Concentrations and snow-atmosphere fluxes of reactive nitrogen at Summit, Greenland

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>doi:10.1029/1999JD900192</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:14061855</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA</td>
</tr>
</tbody>
</table>
Concentrations and snow-atmosphere fluxes of reactive nitrogen at Summit, Greenland

J. W. Munger, D. J. Jacob, S.-M. Fan,1 and A. S. Colman2
Division of Engineering and Applied Sciences and Department of Earth and Planetary Sciences
Harvard University, Cambridge, Massachusetts

J. E. Dibb
Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham

Abstract. Concentrations and fluxes of NOy (total reactive nitrogen), ozone concentrations and fluxes of sensible heat, water vapor, and momentum were measured from May 1 to July 20, 1995 at Summit, Greenland. Median NOy concentrations declined from 947 ppt in May to 444 ppt by July. NOy fluxes were observed into and out of the snow, but the magnitudes were usually below 1 μmol m⁻² h⁻¹ because of the low HNO₃ concentration and weak turbulence over the snow surface. Some of the highest observed fluxes may be due to temporary storage by equilibrium sorption of peroxyacetyl nitrate (PAN) or other organic nitrogen species on ice surfaces in the upper snowpack. Sublimation of snow at the surface or during blowing snow events is associated with efflux of NOy from the snowpack. Because the NOy fluxes during summer at Summit are bidirectional and small in magnitude, the net result of turbulent NOy exchange is insignificant compared to the 2 gmol m⁻² d⁻¹ mean input from fresh snow during the summer months. If the arctic NOy reservoir is predominantly PAN (or compounds with similar properties), thermal dissociation of this NOy is sufficient to support the observed flux of nitrate in fresh snow. Very low HNO₃ concentrations in the surface layer (1% of total NOy) reflect the poor ventilation of the surface layer over the snowpack combined with the relatively rapid uptake of HNO₃ by fog, falling snow, and direct deposition to the snowpack.

1. Introduction

Concentration records of NO₃⁻ in snow and ice cores have been used to infer variations of atmospheric nitrogen loading and inputs from anthropogenic NOx emissions, biomass burning, solar activity, and stratospheric denitrification [Legrand and Delmas, 1986; Mayewski et al., 1990; Wolff, 1995]. Inferences from the ice-core nitrate record, however, have been called into question because the chemical and physical processes controlling transport and speciation of N in the atmosphere, deposition to snow, and ultimate preservation in glacial ice are not fully understood [Wolff, 1995]. Our ability to invert the ice-core nitrate record to infer global atmospheric nitrogen concentrations and emission rates depends on a quantitative understanding of which nitrogen species are transported to the Arctic, what processes control conversion and deposition of N, and how extensively post-depositional processes alter the record. The lifetimes for NOy species (we define NOx = NO + NO₂; NOy = NOx + HNO₃ + NO₃ + 2N₂O₅ + peroxyacetyl nitrate (PAN) + other organic nitrates + particulate nitrate) vary from a few days to deposit HNO₃ from the boundary layer to several months to decompose PAN in the upper troposphere. The amount of NOy that reaches the polar regions depends strongly on the form of NOy that is transported, but the long-lived species, such as PAN, that are transported effectively may not deposit efficiently. Dibb et al. [1994] point out the dilemma that HNO₃ concentrations measured above Summit, Greenland, are very low, yet NO₃⁻ is the dominant anion in the snow. Furthermore, the ratio of NO₃⁻ to SO₄²⁻ in snow at Summit exceeds the ratio of those ions (as HNO₃ and aerosol SO₄²⁻) in air. They suggest that rapid dry deposition of HNO₃ from a shallow boundary layer depletes the gas-phase HNO₃ or that species other than HNO₃ are deposited and converted to nitrate in the snowpack. Concentration profiles in the surface snow from Antarctica and Greenland indicate that NO₃⁻ may migrate within the snowpack (distorting seasonal and interannual variations) or be returned to the atmosphere [Fischer et al., 1998; Fischer and Wagenbach, 1998; Mayewski and Legrand, 1990; Mulvaney et al., 1998; Neubauer and Heumann, 1988], particularly at low-accumulation sites. Volatilization of HNO₃ from snow is an apparent contradiction to laboratory studies showing irreversible uptake of HNO₃ on ice surfaces [Abbott, 1997; Laird and Sommerfeld, 1995; Zondlo et al., 1997]. Better understanding of the processes controlling HNO₃ removal is needed to objectively distinguish long-term trends in NOy deposition [Mayewski et al., 1986; 1990] from postdepositional loss where both processes are important.

This paper presents results from the first measurements of total nitrogen oxides (NOy) mixing ratios and eddy fluxes above the surface of a polar glacier at Summit, Greenland.
The goals of this work were to determine the ambient mixing ratios of NOy, to quantify the direction and magnitude of NOy fluxes at the snow-atmosphere interface, and to identify processes that control exchange of reactive nitrogen with the snow surface. A previous paper [Dibb et al., 1998] presented a small subset of the 1995 NOy data focusing only on periods with simultaneous measurement of HNO3 concentration gradients above the snow surface and NOy. Nitric acid was 1% of the total NOy. Measurable gradients of HNO3 were observed and were frequently in opposition to the concurrent NOy eddy flux, suggesting that N exchange with the snow was more complex than a simple adsorption/desorption of HNO3. Large apparent deposition velocities for HNO3 suggest that NOy species other than HNO3 may be exchanging with the snowpack. In this paper we present the complete NOy concentration and flux results for the May-July 1995 summer field season, along with an examination of momentum, heat, and water vapor exchanges over the snowpack. The results in this paper overlap those presented by Dibb et al. [1998] but show different features due to periods that were not included in the previous analysis. We consider what nitrogen species are present, how they are transformed and deposited to the snowpack, and whether they are stable in the snow.

2. Methods

During the 1994 field season an 18 m tower was installed 270 m south of the main camp at Summit (elevation 3200 m, 38.4°E, 72.55°N). Measurements were made during the summer season in both 1994 and 1995; however, we will not discuss the 1994 data here because contamination by combustion sources in and near the camp affected too many of the data. Winds from the clean sector were more frequent and polluting activities were more effectively restricted during the 1995 field season. A three-axis sonic anemometer (Solent Research Anemometer, Gill Instruments) and sampling inlets for NOy, H2O, and O3 measurements were mounted at 17.5 m facing the clean-air sector to the south and east. Instruments and data acquisition and control systems were housed in a covered snow trench at the tower base. Ventilation at the trench ceiling was required to discharge waste heat from the instrumentation and prevent the walls from melting. The instrument rack was enclosed to maintain a moderate operating temperature despite the room temperature being < 0°C. NOy was measured using reduction by H2 on heated gold followed by O2-chemiluminescent detection [Bakwin et al., 1994; Munger et al., 1996]. The hot gold catalyst quantitatively converts all species of NOy to NO. The catalyst was mounted on the tower with no additional inlet to avoid inlet retention problems for species such as HNO3. The sample line was attached to a heating cable and sheathed in foam insulation to prevent ice formation downstream from the catalyst. Temperature of the tubing was controlled by manually adjusting the voltage applied to the heating cable. The system was calibrated several times daily by addition of NO in N2; periodic addition of isopropylnitrate (IPN) indicated that conversion efficiency near 100% (for IPN) was maintained throughout the season. The range of NO sensitivity was 0.3 to 0.5 ppt photon-1 s-1; after day 141, the sensitivity only varied between 0.4 and 0.475 ppt photon-1 s-1. Laboratory tests subsequent to the field season were conducted to determine the conversion efficiency for HCN. The configuration did not duplicate field conditions, but the tests suggested that the catalyst also converted HCN with efficiency >50%, which adds a degree of uncertainty to the true level of the lowest NOy concentrations but should not affect the fluxes. A fast-response CO2/H2O analyzer (LiCor 6262) was used to measure H2O mixing ratios. The instrument response was checked using a dewpoint calibrator before and after the sampling season and found to be constant. Ozone was determined by UV absorbance (Dasibi 1008). Dry zero air was supplied to the inlet several times a day to determine the zero offsets for both H2O and O3.

The anemometer and concentration signals were recorded at 4 Hz, and auxiliary data on pressures and flows used to calibrate the sensors were recorded at 0.5 Hz by a PC-based data acquisition and control system. The data were downloaded to a separate computer daily and processed to generate initial concentration, flux and quality assurance data. Air temperature was computed from the speed of sound reported by the sonic anemometer. Fluxes of NOy, H2O, heat, and momentum were calculated for 10-min intervals from the covariance of fluctuations in vertical wind velocity (w′) and tracegas concentration (C′), temperature (T′) or horizontal wind velocity (u′) after removing the linear trend and offsetting the data to account for delays in the sampling tubing [McMillen, 1988].

Because the source of contamination at Summit was so close to the sensor, data rejection based on wind sector alone may not be reliable, particularly when winds are light and variable. In order to objectively exclude periods with contamination from camp activities, the NOy mixing ratio data were rejected if the signal variance was too large. A few additional observations were rejected because the signal changed too much between successive intervals (see Table 1).

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall duration of campaign (May 1 - July 20, 1995)</td>
<td>1923</td>
</tr>
<tr>
<td>NOy Mixing Ratios</td>
<td></td>
</tr>
<tr>
<td>Instrument in sampling mode</td>
<td>1553</td>
</tr>
<tr>
<td>Instruments on</td>
<td>1535</td>
</tr>
<tr>
<td>Variance indicates clean conditions</td>
<td>1320</td>
</tr>
<tr>
<td>ΔNOy indicates clean conditions</td>
<td>1311</td>
</tr>
<tr>
<td>After exclusion of warm-up time and miscellaneous failures</td>
<td>1280</td>
</tr>
<tr>
<td>Mixing ratios acceptable</td>
<td>1280</td>
</tr>
<tr>
<td>Wind Velocities</td>
<td></td>
</tr>
<tr>
<td>Instrument operational</td>
<td>1574</td>
</tr>
<tr>
<td>Sonic data valid - frost free (T<0°C)</td>
<td>1255</td>
</tr>
<tr>
<td>In-sector winds</td>
<td>1187</td>
</tr>
<tr>
<td>Valid friction velocity</td>
<td>1168</td>
</tr>
<tr>
<td>Downward momentum flux</td>
<td>1164</td>
</tr>
<tr>
<td>Wind data acceptable</td>
<td>1164</td>
</tr>
<tr>
<td>Eddy flux (wNOy) acceptable</td>
<td>944</td>
</tr>
</tbody>
</table>

2.1 < cNOy < 1250 and cNOy/HNO3 < 2.90.

ΔNOy < 1450. NOy thresholds are based on the raw photon count data sampled at 4 Hz in units of counts (or counts2 for the variance).

2.5 Tower not upwind of the sensors.

u* < 0.0046 + 0.045 x 0 (m s-1), u* = (-1*<u'^w'>)1/2.
The sonic anemometer failed when rime ice covered the transducers. The computed eddy fluxes were rejected if icing was indicated by anomalous temperatures or if the wind was blowing through the tower. A small number of periods with in-sector winds and valid temperatures still had anomalous wind data and were rejected (Table 1). Between May 1 and July 19, the data system was operational 82% of the time. The wind velocity and NO\textsubscript{y} mixing ratio data were acceptable for 66% and 60% of the time, respectively; the NO\textsubscript{y} fluxes were acceptable for 50% of the possible observations (Table 1).

3. Results

3.1. Meteorological Conditions

During the summer months the Sun never sets at Summit; at the solstice, the noon Sun is 41\(^\circ\) above the horizon and the midnight Sun is 5\(^\circ\) above the horizon. Air temperatures exhibited diel variation in response to Sun angle superimposed on seasonal and synoptic trends (Figure 1). Tethered-balloon temperature soundings (not shown) revealed that a strong temperature inversion (temperature increases of up to 10\(^\circ\)C) existed at or near (within tens of meters) the surface on many days. Soundings were restricted to times and altitudes with wind speeds below \(\approx10\) m s\(^{-1}\). Maximum temperatures on the tower during the measurement period never exceeded 0\(^\circ\)C.

Except for wind storms on June 10-11 and July 3-4, the momentum flux was generally between 0 and -0.1 m\(^2\) s\(^{-2}\); these low values demonstrate the weak turbulence above the cold, aerodynamically smooth snow surface (Figure 2). Grelle and Lindroth [1996] reported problems with heat fluxes calculated from a Solent sonic anemometer at wind speeds >10 m s\(^{-1}\) due to correlated noise in the temperature and wind speed channels. Less than 10% of the observations at Summit were in this range, and the heat fluxes showed no apparent anomalies. If this problem is due to vibration of the sensor, it may depend on specific properties of the mounting and tower configuration. Sensible heat fluxes above the snow were small; 90% of observations had absolute values <20 W m\(^{-2}\). Negative sensible heat fluxes and decreasing air temperatures were usually observed between the hours of 1600 and 0800, which we refer to here as "night." Peak values of latent heat (evaporation) flux during midday were <15 W m\(^{-2}\) (0.3 mmol-H\textsubscript{2}O m\(^{-2}\) s\(^{-1}\); 5.4 mg m\(^{-2}\) s\(^{-1}\)). Mean water vapor fluxes during the afternoon were 5 W m\(^{-2}\) (0.1 mmol H\textsubscript{2}O m\(^{-2}\) s\(^{-1}\)).
able negative values (condensation) were consistently observed at night, due to formation of frost and ground fog. Note that periods of water vapor deposition may be underrepresented because fog was generally accompanied by rime formation on the sonic anemometer. Water vapor concentrations were generally near the saturation vapor pressure (Figure 1a). The small magnitude of water vapor fluxes and rapid diel variations in H_2O concentration imply that the surface layer was fairly shallow and, if air above the inversion was dry, that the entrainment rate was small. Vertical profiles of water vapor concentration that would allow quantification of the water budget and entrainment rates could not be measured accurately in this subzero environment with the available sensors.

3.2. NO$_x$ and O$_3$ Mixing Ratios

The variance-based criteria used to reject periods of local contamination remove the high NO$_x$ concentration outliers from the data, leaving a population that fits a lognormal distribution (Figure 3). From May 3 to July 19, 1995, NO$_x$ mixing ratios at Summit ranged from <100 ppt to 4900 ppt (ppt = 10^{-12} mol NO$_x$/mol air). Mixing ratios of NO$_x$ were highest in May (Figure 4). Median mixing ratios decreased by a factor of 2 from May to July, and other statistical measures of the concentration distribution decreased similarly (Table 2).

Ozone concentrations declined from values near 70 ppb in early May to a minimum about 30 ppb in mid-June, then rose...
again to 70 ppb (Figure 4). The high O$_3$ concentrations are characteristic of high-latitude free tropospheric air [Browell et al., 1992; Gregory et al., 1992]. In general, O$_3$ concentrations had a maximum in the late afternoon, as is typical of sites where surface deposition is balanced by entrainment of high O$_3$ from aloft, but the diel variations at Summit were quite small implying a weak deposition velocity for O$_3$ to snow surfaces [Weseley et al., 1981].

Table 2. NO$_y$, HNO$_3$, and O$_3$ Mixing Ratios and NO$_y$ Fluxes Between May 3 and July 19, 1995, at Summit, Greenland

<table>
<thead>
<tr>
<th>Percentile</th>
<th>NO$_y$, ppt</th>
<th>O$_3$, ppb</th>
<th>HNO$_3$ at 8m*, ppt</th>
<th>NO$_y$ Flux, μmol m$^{-2}$ h$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall (1280)</td>
<td>330 469 547 740 939 1072 1508 850</td>
<td>37 46 50 55 58 61 68 54</td>
<td>6.4 9.9 6.4 9.9</td>
<td>0.002 0.066 0.146 0.717 0.008 0.001 0.063 0.973</td>
</tr>
<tr>
<td>May (507)</td>
<td>574 751 828 985 1252 1363 1849 1145</td>
<td>49 53 54 58 63 65 72 59</td>
<td>2.7 4.2</td>
<td>0.006 0.146 0.717</td>
</tr>
<tr>
<td>June (429)</td>
<td>329 448 518 683 858 965 1242 748</td>
<td>33 43 45 51 56 58 63 50</td>
<td>3.4 5.5</td>
<td>0.041 0.043 0.063 0.126 0.030</td>
</tr>
<tr>
<td>July (344)</td>
<td>233 331 363 444 571 651 947 544</td>
<td>49 53 54 58 63 65 72 59</td>
<td>2.5 4.4</td>
<td>0.003 0.01 0.066 0.206</td>
</tr>
<tr>
<td>Overall (943)</td>
<td>37 46 50 55 58 61 68 54</td>
<td>6.4 9.9 6.4 9.9</td>
<td>2.7 4.2</td>
<td>0.006 0.146 0.717</td>
</tr>
<tr>
<td>April 25-July 8 (225)</td>
<td>3.4 5.5 7.4 10.4 13.4 15.7 24.1 12.8</td>
<td>0.002 0.066 0.146 0.717</td>
<td>3.7 4.4</td>
<td>0.041 0.043 0.063 0.126</td>
</tr>
<tr>
<td>May (69)</td>
<td>3.4 5.5 7.4 10.4 13.4 15.7 24.1 12.8</td>
<td>0.002 0.066 0.146 0.717</td>
<td>2.5 4.4</td>
<td>0.003 0.01 0.066 0.206</td>
</tr>
<tr>
<td>June (134)</td>
<td>2.5 4.4 5.5 7.1</td>
<td>0.001 0.063 0.178 0.973</td>
<td>3.7 4.4</td>
<td>0.003 0.01 0.066 0.206</td>
</tr>
<tr>
<td>July (222)</td>
<td>3.4 5.5 7.4</td>
<td>0.001 0.063 0.178 0.973</td>
<td>2.5 4.4</td>
<td>0.003 0.01 0.066 0.206</td>
</tr>
<tr>
<td>Overall (944)</td>
<td>0.002 0.066 0.146 0.717</td>
<td>0.002 0.066 0.146 0.717</td>
<td>0.002 0.066 0.146 0.717</td>
<td>0.002 0.066 0.146 0.717</td>
</tr>
<tr>
<td>May (316)</td>
<td>0.002 0.066 0.146 0.717</td>
<td>0.002 0.066 0.146 0.717</td>
<td>0.002 0.066 0.146 0.717</td>
<td>0.002 0.066 0.146 0.717</td>
</tr>
<tr>
<td>June (339)</td>
<td>0.002 0.066 0.146 0.717</td>
<td>0.002 0.066 0.146 0.717</td>
<td>0.002 0.066 0.146 0.717</td>
<td>0.002 0.066 0.146 0.717</td>
</tr>
<tr>
<td>July (289)</td>
<td>0.002 0.066 0.146 0.717</td>
<td>0.002 0.066 0.146 0.717</td>
<td>0.002 0.066 0.146 0.717</td>
<td>0.002 0.066 0.146 0.717</td>
</tr>
</tbody>
</table>

* Dibb et al. [1998]
3.3. Fluxes

The NOy flux observations averaged over hourly intervals are about equally divided between periods of net deposition ($F_{\text{NOy}} < 0$) and net emission ($F_{\text{NOy}} > 0$) (Figure 5, Table 2). We estimate that the absolute value for the smallest observable flux (defined as twice the standard deviation during periods of very small flux) is 0.03 μmol m$^{-2}$ h$^{-1}$. The absolute values in general are small; 25% were below the 0.03 μmol m$^{-2}$ h$^{-1}$ detection limit, and only 10% exceeded 1 μmol m$^{-2}$ h$^{-1}$ (Figure 6). The frequency of fluxes with larger absolute value is highest in June. The NOy fluxes are generally weak in July, resulting in the minimum range between 10% and 90% quantiles. In comparison to NOy flux, snow deposition of NO$_3^-$ averages 3.8 μmol m$^{-2}$ per event [Bergin et al., 1995]; total snow deposition of NO$_3^-$ for the period April 28-July 12, 1995, was 149 μmol m$^{-2}$ (J. Dibb, unpublished data, 1995).

4. Discussion

4.1. Nature and Origin of NOy at Summit

Previous observations of nitrogen oxides in the Arctic boundary layer show a spring peak in NOy concentration that is dominated by PAN [Bottenheim and Gallant, 1989; Bottenheim et al., 1986, 1993; Dickerson, 1985; Honrath and Jaffe, 1992; Honrath et al., 1996; Solberg et al., 1997] (Table 3). Enhanced PAN background concentrations are also observed in the northern midlatitudes during the winter months [Brice et al., 1988]. The data from Summit, which is at 3 km, are best compared to measurements in the free troposphere. Aircraft measurements in the Arctic during July and August indicate an increase of PAN concentrations with altitude [Singh et al., 1992a,b] (see Table 3).

Results from a three-dimensional chemical transport model that includes a detailed chemical mechanism for reactive N [Wang et al., 1998] (Table 4) summarize our current understanding of chemical and physical processes that affect long-range transport of reactive nitrogen to the Arctic troposphere. The model predicts that PAN will be the dominant NOy species in the Arctic middle troposphere. In the model, PAN over Summit is mostly derived from long-range transport in the free troposphere of PAN produced at northern midlatitudes from anthropogenic NOx. Even a small yield of PAN can lead to a substantial accumulation during the late winter and early spring because the lifetime for PAN is very long at cold temperatures. Emissions from forest and tundra fires during summer may contribute to additional PAN at high latitudes [Singh et al., 1992a]. The spring maximum in the model most likely results from a combination of high emissions of biogenic hydrocarbons (precursors of PAN) and relatively low temperatures (suppressing PAN decomposition) [Liang et al., 1998]. Because natural sources of NO$_x$ (soils, lightning, forest fires) are at a minimum in winter, the NO$_x$ peak in spring is most likely of anthropogenic origin. Simulated PAN concentrations exceed 500 ppt in April and decline to levels <200 ppt by July. A vertical gradient of increasing PAN concentrations with altitude develops over the summer, reflecting the dominance of high-altitude transport of pollution as was observed in the Arctic Boundary Layer Expedition (ABLE 3A) aircraft mission over the Arctic [Harriss et al., 1992] and colder temperatures aloft. HNO$_3$ concentrations are depressed in the bottom model layer by deposition. Both the model and aircraft observations have higher HNO$_3$ concentrations and HNO$_3$:NOy ratios than are observed in the surface layer at Summit. However, the model predictions are averaged through a layer that is thicker than the surface inversion at Summit, and the aircraft observations are made in the free troposphere. The lifetime for HNO$_3$ in a 100 m surface layer with a deposition velocity of 0.7 cm s$^{-1}$ (the median V_d computed from aerodynamic resistance) is <4 hours and decreases linearly as mixing height decreases. Modeled NO$_y$ concentrations are low (10-20 ppt) throughout the spring and summer due to the ~1 day lifetime for NO$_x$ oxidation.

The NO$_y$ observations from this study (Table 2) exceed the model predictions by a factor of 2-4 but show similar trends. The median NO$_y$ concentration observed at Summit during July (444 ppt) is within the range of NO$_y$ concentrations measured in the free troposphere during ABLE 3A, and a factor of 2 higher than the corresponding PAN concentration (see Table 3). Concentrations of NO$_x$ and PAN in the bound-
ary layer (Table 3) also decrease from spring to summer, but the concentrations are considerably less than at Summit or aircraft observations above the boundary layer, consistent with the predicted vertical gradients. The results of this and previous studies taken together with the model predictions point to the accumulation of a reactive N reservoir during late winter and early spring in the Arctic. The dominant identified species is PAN [Singh et al., 1992b], but other compounds such as alkyl nitrates are also present at small concentrations [Muthuramu et al., 1994]. Based on these considerations, we assume that PAN is the NOy species that is transported to and accumulates in the Arctic midtroposphere and that it probably is the dominant NOy species at Summit. Concentrations of NOy, however, were lower at Summit during a 3-week measurement campaign in the summer of 1998 than in 1995, and the contribution from PAN was less than expected [Campbell et al., 1998]. A detailed analysis of air mass histories for the two seasons has not been done to try and understand these differences. PAN is destroyed by heating during subsidence and would be less abundant in marine air masses uplifted to Summit. The NOy concentrations measured during ABLE 3A were a factor of 2 higher than the sum of concurrently measured NOx, PAN, and HNO3 concentrations; issues about measurement artifacts [Bradshaw et al., 1998] or unidentified species have not been resolved. As temperatures in the middle and lower troposphere warm, PAN (and other organic nitrogen species) thermally decomposes, and the resulting NOy is quickly converted to HNO3 [Fan et al., 1994]. The reservoir concentration in the middle troposphere declines over summer through reaction and dilution by mixing with NOy-depleted air. Measurements made in the boundary layer, where mean temperatures reach 0°C or above, indicate that NOy is depleted to low concentrations.

We next examine whether the distinct episodes of elevated mixing ratio lasting for hours at a time (Figure 4) can be attributed to specific sources or transport patterns. The magni-
Table 3. Reactive Nitrogen and Ozone Concentrations at Selected Sites in the Arctic Free Troposphere and Boundary Layer

<table>
<thead>
<tr>
<th>Month</th>
<th>Altitude, km</th>
<th>NOx, ppt</th>
<th>HNO3, ppt</th>
<th>PAN, ppt</th>
<th>NOy, ppt</th>
<th>O3, ppb</th>
</tr>
</thead>
<tbody>
<tr>
<td>July-August</td>
<td>2-4</td>
<td>26</td>
<td>78</td>
<td>140</td>
<td>518</td>
<td>36</td>
</tr>
<tr>
<td>July-August</td>
<td>4-6</td>
<td>34</td>
<td>70</td>
<td>285</td>
<td>860</td>
<td>57</td>
</tr>
</tbody>
</table>

Free-Tropospheric, Arctic and Subarctic Flights

- March 0.5 25 -- 304 426 37
- April 0.5 35 -- 290 363 33
- May 0.5 23 -- 164 180 29
- Barrow, Alaska 0 14 -- 202 32
- Bethel, Alaska 0 14 -- 202 32

<table>
<thead>
<tr>
<th>Month</th>
<th>NOx, ppt</th>
<th>HNO3, ppt</th>
<th>PAN, ppt</th>
<th>NOy, ppt</th>
<th>O3, ppb</th>
</tr>
</thead>
<tbody>
<tr>
<td>March</td>
<td>25</td>
<td>--</td>
<td>304</td>
<td>426</td>
<td>37</td>
</tr>
<tr>
<td>April</td>
<td>35</td>
<td>--</td>
<td>290</td>
<td>363</td>
<td>33</td>
</tr>
<tr>
<td>May</td>
<td>23</td>
<td>--</td>
<td>164</td>
<td>180</td>
<td>29</td>
</tr>
<tr>
<td>Barrow, Alaska</td>
<td>0</td>
<td>14</td>
<td>202</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>June</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>July</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>July-August</td>
<td>0</td>
<td>14</td>
<td>--</td>
<td>202</td>
<td>32</td>
</tr>
</tbody>
</table>

- Sandholm et al. [1992], Talbot et al. [1992], Singh et al. [1992a], and Gregory et al. [1992].
- Solberg et al. [1997].
- Honrath and Jaffe [1992].
- Bakwin et al. [1992].

4.2. Factors Contributing to NOy Flux

4.2.1. Storage. The vertical flux of NOy measured at 18 m (Fv) is equal to the flux at the snow surface, F0, plus any change in concentration (storage) in the 0-18 m column:

\[
F_v = F_0 + \int_{0}^{h} C(z) dz \quad (1)
\]

where C(z) is the number density of NOy at height z and h = 18 m. Because snow is porous, the lower boundary should be below the surface, but we ignore this contribution because only the upper 0.1 to 1 m is rapidly ventilated [Colbeck, 1989; Waddington et al., 1996], and air space in the snowpack is reduced by the volume of ice. We estimate the magnitude of the storage term by assuming a uniform concentration below the sensor. For the range of observed hourly concentration changes the storage term would be between -1 and 1.5 μmol m\(^{-2}\) h\(^{-1}\). 50% of the data, however, have an absolute value <0.05 μmol m\(^{-2}\) h\(^{-1}\). Although the storage term can have a large magnitude at times, the surface exchange, F0, is not consistently different from the flux at 18 m. More important, the storage term does not bias the results; the least squares fit of F0 versus Fv has a slope of 0.99 and an intercept not different from 0.

4.2.2. PAN adsorption. Laboratory measurements (R. Friedl, Jet Propulsion Laboratory, personal communication, 1997) indicate that PAN is reversibly adsorbed on ice at 193 K and shows no evidence of chemical reaction. The adsorption coefficient, Kads, is Kads = 30 cm (defined as the ratio of PAN adsorbed (molecules cm\(^{-2}\)) to the concentration in the adjacent air (molecules cm\(^{-3}\)). For our application the mass of adsorbed PAN in a volume of snow is determined by the gas phase concentration, adsorption constant, and the bulk surface

Table 4. Reactive N Mixing Ratios (ppt) Simulated Over Summit, Greenland, by a Global Three-Dimensional Model

<table>
<thead>
<tr>
<th>Month</th>
<th>NOx</th>
<th>PAN</th>
<th>HNO3</th>
<th>NOy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0-0.4 km</td>
<td>1.0-2.3 km</td>
<td>0-0.4 km</td>
<td>1.0-2.3 km</td>
</tr>
<tr>
<td>April</td>
<td>8</td>
<td>11</td>
<td>547</td>
<td>547</td>
</tr>
<tr>
<td>May</td>
<td>14</td>
<td>19</td>
<td>257</td>
<td>306</td>
</tr>
<tr>
<td>June</td>
<td>15</td>
<td>18</td>
<td>191</td>
<td>233</td>
</tr>
<tr>
<td>July</td>
<td>14</td>
<td>20</td>
<td>133</td>
<td>180</td>
</tr>
<tr>
<td>August</td>
<td>14</td>
<td>19</td>
<td>132</td>
<td>176</td>
</tr>
</tbody>
</table>

Mean model results from Wang et al., [1998] for the atmosphere over Summit. The model was sampled in vertical levels 1 and 3, corresponding to 0-0.4 km and 1-2.3 km above the surface at Summit, which is at 3 km above sea level.
area of the snow. The unadsorbed PAN in the pore space is
the gas phase concentration adjusted for the volume of snow
pack filled by ice. Hence the ratio of adsorbed PAN on the
grain surfaces (PAN$_{\text{ads}}$) to free PAN in the pores (PAN$_{\text{pore}}$) for a
volume of snow is given by

$$\frac{\text{PAN}_{\text{surf}}}{\text{PAN}_{\text{pore}}} = \frac{K_{\text{ads}} \times \text{SV}}{1 - \rho_1 / \rho_2}$$ \hspace{1cm} (2)

where SV is the bulk surface area of the snowpack (typically
30 mm$^{-1}$ for wind-packed surface snow [Davis et al., 1996]
B. Davis, Cold Regions Research and Engineering Laboratory,
unpublished data, 1998)), ρ_1 is the bulk density of snow
(typically 0.4 g cm$^{-3}$ for wind-packed surface snow [Davis et
al., 1996] (B. Davis, CRREL, unpublished data, 1998)), and
ρ_2 is the density of ice (0.9 g cm$^{-3}$). For the conditions
given, which correspond to a layer of small, closely packed grains,
adsorbed PAN exceeds PAN in the pores by a factor of
16,000. Equilibrium should be established quickly within the
snowpack, but depletion of PAN from the much larger volume
of overlying air is limited by the ventilation rate across the
snow-air interface. Because this is an equilibrium process,
it does not present an infinite sink for PAN. Reversible ad-
sorption on ice surfaces can be thought of in the same way as
the storage term described in equation (1). For the snow mor-
phology given above and the adsorption coefficient deter-
mined at 193 K, a 1 cm layer of snow would hold 2.85 nmol
of PAN per m2 at equilibrium with a 1 ppt gas phase concen-
tration. Temporal variations in NO$_x$ concentration range from
-400 ppt h$^{-1}$ to 400 ppt h$^{-1}$ (90% of data), which translates to
upper limit fluxes of -1.1 mmol m$^{-2}$ h$^{-1}$ to 1.1 mmol m$^{-2}$ h$^{-1}$ if
ventilation of the snowpack and PAN equilibration at the ice
surface are rapid and all NO$_x$ is (or behaves like) PAN. This
range is comparable to the measured fluxes; however, it is
probably an overestimate because concentration changes in
the snowpack may be damped relative to variations in the
overlying air, and the adsorption coefficient for PAN at tem-
peratures observed at Summit is probably less than the value
for 193$^\circ$K. The adsorption constant and reactivity for PAN on
ice at temperatures relevant to polar snow need to be deter-
mained. This analysis suggests, however, that the porous
snowpack provides a mechanism to at least temporarily se-
quester a relatively large mass of PAN. Adsorption and
desorption of PAN in response to changes in ambient con-
ncentration provide a mechanism to explain NO$_x$ eddy fluxes
that are in opposition to observed HNO$_x$ concentration gradi-
tents [Dibb et al., 1998]. The NO$_x$ flux measurement does not
distinguish the species involved and would not differentiate
between PAN exchange from release of a different compound (e.g.,
NO$_y$ [Honrath et al., 1999]). As pointed out by Dibb et al.
[1998], conversion of only a small fraction of the NO$_x$ passing
through the snow could be a large term in the snow nitrate
budget.

4.2.3. HNO$_3$ uptake. Laboratory studies [Abbatt, 1997;
Laird and Sommerfeld, 1995; Zondlo et al., 1997] show very
efficient uptake of HNO$_3$ by ice up to monolayer coverage.
Slower adsorption corresponding to formation of a multilayer
or surface rearrangement is observed as well. Diffusion of
HNO$_3$ through ice crystals is discounted by Sommerfeld et al.
[1998]; however, Adsorption of a HNO$_3$ monolayer is largely
irreversible [Abbatt, 1997; Laird and Sommerfeld, 1995;
Zondlo et al., 1997]. The capacity for monolayer HNO$_3$
adsorption is weakly temperature dependent and decreases by
only a factor of 4 as temperature increases from 208 K to 248
K [Abbatt, 1997]. As seen below, this apparent contradiction
between laboratory measurements of HNO$_3$ adsorption and
HNO$_3$ volatilization in the field can be reconciled by consid-
ering the surface-to-volume relationship of ice grains and the
temperature dependence of HNO$_3$ uptake.

Sommerfeld et al. [1998] report that HNO$_3$ will be pre-
dominantly on the surface of ice grains. The concentration
(mol g$^{-1}$) and surface density (mol cm$^{-2}$) of HNO$_3$ for an ice
grain are related by the S/V ratio, and density of ice. As snow
ages its, S/V ratio decreases from >100 mm$^{-1}$ for new snow,
to <5 mm$^{-1}$ for fully developed depth hoar in summer (B.
Davis, CRREL, personal communication, 1998) [Davis et al.,
1996]. For the mean snow concentration of 3 nmol g$^{-1}$ [Dibb
et al., 1998] the surface coverage increases from 0.016 x 1014
molecules cm$^{-2}$ to 0.33 x 1014 molecules cm$^{-2}$ as the grains
increase in size. Conversely, the calculated concentration corre-
sponding to an HNO$_3$ monolayer at 248 K (0.7 x 1014
molecules cm$^{-2}$) [Abbatt 1997] decreases from 130 nmol g$^{-1}$ to 6
nmol g$^{-1}$ as the snow ages. New snow has a capacity for HNO$_3$
adsorption well in excess of the observed ambient concentra-
tions, but as long as the snow remains acidic, older coarse-
grained snow approaches the monolayer adsorption limit (for
ice at 248 K) and may exceed that threshold if the HNO$_3$
uptake coefficient is even smaller at the warmer temperatures in
the summer snowpack. Temperature profiles in the snow can
be complex and vary over diel and seasonal timescales. Ice
evaporates in the warmer layers, and the vapor is either rede-
posited in colder layers or escapes entirely [Davis et al.,
1996]. The fate of HNO$_3$ liberated from evaporated ice grains
depends on whether the vapor encounters other ice surfaces or
is quickly ventilated to the surrounding air. Snow metamor-
phism could redistribute HNO$_3$ within the snowpack and
modify seasonal layers. This mechanism could account for the
large enhancement of NO$_3^-$ in the surface snow and the
damping of seasonal cycles in older snow [Fischer and
Wagenbach, 1996; Mulvaney et al., 1998]. Increasing NO$_3^-$
inventory in surface snow layers over the course of several
days that have been interpreted as evidence of dry deposition
[Bergin et al., 1995; Dibb et al., 1998] may actually be rede-
position of HNO$_3$ migrating from deeper layers. Evaporation
at the surface of the snowpack, or sublimation from blowing
snow [Pomeroy and Jones, 1996], however, would release
HNO$_3$ to the atmosphere (see section 4.3). The extent of NO$_3^-$
loss from the snowpack would depend on the length of time a
layer was near the surface, where it is subject to thermal gra-
dients and ventilation, and on the frequency of high winds.
The interactions between controlling variables at Summit are complex, and correlation plots between NO$_y$ fluxes and any single factor other than momentum flux were generally confounded by the effects of other factors. Physical factors such as snow density, porosity, morphology, or surface temperature that may affect the NO$_y$ flux are difficult to quantify routinely over the large upwind area that contributes to the eddy flux. Except as noted above, defining quantitative relationships between NO$_y$ flux and any single variable is difficult because the data set is too limited to identify trends by binning of the data to selectively hold the other factors constant. Instead we illustrate processes that affect NO$_y$ exchange by examining selected periods of the data and pose physical and chemical mechanisms that can be tested in controlled experiments. Periods of enhanced NO$_y$ deposition or efflux are not quantitatively important, and the overall net flux is near zero for the period covered by this data set. However, these infrequent events may illustrate processes that are more significant at other locations or in different seasons.

A pulse of NO$_y$ deposition coincides with a 1500 ppt increase in NO$_y$ concentration the afternoon of June 22 (Figure 8) and is followed by a period of positive NO$_y$ flux during the night. This pattern of alternating deposition and efflux is consistent with temporary storage by reversible surface adsorption. Positive NO$_y$ fluxes continue during the afternoon of June 23 accompanied by wind speeds that peak at 12 m s$^{-1}$ and observations of snow and blowing snow. Latent heat fluxes that exceed the sensible heat flux suggest strong evaporation and liberation of HNO$_3$. Another period of high wind on June 24, which only stirred up a layer of blowing snow just above the surface, is associated with a consistent small negative NO$_y$ flux. Evaporation rates are smaller during this period, and the sensible heat flux is larger. The increased sensible heat flux and warmer surface temperatures would weaken the surface inversion and allow mixing over a deeper layer and allow HNO$_3$ from aloft to reach the surface. Subtle differences in the consolidation of surface snow or shifts in the energy balance can affect the direction of NO$_y$ fluxes. Several hours of NO$_y$ uptake, with a peak of 1 µmol m$^{-2}$ h$^{-1}$ is associated with a 1500 ppt increase in NO$_y$ concentration on July 1 (Figure 9). Consistent small NO$_y$ efflux is observed from midmorning on July 1 to the night of July 2 that is again associated with high wind speed, warmer temperatures, increasing water vapor concentrations, and low ambient NO$_y$ concentration, suggesting evaporation of snow into a relatively clean, well-mixed surface layer. A short pulse of NO$_y$ deposition occurs on July 3 along with rising NO$_y$ concentration that suggests equilibrium surface adsorption. The temperature is colder during this period than during the NO$_y$ concentration increase on July 1, and the surface snow has been densely packed by the wind storm on the previous day. In addition, the slight positive heat flux may enhance vertical mixing and entrainment of air that has a higher proportion of HNO$_3$.

4.4 Nitrate Scavenging by Precipitating Snow

In this section we consider whether the levels of nitrate observed in snow at Summit are consistent with the NO$_y$ concentrations and fluxes. Based on the recent laboratory investigations of HNO$_3$ adsorption and evaluation of HNO$_3$ uptake by cirrus clouds [Abbatt, 1997; Zondlo et al., 1997] (see section 4.2) we expect that HNO$_3$ is completely scavenged by the ice surface during formation of clouds and snowflakes. Even if a quasi-liquid layer [Conklin and Bales, 1993] were present, HNO$_3$ uptake would be efficient because of its large solubility and dissociation constants. Although some PAN could adsorb on the fresh snowflakes, the surface area of ice in the cloud is too small for this process to significantly alter
Figure 8. (a) Concentration of NOy (dots) and NOy flux (solid shading) shown for a 4 day period beginning on June 21, 1995. Vertical bars indicate the HNO3 concentration (HNO3 has been scaled by 10 for greater visibility on the plot). (b) Wind direction (solid line), wind speed (crosses connected by dashed line), and u^*, the friction velocity, $10 \times$ (triangles) are plotted against time. Blowing snow was generally observed with wind speed >10 m s$^{-1}$. (c) Temperature (dots), sensible heat flux (crosses), and (d) latent heat flux and H$_2$O concentration are shown.

4.5. Budget Considerations

We next evaluate whether an NOy reservoir composed of PAN can account for the observed total deposition of NO$_3^-$ during summer. The lifetime ($1/k$) for PAN decomposition below -10°C exceeds 4 weeks (decay rate $\leq 4\%$ d$^{-1}$), but it decreases rapidly to 3 days as the temperature warms above 0°C (decay rate $\geq 31\%$ d$^{-1}$) [Roberts and Bertman, 1992]. Using midday mean air temperatures measured at the surface, the monthly median NO$_y$ concentrations (assuming that NO$_y$ is PAN), and temperature coefficients for PAN decomposition from Roberts and Bertman [1992], we compute a maximum source of NO$_x$ from PAN of 13 ppt d$^{-1}$, 34 ppt d$^{-1}$, and 31 ppt d$^{-1}$ in the surface layer for May, June, and July, respectively. The lifetime for OH oxidation of NO$_2$ to HNO$_3$ at pressure and temperature of Summit and an OH concentration of 1×10^6 molecules cm$^{-3}$ is 1 day. Fan et al. [1994] conclude that PAN is extensively decomposed and converted to HNO$_3$ in subsiding air parcels. Thermal decomposition of PAN followed by oxidation of NO$_2$ to HNO$_3$ in a 3 km layer above Summit could thus yield 153 gmol m$^{-2}$ of deposited NO$_3^-$ for the period May 1 to July 15 (1 gmol m$^{-2}$ d$^{-1}$, 2.7 gmol m$^{-2}$ d$^{-1}$, and 2.5 gmol m$^{-2}$ d$^{-1}$ for the months May, June, and July, respectively). From April 28 to July 12, 1995, the nitrate accumulation in snow was 149 gmol m$^{-2}$ (J Dibb, unpublished data, 1996). Such close agreement between the NO$_3^-$ accumulation rate in fresh snow and PAN decomposition is fortuitous, considering the gross simplification in our assumptions about vertical structure of temperature and PAN concentration. The surface temperatures lie between the inversion temperature and the temperatures in the free troposphere above. Nevertheless, the calculation demonstrates that production of HNO$_3$ from PAN can potentially account for the NO$_3^-$ deposited in snow. As noted in section 4.1, PAN transport and thermal decomposition account for HNO$_3$ concentrations of 80-90 ppt just above the surface layer. Furthermore, the seasonal pattern for PAN decomposition can ex-
plain the observed summertime peak in snow NO\textsubscript{3}- [Davidson et al., 1989; Whitlow et al., 1992] despite decreasing ambient NO\textsubscript{y} concentrations over the summer.

Our observations of small offsetting fluxes of NO\textsubscript{y} from the snowpack are consistent with the observations by Bergin et al. [1995] that measured inputs in fresh snow and fog accounted for 99% of the NO\textsubscript{3}- present in the snowpack at the end of the season, leaving little room for significant dry deposition or revolatilization of HNO\textsubscript{3}. Although the flux observations from Summit do not indicate a net loss of nitrate from

Figure 9. Same as Figure 8, but for 4 days commencing June 30, 1995.

Figure 10. Nitrate concentration in snow that formed by cooling a specified \(\Delta T\) below the saturation temperature in air with an ambient HNO\textsubscript{3} concentration of 0.27 nmol m-3 (6 ppt) [Dibb et al., 1998] is calculated assuming 100% scavenging and is plotted on the vertical axis against the saturation temperature on the horizontal axis. The symbols indicate temperature differences associated with snow formation. The ice formed by cooling saturated air 0.5\(^\circ\)C from -12\(^\circ\)C would have a nitrate concentration of 3.5 nmol g-1. The dashed horizontal line shows the mean nitrate concentration in snow [Dibb et al., 1998].
the snowpack over the summer, they do not address the potential redistribution of NO$_3^-$ within the snowpack or losses in other seasons or at other sites.

5. Conclusions

The concentration of NO$_x$ at Summit, Greenland, declined over the summer from a median of 950 ppt in May to 440 ppt in July. Nitric acid in the surface layer was typically only 1% of the observed NO$_x$. Predictions based on current understanding of reactive N chemistry indicate that PAN should accumulate in early spring in the Arctic troposphere. Thermal decomposition rates for PAN as temperatures warm in the summer are adequate to supply fresh NO$_x$ that is oxidized to HNO$_3$ and scavenged by precipitating snow. Variations in the ice-core nitrate record should be interpreted with respect to variations in the long-range transport of PAN to the Arctic, which depends on the supply of precursor hydrocarbons, photochemical activity, temperatures, as well as variations in NO$_x$ emissions.

The turbulent fluxes of NO$_x$ at Summit were bidirectional, but the magnitudes were small. Most of the time, NO$_x$ fluxes were <1 μmol m$^{-2}$ h$^{-1}$. Neither emission nor dry deposition dominated the NO$_x$ flux, and the overall net exchange was insignificant compared to the flux of NO$_3^-$ via snow deposition, which contributed 149 gmol m$^{-2}$ over 75 days. Water vapor concentrations were close to the saturation vapor pressure and responded quickly to variations in temperature, which demonstrates that the boundary layer is shallow and infrequently mixed with the overlying atmosphere. If the process that limits HNO$_3$ dry deposition is its entrainment from aloft, the small fluxes that we observed would be sufficient to maintain very low concentrations in the surface layer.

Occasional pulses of NO$_x$ exchange into and out of the snow that follow ambient concentration changes suggest that reversible adsorption of compounds such as PAN on the ice surfaces may temporarily store reactive N in the snowpack. However, we cannot rule out adsorption of one species followed by conversion and release as a different compound. Upward fluxes of NO$_x$ and H$_2$O during the highest wind events point to sublimation as a mechanism for releasing NO$_3^-$ from the snowpack. Nitric acid is tightly bound to ice surfaces up to a monolayer coverage but may be liberated as the snow ages and the individual grains increase in size. Once liberated, this HNO$_3$ may redeposit on fine-grained layers near the surface or be lost from the snowpack if it is released near the surface and is quickly ventilated. The tendency for NO$_x$ efflux during windy periods that evaporate the snow indicates that postdepositional losses of NO$_3^-$ from the snowpack could be more important in drier or windier seasons and sites.

Acknowledgments. The contributions of B. Mendelson and M. Foreman-Fowler in the field and during construction of equipment were essential to this work. We especially thank N. Allen and B. Daube for their assistance with technical details of the instrumentation. We thank Y. Wang for extracting global model results and B. Davis for helpful discussions of grain crystallization processes. The Polar Ice Coring Office and the 109th New York Air National Guard provided logistical support and transport to Summit. We thank the Greenland Home Rule office and Danish Research Commission for permission to work in Greenland. This research was supported by the National Science Foundation, Office of Polar Programs.

References

MUNGER ET AL.: NO$_x$ FLUXES AT SUMMIT, GREENLAND 13,733

Neubauer, J. and K. G. Heumann, Nitrate trace determinations in snow and firn core samples of ice shelves at the Weddell Sea, Antarctica, Atmos. Environ., 22, 537-545, 1988.

A. Colman, Department of Geology and Geophysics, Yale University, Box 208109, New Haven, CT 06520-8109.

J. Dibb, Institute for the Study of Earth Oceans and Space, University of New Hampshire, Durham, NH 03824-3525.

S.-M. Fan, Atmospheric and Oceanic Sciences Program, Princeton University, Sayre Hall, Princeton, NJ 08544.

D. J. Jacob and J. W. Munger, Department of Earth and Planetary Sciences, and Division of Engineering and Applied Sciences, Harvard University, 20 Oxford Street, Cambridge, MA 02138. (jwm@io.harvard.edu)

(Received November 19, 1998; revised March 18, 1999; accepted March 22, 1999.)