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Abstract 

In the nascent field of soft machines, soft materials are used to create devices 

that actuate robots, sense environment, monitor health, and harvest energy.  The 

soft materials undergo large deformation in response to external stimuli, often 

leading to instability that is usually undesirable but sometimes useful.  Here we 

study a dielectric elastomer membrane sandwiched between two soft conductors, 

rolled into a hollow tube, pre-stretched in the hoop direction, and fixed at the ends of 

the tube to two rigid rings. This structure functions as an electromechanical 

transducer when the two rings are subject to a mechanical force and the two 

conductors are subject to an electrical voltage. We formulate a computational model 

by using a variational principle, and calculate the large and inhomogeneous 

deformation by solving a nonlinear boundary-value problem. We demonstrate that 

large actuation strains are achievable when the height-to-radius ratio of the tube is 

small and the hoop pre-stretch is large. The model provides a tool to analyze various 

modes of instability and optimize the electromechanical performance. 
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I. Introduction 

    A membrane of dielectric elastomer deforms in response to an applied voltage.  

This phenomenon has been studied intensely in developing highly deformable 

electromechanical transducers.1,2 Attributes of these transducers include large 

deformation, fast response, light weight, silent operation and low cost.3-6 Applications 

are wide ranging, including actuators for soft robots and MEMS,7-10 tunable lenses 

and haptic interfaces for mobile phones,11-13 and generators for harvesting energy 

from human motion and ocean waves.14,15 

Here we investigate a tubular configuration (Fig. 1). A membrane of a dielectric 

elastomer is sandwiched between two soft conductors of negligible stiffness, rolled 

into a hollow tube, pre-stretched in the hoop direction, and fixed at the ends of the 

tube to two rigid rings. A constant mechanical force pulls one ring relative to the 

other. When a voltage is applied to the two conductors, electric charges of the 

opposite polarities spread on the two faces of the dielectric membrane, causing the 

membrane to reduce thickness and expands area. The tube elongates in the axial 

direction, and functions as an actuator. On the other hand, for pre-charged 

membrane, when the applied force is removed in an open-circuit condition, the 

membrane increase its thickness and reduces its area, boosting the voltage between 

the two conductors.16 In this setup, the structure functions as a generator. This 

tubular geometry is easy to fabricate and use. The membrane has no free edge, which 

may enhance reliability. 

 A transducer of this type was developed as a generator to harvest energy from 
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ocean waves.17 The dielectric elastomer was stretched and wrapped to form a roll with 

a radius R of 15 cm and a length L of 20 cm. Several rolls are connected and placed on 

a buoy in ocean. As the buoy floated up and down with the ocean waves, a mass 

attached to the rolls cyclically stretched the dielectric elastomer. The setup was 

connected to an electrical circuit, and converted the mechanical energy of the ocean 

waves to electrical energy. The maximal electrical energy harvested was about 0.1 J/g 

per cycle.  Analysis of idealized generators has predicted that electrical energy can 

be harvested at a rate about 1 J/g per cycle.18 

Here we present a computational model to analyze large and inhomogeneous 

deformation of this tubular configuration. We derive the governing equations and 

boundary conditions using a variational principle, and describe the voltage-induced 

deformation by using the model of ideal dielectric elastomers. We focus on the 

electromechanical behavior of an actuator.  Our calculations demonstrate that the 

height-to-radius ratio of the tube, the pre-stretch in the hoop direction and the force 

applied between the rings significantly affect the electromechanical behavior.  We 

compare the numerical results to two limiting cases: an unclamped flat membrane 

and a clamped flat membrane.  

 

II. Governing equations 

    The theory of elastic dielectrics has been re-examined in recent years in light of 

the intense development of dielectric elastomer transducers.19 Several groups have 

developed finite element methods for dielectric elastomer actuators.20-24 Here we use 
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a variational principle to derive the equations of equilibrium, and adopt a specialized 

numerical method taking advantage of axisymmetric shape of the curved 

membranes.25-29 

    An actuator is made of a membrane of a dielectric elastomer sandwiched 

between two soft conductors of negligible stiffness. In the reference state (Fig. 1a), a 

tube with radius B , length L , and thickness H , made by rolling the membrane, is 

subject to no force or voltage. In the rest state (Fig. 1b), the tube is pre-stretched in 

the hoop direction, and attached to rigid rings on both the top and the bottom edges. 

The radius of the rings is b , so that the hoop pre-stretch is Bb / . A constant 

mechanical force P  pulls one ring relative to the other. The separation between the 

two rings is preL . In the actuated state (Fig. 1c), subject to a voltage Φ  across the 

thickness of the membrane, the separation between the two rings becomes l . The 

charge on the two faces of the membrane is Q± . The deformation of the tube is 

assumed to be axisymmetric.  

The tube undergoes inhomogeneous deformation. Let z be the coordinate along 

the axis of symmetry, r be the coordinate in radial direction, and the plane 0=z  be 

the middle plane of the tube. Due to axisymmetry, we identify each material particle 

using a single variable: the height of the material particle Z when the tube is in the 

reference state. In a deformed state, the same material particle moves to a point in 

space of coordinates ( ),r z . The functions ( )r r Z=  and ( )z z Z=  fully describe 

the shape of the deformed actuator.  

Next consider two material particles at heights Z and Z + dZ when the tube is in 
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the reference state. In a deformed state, these two material particles move to two 

points in space of coordinates ( ),r z  and ( ),r dr z dz+ + . Here 

( ) ( )dr r Z dZ r Z= + −  and ( ) ( )dz z Z dZ z Z= + − . The set of all material 

particles between the two particles forms a small element. When the actuator is in the 

reference state, the length of the element is dZ , and the element is vertical. When 

the actuator is in the deformed state, the element elongates in the longitudinal 

direction by the stretch 1λ , and is oriented at angle θ  from the radial direction. 

Consequently, in the deformed state, the length of the element is λ
1
dZ , and the three 

segments λ
1
dZ , dz and dr form a right triangle, giving 

 sin1
dz
dZ

λ θ=  (1) 

 cos1
dr
dZ

λ θ=  (2) 

Consider a circle of material particles at a certain height when the actuator is in the 

reference state. The perimeter of the circle is Bπ2  in the reference state, and is rπ2  

in the deformed state, so that the deformation causes a hoop stretch Br /2 =λ . The 

deformation of the membrane is inhomogeneous: the angle and the two stretches are 

functions of the material particles, θ Z( ) , λ
1
Z( )  and λ

2
Z( ) . The thickness of the 

membrane is uniform in the reference state, H, but is nonuniform in the deformed 

state, h Z( ) . The elastomer is taken to be incompressible, so that H = λ
1
λ
2
h .  

Because the dielectric is sandwiched between two conductors, the voltage Φ  applied 

between the two conductors causes a homogeneous electric potential in the dielectric.  

The electric field E , however, is inhomogeneous in the dielectric, and relates to the 
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voltage by E =Φ /h . The voltage spreads charges of the opposite polarities ±Q  on 

the two faces of the dielectric. The magnitude of the charge is ∫= DrdzQ π2 , where 

D  is the electric displacement. 

    The mechanisms applying the mechanical force and electrical voltage, together 

with the dielectric, constitute a thermodynamic system.  We assume that the system 

is held at a constant temperature. Let W be the Helmholtz free energy density of an 

element of the dielectric elastomer divided by the volume of the element in the 

reference state. The elastomer is taken to be incompressible, such that the 

thermodynamic state of the element is described by the stretches, 1λ  and 2λ , as well 

the electric displacement D. The Helmholtz free energy of this thermodynamic 

system is 

     ( ) QPldZDWBH
L

L
Φ−−=Π ∫−

2/

2/ 21 ,,2 λλπ  (3) 

where ( )DW ,, 21 λλ  is the free energy density for the dielectric elastomer, Pl−  is 

the potential energy of the mechanical force, and QΦ−  is the potential energy of the 

voltage source.  

     The first order variation of the free energy gives the governing equations and 

boundary conditions. Inspecting (1) and (2), we have δλ
1
=
dδz
dZ
sinθ +

dδr
dZ
cosθ . By 

definition we have 
B
rδ

δλ =2 . Inserting them into the variation of (3), we obtain the 

governing equations: 

     ( ) 0sin1 =θs
dZ
d

 (4) 

     ( ) 0cos 2
1 =−

B
ss

dZ
d

θ  (5) 

                         
( )1 2, ,W D

E
D

λ λ∂
=

∂
                         (6) 

with boundary conditions: 
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 ( ) 0sin2 2/

01 =−
LzPBHs δθπ  (7) 

 0cos 2/

02 =
Lrs θδ  (8) 

where the nominal stresses are 
( )1 2

1 2
1

, ,W D
s D

H
λ λ

λ
λ

∂ Φ
= −

∂
, 

( )1 2
2 1

2

, ,W D
s D

H
λ λ

λ
λ

∂ Φ
= −

∂
. The true stress is related to the nominal stress by 

111 λσ s= , 222 λσ s= . 

       We adopt the model of ideal dielectric elastomers.30 This model assumes that 

the electric displacement is linearly proportional to the electric field, such that 

ED ε= , and that the permittivity ε  is a constant independent of deformation. 

Integrating (6), we obtain the free energy density 

     W λ
1
,λ
2
,D( ) =Wstretch λ1 ,λ2( )+ D

2

2ε
 (9) 

Here W
stretch

λ
1
,λ
2( )  is the free energy of the elastomer as a function of the stretches 

in the absence of the electric field. 

        We adopt a free energy function that captures the stretch-stiffening behavior.  

In an elastomer, each individual polymer chain has a finite contour length. When the 

elastomer is subject to no loads, the polymer chains are coiled, allowing a large 

number of conformations. Subject to loads, the polymer chains become less coiled.  

As the loads increase, the end-to-end distance of each polymer chain approaches the 

finite contour length, and the elastomer approaches a limiting stretch.  On 

approaching the limiting stretch, the elastomer stiffens steeply.  To account for this 

behavior, we adopt the Gent model:31 
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               ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −++
−−=

−−

lim

2
2

2
1

2
2

2
1

lim21

31log
2

,
J

JWstretch
λλλλµ

λλ ,             (10) 

where µ  is the shear modulus, and limJ  is a material constant related to the 

limiting stretch.  When the stretches are small, lim
2
2

2
1

2
2

2
1 3 J<<−++ −− λλλλ , the Gent 

model recovers the neo-Hookean model, ( ) ( )( )32/, 2
2

2
1

2
2

2
121 −++= −− λλλλµλλstretchW .  

When the stretches approach the limit, lim
2
2

2
1

2
2

2
1 3 J→−++ −− λλλλ , the Gent model 

stiffens steeply. In our calculations, we use µ  to normalize various quantities, and 

assume 120lim =J , a representative value for a widely used dielectric elastomer, 

VHBTM.32  

 

III. Numerical Simulation 

This section briefly describes a numerical method to calculate the 

inhomogeneous deformation. We first write the equation to express dZdθ  

explicitly by expanding (4) and (5), 

 θ
θ sin

1

2

Bs
s

dZ
d

−=  (11) 

Combining (4) and (7), we have the algebraic equation as 

 0sin2 1 =−PBHs θπ  (12) 

With (2), (11), and (12), we solve this boundary-value problem in the interval 0 < Z < 

L/2 by using the shooting method. By symmetry ( )0 /2θ π= . An initial guess is 

provided for ( )0r , and the initial value for ( )01λ  is solved with (12).  These values 

are used as the initial conditions to numerically integrate the ordinary differential 

equations (2) and (11), together with the algebraic equation (12), to obtain the three 
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functions ( )Zr , ( )Zθ , and ( )Z1λ .  The values are solved iteratively until they 

satisfy the boundary condition bLr =)2( . 

  Once the functions ( )Zr , ( )Zθ , and ( )Z1λ  are determined, the separation 

between the two rigid rings, l , is determined by integrating (1) subject to the 

condition ( ) 00 =z . 

IV. Computational results and discussions 

      The relative change in the height of the actuator from the rest to the actuated 

states defines the actuation strain (i.e., the normalized stroke): 

ξ
actuation

=
l
L
pre

−1 .       (13) 

In designing this type of actuators, one may vary the mechanical force, the 

height-to-radius ratio of the tube, and the hoop pre-stretch of the elastomer. We 

represent these variables using three dimensionless parameters: ( )BHP πµ2/ , BL / , 

and Bb / . We first fix the axial load ( ) 12/ =BHP πµ  and hoop pre-stretch 3/ =Bb , 

and consider the effect of the aspect ratio BL / . The aspect ratio strongly affects the 

cross sections of the membrane (Fig. 2). The actuated state corresponds to the state 

of the maximum actuation, when loss of tension occurs which may cause the 

membrane to form wrinkles. The maximum axial actuation strain is around 316% for 

the actuator with 5.0/ =BL , but is only 15% for the actuator with 6/ =BL . We will 

explain the huge difference in detail later. 

We next plot the distributions for the stretches, stresses, and electric field in the 

membrane under various levels of voltages for actuators with different aspect ratios: 

5.0/ =BL  (Fig. 3) and 6/ =BL  (Fig. 4). Due to symmetry, we present results for 
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the upper half of the structure. In both cases, stresses and the electric field 

concentrate at the clamped boundary, where the membrane is most likely to fail due 

to electrical breakdown. We also observe that the hoop stress 2σ  at the clamped 

boundary vanishes under increasing voltage, leading to loss of tension. The  

inhomogeneity in deformation, stresses, and electric field becomes more pronounced 

for a structure with a larger aspect ratio. For example, with an aspect ratio 6/ =BL , 

the electric field at the top edge (Z=L/2) is approximately 8 times greater than that in 

the middle (Z=0).  For 5.0/ =BL , this difference in electric field is less than 10%.  

       The voltage-stroke curve depends on the aspect ratio of the actuator (Fig. 5). 

Calculations are terminated when the loss of tension occurs. For a fixed axial force 

and hoop pre-stretch, the actuation strain decreases as the aspect ratio BL /  

increases. We also include the voltage-actuation curves for two limiting conditions: 

an unclamped membrane under constant uniaxial tension32,33 and a clamped 

membrane subject to constant tension.34 The voltage-actuation curves for the tubular 

actuator with different aspect ratios lie between the curves of the two limiting cases. 

This behavior is understood as follows. For an actuator with a large aspect ratio, most 

parts are in an uniform uniaxial stress state. It is known that the voltage-induced 

actuation for dielectric elastomers under uniaxial tension is small.32,33 In the cases 

considered here, the actuation is even smaller than the ideal uniaxial force condition, 

due to inhomogeneity and loss of tension at the clamped boundaries. On the other 

hand, an actuator with a small aspect ratio approaches the condition of a clamped 

membrane subject to constant tension. Experiments have shown that large actuation 
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is achievable for such clamped membranes.34 Therefore, by decreasing the aspect 

ratio, the loading condition changes from an unclamped case to a clamped case, with 

a corresponding increase in actuation.  

 The voltage-stroke curve also depends on the applied force P (Fig.6) and 

pre-stretch /b B  (Fig. 7). For a prescribed aspect ratio /L B  and pre-stretch 

/b B , the actuation strain decreases with increasing P. This behavior implies that 

under greater P, the structure behaves more like an unclamped membrane under 

uniaxial tension. Conversely, for a prescribed aspect ratio and pre-load, the actuation 

strain increases with increasing pre-stretch in the hoop direction. In this case, the 

structure behaves more like a clamped membrane under constant tension. The 

pre-stretch effects for this actuator will not be discussed in detail since they are 

similar to those in the two limiting cases.   

      In designing the dielectric elastomer for applications such as actuators and 

generators, a large deformation range may be one of the most important design goals. 

As discussed above, the deformation range of the structure increases when the aspect 

ratio /L B  decreases, such that the structure approaches the clamped membrane  

condition. However, under such loading conditions, the mass of the entire structure 

may increase substantially due to the rigid rings needed to constrain the elastomer at 

the top and bottom edges. Thus the overall efficiency and specific energy density of 

the whole structure may decrease. The optimized performance would be a trade-off 

between the deformation range and specific energy density, which would depend on 

the material and loading parameters as illustrated in Figs. 5-7. A recent design where 
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the hoop direction is constrained by stiff thin fibers might be an optional choice.36  

We also note that in our current calculations, loss of tension at the boundary (Figs. 3 

and 4) precedes electrical breakdown, when we assume the dielectric breakdown 

strength to be 200MV/m.32,35 Thus, electrical breakdown of the dielectric elastomer is 

not discussed.  

 

V. Conclusions 

We present a computational model for the tubular transducers. We calculate the 

inhomogeneous deformation by formulating a nonlinear boundary-value problem. 

We demonstrate that the actuation is significantly affected by the height-to-radius 

ratio of the tube and the loading conditions. These effects are interpreted by 

comparing with two ideal limiting cases. A short tube approaches the case of a 

clamped flat membrane under constant tension, and large actuation strain is 

achievable. A long tube approaches the case of an unclamped membrane under 

uniaxial tension, and the actuation strain becomes small. Inhomogeneous fields of 

various quantities are also analyzed. Optimization of these actuators should combine 

the consideration of deformation range and energy density. These results will help to 

design such tubular transducers. 
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Figure Captions 

 

Fig. 1. A roll actuator in several states. (a) In the reference state, a membrane of 

dielectric elastomer is in a cylindrical shape, its inside and outside faces are coated 

with soft conductors, and the membrane is subject to no force or voltage. (b) In the 

rest state, the membrane is stretched in the hoop direction, fixed to rigid rings at the 

two ends, and loaded by an axial force.  (c) In the actuated state, the membrane is 

subject to a voltage across its thickness. 

 

Fig. 2. Calculated shapes of the rest state and the actuated state with two aspect ratios:  

(a) 5.0/ =BL  and (b) 6/ =BL . The pre-stretch and the pre-load for both (a) and 

(b) are 3/ =Bb  and ( ) 12/ =BHP πµ , respectively. The actuated state shows the 

maximal actuation before loss of tension. 

 

Fig. 3 Various quantities in an actuator with aspect ratio 5.0/ =BL , pre-stretch 

3/ =Bb , and pre-load ( ) 12/ =BHP πµ : (a) axial stretch, (b) hoop stretch, (c) axial 
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stress, (d) hoop stress, and (e) electric field.  

 

Fig. 4 Various quantities in an actuator with aspect ratio 6/ =BL , pre-stretch 

3/ =Bb , and pre-load ( ) 12/ =BHP πµ : (a) axial stretch, (b) hoop stretch, (c) axial 

stress, (d) hoop stress, and (e) electric field. 

 

Fig. 5 Voltage-actuation curves for actuators with different aspect ratios BL / . For 

given pre-load and hoop pre-stretch, the actuation strain decreases as BL /  

increases. The voltage-actuation curves lie between the curves of the two limiting 

cases: an unclamped membrane under uniaxial tension and a clamped membrane 

under constant tension.  

 

Fig. 6 Voltage-actuation curves for actuators with different pre-loads P. For given 

aspect ratio and hoop pre-stretch, the actuation strain decreases as P increases. 

 

Fig. 7 Voltage-actuation curves for actuators with hoop pre-stretch /b B . For given 

aspect ratio and pre-load, the actuation strain increases as the pre-stretch /b B  

increases.  
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Fig. 1. A roll actuator in several states. (a) In the reference state, a membrane of 

dielectric elastomer is in a cylindrical shape, its inside and outside faces are coated 

with soft conductors, and the membrane is subject to no force or voltage. (b) In the 

rest state, the membrane is stretched in the hoop direction, fixed to rigid rings at the 

two ends, and loaded by an axial force.  (c) In the actuated state, the membrane is 

subject to a voltage across its thickness. 
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Fig. 2. Calculated shapes of the rest state and the actuated state with two aspect 

ratios:  (a) 5.0/ =AL  and (b) 6/ =AL . The pre-stretch and the pre-load for both 

(a) and (b) are 3/ =Aa  and ( ) 12/ =AHP π , respectively. The actuated state shows 

the maximal actuation before loss of tension. 
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Fig. 3 Various quantities in an actuator with aspect ratio 5.0/ =AL , pre-stretch 

3/ =Aa , and pre-load ( ) 12/ =AHP π : (a) axial stretch, (b) hoop stretch, (c) axial 

stress, (d) hoop stress, and (e) electric field.  
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Fig. 4 Various quantities in an actuator with aspect ratio 6/ =AL , pre-stretch 

3/ =Aa , and pre-load ( ) 12/ =AHP π : (a) axial stretch, (b) hoop stretch, (c) axial 

stress, (d) hoop stress, and (e) electric field. 
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Fig. 5 Voltage-actuation curves for actuators with different aspect ratios AL/ . For 

given pre-load and hoop pre-stretch, the actuation strain decreases as AL/  

increases. The voltage-actuation curves lie between the curves of the two limiting 

cases: an unclamped membrane under uniaxial tension and a clamped membrane 

under constant tension.  
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Fig. 6 Voltage-actuation curves for actuators with different pre-loads P. For given 

aspect ratio and hoop pre-stretch, the actuation strain decreases as P increases. 
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Fig. 7 Voltage-actuation curves for actuators with hoop pre-stretch a/A. For given 

aspect ratio and pre-load, the actuation strain increases as the pre-stretch a/A 

increases.  

 

 

 

 

 


