝐂j

(
Aj,𝐂j−1, 𝜺𝐂j

)
if Sj = 1

undefined if Sj = 0
(18)

Sj+1 =

{
gSj+1

(
Aj,𝐂j, 𝜀Sj+1

)
if Sj = 1

0 if Sj = 0
(19)

Aj+1 =

{
gAj+1

(
Aj,𝐂j, 𝜀Aj+1

)
if Sj+1 = 1

undefined if Sj+1 = 0
(20)

Let Y = 𝐂J denote the outcome. We assume that

{
𝜀Aj

∶ j ⩾ 1
}
⟂⟂
{
𝜀sj

∶ j ⩾ 1
}

and we also assume that {
𝜀Aj
, 𝜀sj

∶ j ⩾ 1
}
⟂⟂
{
𝜺𝐂j

∶ j ⩾ 0
}

However, as before, 𝜺𝐂j
and 𝜺𝐂j′

may be dependent, and likewise, for 𝜀sj
and 𝜀sj′

, j ≠ j′. The

NPSEM (18)–(20) with the associated error independencies essentially states that 𝐂j−1 is sufficiently

rich such that
(

Aj−1,𝐂j−1

)
account for any association between Sj and 𝐂j, and likewise,

(
Aj−1,𝐂j−1

)
accounts for confounding of the effects of Aj.

To account for truncation by death, consider the average potential outcome of survivors:

𝜇J(a) = E

{
Y
(
a
) |SJ

(
a∗,𝐂J−1

(
a∗
))

SJ

(
0,𝐂J−1

(
a∗
))

SJ

(
0,𝐂J−1

(
0
))

SJ

(
a∗,𝐂J−1

(
0
))

= 1; for all a∗ ∈ {0, 1}J
}

The conditioning event of the above expectation would be satisfied if an individual would survive
irrespective of exposure history, including under certain cross-world situations where the covariate
history behaves as if under an exposure history that possibly conflicts with that influencing the outcome.
Thus, SMSMs give a natural generalization of standard MSMs to account for truncation by death. In
the special case where SJ(a

∗
,𝐂J−1(a

∗))SJ(0,𝐂J−1(0)) = 1 ⇒ SJ(0,𝐂J−1(a
∗))SJ(a

∗
,𝐂J−1(0)) = 1 almost

surely, then 𝜇J

(
a
)

simplifies and may be written

E

{
Y
(
a
) |SJ

(
a∗,𝐂J−1

(
a∗
))

= SJ

(
a∗
)
= 1; a∗ ∈ {0, 1}J

}
which extends the standard definition of SACE to time-updated exposure settings.

Identification of 𝜇J

(
a
)

requires a modification of the monotonicity and concordant survivorship
assumptions:

Sequential monotonicity assumption for time-dependent exposure: For any treatment history aj−1 ∈
{0, 1}J−1, if

Sj−1

(
aj−2,𝐂j−2

(
aj−3

))
Sj−1

(
0j−2,𝐂j−2

(
aj−3

))
= 1 almost surely

then

Sj

(
0j−1,𝐂j−1

(
aj−2

))
⩽ Sj

(
aj−1,𝐂j−1

(
aj−2

))
almost surely
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where S0(⋅, ⋅) = 1 almost surely; and if

Sj−1

(
aj−2,𝐂j−2

(
0j−3

))
Sj−1

(
0j−2,𝐂j−2

(
0j−3

))
= 1 almost surely

then
Sj

(
0j−1,𝐂j−1(0)

)
⩽ Sj

(
aj−1,𝐂j−1

(
0j−2

))
almost surely.

Concordant survivorship assumption for time-dependent exposure:

if either SJ

(
a∗,𝐂J−1

(
a∗
))

SJ

(
0J−1,𝐂J−1

(
a∗
))

= 1 or SJ

(
0,𝐂J−1

(
0
))

SJ

(
a∗,𝐂J−1

(
0
))

= 1

almost surely, for some exposure history a∗, then

SJ

(
a∗∗,𝐂J−1

(
a∗∗
))

SJ

(
0J−1,𝐂J−1

(
a∗∗
))

= 1

and SJ

(
0,𝐂J−1

(
0
))

SJ

(
a∗∗
,𝐂J−1

(
0
))

= 1 for all a∗∗, almost surely.

We should note that the sequential monotonicity assumption essentially states that receiving a dose of
exposure can never be harmful for survival relative to remaining unexposed over time, and therefore in
contrast with previous sections where exposure was smoking history and therefore was assumed to have
a harmful effect on survival, exposure is now assumed to have a protective survival effect, for example,
highly active antiretroviral therapy taken by HIV patients [23]. Specifically, the condition states that a
person who would survive up to time j−1 if either untreated or with treatment history a, in the hypothetical
situation in which his covariate history behaves as if his treatment history was set to a, and the person
were to survive at time j when untreated and with covariate history under treatment regime a, then the
person would also survive at time j, with similar covariate history, if his treatment history was set to a.

The concordant survivorship assumption essentially states that a person who would survive under a
given treatment history a∗, as well as if he were never exposed, in the hypothetical situation in which
his covariate history behaves as if his exposure history was set to a∗

, then he would also survive under
any other treatment history a∗∗, and he would likewise survive if he were never exposed, in the hypo-
thetical situation in which his covariate history behaves as if his exposure history was set to a∗∗. A
similar assumption is made for an individual for whom SJ(0,𝐂J−1(0

∗
))SJ(a

∗
,𝐂J−1(0)) = 1 for some a∗.

Let

𝜋j

(
aj−1, 𝐜j−1

)
= Pr
(

Sj = 1|Aj−1 = aj−1,𝐂j−1 = 𝐜j−1, Sj−1 = 1
)
, j = 2,… J

Gj

(
𝐜j; aj, 𝐜j−1

)
= F
(
𝐜j|Aj = aj,𝐂j−1 = 𝐜j−1, Sj = 1

)
, j = 0,… , J − 1

Throughout, we make the following positivity assumptions

∏J
j=2 𝜋j

(
0j−1,𝐂j−1

)
Gj−1

(
𝐂j−1; 0j−1,𝐂j−2

)
∏J

j=1 𝜋j

(
Aj−1,𝐂j−1

)
Gj

(
𝐂j−1;Aj−1,𝐂j−2

) < ∞ almost surely

and if

f
(

Aj = aj,𝐂j = 𝐜j, Sj+1 = 1
)
> 0 then f

(
Aj+1 = aj+1|Aj = aj,𝐂j = 𝐜j, Sj+1 = 1

)
> 0 almost surely

Then, we have the following result.

Theorem 5
Under the NPSEM given by Equations (18)–(20), the sequential monotonicity assumption for time-
dependent exposure, the concordant survivorship assumption for time-dependent exposure, and the
positivity assumptions, we have that 𝜇J

(
a
)

is nonparametrically identified and is given by
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𝜇J

(
a
)
=

∫ … ∫ E

(
Y|A = a, SJ = 1,𝐂J−1 = 𝐜J−1

)∏J
j=2 𝜋j

(
0j−1, 𝐜j−1

)∏J−1
j=0 dGj

(
𝐜j; aj−1, 𝐜j−1

)
∫ … ∫ ∏J

j=2 𝜋j

(
0j−1, 𝐜j−1

)∏J−1
j=0 dGj

(
𝐜j; aj−1, 𝐜j−1

)
In practice, to estimate 𝜇J

(
a
)
, one may proceed as in Hernan et al. [23] and specify a model 𝜇J

(
a; 𝜆
)

indexed by an unknown parameter 𝜆. We refer to such a model as a SMSM, because it is an MSM for
individuals that would survive under any treatment history, including under certain cross-world situations
where the covariate history behaves as if under an exposure history, which conflicts with that influencing
the outcome. For instance, consider the simple linear SMSM:

𝜇J

(
a; 𝜆
)
= (1, cum(a))𝜆

where cum(a)) =
∑J

j=1 aj. Then, similar to the weighted least-squares approach developed in Section 3.2,
one can likewise show that a consistent weighted least-squares estimator of the SMSM can be obtained
by using the following modified weight Ŵ#

S × Ŵ#
A, which accounts for time-dependent exposure and

confounding and death-related attrition:

Ŵ#
S =

∏J
j=2 𝜋j

(
0j−1,𝐂j−1

)
∏J

j=1 𝜋j

(
Aj−1,𝐂j−1

)
Ŵ#

A =
J∏

j=1

[
p̂j

(
Aj−1,𝐂J−1

)Aj
{

1 − p̂j

(
Aj−1,𝐂J−1

)}1−Aj
]−1

where 𝜋j(⋅, ⋅) is a consistent estimator of 𝜋j and p̂j

(
Aj−1,𝐂J−1

)
is a consistent estimator of

pj

(
Aj−1,𝐂J−1

)
= Pr(Aj|Aj−1,𝐂J−1). For inference, it is possible to derive a sandwich variance estimator

similar to the one provided in previous sections; alternatively, one may use the nonparametric bootstrap.

7. Discussion

In this paper, we have developed a general framework for identification and estimation of causal effects
when the outcome in view is subject to truncation by death. The proposed approach is shown to equally
apply in the context of a point exposure but also if joint effects of a time-updated exposure are in view. A
simple weighted approach is described for estimation, which readily scales with follow-up of increasing
length and applies irrespective of whether the exposure is time-updated or occurs at a single point in
time. Doubly robust estimation is shown to be possible a simple three-occasion study. However,
it is unclear that a similar doubly robust estimator is available beyond this simple setup, say if
one has more than three follow-up visits in a longitudinal study. Although such generalizations are
of definite interest and deserve further investigation. A sensitivity analysis technique is developed for
a general longitudinal study of arbitrary length, which may be used to evaluate the extent to which a
violation of the assumption that one has observed sufficient post-exposure covariates to account for an
association between the outcome and survival, may bias the results. In the future, we plan to further
develop the sensitivity analysis approach and to implement these techniques to the longitudinal smoking
data application illustrated in the paper.

Appendix

Proof of Theorem 1
We can write

𝜓 = E
{

Y(a = 1) − Y(a = 0)|S(a = 0,𝐂1(a∗)) = S(a = 1,𝐂1(a∗)) = 1, a∗ = 0, 1
}

= E
{

Y(a = 1)|S(a = 0,𝐂1(a∗)) = S(a = 1,𝐂1(a∗)) = 1, a∗ = 0, 1
}

− E
{

Y(a = 0)|S(a = 0,𝐂1(a∗)) = S(a = 1,𝐂1(a∗)) = 1, a∗ = 0, 1
}
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Then, note that by the concordant survivorship assumption

E
{

Y(a = 1)|S (a = 0,𝐂1(a∗)
)
= S
(
a = 1,𝐂1(a∗)

)
= 1, a∗ = 0, 1

}
= E
{

Y(a = 1)|S (a = 0,𝐂1(1)
)
= S
(
a = 1,𝐂1(1)

)
= 1
}

=
E
{

Y(a = 1)S
(
a = 0,𝐂1(1)

)
S
(
a = 1,𝐂1(1)

)}
E
{

S
(
a = 0,𝐂1(1)

)
S
(
a = 1,𝐂1(1)

)}
and by the monotonicity assumption

E
{

Y(a = 1)S(a = 0,𝐂1(1))S(a = 1,𝐂1(1))
}

= E
{

Y(a = 1)S
(
a = 1,𝐂1(1)

)}
= ∫ E

{
Y(a = 1)|S (a = 1,𝐂1(1) = 𝐜1

)
= 1,𝐂1(1) = 𝐜1)

}
× Pr
(
S
(
a = 1,𝐂1(1) = 𝐜1

)
= 1|𝐂1(1) = 𝐜1

)
dF𝐂1(1)

(
𝐜1

)
= ∫ E

{
Y|A = 1, S = 1,𝐂1 = 𝐜1

)}
Pr
(
S = 1|𝐂1 = 𝐜1,A = 1

)
dF𝐂1|A=1

(
𝐜1|A = 1

)
by the independence assumptions associated with the NPSEM, and similarly,

E
{

S
(
a = 0,𝐂1(1)

)
S
(
a = 1,𝐂1(1)

)}
= ∫ Pr

(
S = 1|𝐂1 = 𝐜1,A = 1

)
dF𝐂1|A=1

(
𝐜1|A = 1

)
and therefore,

E
{

Y(a = 1)|S (a = 0,𝐂1(a∗)
)
= S
(
a = 1,𝐂1(a∗)

)
= 1, a∗ = 0, 1

}
= E {Y|A = 1, S = 1)}

Next consider

E
{

Y(a = 0)|S (a = 0,𝐂1(a∗)
)
= S
(
a = 1,𝐂1(a∗)

)
= 1, a∗ = 0, 1

}
= E
{

Y(a = 0)|S (a = 0,𝐂1(0)
)
= S
(
a = 1,𝐂1(0)

)
= 1
}

=
E
{

Y(a = 0)S
(
a = 0,𝐂1(0)

)
S
(
a = 1,𝐂1(0)

)}
E
{

S
(
a = 0,𝐂1(0)

)
S
(
a = 1,𝐂1(0)

)}
Note that

E
{

Y(a = 0)S(a = 0,𝐂1(0))S(a = 1,𝐂1(0))
}

= ∫ E
{

Y(a = 0)|S (a = 0,𝐂1(0) = 𝐜1

)
= S
(
a = 1,𝐂1(0) = 𝐜1

)
= 1,𝐂1(0) = 𝐜1

)}
× Pr
(
S
(
a = 1,𝐂1(0) = 𝐜1

)
S
(
a = 0,𝐂1(0) = 𝐜1

)
= 1|𝐂1(0) = 𝐜1

)
dF𝐂1(0)

(
𝐜1

)
= ∫ E

{
Y(a = 0)|S (a = 0, 𝐜1

)
= 1, 𝐂1(0) = 𝐜1

)}
× Pr
(
S
(
a = 1, 𝐜1

)
= 1|A = 1,𝐂1(0) = c1

)
dF𝐂1|A(𝐜1|A = 0) (monotonicity NPSEM independence)

= ∫ E
{

Y(a = 0)|S (a = 0, 𝐜1

)
= 1, 𝐂1(0) = 𝐜1

)}
× Pr
(
S
(
a = 1, 𝐜1

)
= 1|A = 1,𝐂1(1) = 𝐜1

)
dF𝐂1|A (𝐜1|A = 0

)
(NPSEM independence)

= ∫ E
{

Y|A = 0, S = 1,𝐂1 = 𝐜1

)}
(NPSEM independence)

× Pr(S = 1|A = 1,𝐂1 = 𝐜1)dF𝐂1|A (𝐜1|A = 0
)
.
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Likewise,

E
{

S(a = 0,𝐂1(0))S(a = 1,𝐂1(0))
}

= ∫ Pr(S = 1|A = 1,𝐂1 = 𝐜1)dF𝐂1|A(𝐜1|A = 0),which proves the theorem

Proof of Theorem 2
Similarly to the proof of Theorem 1, note that

𝜇1,J = E

{
Y(a = 1)|SJ

(
a,𝐂J−1(a∗)

)
= 1; a, a∗ ∈ {0, 1}

}
=

E

{
Y(a = 1)SJ

(
1,𝐂J−1(1)

)
SJ

(
0,𝐂J−1(1)

) }
E

{
SJ

(
1,𝐂J−1(1)

)
SJ

(
0,𝐂J−1(1)

) }
by the concordant survivorship assumption, furthermore, by the sequential monotonicity assumption:

E

{
Y(a = 1)SJ

(
1,𝐂J−1(1)

)
SJ

(
0,𝐂J−1(1)

) }
E

{
SJ

(
1,𝐂J−1(1)

)
SJ

(
0,𝐂J−1(1)

) }
=

E

{
Y(a = 1)SJ

(
1,𝐂J−1(1)

)}
E

{
SJ

(
1,𝐂J−1(1)

)}
Then, note that

E

{
Y(a = 1)SJ

(
1,𝐂J−1(1)

)}
= E

[
E

{
Y(a = 1)SJ

(
1,𝐂J−1(1)

) |𝐂1

}]
= E

[
E

{
E

{
Y(a = 1)SJ

(
1,𝐂J−1(1)

) |S2

(
1,𝐂J−1(1)

)
= 1,𝐂1

}
Pr
(

S2

(
1,𝐂J−1(1)

)
= 1|𝐂1

) |𝐂1

}]
⋮

= ∫ …∫ E

{
Y
(
a = 1, 𝐜J−1(1)

) |SJ

(
1, 𝐜J−1

)
= 1,𝐂J−1(1) = 𝐜J−1

}
×

J∏
j=2

Pr
(

Sj

(
1, 𝐜j−1

)
= 1,𝐂j−1(1) = 𝐜j−1, Sj−1

(
1, 𝐜j−2

)
= 1
)

×
J−1∏
j=0

dF𝐂j(1,𝐜j−1)|𝐂j−1(1),Sj

(
1,𝐂j−1(1)

)
=1

(
𝐜j|Sj

(
1, 𝐜j−1

)
= 1,𝐂j−1(1) = 𝐜j−1

)
= ∫ …∫ E

{
Y
(
a = 1, 𝐜J−1(1)

) |A = 1, SJ

(
1, 𝐜J−1

)
= 1,𝐂J−1(1) = 𝐜J−1

}
J∏

j=2

Pr
(

Sj

(
1, 𝐜j−1

)
= 1|A = 1,𝐂j−1(1) = 𝐜j−1, Sj−1

(
1, 𝐜j−2

)
= 1
)

×
J−1∏
j=0

dF𝐂j(1,𝐜j−1)|A,𝐂j−1(1),Sj

(
1,𝐂j−1(1)

)
=1

(
𝐜j|A = 1, Sj

(
1, 𝐜j−1

)
= 1,𝐂j−1(1) = 𝐜j−1

)
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= ∫ …∫ E
{

Y |A = 1, SJ = 1, 𝐜J−1

} J∏
j=2

Pr
(
Sj = 1|A = 1, 𝐜j−1, Sj−1 = 1

)
×

J−1∏
j=0

dF
(
𝐜j|A = 1, Sj = 1, 𝐜j−1

)
= E
{

Y SJ|A = 1
}

A similar argument shows that

E

{
SJ

(
1,𝐂J−1(1)

)}
= E
{

SJ|A = 1
}

and therefore,

E

{
Y(a = 1)SJ

(
1,𝐂J−1(1)

)}
E

{
SJ

(
1,𝐂J−1(1)

)} = E
{

Y |SJ ,A = 1
}

Next, note that

𝜇0,J = E

{
Y(a = 0)|SJ

(
a,𝐂J−1(a∗)

)
= 1; a, a∗ ∈ {0, 1}

}
=

E

{
Y(a = 0)SJ

(
0,𝐂J−1(0)

)
SJ

(
1,𝐂J−1(0)

}
E

{
SJ

(
0,𝐂J−1(0)

)
SJ

(
1,𝐂J−1(0)

}
by the concordant survivorship assumption. We then have that

E

{
Y(a = 0)SJ

(
0,𝐂J−1(0)

)
SJ

(
1,𝐂J−1(0)

}
= E

[
E

{
Y(a = 0)SJ

(
0,𝐂J−1(0)

)
SJ

(
1,𝐂J−1(0)|𝐂1

}]
⋮

= ∫ …∫ E

{
Y
(
a = 0, 𝐜j−1

) |SJ

(
1, 𝐜J−1

)
= SJ

(
0, 𝐜J−1

)
= 1,𝐂J−1(0) = 𝐜J−1

}
×

J∏
j=2

Pr
(

Sj

(
1, 𝐜j−1

)
= Sj

(
0, 𝐜j−1

)
= 1𝐂j−1(0) = 𝐜j−1, Sj−1

(
1, 𝐜j−2

)
= Sj−1

(
0, 𝐜j−2

)
= 1
)

×
J−1∏
j=0

dF𝐂j(0,𝐜j−1)|𝐂j−1(0),Sj

(
1,𝐂j−1(0)

)
,Sj

(
0,𝐂j−1(0)

)
=1

(
𝐜j|Sj

(
1, 𝐜j−1

)
= Sj

(
0, 𝐜j−1

)
= 1,𝐂j−1(0) = 𝐜j−1

)
= ∫ …∫ E

{
Y
(
a = 0, 𝐜j−1

) |SJ

(
0, 𝐜J−1

)
= 1,𝐂J−1(0) = 𝐜J−1

}
(NPSEM independence)

×
J∏

j=2

Pr
(

Sj

(
1, 𝐜j−1

)
= 1|𝐂j−1(0) = 𝐜j−1, Sj−1

(
1, 𝐜j−2

)
= 1
)

(sequential monotonicity)

×
J−1∏
j=0

dF𝐂j(0,𝐜j−1)|𝐂j−1(0),Sj

(
0,𝐂j−1(0)

)
=1

(
𝐜j|Sj

(
0, 𝐜j−1

)
= 1,𝐂j−1(0) = 𝐜j−1

)
(NPSEM independence)

= ∫ …∫ E

{
Y(a = 0, cj−1)|A = 0, SJ(0, 𝐜J−1) = 1,𝐂J−1(0) = 𝐜J−1

}
(NPSEM independence)

×
J∏

j=2

Pr
(

Sj

(
1, 𝐜j−1

)
= 1|A = 1,𝐂j−1(1) = 𝐜j−1, Sj−1

(
1, 𝐜j−2

)
= 1
)

(NPSEM independence)
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×
J−1∏
j=0

dF𝐂j(0,𝐜j−1)|A,𝐂j−1(0),Sj

(
0,𝐂j−1(0)

)
=1

(
𝐜j|A = 0, Sj

(
0, 𝐜j−1

)
= 1,𝐂j−1(0) = 𝐜j−1

)
(NPSEM independence)

= ∫ …∫ E

(
Y|A = 0, SJ = 1,𝐂J−1 = 𝐜J−1

) J∏
j=2

𝜋j

(
1, 𝐜j−1

) J−1∏
j=0

dG0,j

(
𝐜j; 𝐜j−1

)

One can show using similar arguments that

E

{
SJ

(
0,𝐂J−1(0)

)
SJ

(
1,𝐂J−1(0)

}
= ∫ …∫

J∏
j=2

𝜋j

(
1, 𝐜j−1

) J−1∏
j=0

dG0,j

(
𝐜j; 𝐜j−1

)

proving the result.

Proof of Theorem 3
�̂�J converges in probability to the solution of the following population weighted normal equations:

E
{

SJWSWA(1,A)T
(
Y − 𝜇0,J − 𝜓JA

)}
= 0

where WA =
[
p
(
𝐂0

)A {
1 − p
(
𝐂0

)}1−A
]−1

. It is straightforward to verify that under the assumptions of
Theorem 3, the left hand-side of the equation in the aforementioned display is equal to

1∑
a=0

E
∗
a

{
SJ(1, a)T

(
Y − 𝜇0,J − 𝜓Ja

)}
= 0

where E
∗
a is the expectation with respect to the law

{
f
(

Y|A = 0, SJ = 1,𝐂J−1

)∏J
j=2 𝜋j

(
1,𝐂j−1

)∏J−1
j=0 dG0,j

(
𝐂j;𝐂j−1

)
if a = 0

f
(
Y ,A = 1, SJ = 1

)
if a = 1

giving the result.

Proof of Theorem 4
Let 𝜋1

(
a,𝐂1

)
= Π(a) = Pr(S = 1|A = 0,𝐂1),B1 = E

(
Y|A = 0, S = 1,𝐂1

)
, Ga(𝐂1) = F(𝐂1|A = a).

To prove the theorem, it suffice to show that E
{

U(𝜇0, 𝜋
†
1 ,B

†
1)
}

= 0 if either 𝜋†
1 = 𝜋1, or B†

1 = B1 and

G†
a(𝐜1) = Ga(𝐜1), but not necessarily both hold, where

U
(
𝜇0, 𝜋

†
1 ,B

†
1

)
= (1 − A)S Π†(1)

Π†(0)

{
Y − B†

1

}
+ AB†

1

dG†
0

dG†
1

{
S − Π†(1)

}
+
{
(1 − A)B†

1Π
†(1) − 𝜇0

}
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First assume that 𝜋†
1 = 𝜋1, then

E

{
U
(
𝜇0, 𝜋1,B

†
1

)}
= E

[
(1 − A)S Π(1)

Π(0)

{
Y − B†

1

}
+ AB†

1

dG†
0

dG†
1

{S − Π(1)} +
{
(1 − A)B†

1Π(1) − 𝜇0

}]
= E

[
(1 − A)S Π(1)

Π(0)

{
Y − B†

1

}
+
{
(1 − A)B†

1Π(1) − 𝜇0

}]
= E

[
(1 − A)S Π(1)

Π0(0)
Y − 𝜇0

]
= 0

Next, suppose that B†
1 = B1 and G†

a(𝐜1) = Ga(𝐜1), then

E

{
U
(
𝜇0, 𝜋1,B

†
1

)}
= E

[
(1 − A)S Π†(1)

Π†(0)
{

Y − B1

}
+ AB1

dG0

dG1

{
S − Π†(1)

}
+
{
(1 − A)B1Π†(1) − 𝜇0

}]
= E

[
AB1

dG0

dG1
S − 𝜇0

]
= 0

proving the result.

Proof of Theorem 5
The proof is similar to that of Theorem 2; suppose that a ≠ 0, then

𝜇J

(
a
)
= E

{
Y
(
a
) |SJ

(
a,𝐂J−1

(
a
))

SJ

(
0,𝐂J−1

(
a
))

= 1
}

(concordant survivorship)

=
E

{
Y
(
a
)

SJ

(
a,𝐂J−1

(
a
))

SJ

(
0,𝐂J−1

(
a
))}

E

{
SJ

(
a,𝐂J−1

(
a
))

SJ

(
0,𝐂J−1

(
a
))}

and we have

E

{
Y
(
a
)

SJ

(
a,𝐂J−1

(
a
))

SJ

(
0,𝐂J−1

(
a
))}

= E

[
E

{
Y
(
a
)

SJ

(
a,𝐂J−1

(
a
))

SJ

(
0,𝐂J−1

(
a
)) |𝐂0

}]
⋮

= ∫ …∫ E

{
Y
(
a, 𝐜J

) |SJ

(
a, 𝐜J−1

)
= SJ

(
0, 𝐜J−1

)
= 1,𝐂J

(
a
)
= 𝐜J

}
×

J∏
j=2

Pr
(

Sj

(
aj−1, 𝐜j−1

)
= Sj

(
0j−1, 𝐜j−1

)
= 1|𝐂j−1

(
aj−2

)
= 𝐜j−1, Sj−1

(
aj−2, 𝐜j−2

)
= Sj−1

(
0j−1, 𝐜j−2

)
= 1
)

×
J∏

j=0

dF𝐂j(aj−1,𝐜j−1)|𝐂j−1(aj−2),Sj

(
aj−1,𝐂j−1(aj−2)

)
Sj

(
0j−1,𝐂j−1(aj−2)

)
=1

(
𝐜j|Sj

(
aj−1, 𝐜j−1
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= Sj

(
0j−1, 𝐜j−1

)
= 1,𝐂j−1

(
aj−2

)
= 𝐜j−1

)
= ∫ …∫ E

{
Y
(
a, 𝐜J

) |SJ

(
a, 𝐜J−1

)
= 1,𝐂J

(
a
)
= 𝐜J

}
(NPSEM independence)

×
J∏

j=2

Pr
(

Sj

(
0j−1, 𝐜j−1

)
= 1|𝐂j−1

(
aj−2

)
= 𝐜j−1, Sj−1

(
0j−1, 𝐜j−2

)
= 1
)

(sequential monotonicity)

×
J∏

j=0

dF𝐂j(aj−1,𝐜j−1)|𝐂j−1(aj−2),Sj

(
aj−1,𝐂j−1(aj−2)

)
=1

(
𝐜j|Sj

(
aj−1, 𝐜j−1

)
= 1,𝐂j−1

(
aj−2

)
= 𝐜j−1

)
(NPSEM independence)

= ∫ …∫ E

{
Y|AJ = aJ , SJ = 1,𝐂J = 𝐜J

}
(NPSEM independence)

×
J∏

j=2

Pr
(

Sj = 1|Aj−1 = 0j−1, 𝐜j−1, Sj−1 = 1
)

(NPSEM independence)

×
J∏

j=0

dF𝐂j|Cj−1,Aj−1,Sj=1

(
𝐜j|Aj−1 = aj−1, Sj = 1, 𝐜j−1

)
(NPSEM independence)

giving the result for

E

{
Y
(
a
)

SJ

(
a,𝐂J−1

(
a
))

SJ

(
0,𝐂J−1

(
a
))}

The expression for

E

{
SJ

(
a,𝐂J−1

(
a
))

SJ

(
0,𝐂J−1

(
a
))}

is similarly obtained. The result for 𝜇J

(
0
)

is obtained by noting that

𝜇J

(
0
)
= E

{
Y
(

0
) |SJ

(
0,𝐂J−1

(
0
))

SJ

(
a∗,𝐂J−1

(
0
))

= 1 for all a∗
}

(concordant survivorship)

=
E

{
Y
(

0
)

SJ

(
0,𝐂J−1

(
0
)) )

= 1
}

E

{
SJ

(
0,𝐂J−1

(
0
)) )

= 1
} (sequential monotonicity)

and it is straightforward to verify that

E

{
Y
(

0
)

SJ

(
0,𝐂J−1

(
0
)) )

= 1
}
= ∫ …∫ E

{
Y|AJ = 0, SJ = 1,𝐂J = 𝐜J

}
×

J∏
j=2

Pr
(

Sj = 1|Aj−1 = 0j−1, 𝐜j−1, Sj−1 = 1
)

×
J∏

j=0

dF𝐂j|𝐂j−1,Aj−1,Sj=1

(
𝐜j|Aj−1 = 0j−1, Sj = 1, 𝐜j−1

)

and the expression for E
{

SJ(0,𝐂J−1(0)) ) = 1
}

is similarly derived.
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Derivation of Equation (17)

E

{
Y|A = 0,𝐂J−1 = 𝐜J−1, SJ = 1

}
= E

{
Y(a = 0)|A = 0,𝐂J−1(a = 0) = 𝐜J−1, SJ(a = 0) = SJ

(
a = 1,𝐂J−1(a = 0) = 𝐜J−1

)
= 1
}

× Pr
(

SJ

(
a = 1,𝐂J−1(a = 0) = 𝐜J−1

)
= 1|A = 0,𝐂J−1(a = 0) = 𝐜J−1, SJ(a = 0) = 1

)
+ E

{
Y(a = 0)|A = 0,𝐂J−1(a = 0) = 𝐜J−1, SJ(a = 0) = 1, SJ

(
a = 1,𝐂J−1(a = 0) = 𝐜J−1

)
= 0
}

× Pr
(

SJ

(
a = 1,𝐂J−1(a = 0) = 𝐜J−1

)
= 0|A = 0,𝐂J−1(a = 0) = 𝐜J−1, SJ(a = 0) = 1

)
=
[
E

{
Y(a = 0)|A = 0,𝐂J−1(a = 0) = 𝐜J−1, SJ(a = 0) = 1, SJ

(
a = 1,𝐂J−1(a = 0) = 𝐜J−1

)
= 0
}

− E

{
Y(a = 0)|A = 0,𝐂J−1(a = 0) = 𝐜J−1, SJ(a = 0) = SJ

(
a = 1,𝐂J−1(a = 0) = 𝐜J−1

)
= 1
}]

× Pr
(

SJ

(
a = 1,𝐂J−1(a = 0) = 𝐜J−1

)
= 0|A = 0,𝐂J−1(a = 0) = 𝐜J−1, SJ(a = 0) = 1

)
+ E

{
Y(a = 0)|A = 0,𝐂J−1(a = 0) = 𝐜J−1, SJ(a = 0) = SJ

(
a = 1,𝐂J−1(a = 0) = 𝐜J−1

)
= 1
}

= E

{
Y(a = 0)|A = 0,𝐂J−1(a = 0) = 𝐜J−1, SJ(a = 0) = SJ

(
a = 1,𝐂J−1(a = 0) = 𝐜J−1

)
= 1
}

− tJ
(
𝐜J−1

)
× Pr
(

SJ

(
a = 1,𝐂J−1(a = 0) = 𝐜J−1

)
= 0|A = 0,𝐂J−1(a = 0) = 𝐜J−1, SJ(a = 0) = 1

)
Then, note that

Pr
(

SJ

(
a = 1,𝐂J−1(a = 0) = 𝐜J−1

)
= 1|A = 0,𝐂J−1(a = 0) = 𝐜J−1, SJ(a = 0) = 1

)
= Pr
(

SJ

(
a = 1,𝐂J−1(a = 0) = 𝐜J−1

)
= 1|A = 0,𝐂J−1(a = 0) = 𝐜J−1, SJ(a = 0) = 1

)
=

Pr
(
SJ

(
a=1, 𝐜J−1

)
SJ(a = 0) = 1|A = 0,𝐂J−1(a = 0) = 𝐜J−1, SJ−1

(
a = 1, 𝐜J−2

)
SJ−1

(
a = 0, 𝐜J−2

)
=1
)

Pr
(
SJ(a = 0) = 1|A = 0,𝐂J−1(a = 0) = 𝐜J−1, SJ−1(a = 0)=1

)
× Pr
(

SJ−1

(
a = 1,𝐂J−2(a = 0) = 𝐜J−2

)
= 1|A = 0,𝐂J−1(a = 0) = 𝐜J−1, SJ−1(a = 0) = 1

)
=

Pr
(

SJ

(
a = 1, 𝐜J−1

)
= 1|A = 1,𝐂J−1(a = 1) = 𝐜J−1, SJ−1

(
a = 1, 𝐜J−2

)
= 1
)

Pr
(

SJ(a = 0) = 1|A = 0,𝐂J−1(a = 0) = 𝐜J−1, SJ−1(a = 0) = 1
)

(sequential monotonicity and NPSEM independence)

× Pr
(

SJ−1

(
a = 1,𝐂J−2(a = 0) = 𝐜J−2

)
= 1|A = 0,𝐂J−2(a = 0) = 𝐜J−2, SJ−1(a = 0) = 1

)
(NPSEM independence)

thus by iterating, one obtains

Pr
(

SJ

(
a = 1,𝐂J−1(a = 0) = 𝐜J−1

)
= 1|A = 0,𝐂J−1(a = 0) = 𝐜J−1, SJ(a = 0) = 1

)
=

J∏
j=2

Pr
(

Sj

(
a = 1, 𝐜j−1

)
= 1|A = 1,𝐂j−1(a = 1) = 𝐜j−1, Sj−1

(
a = 1, 𝐜j−2

)
= 1
)

Pr
(

Sj(a = 0) = 1|A = 0,𝐂j−1(a = 0) = 𝐜J−1, Sj−1(a = 0) = 1
)

=
∏J

j=2 𝜋j

(
1, 𝐜j−1

)
∏J

j=2 𝜋j

(
0, 𝐜j−1

)3626
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which gives

E

{
Y|A = 0,𝐂J−1 = 𝐜J−1, SJ = 1

}
= E

{
Y(a = 0)|A = 0,𝐂J−1(a = 0) = 𝐜J−1, SJ(a = 0) = SJ

(
a = 1,𝐂J−1(a = 0) = 𝐜J−1

)
= 1
}

− tJ
(
𝐜J−1

)
×

{
1 −
∏J

j=2 𝜋j

(
1, 𝐜j−1

)
∏J

j=2 𝜋j

(
0, 𝐜j−1

)}

proving the result. Equation (16) is obtained by setting J = 2.
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