Joint myocardial T1 and T2 mapping

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>doi:10.1186/1532-429X-17-S1-Q1</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:14065497</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA</td>
</tr>
</tbody>
</table>
Joint myocardial T₁ and T₂ mapping

Mehmet Akçakaya¹*, Sebastian Weingärtner¹ ², Tamer A. Basha¹, Sébastien Roujol¹, Reza Nezafat¹

From 18th Annual SCMR Scientific Sessions
Nice, France. 4-7 February 2015

Background
Recent studies suggest that quantitative myocardial T₁ mapping allows assessment of focal and diffuse fibrosis in the myocardium [1]. Quantitative T₂ mapping has also been proposed to overcome challenges associated with T₂ weighted imaging [2]. These maps are traditionally acquired with different sequences, necessitating image registration to evaluate them jointly. A sequence that can jointly estimate T₁ and T₂ maps has been proposed [3], but it requires multiple relaxation cycles, which necessitates a lengthy free-breathing acquisition. In [4], an alternative joint estimation sequence was proposed based on the inversion-recovery SSFP curve. In this study, we sought to develop a saturation-recovery

![Diagram](attachment:image.png)

Figure 1 a) The sequence diagram for the proposed technique. A saturation pulse is applied in every R-R interval to eliminate the magnetization history. The longitudinal magnetization then recovers for Tₛₑₐₜ. Subsequently a T₂-prep with echo length TEᵰₑᵢₜ is applied to generate the additional T₂ weighting, after which a single shot SSFP image is acquired. b) The mapping sequence acquires the first image with no magnetization preparation (corresponding to Tₛₑₐₜ = ∞ and TEᵰₑᵢₜ = 0), followed by 12 images (3 are shown) acquired with different Tₛₑₐₜ and TEᵰₑᵢₜ values. The major characteristics of the longitudinal magnetization signal curve are depicted under the pulse sequence diagram.
based heart-rate independent sequence that can be acquired in a breath-hold and that allows for simultaneous estimation of quantitative T_1 and T_2 maps.

Methods

The sequence diagram is depicted in Figure 1. At every heartbeat, a saturation pulse is applied to eliminate the magnetization history. The longitudinal magnetization then recovers for T_{sat} based on the T_1 value. Subsequently a T_2-prep pulse [5] with echo length TE_{prep} is applied to generate the additional T_2 weighting, after which a single shot SSFP image is acquired. The process is repeated for 13 heartbeats with various (T_{sat}, TE_{prep}) corresponding to heartbeat k, to sample different T_1-T_2 weighted images. The first heartbeat is acquired with no magnetization preparation.

The T_1 and T_2 maps were estimated jointly by voxel-wise least squares fitting to a 4-parameter signal model, $A (1- \exp(-T_{sat}/T_1)) \exp(-TE_{prep}/T_2) + B$. Phantom imaging of 14 vials with different T_1/T_2 values were performed and compared to inversion-recovery and CPMG spin-echo references, respectively. Breath-held in-vivo imaging was performed on 5 healthy adult subjects, and the maps were compared to SASHA T_1 maps [6] and to T_2 maps [7].

Results

Phantom imaging resulted in T_1 and T_2 values not significantly different than the references ($P = 0.481$ and 0.479 respectively). Example in-vivo T_1 and T_2 maps are depicted in Figure 2, comparing various techniques. The T_1 and T_2 values were in good agreement (1211 ± 82 ms vs. 1210 ± 92 ms for T_1; 49.0 ± 5.8 ms and 47.3 ± 6.5 ms for T_2).

Conclusions

The proposed sequence allows for the simultaneous estimation of accurate and jointly registered quantitative T_1 and T_2 maps with similar accuracy and precision to saturation-based T_1 mapping and to T_2 mapping of same duration.

Funding

NIH:K99HL111410-01; R01EB008743-01A2.
Authors’ details
1Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA. 2Computer Assisted Clinical Medicine, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany.

Published: 3 February 2015

References

doi:10.1186/1532-429X-17-S1-Q1
Cite this article as: Akçakaya et al. Joint myocardial T1 and T2 mapping. Journal of Cardiovascular Magnetic Resonance 2015, 17(Suppl 1):Q1.