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MALARIA VECTOR CONTROL IN SUB-SAHARAN AFRICA – IMPACT AND ECONOMIC 

EVALUATION OF LARVICIDING 

 

ABSTRACT 

 The last decade witnessed the important scaled-up of malaria control interventions in sub-

Saharan Africa (SSA). There is now renewed impetus to achieve the long-term goal of malaria 

elimination and reducing vectorial capacity of the Anopheles mosquito is a necessary first step 

towards this objective. Relying solely on the two pillars of malaria vector control (i.e., 

insecticide-treated nets and indoor residual spraying) will be insufficient to achieve elimination 

in much of SSA, however. Larval Source Management, and larviciding in particular, could play 

an important role in areas where  breeding  habitats  are  ‘few, fixed, and findable’  or  where malaria 

vectors exhibit exophagic and exophilic behaviors, and in settings where insecticide resistance 

has emerged. Yet, only few contemporary studies have investigated the effectiveness of 

larviciding for malaria control despite historical success. Using the wealth of data from Dar es 

Salaam’s  Urban  Malaria  Control  Program (2004-2008), this dissertation will first assess the 

impact of a community-based larviciding program on prevalence of malaria infection in 15 urban 

wards of Dar es Salaam (Tanzania). The cost-effectiveness of this intervention will then be 

estimated from both a provider and a societal perspective. Finally, in a context of accelerated 

malaria control, the effect of reducing malaria transmission on disease-related behavior and 

knowledge will be examined.  
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 Results suggest that the larviciding intervention had a significant protective effect, 

decreasing by 21% the odds of being infected with malaria. Larviciding was found to be cost-

effective for incidences as low as 40 infections per 1,000 individuals per year but the cost-

effectiveness ratios were highly dependent on the assumed baseline malaria incidence rates. Such 

a successful intervention could also bring about further challenges to sustaining gains in reducing 

malaria transmission as the larviciding intervention was found to negatively affect bednet usage 

and knowledge of disease symptoms. Collectively, these results imply that larviciding should be 

considered as part of an Integrated Vector Management approach in SSA, if local eco-

epidemiological conditions are suitable, and that there is a need to sustain behavioral change 

communication following successful vector control interventions. 
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INTRODUCTION 

During the last decade, the mobilization of important financial resources has led to the 

scaling-up of malaria control interventions in sub-Saharan Africa (SSA)[1]. Interventions such as 

insecticide-treated bed nets (ITNs), indoor residual spraying (IRS), rapid diagnostic tests 

(RDTs), and the introduction of artemisin combination therapy (ACT) are believed to have 

played a role in mitigating the malaria burden in SSA[2-4]. The reductions in morbidity and 

mortality that coincided with the scaling-up of such intervention led some to advocate moving 

beyond control to malaria elimination[5,6].  The  impetus  provided  by  a  leading  philanthropist’s  

call for malaria eradication within his lifetime has spurred several research initiatives in that 

direction[7,8].  

 Interventions that reduce vectorial capacity are a necessary first step towards 

eradication[9]. Sustaining consolidated control in much of SSA still faces important challenges, 

however. This is especially true in areas where vectors exhibit exophagic and exophylic 

behaviors[10,11]. Mathematical models suggested that the outdoor biting rate of the main 

malaria vectors defines what is achievable in terms of malaria reduction with IRS and ITNs[12] - 

the two pillars of vector control interventions in SSA[13]. Other challenges include the 

emergence of pyrethroid resistance for the primary malaria vectors in diverse areas of the 

African continent. Relying solely on IRS and ITNs is believed to be insufficient to achieve 

malaria elimination in much of SSA[9,14]. Hence, larval source management, and larviciding in 

particular, may become desirable in areas where transmission is focal and where breeding 

habitats are easily located and accessible such as in urban settings[15]. Yet, strong empirical 

evidence on the causal effect of larviciding on malaria infection is difficult to obtain and further 

studies are needed. This was indeed identified as a priority research area for accelerating 



 

 2 

program transition toward malaria elimination at a recent WHO meeting [16]. 

 Second, managers of malaria control programs will need to define context-specific 

packages of optimum interventions to achieve either low endemicity control or elimination. 

Despite the availability of interventions of proven efficacy, the challenge remains to define this 

package of intervention in a sustainable, equitable, and cost-effective way. Cost-effectiveness 

analysis is a well-established, albeit imperfect, method that can guide this type of evidence-based 

decision-making. The knowledge base regarding the cost-effectiveness of malaria interventions 

is relatively scarce, however. To the best of our knowledge, larviciding was the object of only 

one cost-analysis study[17,18] and the cost-effectiveness of this intervention remains to be 

quantified. 

Finally, additional challenges to elimination could also stem from vector control 

measures themselves. Larval source management for example, by concomitantly reducing 

densities of other non-malaria vector nuisance insects, could impact the uptake of other 

interventions such as ITNs[19-21]. Use of bednet is believed to be a function of night-time 

temperature, perceived malaria risk (including beliefs about malaria transmission), and density of 

nuisance biting insects[22-24]. With decreases in malaria transmission and perceived malaria 

risk, use of mosquito net could be driven primarily by a desire to avoid bites of insects other than 

anophelines. Few studies of vector control interventions that reduce vector densities and malaria 

transmission investigated such potential impacts.  

This doctoral dissertation is organized around these three main research questions. 

Specifically, the first paper investigates the effectiveness of large-scale community-based 

micriobial larviciciding to reduce prevalence of malaria infections in urban Dar es Salaam 

(Tanzania)[25-29]. This paper was published in 2013 in PLoS ONE [30]. The second paper 
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estimates the cost-effectiveness of larviciding for urban malaria control and has been published 

in 2014 in Malaria Journal[31]. The third paper examines the impacts of this large-scale 

larviciding intervention on bednet usage and knowledge of malaria symptoms and transmission. 

This last paper was also published in Malaria Journal[32].  
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PAPER #1: IMPACT OF COMMUNITY-BASED LARVICIDING ONTHE PREVALENCE 

OF MALARIA INFECTION IN DAR ES SALAAM, TANZANIA 

Mathieu Maheu-Giroux1& Marcia C. Castro1 

1 Department of Global Health & Population, Harvard School of Public 

Health, Boston MA. 

Published August 2013 in PLoS One 8(8):e71638. 

ABSTRACT 

Background: The use of larval source management is not prioritized by contemporary 

malaria control programs in sub-Saharan Africa despite historical success. Larviciding, in 

particular, could be effective in urban areas where transmission is focal and accessibility to 

Anopheles breeding habitats is generally easier than in rural settings. The objective of this 

study is to assess the effectiveness of a community-based microbial larviciding intervention 

to reduce the prevalence of malaria infection in Dar es Salaam, United Republic of Tanzania. 

Methods and Findings: Larviciding was implemented in 3 out of 15 targeted wards of Dar 

es Salaam in 2006 after two years of baseline data collection. This intervention was 

subsequently scaled up to 9 wards a year later and, to all 15 targeted wards in 2008. 

Continuous randomized cluster sampling of malaria prevalence and socio-demographic 

characteristics was carried out during 6 survey rounds (2004-2008), which included both 

cross-sectional and longitudinal data (N=64,537). Bayesian random effects logistic 

regression models were used to quantify the effect of the intervention on malaria prevalence 

at the individual level.Effect size estimates suggest a significant protective effect of the 

larviciding intervention. After adjustment for confounders, the odds of individuals living in 
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areas treated with larviciding being infected with malaria were 21% lower (Odds Ratio=0.79; 

95% Credible Intervals: 0.66-0.93) than those who lived in areas not treated. The larviciding 

intervention was most effective during dry seasons and had synergistic effects with other 

protective measures such as use of insecticide-treated bed nets and house proofing (i.e., 

complete ceiling or window screens).  

Conclusion: A large-scale community-based larviciding intervention significantly reduced 

the prevalence of malaria infection in urban Dar es Salaam.  
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INTRODUCTION 

 The Ross-Macdonald model of malaria transmission suggests that control methods that 

reduce  adult  mosquitoes’  longevity  can  achieve  greater  malaria  reduction  than strategies that 

target larval stages. Yet, Larval Source Management (LSM), such as the use of larvicides and the 

draining of breeding habitats, has historically been a very successful tool to reduce mosquito 

density [1] – examples include the elimination of Anopheles arabiensis from Egypt [2] and 

Brazil [3], malaria control in the Zambian copperbelt (1930-1950) [4],  Dr.  Gorga’s  work  during  

the construction of the Panama canal [5], and the vector control program of the Tennessee Valley 

Authority [6]. With the discovery of DDT, however, such approaches where disfavored as 

exemplified by the almost exclusive use of this potent insecticide during the Global Malaria 

Eradication Program (1955-1969) [7]. In addition, LSM programs were often associated with 

vertical, authoritarian management. Currently, there are few examples of LSM initiatives in post-

colonial Africa [8-10]. LSM is often perceived as a secondary malaria control strategy, labor-

intensive, requiring strong managerial support and oversight for monitoring and evaluation 

[11,12], and often beyond the financial and operational capabilities of most malaria endemic 

areas in sub-Saharan Africa [13].  

Such considerations might explain the insufficient evidence-base of LSM in post-colonial 

Africa, and the contemporary prioritization of malaria control programs that rely on Insecticide-

Treated Nets (ITNs) and Insecticide Residual Spraying (IRS) as the main vector control 

measures. Nevertheless, a renewal of interest in applications of LSM within the sub-Saharan 

context has been observed recently [14-18]. In fact, in April of 2012, the World Health 

Organization (WHO) released an interim position statement [19] on the use of larvicides for 

malaria control in sub-Saharan Africa, recognizing that larviciding should be considered for 
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malaria  control  but  only  in  areas  where  breeding  sites  are  ‘few, fixed and findable’  [19]. Larval 

control is regarded as being of secondary importance in comparison with IRS and ITNs. 

Although the WHO acknowledges that larvicides could be effective as one of the leading 

methods of vector control in urban areas of sub-Saharan Africa, it highlights the lack of recent 

and sound evidence of its effectiveness. Few contemporary studies have assessed the 

effectiveness of larvicides on malaria infection. Studies in highland valley communities of 

Kenya [20] and urban Tanzania [21] demonstrated substantial reduction in malaria prevalence, 

while no reductions were observed in a study conducted in a rural setting in The Gambia [22]. 

Strong empirical evidence on the causal effect of larviciding on malaria infection is difficult to 

obtain since larviciding interventions need to be implemented and scaled-up over large areas, 

appropriate control groups with similar malaria ecology are difficult to find, and the cost of such 

trials can be prohibitively expensive [14]. 

 The rationale for adding larvicides to the arsenal of malaria control tools in urban areas is 

manifold. First, in contrast to rural areas, vector breeding habitats are generally fewer and much 

easier to reach in highly densely populated areas [10]. Second, the most potent malaria vector in 

Africa, An. gambiae, has been shown to exhibit exophagic behavior in some urban areas - 

although the majority of bites still take place indoors [23]. If this behavior intensifies over time, 

and therefore more biting and resting start to occur outside of homes, the efficacy of both IRS 

and ITNs would be reduced. Mathematical models have provided evidence that the outdoor 

biting rate defines what is achievable in terms of malaria reduction with IRS and ITNs [24]. 

LSM is one of the few strategies that could contribute to further reduce malaria when Anopheles 

are partially exophagic [14]. Third, insecticide resistance has emerged for the primary malaria 

vectors in many areas of the African continent [25-28] and combining IRS and ITN with 
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larviciding could become more desirable in such settings. Finally, relying solely on IRS and 

ITNs may be insufficient to achieve malaria elimination in much of sub-Saharan Africa [29,30]. 

As such, larviciding may be part of an integrated vector management (IVM) approach [31] that 

could help hinder malaria transmission [18]. Such informed use of larvicides, based on local 

malaria  ecology,  is  in  line  with  WHO’s  current  position  on  IVM  [31,32]. 

 Africa is the fastest urbanizing continent in the world and its share of urban population is 

expected to double between 2000 and 2030 [33]. Malaria intensity is generally much lower in 

urban areas and transmission is highly focal [34,35]. A corollary of this reduced endemicity is 

that urban dwellers will develop lower levels of clinical immunity to the disease, which can pose 

public health challenges. It has been estimated that about 28% of the malaria burden in sub-

Saharan Africa is attributable to urban malaria [34]. Malaria control in urban settings offers more 

options than for rural areas because logistical constraints are alleviated by relatively good 

transportation, education, communication, and health infrastructures [36].  

Following this rationale, the Dar es Salaam Urban Malaria Control Program (UMCP) was 

launched  in  2004,  targeting  15  of  the  city’s  73  wards,  covering  56  km2 of the city, and a 

population of more than 610,000 residents [36]. The goal was to develop a sustainable larval 

control intervention as one of the main components of a malaria control strategy. Regular 

application of microbial larvicides was initiated in 2006 through vertically managed community-

based delivery systems [36]. Initial results, restricted to children under five years of age and 

comprising data from the first period of larviciding (2006-2007) in three wards of the city 

(N=4,450), demonstrated that this intervention reduced by 72% the odds of malaria infection 

[21]. In addition, rigorous monitoring of larval population in the same period showed that 
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larviciding reduced anopheline larval abundance by 96% [36]. The larviciding intervention was 

scaled-up to 9 wards in 2007 and to all 15 wards in 2008.  

In this paper, we will comprehensively investigate the effectiveness of the larviciding 

intervention on reducing malaria prevalence using 4.6 years of data, including individuals of all 

ages, and combining both cross-sectional and longitudinal data (N=64,537). This will provide 

crucial evidence on the potential contribution of larvicide use for reducing population-level 

malaria burden in urban areas of sub-Saharan Africa.  

MATERIALS AND METHODS 

Study site 

 Dar es Salaam is the largest city and economic capital of the United Republic of Tanzania 

with an estimated population of 2.7 million in 2005 [37]. The climate is tropical humid with two 

rainy seasons – the long rains during the months of April and May and the short rains of October 

and November. Malaria transmission is year-round [38] with peaks in incidence after the two 

rainy seasons. Plasmodium falciparum accounts for more than 90% of cases and the principal 

vectors involved in malaria transmission are An. gambiaes.s. and An. funestus [10]. An. 

coustani’s  contribution  to  malaria  transmission  is  believed  to  be  marginal  [21]. Dar es Salaam is 

composed of three municipalities: Illala, Temeke, and Kinondoni. These municipalities are 

further divided in 73 wards (Figure 1.1). Each ward is comprised of administrative sub-units 

called mtaa (plural mitaa) which are further divided in ten-cell units (TCU) – the smallest 

administrative unit that contains approximately 10-20 houses, but may also contain as many as 

100 [10].  
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Figure 1.1: Map of the study area and administrative units. 

The northern portion belongs to the municipality of Kinondoni, the south-eastern portion to 
Temeke, and the south-western part to Ilala. 
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Figure 1.2: Map control and intervention wards and location of sampled households for each 
larviciding period.
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Figure1.3: Timeline of data collection activities and larviciding intervention. 

The first survey round was conducted form 05/2004 to 09/2004, the second from 10/2004 to 
08/2005, the third from 09/2005 to 05/2006, the fourth from 06/2006 to 03/2007, the fifth from 

04/2007 to 11/2007, and the sixth and last survey round from 01/2008 to 12/2008. The first 
period of the intervention started on March 1st 2006, the second period of larviciding on May 1st 

2007, and the last period of larviciding on April 1st 2008. 
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Design of the larviciding intervention 

The  Dar  es  Salaam’s  UMCP  was  launched  in  2004,  and  targeted  15  wards, five in each of 

the three municipalities, totaling 67 mitaa. During the first phase of the project (May 2004 to 

February 2006), systems for extensive mapping [39,40] and surveillance of potential mosquito 

breeding sites were developed [36]. In 2005, routine surveillance of immature and adult 

mosquitoes was fully operationalized. Comprehensive larviciding of the identified breeding 

habitats debuted in March 2006 in three wards (Figure 1.2). The program was community-based 

but the UMCP remained responsible for vertical management and supervision. This entailed that 

responsibility for routine mosquito control and surveillance was delegated to modestly paid 

community members referred to as Community-Owned Resource Person (CORP) [11,12,41]. 

After 13 months of larviciding in these three wards, operations were extended to six additional 

wards: two in each municipality, totaling 9 wards covered by larviciding activities. Finally, about 

12 months later, in April of 2008, the intervention was scaled-up to all 15 wards of the UMCP. 

The order in which wards were chosen to receive the larviciding intervention was not randomly 

allocated. Rather, the choice was the result of careful consideration of the following two criteria: 

(i) the availability of comprehensive and detailed maps of the ward, and (ii) the proven ability of 

the ward supervisor and CORPs to efficiently undertake the required tasks.  

The biological agents Bacillus thuringiensis var. israelensis (Bti; VectoBac® Valent 

BioSciences Corporation, VBC, USA) and Bacillus sphaericus (Bs; VectoLex®, VBC, USA) 

were used to control the aquatic stages of anopheline mosquitoes.Each mtaa, or portion of a 

mtaa, was under the responsibility of a designated CORP who was instructed to treat breeding 

habitats on a weekly basis. The dosage was 0.04 grams per m2 and 1 gram per m2 for Bti and Bs, 

respectively. Closed habitats that mainly breed Culex quinquefaciatus were treated with Bs every 
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three months by a separate team of CORPs (although Culex mosquitoes play no role in malaria 

transmission, this was a programmatic decision to gain support from the community). 

UMCP Data collection 

 During the study period, a total of six randomized cluster-sampled household surveys 

were carried out (Figure 1.3). A list of TCUs was assembled for each ward before March of 2004 

and was regularly updated throughout the study duration. During the first round of the survey, 

ten TCUs were randomly sampled from each of the 15 wards. All households located in the 

sampled TCUs were invited to participate in the survey. From the second round onwards, the 

TCUs sampled in the first round were followed-up longitudinally, and another ten TCUs per 

ward were selected for cross-section surveys. Since loss to follow-up is non-negligible in urban 

areas, starting from the 3rd survey round, the list of subjects to be followed-up also included 

randomly selected subjects interviewed in previous cross-section surveys. This was implemented 

in order to guarantee that the minimum required sample size would be met. Sample size 

calculations used a significance level of 5% and 80% power to detect a 5% absolute difference in 

malaria prevalence from 10% baseline prevalence. This is equivalent to a ±50% relative risk of 

infection. Calculations were based on mean TCU population size [21].  

Upon consenting to the interview, each household was geo-referenced using a hand-held 

global positioning system (GPS) device. A detailed questionnaire was administered, collecting 

information grouped in four modules: (i) house characteristics (e.g., location, conditions, number 

of habitants); (ii) head of the household (e.g., occupation, education, knowledge of malaria 

transmission and disease symptoms, assets, agricultural practices); (iii) use of preventive 

measures (e.g., bednet, mosquito repellent, coil); and (iv) individual characteristics (e.g., age and 

sex of all household members, occurrence of fever in the past two weeks, treatment-seeking 
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behavior, use of antimalarial drug, sleeping habits, travel history). A proxy for socio-economic 

status was constructed using an asset-based index calculated by performing Principal Component 

Analysis [42] of  the  households’  possession,  excluding  protective assets such as bednets and 

window screenings. Table 1.1 describes the variables selected for this study, their type and, if 

appropriate, the way they were categorized. 

Malaria infection status was ascertained for all household members for whom written 

informed consent was provided. Finger-pricked blood samples were analyzed using Giemsa-

stained thick smear microscopy. Quality check was conducted on a 10% sample of blood slides 

at the Muhimbili University of Health and Allied Sciences – MUHAS (a center of excellence in 

laboratory analysis), indicating a 94.5% specificity rate and 95.7% sensitivity rate [43]. 

Individuals found to be infected with malaria were treated with appropriate front-line regimens 

(sulphadoxine-pyrimethamine until August 2006, after which it was replaced with artesunate-

amodiaquine). In order to minimize selection bias and achieve full coverage for each house and 

TCU, up to three attempts were made to enroll subjects.  

 Information was collected from a total of 48,525 unique individuals and the great 

majority of them (39,146) were interviewed once. A total of 5,223 participants were followed up 

twice, 2,349 three times, 1,236 four times, 472 five times, and 99 subjects participated in every 

round of the survey. Including follow-up data, our sample is thus composed of 64,537 

observations, which were drawn from 913 unique TCU and 6,796 households. The small number 

of subjects who participated in more than two rounds results from two main factors. First, the 

high mobility observed among urban dwellers; in the second survey round 25.6% of the subjects 

had moved or were travelling. Second, 13.9% of those interviewed in round 1 declined to 

participate in the second survey round. Reasons for refusal included pain inflicted by the finger 
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prick, misconceptions about malaria transmission, and the mistrust of the malaria counts 

provided in the precedent survey round. Sensitization efforts addressed these issues and refusal 

decreased in subsequent survey rounds.  

Rainfall data 

Rainfall estimates were obtained from the National Oceanic and Atmospheric climate 

prediction center. This data source combines modeling of satellite-based infrared data collected 

each 30-minute and station rainfall data to estimate the quantity of daily precipitation over the 

African continent, and has a spatial resolution of 8 kilometers [44]. Given the biology of the 

Anopheles mosquito and of the Plasmodium parasite, the effect of rainfall on malaria 

transmission is expected to be lagged in time. Previous empirical studies suggested that the effect 

of rainfall on malaria transmission is lagged by approximately 8 weeks [45-47]. For each 

observation, we therefore calculated total weekly precipitation (cm) and lagged this estimate by 8 

weeks. 

Statistical analyses 

 The main outcome for this study is malaria infection status (a binary variable – Table 1.1) 

as determined by the Giemsa-stained thick smear. Malaria transmission is most directly related to 

the density of sporozoites-infected adult anophelines, which are not targeted by the larviciding 

activities. Therefore, a decline in the prevalence of malaria infection is not expected to be 

observed until the existing pool of infected mosquitoes dies off, and the overall density of 

mosquitoes is reduced. Based on observations of entomological indices and malaria incidence, it 

has been estimated that peaks in vector density are followed by peaks in malaria incidence after 

approximately 1-2 months [48]. Also, the implementation of larviciding activities requires fine-

tuning before CORPs became fully familiar with the routine procedures, which could further lag 



 

 21 

any potential impacts. Based on programmatic and biological considerations, a lag of five weeks 

was deemed most appropriate and is consistent with results from a previous larviciding study in 

urban Cameroon [49].  

The effects of the microbial larviciding activities on malaria occurrence were first 

examined using univariate statistics. Malaria prevalence was calculated for each survey round, 

stratifying by larviciding intervention status, if applicable. Confidence intervals for malaria 

prevalence were constructed using 9,999 bootstrapped replicates. Clustering of standard errors 

was taken into account by defining the sampling unit as the TCU [50]. 

 Bayesian random effects logistic models where used to take into account clustering of 

observations at the household and TCU levels in multivariable analyses. We assumed that our 

binary outcome followed a Bernoulli distribution, Yi~ Bernoulli(pi), where pi is the probability of 

an individual harboring malaria parasites, which is itself a function of covariates modeled with a 

logit link. Our model has the following form: 

logit(pitjk ) =   +  (Interventionit )+  Xit + f (Rainfall)+ f (Time)+ j + k + itjk  

),0(~ and ,),0(~ ),,0(~ 2
itjk

2
k

2 VHVXVP P NNN kj , 

where pitjk is the probability of individual i at time t living in TCU j and household k to be 

infected with malaria; β  is the coefficient of the larviciding intervention; δ is a vector of 

coefficients for control variables in vector X (age, sex, sleeping outside of ward in previous 

weeks, taking antimalarial drug in previous two weeks, individuals treated for malaria in a 

previous survey round, sleeping under an ITN the night before, living in a house with a complete 

ceiling, and living in a house with window screens) – in the case of longitudinal observations, 

many of these variables are time variant; μj is a TCU-level random effect; υk is an household 
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random effect; and εitjk are the residuals. Rainfall was modeled using a smooth function where 

the spline penalty follows a second-order random walk process (where second-order increments 

are assumed to be independent with mean of zero and variance σt
2). This is appropriate when one 

wants to model smooth curves with small curvatures [51,52], which is likely to be the case for 

the relationship between malaria and rainfall. Finally, the time trend was accounted for with f(.) 

and modeled as a first order autoregressive process [53]. It was chosen over other type of process 

based on the Deviance Information Criterion (DIC) [54], which provides information on the 

model’s  fit  while  penalizing  for  model  complexity. 

 Potential effect modification of the intervention by other determinants of malaria 

infection was also investigated for a number of covariates (e.g., age, use of ITN, house proofing, 

etc.). Variable selection for the final multivariable models was achieved through the 

consideration of a number of issues: (i) subject-matter knowledge about confounders, (ii) 

variable exhibiting sufficient variation, and (iii) extent of potential measurement errors.  

In order to investigate the robustness of our results to modeling assumptions, we used 

three additional model specifications by including: (i) individual random effects, (ii) ward fixed 

effects, and (iii) spatially-structured random effects. We also performed a number of sensitivity 

analyses. Specifically, we tested for potential spillover effects of the intervention, used different 

lags for the larviciding intervention and for the rainfall estimates, further covariate adjustments 

(socio-economic status, educational level, and occupation), and varied the choice of penalty for 

the semi-parametric time trend (first and second-order random walk). Technical details and 

results are presented in the Supplemental online material (Text S1).  

Models were fitted using Integrated Nested Laplace Approximations (INLA) [55]. A 

major advantage of INLA is that it calculates posterior marginal distributions in very short 
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computational time as compared to more traditional Markov Chain Monte Carlo (MCMC) 

approaches. Further, INLA has been shown to yield very high accuracy that is comparable to 

MCMC [55,56]. Non-informative priors for the regression parameters and hyperparameters were 

used (see Supplemental online material for details). All analyses were performed using the R 

statistical software [57] and estimation of the marginal posterior distribution of the parameters of 

interest was performed using the INLA library [58]. Observations with missing data for age 

(n=44), place slept in previous two weeks (n=52), occupation of the household head (n=134), 

and education level of the household head (n=136) were retained in the analysis using the 

missing indicator method [59]. 

Ethical considerations 

 Ethics approval was obtained from the Medical Research Coordination Committee of the 

National Institute for Medical Research, Ministry of Tanzania (Reference number 

NIMR/HQ/R.8a/Vol. IX/279 &234). Approval from Harvard School of Public Health 

Institutional Review Board was also obtained (Protocol # 20323-101). Written informed consent 

was obtained from all study participants after being provided with information regarding the 

goal, objectives, risk and benefits of the study. Parents or designated guardians provided signed 

informed consent on behalf of children under 18 years of age. These procedures were approved 

by the ethics committees. 

RESULTS 

Throughout the study period, malaria prevalence exhibited a considerable decline. 

Malaria prevalence was highest during the first round of data collection in 2004, with 20.8% 

prevalence (95% CI: 16.8-24.9%). It decreased to 16.9% (95% CI: 15.1-18.8%) in the second 

survey round, 10.4% (95% CI: 9.7-11.0%) in the third, 6.6% (95% CI: 6.0-7.1%) in the fourth, 
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4.8% (95% CI: 4.3-5.4%) in the fifth, and 1.7% (95% CI: 1.4-2.1%) in the last survey round. 

Stratifying malaria prevalence by survey round and larviciding intervention status, we observed 

that prevalence was slightly lower in the intervention wards as compared to the control ones, 

with the notable exception of the third survey round (Figure 1.4). Note that the start of the 

larviciding phases did not precisely coincide with the beginning of the survey rounds due to 

operational issues (as shown in Figure 1.3, phase 1 of larviciding was launched in March 2006, 

while the fourth survey round started in June 2006; phase 2 in May 2007; and phase 3 in April 

2008). Hence, median dates of interviews in larviciding and control areas do not necessarily 

coincide, and seasonality in malaria transmission could confound the observed differences in 

prevalence shown in Figure 1.4. 

 For each survey round, the socio-demographic characteristics of study participants and 

households, stratified by larviciding intervention status, are presented in Table 1.1. Use of bednet 

was highly variable through time and seems to be correlated with rainfall and, probably, 

abundance of nuisance insects. The proportion of interviews performed during the wet seasons 

also differs between larviciding and control groups. Interestingly, the proportion of individuals 

reporting having taken anti-malarial drug in the previous two weeks remained relatively constant 

through time despite the overall decline in malaria prevalence. Finally, we note that socio-

economic status seems to be increasing with time, as exhibited by the rising proportion of 

individuals in the upper quintiles. Overall, individuals in control and larviciding areas do not 

seem to differ dramatically in their socio-demographic characteristics. Most differences are 

observed in either the third or sixth survey rounds where the sample sizes in the larviciding and 

control groups, respectively, are notably smaller.  
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Figure 1.4: Crude prevalence of malaria infection stratified by survey round and larviciding 
status. 

Confidence intervals are based on 9,999 bootstrap replicates and account for clustering at the 
ten-cell unit level. Monthly rainfall variation is also shown. 
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Table 1.2: Univariate and multivariate effect size estimates of the larviciding intervention on 

malaria prevalence in Dar es Salaam, 2004-2008 (N=64,537). 

 
 Univariate Multivariable 
 OR* 95%  CrI† OR* 95%  CrI† 

LARVICIDING INTERVENTION 0.79 0.66-0.93 0.79 0.66-0.93 
Age     
   Under five years of age - - 1.00 - 
   ≥5  and  <15  years  of  age - - 0.82 (0.76-0.90) 
   ≥15  and  <30  years  of  age - - 0.67 (0.61-0.73) 
   ≥30  and  <45  years  of  age - - 0.60 (0.54-0.66) 
   ≥45  and  <60  years  of  age - - 0.55 (0.48-0.63) 
   ≥60  years  of  age - - 0.47 (0.40-0.56) 
Male sex - - 1.08 (1.01-1.15) 
Slept outside ward (previous 2 weeks) - - 0.90 (0.77-1.04) 
Treated for malaria (previous round) - - 0.65 (0.56-0.75) 
Took malaria drug (previous 2 weeks) - - 1.02 (0.90-1.16) 
ITN used the night before - - 0.93 (0.86-0.99) 
House has closed ceiling - - 0.93 (0.85-1.01) 
House has window screens - - 0.90 (0.83-0.98) 
     

Trend for time (AR1§) Yes Yes 
Semi-parametric smooth for rainfall  Yes Yes 
Random effects (TCU & Household) Yes Yes 
 
Statistically significant results are bolded. 
*OR = Odds Ratio 
†CrI  =  Credible  Intervals 
§AR1 = First Order Autoregressive Process 
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Table 1.3: Effect modification of the larviciding intervention by selected determinants of malaria 
prevalence in Dar es Salaam, 2004-2008 (N=64,537). 

 
Effect modification of the larviciding interventionby selected determinants of malaria infection 

(Odds Ratio and 95% Credible Intervals)* 
  

 Control Larviciding  Effect of Larviciding Within Strata 
Wet Season 1.00 1.06 (0.84-1.33)  1.06 (0.84-1.33) 
Dry Season § 0.97 (0.69-1.10) 0.57 (0.41-0.77)  0.60 (0.47-0.75) 
     

 Control Larviciding  Effect of Larviciding Within Strata 
No Screen 1.00 0.84 (0.70-1.02)  0.84 (0.70-1.02) 
Window Screens 0.93 (0.85-1.02) 0.80 (0.65-0.99)  0.68 (0.54-0.85) 
     

 Control Larviciding  Effect of Larviciding Within Strata 
Open Ceiling 1.00 0.84 (0.70-1.01)  0.84 (0.70-1.01) 
Complete Ceiling 0.97 (0.88-1.06) 0.78 (0.63-0.97)  0.66 (0.53-0.83) 
     

 Control Larviciding  Effect of Larviciding Within Strata 
No ITN 1.00 0.83 (0.69-0.99)  0.83 (0.69-0.99) 
ITN used 0.96 (0.88-1.04) 0.77 (0.61-0.96)  0.63 (0.48-0.82) 
     

 Control Larviciding  Effect of Larviciding Within Strata 
Aged  ≥5  years 1.00 0.83 (0.69-0.99)  0.83 (0.69-0.99) 
<5 years of age 1.35 (1.23-1.47) 0.73 (0.56-0.94)  0.61 (0.46-0.80) 
     

 
Statistically significant results are bolded. 
All models are adjusted for age, sex, sleeping outside of the ward (previous 2 weeks), being treated for malaria in a 
previous round, use of malaria drugs (previous 2 weeks), use of ITN, complete ceiling, window screen, 
precipitation, time trend. Random effects at household and TCU levels are also included.  
§ Dry season is defined as the months of January, February, and June through September 
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 Taking into account the previously stated limitations of our univariate analysis, we 

present in Table 1.2 the results from the random effects logistic regression models that account 

for clustering of observations within household and TCU. These analyses suggest a significant 

protective effect of larviciding, with a point estimate for the odds ratio of 0.79 (95% Credible 

Intervals (CrI): 0.66-0.93) in both univariate and multivariable analyses. When considering 

potential effect modification of the larviciding intervention by season, we see that larviciding 

activities achieved maximum programmatic impact during the dry season (Table 1.3) with an 

odds ratio of 0.60 (95% CrI: 0.47-0.75). The dry season is defined as the months of January, 

February, and June through September. The effect of the larviciding intervention also had 

synergistic effects with other malaria protective measures such as houses with window screens 

(OR=0.68; 95% CrI: 0.54-0.85), houses with complete ceiling (OR=0.66; 95% CrI: 0.53-0.83), 

and using an ITN the night before (OR=0.63; 95% CrI: 0.48-0.82). Finally, the effect of the 

intervention was also heterogeneous among age groups with the larviciding intervention 

exhibiting a greater protective effect for children under five (OR=0.61; 95% CrI: 0.46-0.80).  

Model specifications seem to have little bearing on the estimates of the posterior 

marginal for the larviciding intervention (see Tables 1.S1 and 1.S2 in the Supplemental online 

material). Importantly, including fixed effects at the ward level, which would control for any 

time-invariant measured or unmeasured confounders of the larviciding-malaria relationship, had 

little impact on the point estimate of the larviciding intervention (adjusted OR=0.80; 95% 

CrI:0.66-0.97). 

Finally, our sensitivity analyses (see Table 1.S3 and 1.S4 in the Supplemental online 

material) demonstrated that spillover effects were not biasing our effect size estimate towards the 

null. As expected, effect size estimates were somewhat sensitive to variation in the assumed lag 
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length between initiation of larviciding activities and malaria transmission but the effect 

remained statistically significant over lag lengths varying between 28 and 60 days. Results were 

also robust to changes in other model parameters.  

DISCUSSION 

 This study has shown that a community-based larviciding program, centrally managed by 

the UMCP, provided significant protection to individuals living in areas covered by the 

larviciding operations. The strength of association was robust to model specifications and 

consistently approximated a 21% reduction in the odds of malaria infection. Further, the 

larviciding intervention achieved maximum effectiveness during the dry season and had 

synergistic effects with other protective measures such as use of ITN, houses with windows 

screens, and houses with complete ceilings. In addition, we found no evidence of spillover 

effects between intervention and control areas. 

Our estimated effect size for the larviciding intervention is much lower, but not 

statistically different, than the one previously reported for the first larviciding period of the 

UMCP, where the odds ratio of living in areas treated with larvicides and being infected with 

malaria was estimated to be 0.28 (95% CI: 0.10-0.80) as compared to individuals living in 

control areas [21]. This can be explained in part by the fact that our study considered all age 

ranges, while Geissbühler et al [21] restricted their analysis to children under five years of age. 

While there is no reason to believe that larviciding should be more protective for children than 

for adults, since the intervention acts at the population level by reducing vector density, children 

might be more likely to spend evenings and nights at or close to their home, a period of the day 

when most of malaria transmission occurs. There is thus less potential misclassification of 

exposure for this age group as compared to adults, who might visit friends or spend time during 
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evenings near high exposure areas not covered by larviciding activities. Indeed, we found that 

the product term between the larviciding intervention and age was statistically significant. The 

estimated odds ratio for the larviciding intervention was of 0.61 (95% CrI: 0.46-0.80) for 

children under five years of age which is closer to the one reported by Geissbühler et al [21] but 

insufficient to explain this differential. Another reason which could explain this difference in 

impact is that our analysis covered all three phases of the intervention with a total of 33 months 

of larviciding activities, while Geissbühler et al [21] analyzed only the first phase, when the 

intervention was operational in only three wards for 12 months. Analyses over a longer period 

may be impacted by programmatic fatigue, coupled with the potential impact that other 

unmeasured and/or unknown interventions could have on the prevalence of malaria infection and 

overall transmission dynamics (e.g., artemisin-based combination therapy – ACT started to be 

the first line of treatment in 2007).  

 Larviciding during the dry season was shown to be more effective at lowering the 

prevalence of malaria infection than during the rainy season (when the stratified effect was not 

significant). This result is especially interesting since 49% of malaria cases were sampled during 

the dry season. Since larval habitats are less numerous and easier to access when rainfall is low, 

larviciding activities could have been more effective at suppressing larval production due to 

operational issues. This highlights one of the key aspects of successful larviciding programs: the 

ability to locate and access all potential breeding habitats in the targeted area. Also, larviciding 

should not be deployed alone, but in conjunction with other appropriate vector control activities 

[60]. The fact that we have estimated larviciding to be more effective than ITNs in Dar es 

Salaam should not be taken at face value, since the effect size estimate for ITNs does not take 

into account potential community effects that extend to non-users [61,62], and that the use of 
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ITNs and other protective measures is likely a function of perceived risk by household members. 

The combination of different vector control strategies is also supported by our findings of 

significant synergistic effects between larviciding and use of ITNs, window screens, and houses 

with a complete ceiling.  

 With renewed impetus for the long-term goal of malaria eradication [63], the need for 

tailored programs is imperative, including vector control [30]. Vector control programs should 

not be established as stand-alone entities. Rather, intersectoral collaboration, health system 

strengthening, and community mobilization are instrumental to vector control program success. 

Integrated Vector Management (IVM), as endorsed by WHO [31,64], emphasizes rational 

decision making processes to efficiently use resources and attain health-based targets [65]. IVM 

specifically  acknowledges  that  a  ‘one  size  fits  all’  strategy  for  malaria  control  will  be  ineffective.  

Larviciding should be considered as part of an IVM approach in other urban areas of sub-

Saharan Africa, if the local malaria ecology warrants its use. Our study provides a number of 

important lessons regarding the implementation of larval control: (i) breeding habitats can, and 

should, be mapped at high resolution using low-cost technology [36], (ii) locally relevant 

entomological information should be collected to inform operational activities, (iii) monitoring 

and evaluation systems should be implemented to ensure effective and appropriate delivery and 

fine-tuning of interventions, and (iv) community involvement and sensitization can be beneficial 

to programmatic activities. Other strategies included in an IVM approach could facilitate the use 

of larviciding. For example, in Dar es Salaam 33% of Anopheles breeding habitats are found in 

clogged drains [66]. In this context, the use of environmental management to restore the 

functionality of drains would result in fewer breeding habitats [43], and therefore reduce the area 

to be covered with larviciding. 
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Strengths of this study include its large sample size, longitudinal design, large temporal 

and spatial extent of larviciding activities that limited potential spillover effects, and availability 

of reliable baseline information. This study also has some limitations. First, the wards targeted 

by the UMCP were not randomly allocated to the larviciding intervention. This entails that our 

effect size estimates for the larviciding intervention could be biased by residual confounding. 

This is unlikely to be the case as including fixed effects at the ward level, which would control 

for such time-invariant non-measured confounders, did not impact our results. Second, ACTs 

were effectively introduced in Dar es Salaam in January 2007. With its gametocidal proprieties, 

this drug, if used on a large scale, has the potential to significantly reduce the reservoir of 

malaria in the general population. Although attempts were made at collecting information on 

ACT use from health facility data, we were not able to assemble reliable temporal information 

for the targeted 15 wards. Thus, some of the secular decline in the prevalence of malaria 

infection observed in control areas before the introduction of larviciding may be a result of ACT 

use (and possibly of other unobserved activities that could potentially impact the risk of malaria 

transmission). 

Our results have important implications for malaria control in sub-Saharan Africa. 

Specifically, we have provided evidence that a community-based application of microbial 

larvicides was effective in reducing malaria transmission in urban Dar es Salaam. Microbial 

larvicides have been shown to be environmentally safe, specific in their action, and highly 

effective in killing Anopheles larvae under field conditions [67-69]. With important projected 

increases in urban population in sub-Saharan  Africa,  mosquitoes’  behavioral  adaptation  to  

current control strategies, and the already recorded emergence of resistance to pyrethroid 
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insecticides, larval source management, and larviciding in particular, should be given careful 

consideration by managers of malaria control programs. 
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SUPPLEMENTARY APPENDIX 1.1: 

IMPACT OF COMMUNITY-BASED LARVICIDING ON THE PREVALENCE OF MALARIA INFECTION IN 

DAR ES SALAAM, TANZANIA 

Mathieu Maheu-Giroux & Marcia C. Castro 

INTRODUCTION 

 In order to assess the robustness of our results three additional model specifications were 

used and a number of sensitivity analyses were performed. This supplemental material is 

organized in four sections. First we describe three additional model specifications used for 

obtaining effect size estimates for the larviciding intervention. Second we present the parameters 

for which we performed the sensitivity analyses. Third, the different prior distributions for the 

models’  parameters  and  hyperparameters  are  defined.  Lastly,  results  from  the  different  models  

and analyses are briefly discussed. 

METHODS 

Allowing for different model specifications 

As some individuals were followed-up longitudinally in time, we first included a random 

effect at the individual level as an additional model specification. Further, because the order of 

the roll-out of the larviciding intervention was not randomized, we cannot eliminate the 

possibility that ward characteristics are correlated with the intervention. We thus used a second 

model specification that includes ward fixed effects. Finally, observations may also be spatially 

dependent given the focal nature of urban malaria. Spatially-structured random effects were 

hence included in the third model specification to allow for such spatial autocorrelation. Again, 

we assumed that the binary outcome followed a Bernoulli distribution, Yi~ Bernoulli(pi), where 
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pi is the probability of an individual harboring malaria parasites, which is itself a function of 

covariates modeled with a logit link. The three additional models have the following form: 

Model (1): TCU, household, and individual levels random effects model 

itjkikititjk mffXp HXPGED �������� jit )Time(Rainfall)( )onInterventi( )(logit
 

),0(~ and ),,0(~ ,),0(~ ),,0(~ 2
itjk

22
k

2 VHVVXVP P NNmNN iikj , 

where pitjk is the probability of individual i at time t living in TCU j and household k to be 

infected with malaria; mi is an individual-level random effect; βis the coefficient of the 

larviciding intervention; δ is a vector of coefficients for control variables in vector X; μj is a 

TCU-level random effect; υk is an household random effect; and εitjk are the residuals. Rainfall 

was modeled using a smooth function where the spline penalty follows a second-order random 

walk process (where second-order increments are assumed to be independent with mean of zero 

and variance σt
2). Finally, the time trend was accounted for with f(.)and modeled as a first order 

autoregressive process [1]. Individual-level random effects were included to account for subjects 

followed-up in two or more surveys. 

Model (2): Household and TCU random effects with ward fixed effects  

itjkkitititjk ffXp HXPZGED �������� jit Ward)Time(Rainfall)( )onInterventi( )(logit
’

),0(~ and ,),0(~ ),,0(~ 2
itjk

2
k

2 VHVXVP P NNN kj , 

where pitjk is the probability of individual i at time t living in TCU j and household k to be 

infected with malaria; ω  is  a  vector of coefficients for the ward fixed effects; and β, δ, f(.), μj, υk, 

and εitjk are similar to those described in Model (1). 

Model (3): Household-level and spatial random effects model 

 For the spatial random effects model, the high number of observations and computing 

limitations made model fitting problematic. To reduce the dimensionality of the data, 
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observations were grouped at the household level and a binomial distribution was assumed, Yk~ 

Binomial(pk,nk,), where Yk is the number of malaria cases in household k, nkis the number of 

individuals in household k, and pk is the probability being infected with malaria for individuals 

living in household k. Specifying the model using this binomial logistic regression framework 

greatly reduced computing time. The trade-off was that we are no longer able to control for 

individual-level covariates although the effect size estimate for the larviciding intervention can 

still be interpreted at the individual level. The model was defined as: 

tkkkitkt ffXp HUXGED ������� )Time(Rainfall)( )onInterventi( )(logit kt  
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2
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z
z , 

where pkt is the probability of being infected with malaria for individual living in household k at 

time t;;υk is a household random effect; wks is  a  binary  spatial  weight  matrix;;  and  ρk is a spatial 

random effect that follows a Gaussian Conditional Autoregressive (CAR) distribution, as 

proposed by Besag [2]. CAR models have the advantage of providing good approximations of 

continuous geostatistical processes and are more statistically efficient than geostatistical models 

[3,4]. CAR models belong to the family of spatial error models, which aim at uncovering causal 

relationships and assume that spatial dependence occurs because of omitted and spatially 

correlated variables [1]. In the present case, such omitted variables could be related to mosquito 

dispersion and behavior, unmeasured human behaviors, unreported programmatic challenges, 

undocumented local environmental characteristics/changes, or other isolated efforts to control 

malaria unknown to the UMCP. The neighborhood for the spatial weight matrix is defined based 

on the distance beyond which residuals are not spatially correlated. Based on visual inspection of 

Model’s  (1)  residuals  and  considerations  of  anophelines  dispersion  in  urban  environments,  a  
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distance threshold of 200 meters was deemed most appropriate. Indeed, previous studies have 

shown that malaria transmission in urban environment is highly focal and that adult anophelines 

do not disperse more than 200-300 meters from larval habitats in urban settings [5-8]. Further, a 

study conducted in urban Ouagadougou (Burkina Faso) indicated that P. falciparum infections 

were clustered within 200 meters of larval habitats [9]. 

Sensitivity analyses 

To assess if potential spillover effects were biasing our effect size estimates, two binary 

variables were created: (i) being in a control ward and within 100 meters of an intervention ward 

(spillover from intervention to control wards), and (ii) being in an intervention ward and within 

100 meters of a control ward (spillover from control to intervention areas). Given the focal 

transmission of malaria in urban settings and the overall distribution of TCU sizes, a distance 

threshold of 100 meters in both directions was felt most appropriate. These binary variables were 

included as covariates along with the larviciding intervention in the regression model. 

 Further sensitivity analyses were performed by investigating the effect of using different 

lags  for  the  intervention  (28  days,  35  days,  45  days,  and  60  days),  the  influence  of  the  model’s  

choice to account for the time trend (first-order autoregressive, first-order random walk, and 

second-order random walk), and the impact of different lags for rainfall (7 weeks, 8 weeks, and 9 

weeks) on the effect size estimate for the larviciding intervention. Additionally, we present the 

effect size estimates for the larviciding intervention using further adjustments with the following 

covariates: quintiles of socio-economic status, occupation of the household head, and education 

level of the household head.  
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Prior specifications 

All priors for the regression parameters were assumed to have non-informative Gaussian 

distributions with mean of zero and precision of 0.001 (precision=1/variance). Priors for the 

precision hyperparameters of the random effects at the individual, household and TCU level and 

spatially structured random effect were defined on the logarithmic scale and assumed to follow 

non-informative logGamma (shape = 0.001, scale = 0.001) distributions. The log-precision of the 

rainfall and time semi-parametric smooth were given logGamma(shape = 1, scale = 1e-5) priors 

as proposed by Natário and Knorr-Held [10]. The first lag correlation parameter of the first order 

autoregressive process is defined on the logit scale and was given a Gaussian (mean = 0, 

precision = 0.4) prior for the first lag correlation parameter (which was defined on the logit 

scale). 

Estimation of the marginal posterior distribution of the parameters of interest was 

performed usingIntegrated Nested Laplace Approximations[11] and the INLA library [12] in R 

was used for model fitting. Observations with missing data forage (n=44), place slept in previous 

two weeks (n=52), occupation of the household head (n=134), and education level of the 

household head (n=136) were retained in the analysis using the missingindicator method[13]. 

RESULTS AND DISCUSSION 

Model’s  specifications  seem  to  have  little  bearing  on  the  estimates  of  the  posterior  

marginal for the larviciding intervention (Table 1.S1). Including a random effect at the individual 

level had no effect on marginal posterior for the larviciding intervention (Odds Ratio (OR)=0.78; 

95% Credible Interval (CrI): 0.66-0.93). Importantly, including fixed effects at the ward level, 

which would control for any time-invariant measured or unmeasured confounders of the 

larviciding-malaria relationship, had little impact on the point estimate of the larviciding 
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intervention (OR=0.81; 95% CrI: 0.67-0.97). The credible interval was somewhat larger, 

however. This can be explained by the fact that fixed effects disregard the between wards 

variation in exposure and is thus less statistically efficient than the other models. Finally, 

allowing for spatially structured random effects did not impact the effect size estimate for the 

larviciding intervention.  

Adjusting these three models for potential confounders of the larviciding-malaria 

relationship has shown that our effect size estimate was robust to such adjustments (Table 1.S2). 

Odds ratio for the larviciding intervention ranged from 0.79 (95% CrI: 0.66-0.94) to 0.80 (95% 

CrI: 0.66-0.97). 

Potential spillover effects from either control to larviciding areas or larviciding to control 

areas would bias our effect size estimates towards the null. After including indicator variables for 

being within a 100 meters buffer zone in both directions (i.e., control to intervention and 

intervention to control), we found no evidence of spillover effects as the odds ratio for the 

larviciding intervention remained virtually unchanged (Table 1.S3). 

As expected, our results were somewhat sensitive to the assumed lag length between 

initiation of larviciding activities and its effect on malaria transmission (Table 1.S4). 

Nevertheless, the estimated effect size measures were always protective and their credible 

intervals did not cross the null. Results were much less sensitive to the choice of modeling 

process for the time trend. The effect of the choice of lag for rainfall had virtually no effect on 

the effect size estimate of the larviciding intervention. Finally, adding either socio-economic 

status, occupation of the household head, or education level of the household head did not 

change the odds ratio for the larviciding intervention.   
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Table 1.S1: Unadjusted effect size estimates of the larviciding intervention on malaria 
prevalence in Dar es Salaam, 2004-2008 (N=64,537). 

 Model (1) Model (2) Model (3) 
 OR* 95%  CrI† OR* 95%  CrI† OR* 95%  CrI† 
LARVICIDING INTERVENTION 0.78 (0.66-0.93) 0.81 (0.67-0.97) 0.78 (0.66-0.91) 
       

Trend for time (AR1§) Yes Yes Yes 
Random effects    
   TCU & household Yes Yes - 
   Individual Yes - - 
   Household & spatial - - Yes 
Fixed effects at ward level - Yes - 
    

 
Statistically significant results are bolded 
*OR = Odds Ratio 
†CrI  =  Credible  Intervals 
§AR1 = First Order Autoregressive Process 

 

 

Table 1.S2: Adjusted effect size estimates of the larviciding intervention on malaria prevalence 
in Dar es Salaam, 2004-2008 (N=64,537). 

 Model (1) Model (2) Model (3) 
 OR* 95%  CrI† OR* 95%  CrI† OR* 95%  CrI† 

LARVICIDING INTERVENTION 0.79 (0.66-0.94) 0.80 (0.66-0.97) 0.79 (0.67-0.93) 
Age       
   Under five years of age 1.00 - 1.00 - - - 
   ≥5  and  <15 years of age 0.82 (0.76-0.90) 0.83 (0.76-0.90) - - 
   ≥15  and  <30  years  of  age 0.67 (0.61-0.73) 0.67 (0.62-0.74) - - 
   ≥30  and  <45  years  of  age 0.60 (0.54-0.66) 0.60 (0.54-0.67) - - 
   ≥45  and  <60  years  of  age 0.55 (0.48-0.63) 0.55 (0.48-0.63) - - 
   ≥60  years  of  age 0.47 (0.39-0.56) 0.47 (0.40-0.56) - - 
Male sex 1.08 (1.01-1.15) 1.08 (1.02-1.15) - - 
Slept outside ward (previous 2 weeks) 0.90 (0.77-1.04) 0.88 (0.76-1.02) - - 
Treated for malaria (previous round) 0.65 (0.56-0.75) 0.65 (0.56-0.75) - - 
Took malaria drug (previous 2 weeks) 1.02 (0.89-1.16) 1.01 (0.89-1.15) - - 
ITN used the night before 0.93 (0.86-0.99) 0.92 (0.86-0.99) - - 
House has closed ceiling 0.93 (0.85-1.01) 0.94 (0.87-1.03) 0.89 (0.81-0.96) 
House has window screens 0.90 (0.82-0.98) 0.90 (0.82-0.98) 0.89 (0.81-0.97) 
       

Trend for time (AR1§) Yes Yes Yes 
Semi-parametric smooth for rainfall  Yes Yes Yes 
Random effects    
   TCU & household Yes Yes - 
   Individual Yes - - 
   Household & spatial - - Yes 
Fixed effects at ward level - Yes - 
 
Statistically significant results are bolded 
*OR = Odds Ratio 
†CrI  =  Credible  Intervals 
§AR1 = First Order Autoregressive Process 
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Table 1.S3:Investigation of potential spillover effects from larviciding to control areas and from 
control to larviciding areas in Dar es Salaam, 2004-2008 (N=64,537). 

Variables§ OR* 95%  CrI† 
Larviciding intervention 0.77 (0.65-0.92) 
Spillover from control to larviciding areas (100 m buffer) 1.10 (0.82-1.47) 
Spillover from larviciding to control areas (100 m buffer) 0.71 (0.33-1.44) 
 

Statistically significant results are bolded 
*OR = Odds Ratio 
†CrI  =  Credible  Intervals 
§ All models are adjusted for age, sex, sleeping outside of the ward (previous 2 weeks), being 
treated for malaria in a previous round, use of malaria drugs (previous 2 weeks), use of ITN, 
complete ceiling, window screen, precipitation, and time trend. Random effects at household and 
TCU levels are also included. 

 
 

Table 1.S4: Sensitivity analyses of modeling assumptions and their impacts on the effect size 
estimate of the larviciding intervention. 

Parameters§ Larviciding Intervention 
OR* 95% CrI† 

   

LAG FOR THE LARVICIDING INTERVENTION   
 28 days lag 0.81 (0.68-0.97) 
 35 days lag 0.79 (0.66-0.93) 
 45 days lag 0.81 (0.69-0.96) 
 60 days lag 0.84 (0.70-0.99) 
    

MODELING PROCESS FOR TIME TREND   
 1st order autoregressive 0.79 (0.66-0.93) 
 1st order random walk 0.79 (0.67-0.94) 
 2nd order random walk 0.81 (0.69-0.96) 
    

LAG FOR THE WEEKLY RAINFALL ESTIMATES   
 7 weeks lag 0.79 (0.66-0.94) 
 8 weeks lag 0.78 (0.66-0.93) 
 9 weeks lag 0.79 (0.67-0.94) 
 7, 8, and 9 weeks lags 0.78 (0.66-0.93) 
    

ADDING DIFFERENT COVARIATES   
 Quintiles of socio-economic status (asset-based) 0.79 (0.66-0.94) 
 Occupation of household head 0.79 (0.66-0.93) 
 Education level of household head 0.78 (0.66-0.93) 

 
Statistically significant results are bolded 
§ All models are adjusted for age, sex, sleeping outside of the ward (previous 2 weeks), being treated for malaria in 
a previous round, use of malaria drugs (previous 2 weeks), use of ITN, complete ceiling, window screen, 
precipitation, and time trend. Random effects at household and TCU levels are also included.  
*OR = Odds Ratio 
†CrI  =  Credible  Intervals 
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ABSTRACT 

Background 

Larviciding for malaria control can contribute to an Integrated Vector Management (IVM) 

approach.  This  intervention  is  currently  supported  in  settings  where  breeding  habitats  are  ‘few,  

fixed,  and  findable’,  such  as  urban  areas  of  sub-Saharan Africa, but the knowledge base 

regarding the cost-effectiveness of larviciding is non-existent.  

Methods 

Program costs and effectiveness data were collected from the Dar es Salaam Urban Malaria 

Control Programme in Tanzania. Cost-effectiveness ratios (CER) were estimated from the 

provider and societal perspectives for standard indicators using different malaria transmission 

scenarios. 

Results 

CER for microbial larviciding were highly dependent on the assumed baseline malaria incidence 

rates. Using the societal perspective, net CER were estimated (in 2012 US dollars) at $43 (95% 

uncertainty intervals [UI]: $15-181) per disability-adjusted life year averted (DALY) when 
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malaria incidence was 902 infections per 1,000 individuals, increasing to $545 (95% UI: $337-

1,558) per DALY at an incidence of 122 per 1,000. Larviciding was shown to be cost-effective 

in Tanzania for incidences as low as 40 infections per 1,000 people per year.  

Conclusion 

This is believed to be the first study to estimate the cost-effectiveness of larviciding for urban 

malaria control in sub-Saharan Africa. The results support the use of larviciding as a cost-

effective intervention in urban areas and managers of national malaria control programme should 

consider this intervention as part of an IVM approach. 
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BACKGROUND 

 Integrated Vector Management (IVM), as endorsed by the World Health Organization 

(WHO) [1], emphasizes rational decision-making, intersectoral collaboration, and the 

combination of different tools for vector control. Strategies included in an IVM approach should 

be based on local eco-epidemiological  conditions  with  the  aim  of  improving  ‘the efficacy, cost 

effectiveness,  ecological  soundness  and  sustainability  of  interventions’[2]. Currently, insecticide-

treated nets (ITNs) and indoor residual spraying (IRS) are among the most widely used vector 

control methods in sub-Saharan Africa (SSA) [3]. The scaling-up of these two interventions 

during the last decade, coupled with improved access to early diagnosis and prompt treatment, 

has contributed to the important decline in malaria burden on this continent [4, 5]. Nevertheless, 

IRS and ITNs could be insufficient to achieve the long-term goal of malaria elimination in much 

of SSA [6, 7] and  current  gains  might  not  be  sustained  ‘without adapting to the changing threats 

to and opportunities for reducing transmission’  [3].  

 An additional strategy for malaria control, Larval Source Management (LSM), the 

management of potential mosquitoes larval habitats, has had historical successes [8-12] and was 

one of the primary methods for malaria control until the 1950s, when IRS with DDT became the 

preferred control method [13]. Environmental management and larviciding could nevertheless 

play a role when other vector control interventions have achieved their maximum practical 

impact and/or in the malaria pre-elimination and elimination phases [13]. A recent systematic 

review of LSM interventions has shown that, under selected circumstances in various Asian and 

African settings, LSM can decrease malaria burden [14]. LSM should only be considered in 

specific contexts, however, as this type of intervention is likely to be most effective in areas 

where larval  habitats  are  ‘few, fixed, and findable’  [15]. In SSA, these conditions are likely to be 
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found in settings of focal and low to moderate transmission, such as urban environments, desert 

fringes, high altitudes, and some densely populated rural areas [13]. Further, LSM could 

contribute to IVM when dominant vectors are biting and/or resting outdoors (exophagic and 

exophilic behaviour) and to help manage insecticide resistance [13]. The knowledge base 

regarding the cost-effectiveness of LSM interventions is scarce, however. Environmental 

management was the subject of only one cost-effectiveness study that was based on the analysis 

of a colonial-era integrated malaria control programme carried out in copper mining 

communities of former Northern Rhodesia (present day Zambia) [16]. It is believed that only one 

cost analysis of larviciding programmes has been performed to date [17, 18] and the cost-

effectiveness of this type of intervention remains to be assessed. This adds to the paucity of data 

on the cost-effectiveness of vector control interventions in urban areas. 

 The aim of this paper is thus to estimate the cost-effectiveness of larviciding for malaria 

control in urban areas of SSA, drawing from the recent large-scale community-based larviciding 

program carried out by the Urban Malaria Control Programme (UMCP) in Dar es Salaam 

(United Republic of Tanzania) [19-24]. Cost-effectiveness ratios (CER) per malaria infection 

averted, malaria deaths prevented, and disability-adjusted life years (DALY) avoided are 

reported from both provider and societal perspectives for different transmission intensity 

scenarios and microbial larvicide formulations. 

METHODOLOGY 

Dar es Salaam Urban Malaria Control Program 

 This economic analysis is based on a large-scale larviciding intervention conducted in 

urban  Dar  es  Salaam,  Tanzania’s  largest  city  and  economic  capital.  The  dominant  malaria  

vectors are Anopheles gambiae s.s. and Anopheles funestus. These vectors transmit Plasmodium 
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falciparum who is responsible for more than 90% of infections [25]. The principal types of 

breeding habitats encountered in Dar es Salaam are: drains, borrow pits, ponds, aquatic habitats 

associated with urban agriculture, and swamps [26]. Malaria transmission is year-round but 

exhibits seasonal variations related to the two rainy seasons: the short rains of October to 

December and the long rains of March to May.  

The Urban Malaria Control Programme (UMCP) was launched in 2004 with the goal of 

developing a sustainable larviciding intervention as part of an integrated malaria strategy [21, 27, 

28]. The UMCP targeted 15 urban wards, five in each of the three municipalities that composed 

Dar es Salaam (Temeke, Ilala, and Kinondoni), covering 56 km2 of the city and encompassing a 

population of 610,000 residents (2002 census) [29]. Larviciding was operationalized through a 

vertically managed community-based delivery system [17]. Routine mosquito surveillance and 

control was delegated to modestly paid community members called Community-Owned 

Resource Person (CORP) [21, 27, 28]. Larviciding was initiated in March of 2006 in three of the 

15 UMCP wards (one in each municipality), and subsequently scaled-up to nine wards in May of 

2007, and to the entire study region in April of 2008. 

Costing 

Costing data for this study were extracted from the UMCP cost analysis described in 

Worrall [18] and Worrall and Fillinger [17].  Both  studies  adopted  an  ‘ingredients approach’  [30] 

to analyse costs, which is consistent with methods used for costing large-scale ITN and IRS 

programmes. The cost analysis was informed by data from the first phase of larviciding, when 

the intervention was operational in three wards, and mapping and larval surveillance activities 

were being carried out in the remaining wards [17, 18]; thus operational costs from these three 

wards were extrapolated for the entire study area. All resources used and the opportunity costs of 
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existing inputs were taken into account. Specifically, the costs of the intervention include: 

community sensitization, training (including international consultants), field personnel, ward 

supervisors, larvicide purchase and distribution, transportation, materials, office space and 

furniture (including overheads), storage, and monitoring and evaluation (note that all research 

costs were excluded). Costs of capital items were spread over their estimated useful life and 

annualized using a 3% discount rate.  

The UMCP used microbial larvicides for vector control manufactured by Valent 

BioSciences Corp. (Illinois, USA). The active ingredient of this product is a biological agent and 

is available in two formulations: 1) custom granule (CG) for hand application (Bacillus 

sphaericus; VectoLex®), and 2) water dispersible granule (WG) for liquid application (Bacillus 

thuringiensis var. israelensis; VectoBac®). Differences in international toxic units per 

milligrams of product between the two formulations result in higher costs for the CG formulation 

[17]. Although the UMCP made the programmatic decision to routinely apply CG, the impact on 

CERs of using the less expensive WG formulations will be explored. 

For the purpose of this analysis, the larviciding intervention was presumed to be part of 

an ongoing programme and costs were, therefore, aggregated over 10 years (2004-2014) - 2004 

being the pre-implementation phase when ward mapping, programme planning, and training 

occurred. Larviciding was operationalized starting in 2005. Other assumptions include that the 

intervention would not be scaled-up beyond UMCP wards and that the only increase in the 

number of persons protected would be due to population growth. To this end, ward-specific 

population counts from the 2002 and 2012 censuses were used and it was found that population 

growth averaged 1.62% over that period: from 610,000 in 2002 to 716,000 in 2012 [31, 32]. 

International technical consultants were assumed to be required for the first 5 years of the 
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programme, time after which it was considered that capacity building, technical support, and 

troubleshooting of the intervention would no longer require international expertise. Results are 

reported based on the economic costs of the intervention as it is considered more appropriate for 

comparisons  of  interventions’  efficiency than using financial costs. All prices have been adjusted 

to 2012 US dollars (USD) using the US Gross Domestic Product (GDP) deflator [33] after being 

converted from local currency using average exchange rates for the year they were disbursed. 

Effectiveness data 

 The main clinical outcome reported by the UMCP is the prevalence of malaria infection, 

as determined by Giemsa-stained thick smear microscopy. Initial results from the first phase of 

the larval control intervention, restricted to children under five years of age, (N=4,450), 

suggested that the odds of malaria infection were decreased by 72% [27]. Further, anopheline 

larval abundance has been shown to be reduced by 96% during this same time period [21]. 

Analyses including individuals of all ages and using data from all phases of the larviciding 

intervention’s  rollout  (N=64,537)  have  shown  that  the  odds  of  malaria  infection  were  21%  lower  

for individuals living in larviciding wards (Odds Ratio=0.79; 95% Credible Intervals (CrI): 0.66-

0.93) [28]. This logistic regression model was re-fitted in order to provide an effect size estimate 

on the relative risk scale. This yielded a prevalence ratio of 81% (95% CrI: 0.70-0.94). This 

effect size measure provides a conservative approximation of the rate ratio [34] and will be used 

to estimate the number of infections averted. 

Health outcomes 

CERs will be reported for the following health outcomes: malaria infections averted, 

malaria-associated deaths prevented, and disability-adjusted life years (DALY) avoided. One 

limitation of the UMCP data is that it collected information on prevalent cases, not incident ones. 
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In order to estimate these three health outcomes, however, one needs a measure of incidence 

[35]. A two-component mixture of continuous-time Markov Chains was used to calculate 

incidence rates from UMCP data in these analyses (available from Castro et al. [36]). 

Number of deaths prevented was estimated by multiplying the number of infections 

averted by the proportion of malaria cases found to be symptomatic and the case fatality rate. Of 

all prevalent malaria cases recorded by the UMCP, only 17% reported either having had a fever 

in the last two weeks before the survey or were found to have a body temperature higher than 

37.5° Celsius at the time of the interview. Further, a clear relationship between age of prevalent 

malaria cases and occurrence of fever was not observed. For this reason, it was decided to 

assume that the proportion of new infections that would contribute malaria morbidity would 

remain constant across age groups. Malaria case fatality rate in the city of Dar es Salaam was 

available for 2006 from official Ministry of Health statistics. The reported case fatality rate of 

0.63% (among symptomatic cases presenting at health facilities) is about a third of the average 

for mainland Tanzania (1.82%) [37]. 

DALYs were calculated by combining malaria morbidity and mortality. Years of life lost 

due  to  disability  were  obtained  by  multiplying  the  number  of  cases  prevented  by  the  condition’s  

disability weight and the average duration of that condition. The approach used by the 2010 

update of the Global Burden of Disease (GBD) was adopted [38, 39] and, accordingly, age 

weighting and discounting of DALYs were not applied. Detailed description of the calculations 

can be found in Supplementary Appendix2.1. 

Provider’s  resources  savings 

 The  provider’s  perspective  takes  the  viewpoint  of  the  Tanzanian  Ministry  of  Health  and  

Social Welfare. Costs savings per malaria infection averted were estimated by taking into 
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account 1) the proportion of symptomatic individuals that seek treatment at a health facility, 2) 

the proportion treated as outpatient, 3) the proportion diagnosed with microscopy, 4) the costs of 

diagnosing malaria using microscopy, 5) the cost of diagnosing malaria using a rapid diagnostic 

test (RDT), 6) the cost of treating an uncomplicated falciparum malaria with artemether-

lumefantrine, 7) the cost of diagnostic and hospitalization of a complicated falciparum malaria 

case treated with intramuscular quinine dihydrochlorine, and 8) the proportion of symptomatic 

individuals seeking care through community health workers. Finally, any user fees for diagnosis 

and treatment that would be collected by health facilities were subtracted from costs savings. 

 After accounting for treatment-seeking behaviour, the provider’s  cost  of  treating  one  

symptomatic case of malaria was estimated to be of $5.15 (17% of malaria infections were 

assumed to be symptomatic). This latter amount was used to aggregate costs savings over the 10-

year duration of the larviciding programme and to discount savings occurring in the future at a 

3% rate. Detailed information on the cost function used can be found in Supplementary 

Appendix 2.1. 

Society’s  resources  savings 

 It has been argued that the most relevant reference case in economic evaluations should 

reflect the societal perspective, where all costs and consequences of the intervention are 

aggregated without regards to whom they accrue [30, 40]. In Tanzania, it was estimated that 55% 

of all treatment costs of malaria in children under five years of age were borne by the household 

[41]. To estimate household costs in Dar es Salaam, the framework developed by Sicuri et 

al.[41] was generalized to individuals of all ages. Specifically, treatment-seeking behaviours, 

user fees, medicine costs, transportation costs, productivity losses due to clinical cases (or caring 

for sick children) of malaria, anemia, and neurological sequelae, and funeral costs were taken 
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into account. The indirect costs per malaria infection (asymptomatic and symptomatic) and per 

death were estimated at $1.39 and $40.39, respectively (a detailed description of calculations can 

be found in Supplementary Appendix2.1).  These  costs  were  added  to  the  provider’s  costs  savings  

to obtain the resources that would have been saved, from the societal perspective, for each 

infection averted. 

 The opportunity costs incurred by community members as a result of the larviciding 

intervention were not captured. Accounting for these costs would have negligible impact on the 

results of this economic evaluation, as it would only involve taking into account time to allow 

UMCP teams to access properties where breeding habitats could be found [17]. 

Cost-effectiveness scenarios 

 A central feature of any cost-effectiveness analysis is the definition of the alternative to 

the studied intervention. WHO recommends a state of transmission without any intervention as 

the alternative [35]. This might not be the most realistic scenario as larviciding should be used as 

part of an IVM approach [1], in conjunction with other appropriate vector control measures [13]. 

To circumvent this issue and to enable generalization of these results, CERs were calculated as a 

function of incidence and the detailed results are presented considering three different scenarios: 

- Scenario #1: Uses the baseline incidence for the year 2005, when malaria transmission 

was highest. The estimated incidence for that year was of 902 infections per 1,000 

people per year that would result in 153 clinical malaria episodes per 1,000 people per 

year (assuming that 17% of cases will be symptomatic).For urban areas, malaria case 

incidence rates in this range have been described as characteristics of low transmission 

settings [42, 43]. 
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- Scenario #2:This scenario assumes moderate malaria transmission that corresponds to 

what was observed in 2006 in the UMCP, when other control interventions were being 

scaled up. Malaria incidence has been estimated at 227 infections per 1,000 people per 

year. 

- Scenario #3: The last scenario corresponds to the situation in which other malaria 

control interventions have already been scaled-up and achieved impact. This scenario 

assumes an annual malaria infection incidence of 122 infections per 1,000 people per 

year and is the lowest incidence recorded during the UMCP in 2008. 

Sensitivity analysis 

 One-way sensitivity analyses were used for parameters whose choice depends on 

methodological issues (e.g., larviciding formulation). Probabilistic analyses were performed to 

assess the impact of uncertainty in the effectiveness parameters, health outcomes, and costs. A 

Monte Carlo simulation model was built in R package v.2.15.1 [44] and parameters were re-

sampled 100,000 times. The specific distributions from which the parameters were drawn are 

described in Supplementary Appendix 2.2. The measure of dispersion reported for the CERs are 

the 95% uncertainty interval (UI) - the 2.5% and 97.5% percentiles of the Monte Carlo 

simulations. Finally, the uncertainty surrounding the cost-effectiveness of larviciding was 

summarized using cost-effectiveness acceptability curves.  

Ethical considerations 

All UMCP data collection procedures were provided ethics approval from the Medical 

Research Coordination Committee of the National Institute for Medical Research, Ministry of 

Tanzania (Reference number NIMR/HQ/ R.8a/Vol. IX/279 &234). Similarly, the Harvard 

School  of  Public  Health’s  Institutional  Review  Board  also  approved  the  research  protocol  
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(Protocol # 20323-101). Informed consent was obtained from all study participants or, on behalf 

of children under 18 years of ages, from their legal guardians. 

RESULTS 

 The economic costs of the 10-year UMCP larviciding programme were evaluated at a 

present value of $5,111,234 (Table 2.1). The average economic cost per person protected per 

year (PPPY) was of $0.87. This number is lower than the economic cost PPPY year of $1.05 

estimated by Worrall and Fillinger [17] because population growth was factored-in and 

international consultants were only included for the first five years of the programme. 

 The first scenario assumed high urban malaria transmission and resulted in the most 

optimistic cost-effectiveness results with 1,178,999 malaria infections averted over the 10-year 

programme duration (Table 2.2). Larviciding would prevent 1,265 deaths and result in a total of 

65,125 DALYs averted. It was evaluated that these cases would result in costs savings of 

$878,301 (at present value) for the provider (assuming that 17% of infections are symptomatic), 

and an additional $1,433,425 would be saved from the perspective of the society. The gross CER 

has been estimated at $4.3 per infection averted, $4,040 per death prevented, and $78 per DALY 

avoided. Taking into account costs savings, the cost of the programme per DALY avoided 

decreased  to  $65  from  the  provider’s  perspective and to $43 from the societal perspective.  

 When considering the second transmission scenario, the number of infections averted was 

much smaller (Table 2.2). Consequently, the present value of costs saved by averting cases from 

the  provider’s  perspective was of $220,677 and gross and net CER from both the provider and 

societal perspectives were similar. The last scenario used a very low incidence rate and, as 

expected, the CER were the least cost-effective of all scenarios. It was estimated that larviciding 
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would avert 159,282 malaria infections. Again, gross CER and net CER from the provider and 

societal perspective were of the same order of magnitude. 

Table 2.1:Projected economic cost per year and population covered by the UMCP larviciding 
intervention. 

Year Economic Costs* Economic Costs 
(Discounted) 

Population 
Covered 

2004 (Y00)† $147,882 $147,882 0 
2005 (Y01) $600,619 $583,125 637,406 
2006 (Y02) $600,619 $566,141 647,447 
2007 (Y03) $600,619 $549,652 657,880 
2008 (Y04) $600,619 $533,642 668,717 
2009 (Y05) $567,366 $489,415 679,973 
2010 (Y06) $567,366 $475,160 691,662 
2011 (Y07) $567,366 $461,320 703,797 
2012 (Y08) $567,366 $447,884 716,394 
2013 (Y09) $567,366 $434,839 729,469 
2014 (Y10) $567,366 $422,174 743,040 

Total $5,954,555 $5,111,234 6,875,784 
 

Note: All prices are in 2012 US dollars. 
*Economic costs for Y01-Y04 are higher because we assumed that international 
consultants were required for capacity building, planning, and trouble-shooting of the 
intervention. 
†Pre-implementation year (Y00) has a 6-month duration. 

 
Table 2.2: Number of cases averted, deaths prevented, disability-adjusted life years averted, and 

gross and net cost-effectiveness ratios for the larviciding intervention. 

Scenarios Total Gross 
CER* 

CER* 
Provider’s  
Perspective 

CER* 
Societal 

Perspective 
SCENARIO #1 - INCIDENCE RATE OF 902 PER 1,000 
 Infection averted 1,178,999 $4.3 $3.6 $2.4 
 Death prevented 1,265 $4,040 $3,345 $2,213 
 DALY averted 65,125 $78.5 $65.0 $43.0 
SCENARIO #2 - INCIDENCE RATE OF 227 PER 1,000 
 Infection averted 296,228 $17.3 $16.5 $15.3 
 Death prevented 318 $16,077 $15,383 $14,250 
 DALY averted 16,363 $312.4 $298.9 $276.9 
SCENARIO #3 – INCIDENCE RATE OF 122 PER 1,000 
 Infection averted 159,282 $32.1 $31.3 $30.1 
 Death prevented 171 $29,900 $29,206 $28,073 
 DALY averted 8,798 $580.9 $567.4 $545.4 
 

Note: All prices are in 2012 US dollars. 
*CER: Cost-Effectiveness Ratio 
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One-way sensitivity analyses – Larviciding formulations 

If a water dispersible formulation was used, the present value of the 10-year larviciding 

programme’s  costs  would  be  reduced  to  $4,076,908  (20%  less  than  the  costs  associated  with  the  

custom granule formulation), and the average economic cost per person protected per year would 

be of $0.69. Assuming that the water dispersible formulation has the same efficacy as the custom 

granule used by the UMCP, the larviciding programme becomes more cost-effective (Table 2.3). 

In fact, net societal CERs ranged from $1 to $24 per malaria infection averted, and from $27 to 

$428 per DALY averted depending on the scenarios under considerations.  

Probabilistic sensitivity analysis 

 The  uncertainty  surrounding  parameters’  estimates  was  explored  through  a  probabilistic  

sensitivity analysis. CERs per infection averted, death prevented, and DALY avoided are 

presented with their 95% UI in Table 2.4. Uncertainty in parameters to calculate costs savings 

per malaria cases averted did not have an overwhelming influence on the CER, as demonstrated 

by the relatively high overlap between both gross and net CERs. Because of the relatively wide 

credible intervals around the prevalence ratios for the larviciding intervention (i.e., 95% CrI: 

0.70-0.94) [28], there is about a 4-fold difference between the 2.5th and 97.5th percentiles of the 

simulated distributions for the gross CER. Net societal CER per additional DALY avoided had a 

95% uncertainty interval of $15-181 for the scenario where transmission was highest, $165-822 

for the second scenario, and $337-1,548 for the lowest transmission scenario. 

 Cost-effectiveness acceptability curves show the proportion of simulations that were cost-

effective for a range of policy-makers’  willingness  to pay (Figure 2.1). For the scenario where 

transmission was highest, 95% of Monte Carlo simulations had a willingness to pay threshold 

under $154 for an additional DALY averted (societal perspective and the custom granule 
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formulation). This number increased to $652 and $1,225 for the second and third scenarios, 

respectively. To generalize these findings, net CERs were computed from the provider and 

societal perspectives for a range of incidence rates. Figure 2.2 shows that, except for very low 

incidences (i.e., <40 infections per 1,000 people per year), larviciding can be considered cost-

effective. 

 

Table 2.3: Impact ongross and net cost-effectiveness ratios of changing the formulation from 
custom granule to the less expensive water dispersible formulation. 

Scenarios Gross 
CER* 

CER* 
Provider’s  
Perspective 

CER* 
Societal 

Perspective 
SCENARIO #1 - INCIDENCE RATE OF 902 PER 1,000 
 Infection averted $3.5 $2.7 $1.5 
 Death prevented $3,222 $2,528 $1,395 
 DALY averted $62.6 $49.1 $27.1 
SCENARIO #2 - INCIDENCE RATE OF 227 PER 1,000 
 Infection averted $13.8 $13.0 $11.8 
 Death prevented $12,824 $12,130 $10,997 
 DALY averted $249.2 $235.7 $213.7 
SCENARIO #3 - INCIDENCE RATE OF 122 PER 1,000 
 Infection averted $25.6 $24.9 $23.6 
 Death prevented $23,850 $23,155 $22,023 
 DALY averted $463.4 $449.9 $427.9 
 
Note: All prices are in 2012 US dollars. 
*CER: Cost-Effectiveness Ratio 
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Table 2.4: Impact ofprobabilistic sensitivity analyses on gross and net cost-effectiveness ratios 

for the three malaria incidence scenarios. 

Scenarios Gross CER* 
[95% UI†] 

CER* Provider 
Perspective 
[95% UI†] 

CER* Societal 
Perspective 
[95% UI†] 

SCENARIO #1 - INCIDENCE RATE OF 902 PER 1,000  
 Infection averted [$3-12] [$2-11] [$1-10] 
 Death prevented [$2,593-11,110] [$1,879-10,399] [$793-9,346] 
 DALY averted [$50-215] [$36-201] [$15-181] 
SCENARIO #2 - INCIDENCE RATE OF 227 PER 1,000  
 Infection averted [$11-47] [$10-11] [$9-46] 
 Death prevented [$10,321-44,217] [$9,612-43,503] [$8,543-42,438] 
 DALY averted [$200-856] [$186-842] [$165-822] 
SCENARIO #3 - INCIDENCE RATE OF 122 PER 1,000  
 Infection averted [$21-88] [$20-87] [$19-86] 
 Death prevented [$19,195-82,232] [$18,491-81,503] [$17,419-80,444] 
 DALY averted [$372-1,592] [$358-1,578] [$337-1,558] 
 
Note: All prices are in 2012 US dollars. 
*CER: Cost-Effectiveness Ratio 
†95%  UI:  95%  Uncertainty  Interval 
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Figure 2.1:Cost-effectiveness acceptability curves (societal perspective) for larviciding with the 
custom granule and water dispersible formulations under the three malaria transmission 

scenarios. 
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Figure 2.2: Net cost-effectiveness of larviciding (custom granule formulation) per disability-
adjusted life years as a function of malaria incidence for the provider and societal perspectives. 

 The very cost-effective threshold is defined as a cost-effectiveness ratio below the per capita 
Gross Domestic Product (GDP) of Tanzania ($599 USD), and the cost-effective threshold to 

three times the per capita GDP. 
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DISCUSSION 

 This paper presents results from the first economic evaluation of a large-scale larviciding 

intervention for malaria control under programmatic conditions. The cost-effectiveness of 

larviciding has been shown in this study to be highly dependent on the assumed baseline malaria 

incidence.  WHO  proposed  that  interventions  with  a  CER  per  DALY  averted  less  than  a  country’s  

per capita Gross  Domestic  Product  (GDP)  could  be  regarded  as  ‘very cost-effective’  and  those  for  

which the cost-effectiveness  is  less  than  three  times  the  country’s  per  capita  GDP  as  ‘cost-

effective’  [35, 45].  Given  Tanzania’s  per  capita  GDP of $599 USD (2012), larviciding can be 

considered very cost-effective under a wide variety of transmission scenarios. Even low 

transmission settings with incidences above 40 infections per 1,000 people per year had CER 

that fell within the range of cost-effective interventions. With regards to the three malaria 

transmission scenarios, it was found that, even for the lowest malaria transmission scenario, 61% 

of Monte Carlo simulations fell below the very cost-effective threshold (societal perspective) and 

98% of them below the cost-effective threshold.  

 These analyses also suggest that, if the same efficacy is assumed for both types of 

larviciding formulation, using a water dispersible larvicide is more cost-effective. Indeed, the 

provider CER for urban settings with the highest malaria transmission (Scenario #1) was 

estimated  to  be  of  $49  per  DALY  avoided  (provider’s  viewpoint),  $27  if  the  societal  perspective  

was adopted. In practice, the use of both formulations will likely be required as they are designed 

for different aquatic habitats: water dispersible granule being suited for open and non-vegetated 

breeding habitats, whereas the custom granule formulation is designed for habitats with emergent 

vegetation [17]. Hence, depending on the relative abundance of each type of aquatic habitats, the 

CER for larviciding should fall within the CERs calculated for the custom granule and water 
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dispersible formulations.  

 Contextualizing these results is challenging because of inherent differences of cost-

effectiveness studies of other malaria vector control interventions. A systematic review of 

economic evaluations of ITN and IRS programmes suggested that these interventions are highly 

cost-effective in rural areas with a median CER per additional DALY averted of $27 (range 

$8.15-110) and $143 (range $135-150) for ITN and IRS, respectively (in 2009 USD) [46]. 

Although this same review reported higher median financial costs per person protected per year 

for ITN of $2.20 and IRS of $6.70 (in 2009 USD) - as compared to $1.05 for the UMCP 

larviciding programme - the CERs estimated here are generally higher. A number of reasons can 

explain this differential and economic evaluations studies of ITN and IRS interventions 

conducted in SSA were systematically reviewed to address this point (see Supplementary 

Appendix2.3 for details on this systematic review).  

 First, protective efficacy for larviciding is lower than that of ITN and IRS [47, 48]. It was 

previously estimated that larviciding reduced the odds of malaria parasitaemia by 21% in the 

general population covered by UMCP activities [28]. The effectiveness estimate used in this 

economic evaluation can be considered conservative, however, since larviciding exhibited a 

greater protective effect for children under five years of age (i.e., Odds Ratio=0.61; 95% 

Credible Interval: 0.46-0.80) [28]. Although the evidence based on the effectiveness of ITN is 

fairly robust [47], a recent Cochrane review of IRS interventions concluded  that  ‘the number of 

high quality trials are too few to quantify the size of effect’  [48]. Nevertheless, out of the seven 

IRS cost-effectiveness studies reviewed here, three of them assumed that the effect size of IRS 

was equal to that of ITN [49-51]. Thus, economic analyses of some of the IRS interventions 

could be considered imprecise.  
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 Second, economic evaluation of ITN studies almost exclusively focus on the group of 

children at highest risk of malaria morbidity and mortality: children under five years of age. The 

ability to deliver ITN to the specific age group where malaria burden is highest decreases costs 

while maximizing health gains. Targeting larviciding, or to a lesser extent IRS, to children under 

five years of age is not in the realm of possibilities as these are population interventions. Finally, 

the baseline incidence rates used in this study comprised both asymptomatic and symptomatic 

infections whereas most other studies assumed that all cases would be symptomatic. In fact, the 

three malaria incidence scenarios entail that there would be between 21 (scenario #3) and 180 

symptomatic cases (scenario #1) per 1,000 individuals per year. The median baseline malaria 

case incidence (symptomatic) used in the reviewed studies was of 900 and of 1,184 infections 

per year per 1,000 individuals for the ITN and IRS studies, respectively. Although these 

incidence rates fall into a realistic range for most endemic rural areas of SSA, malaria incidence 

is assumed to be much lower in urban areas. This last point is important because, although the 

costs of ITN and IRS programmes should remain relatively stable in urban areas, lower malaria 

incidence rates would reduce the number of DALY averted and increase CER of these 

interventions. The same can be said of malaria case fatality rates that are generally lower in 

urban areas where prompt access to diagnostic and early treatment services are generally easier. 

This partly explains why the CER per death averted estimated for larviciding in urban Dar es 

Salaam is higher than the one reported for ITN and IRS in rural areas [46]. Importantly, the 

reviewed studies were almost exclusively conducted in rural areas. The question of which 

malaria control intervention is most cost-effective in urban settings, therefore, remains an open 

one. 

 Four potential methodological limitations of this study need to be acknowledged. The 
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first concerns the generalizability of these results. This economic evaluation concerns a single 

larviciding programme in Dar es Salaam, where the costs were extrapolated from the first phase 

of larviciding, when only three out of the 15 wards where carrying-out the intervention [17]. If 

density of larval habitats in the other wards were higher or lower than that in these three wards, 

costs could have been under- or overestimated. Further, our results are likely to be generalizable 

only to other urban areas with similar malaria epidemiology. The estimated net CERs, that take 

into account costs savings from the provider and the societal perspectives, are unlikely to apply 

in settings where health systems characteristics, treatment seeking behaviors, and wages are 

drastically different. Second, health outcomes were not discounted in this economic evaluation, 

in accordance with the methodology adopted by the 2010 GBD update. Discounting DALYs at 

3%,  however,  would  have  yield  a  net  CER  (society’s  perspective)  of  $82,  $528,  and  $1,040  per  

DALY averted for the first, second, and third transmission scenario, respectively. This increase 

of the CER by a factor of two highlights the impact of social value choices in economic 

evaluation. Yet, even when discounting health outcomes, larviciding remains below the cost-

effective threshold for all scenarios (and below the very-cost effective threshold for scenarios #1 

and #2). Third, using other protective measures such as ITN, window screening, and closed 

ceilings are believed to have synergistic effects with the larviciding intervention [28]. Not taking 

these synergies into account could underestimate the population impact of larviciding and the 

cost-effectiveness of the intervention. Finally, health insurance coverage, which could affect 

CER for both the provider and societal perspectives, was not taken into account. Given that 

health coverage is relatively low in Dar es Salaam, with only 7.8% of women and 5% of men 

aged 15-49 years of age having any form of insurance [52], this omission is, however, unlikely to 

dramatically impact the results. 
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 In conclusion, this economic evaluation of the Dar es Salaam UMCP larviciding 

programme has shown that, according to commonly used GDP thresholds, this intervention is 

very cost-effective in most transmission settings where malaria incidence is above 110-116 

infections per 1,000 per year (above 40 infections per 1,000 to be deemed cost effective). This 

study also lends support for the Tanzanian National Malaria Control Programme strategic plan to 

scale-up larviciding interventions by 2020 to selected urban areas of the country [53]. Given 

limited health budgets, however, decision-makers should still prioritize scaling-up ITN and IRS 

in rural areas because larviciding interventions have been shown to be more costly when the 

density of breeding habitats is high and/or the population density is low [17, 18]. Once coverage 

of these interventions is satisfactory in highly endemic areas, larviciding could be part of an IVM 

approach for malaria control, if local conditions warrant its use. This is especially true if other 

interventions have achieved their maximum impact and/or if the National Malaria Control 

Programme of a specific country wishes to move forward from malaria control to the pre-

elimination and elimination phases. Finally, this study also highlights the lack of cost-

effectiveness analyses for malaria control in urban areas of SSA, and it remains unknown which 

combinations of interventions (e.g., ITN, IRS, LSM) are most cost-effective in such settings. 

 

ABBREVIATIONS 

 CER=Cost-effectiveness Ratio; CORP=Community Owned Resource Persons; 

DALY=Disability Adjusted Life Year; GBD= Global Burden of Disease; GDP=Gross Domestic 

Product; ITN=Insecticide Treated Net; IRS=Indoor Residual Spraying; IVM=Integrated Vector 

Management; LSM=Larval Source Management; PPPY=per person protected per year; 

SSA=Sub Saharan Africa; UI=Uncertainty Interval;UMCP=Urban Malaria Control Programme. 
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SUPPLEMENTARY APPENDIX 2.1 

DETAILS ON THE METHODOLOGY AND ASSUMPTIONS USED IN THE COST-

EFFECTIVENESS ANALYSIS OF LARVICIDING FOR URBAN MALARIA CONTROL 

 In this section, the methodology and assumptions used to estimate the cost-effectiveness 

ratios of larviciding for urban malaria control in Tanzania are described. This supplemental 

material is organized into three sections. First, the data and assumptions used to calculate the 

number of disability-adjusted life years averted (DALY) are described. Second, the methodology 

used  to  estimate  provider’s  resources  savings  that  would  accrue  by  preventing  malaria  infections  

is  presented.  Third,  the  methodology  adopted  to  estimate  society’s  resources  savings  is  defined. 

DISABILITY-ADJUSTED LIFE YEARS 

Previous Global Burden of Disease (GBD) assessments used the judgment of a small 

group of health-care professionals to assign disability weights to 483 sequelae of diseases and 

injuries. In contrast, the GBD 2010 update mapped 1,160 sequelae into 220 distinct health states, 

and weights were elicited through a large-scale multi-country respondent survey [1]. The health 

states and disability weights derived from this latest iteration of the GBD were used to estimate 

years of life lost due to disability. The seven malaria-related health states, proportion of cases 

assigned to each state, and their respective disability weights were abstracted from the GBD 

2010 study report [2], and are presented in Table 2.S1. The only exception is that the motor plus 

cognitive impairment state disease duration was estimated from the life expectancy at the 

average age of malaria death in Dar es Salaam (reliable information on the age distribution of 

neurological sequelae could not be found and the distribution of malaria deaths was used as the 

most plausible proxy). 
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Table 2.S1: Description of health states, proportion of cases falling into each state, and disability 
weight used to calculate number of life years lost to disability. 

Health States Proportion 
of cases Duration Disability 

Weight 
Mild case of acute infectious disease episode 66.3% 21 days 0.005 
Moderate case of acute infectious disease episode 33.2% 21 days 0.053 
Severe case of acute infectious disease episode 0.5% 21 days 0.210 
Mild anemia 15.47% 28 days 0.005 
Moderate anemia 20.28% 28 days 0.058 
Severe anemia 4.61% 28 days 0.164 
Moderate motor plus cognitive impairments 0.00906% 48.3 years 0.221 
 
 

The proportion of malaria cases that would lead to mild, moderate, and severe anemia 

was calculated independently using local information. Following the approach outlined in the 

GBD 2010 update [3], the mean hemoglobin shift caused by malaria infections is estimated at 

8.36 g/L and this shift was applied to the population distribution of hemoglobin levels in 

Tanzania. Separate distributions for individuals aged 0-4 years and 5-14 years, for men aged 15+ 

years, and for women aged 15+ years were used (Table 2.S2). Information on hemoglobin 

distributions were obtained from the scientific literature for the city of Dar es Salaam for all age 

groups except for the 5-14 years old age group, which was based on data from coastal Tanzania. 

The hemoglobin shift was subtracted from the hemoglobin distributions described in Table 2.S2, 

and the increase in the prevalence of mild, moderate, and severe anemia was calculated using the 

appropriate age and sex-specific cut-off values for these anemia categories [3]. The average 

increase in prevalence across the different age and sex groups were combined using the 

distribution of malaria cases in these groups as weight (Table 2.S3). The duration of malaria-

attributable anemia was estimated to be the same for the three severity classes of anemia. 

Previous studies suggested that it usually takes 4-5 weeks to achieve hematological recovery 

following malaria infection [4-6] and a disability duration of 28 days was therefore used for 

these three anemia sequelae.  



 

 88 

 

Table 2.S2: Distribution of hemoglobin levels (g/L) used to calculate proportion of malaria cases 
that would lead to mild, moderate and severe anemia for different age and sex groups. 

Population Groups Hemoglobin (g/L) References Mean SD 
Children aged 0-4 years (both sexes) 106.4 15.4 [7] 
Children aged 5-14 years (both sexes) 111.5 13.9 [8] 
Female aged ≥15  years   112.0 18.0 [9] 
Male aged ≥15  years   128.0 16.0 [9] 
 
Note: Mild anemia was defined as a hemoglobin level below 120 g/L for all age 
groups (except for males aged ≥15  years  were  a  cut-off of 130 g/L was used). For 
moderate  anemia,  a  threshold  of  110  g/L  was  used  (120  g/L  for  males  aged  ≥15  
years). Severe anemia was defined using a cut-off hemoglobin level of 80 g/L (90 
g/L  for  males  aged  ≥15  years). 

 

 

Table 2.S3: Age distributions of malaria cases and malaria deaths. 

Age Groups Proportion of 
Malaria Cases* 

Proportion of 
Malaria Deaths† 

0-4 years old 19.1% 51.4% 
5-14 years old 30.9% 10.9% 
15-29 years old 26.9% 8.4% 
30-44 years old 14.2% 11.9% 
45-59 years old 5.7% 5.3% 
60+ years old 3.3% 12.0% 

 
*Age distribution of prevalent malaria cases estimated from the UMCP data. 
†Age  distribution of malaria deaths estimated from the Dar es Salaam 
Demographic Surveillance Site through verbal autopsies (including 
unspecified acute febrile illness). 

 

 Years of life lost were calculated by multiplying the expected number of deaths at each 

age by the remaining life expectancy at age of death in Tanzania [10]. The age distribution of 

malaria deaths (Table 2.S3) was obtained from the Dar es Salaam Demographic Surveillance Site 

(DSS), conducted from 1994 to 2002 as part of the Adult Morbidity and Mortality Project 

(AMMP) [11], which, despite its name, collected information on individuals of all ages. Cause of 

death was ascertained through verbal autopsies. Because the cause of death was not specifically 

coded as malaria unless there was confirmatory evidence from another source (e.g. hospital 
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records) [12], malaria deaths were considered  to  be  those  with  a  cause  of  ‘malaria’  or  

‘unspecified acute febrile illness’,  following  the  approach  used  by  the  AMMP  and  others  [13,14]. 

Social value choices, such as age weights, were not incorporated into DALYs and health 

outcomes  were  not  discounted,  in  accordance  with  the  approach  adopted  in  the  GBD’s  2010  

update [15]. 

PROVIDER’S RESOURCES SAVINGS 

 A decision tree was developed to quantify the costs savings that would follow averting 

malaria  cases  in  Dar  es  Salaam  from  the  provider’s  perspective  (Figure  2.S1),  which  takes  the  

viewpoint of the Tanzanian Ministry of Health and Social Welfare. Costs savings per malaria 

infection averted were estimated by taking into account 1) the proportion of symptomatic 

individuals that attended a health facility [PHF], 2) the proportion treated as outpatient [POut], 3) 

the proportion diagnosed with microscopy [PMic], 4) the cost of diagnosing malaria using 

microscopy [CDMic], 5) the cost of diagnosing malaria using a rapid diagnostic test (RDT) 

[CDRDT], 6) the cost of treating an uncomplicated falciparum malaria with artemether-

lumefantrine (ALu) [CTOut], 7) the cost of diagnostic and hospitalization of a complicated 

falciparum malaria case treated with intramuscular quinine dihydrochlorine [CDTIn], and 8) the 

proportion of symptomatic individuals seeking care through community health workers [PCHW]. 

Finally, any user fees for diagnosis [UFDx] and treatment [UFTx] that would be collected by 

health facilities were subtracted from costs savings. Because children under five years of age are 

exempted from paying user fees, user fees were weighted by the probability of not having to pay 

them (using the age distribution of malaria cases described in Table 3). Costs savings per 

symptomatic malaria case averted were calculated using the formula below and parameter values 

are described in Table 2.S4. 
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Provider's CostSymptomatic = PHF POut (PMic *CDMic )+ (1 PMic )*CDRDT )+CTOut{ }    + (1 POut )*CDTIn[ ]  UFDx  UFTx
+PCHW CDRDT +CTOut  UFDx  UFTx  

 
The proportion of symptomatic cases attending a health facility and seeking care through 

community health workers was estimated using UMCP data regarding the number of individuals 

who had a fever in the previous two weeks and sought advice or treatment at a health facility. 

That proportion was standardized using the age-distribution of prevalent malaria cases and it was 

estimated that, in Dar es Salaam, 65.7% of individuals infected with malaria (symptomatic) 

would seek treatment at a health facility and 4.4% through community health workers. 

 

 
Figure 2.S1: Decision tree model to calculate cost savings. 
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Table 2.S4: Parameters and data sources used to calculate costs saved by averting one 
symptomatic malaria case. 

Parameters Value Data Sources 
PHF 65.7% UMCP data 

PCHW 4.4% UMCP data 
POut 91.7% Ministry of Health data [16] 
PMic 44% Masanja et al. [17] 

CDMic $0.59 Harchut et al. [18] (1) 
CDRDT $1.45 Harchut et al.[18](1) 
CTOut $1.85 Negotiated WHO/Coartem Price [19](2) 
CTDIn $74.26 Lubell et al. [20] (3) 
UFDx $0.26 Ministry of Health data(4) 
UFTx $0.15 Ministry of Health data(4) 

 
Note: All prices are in 2012 US dollars. 
(1) These costs include overhead, labor costs, equipment, and general consumables. 
(2) Drug  price  per  tablet  of  0.057  USD’09  with  20%  adjustment  for  wastage,  10%  for  shipping,  and  10%  
for CIF. We calculated a weighted average, using age as a proxy for weight, of the number of tablets 
required for an average ALu dose from the age distribution of cases in the UMCP data.  
(3) Pooling data from all sites of this multi-center study. Costs include those for the antimalarial and 
other drugs, supportive treatment, diagnostic tests, treatment for adverse events and hotel costs for 
inpatient stay.  
(4) The user fees are weighted by the probability that the patient is exempted from paying them (i.e., 
children under five years of age). 

 

 Once a malaria case present at the health facility, the proportion treated as outpatient and 

the number of hospitalizations need to be estimated. To this end, it was found from Tanzanian 

Ministry of Health data that 8.32% of all malaria cases presenting at health facilities were treated 

as in-patients [16].  The  Tanzanian  MoH’s  standard  treatment  guidelines  states  that  ‘where 

possible, laboratory investigations are mandatory’  [17]. Despite the fact that laboratory facilities 

are widely available in Dar es Salaam, a certain number of cases will be solely treated based on 

clinical symptoms (presumptive treatment). To produce consistent estimates of cost-effectiveness 

across interventions, all suspected malaria cases were assumed to be parasitologically confirmed 

either  using  RDT  or  microscopy,  as  per  their  National  Malaria  Control  Program’s  guidelines.  

Specific data on the proportion of malaria diagnosis performed by RDT versus microscopy in 

Dar es Salaam could not be found. Instead, information from a study conducted in 2012 in two 
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rural districts of Tanzania was used. This study reported that, among patients with fever who had 

a clinical diagnosis, RDT were used 56% of the time [18].  Provider’s  costs  per  diagnosis  were  

informed by an economic evaluation conducted in six health facilities of Dar es Salaam that 

found that cost per diagnostic test (costs include laboratory materials and labor expenses) was 

$1.44 for RDT and $0.59 for microscopy (2008 USD) [19]. 

 Standard treatment guidelines for Tanzania recommend ALu as first line treatment for 

uncomplicated malaria and quinine dihydrochlorine injection for complicated malaria [17]. All 

uncomplicated malaria cases were assumed to be treated as outpatients with ALu. To calculate 

cost per ALu treatment, the negotiated Novartis/WHO price of $0.057 per tablet was used (2009 

USD) [21].  Because  the  number  of  tablets  required  per  treatment  is  a  function  of  a  patient’s  

weight, average treatment costs were calculated based on the weight distribution, proxied by age 

(as  described  in  the  MoH’s  Standard  Treatment  Guidelines  [17]), of prevalent malaria cases in 

the UMCP data. Further, drug costs were inflated by 20% to adjust for wastage, an additional 

10% for local transport, and 10% was added for international transport to properly reflect the 

costs incurred by the MoH [19]. All in-patients were presumed to have complicated malaria and 

estimated costs for treating such cases were abstracted from a recent multi-center trial of quinine 

versus parenteral artesunate for severe malaria [22]. The cost of treating a severe malaria case 

with quinine was estimated at $63.50 (2009 USD). This includes drugs, fluids, laboratories, and 

hotel costs – the latter  being  obtained  from  WHO’s  choosing interventions that are cost-effective 

framework – but excluded lifetime health care costs associated with neurological sequelae.  

 Individuals seeking care through community health workers were assumed to be 

diagnosed with RDT and treated with ALu. Because of lack of specific cost data on community 

health workers, the cost estimates of RDT from health facilities were used and the cost of ALu 
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was presumed to remain the same. Using the cost function described above and accounting for 

treatment-seeking  behavior,  the  provider’s  costs  of  treating  one  symptomatic  case  of  malaria  was  

estimated to be of $5.15 (17% of malaria infections are assumed to be symptomatic). The latter 

amount was used to aggregate costs savings over the 10-year duration of the larviciding program 

and to discount savings occurring in the future at a 3% rate.  

SOCIETY’S RESOURCES SAVINGS 

 To estimate household costs in Dar es Salaam, the framework developed by Sicuri et 

al.[23] was generalized to individuals of all ages (Figure 1). Specifically, treatment-seeking 

behaviors, fees, medicine costs, transportation costs, productivity losses due to clinical cases of 

malaria (or caring for sick children), anemia, and neurological sequelae, and funeral costs were 

taken into account. 

 Household direct costs are described in Table 2.S5. Data from the UMCP was used to 

estimate the proportion of symptomatic malaria cases falling into five mutually exclusive 

treatment-seeking behaviors. For treatment in health facilities, user fees for diagnostic and 

treatment as well as transportation costs were taken into account. Because of the paucity of costs 

data regarding community health workers, societal costs were presumed to be the same as for 

those seeking treatment at health facilities, minus the transportation costs which is assumed to be 

null in the case of community health workers. For treatment in pharmacy/store, it was estimated 

that transportation costs would be negligible and that the only direct expenditure would be the 

cost of treatment with ALu. A small proportion of individuals sought care through traditional 

healers. Fees for such services were abstracted from the literature and it was premised that the 

same transportation costs reported by patients attending health facilities would apply for those 

reaching traditional healers. Individuals not seeking treatment were assumed to accrue no direct 
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costs. Funeral costs were estimated from insurance premiums [24] and self-reported expenditure 

on funerals among individuals aged 15-59 years of age in Tanzania [25]. 

Table 2.S5:Inputs and data sources to calculate household direct costs per symptomatic malaria 
episode. 

Household Direct Cost per Symptomatic Malaria Episode 
Treatment Seeking Proportion(1) Fee Medicine Costs Transportation 

Costs 
Health Facility 65.70% $0.26(2) $0.15(4) $0.29(6) 
Community Health Worker 4.42% $0.26(2) $0.15(4) - 
Pharmacy/Store 3.95% - $0.77(5) - 
Traditional Healer 0.04% $2.70(3) - $0.29(6) 
No Treatment 25.90% - - - 
 
Note: All prices are in 2012 US dollars. 
(1) UMCP data. 
(2) Ministry of Health Data. User fee for diagnostic by community health worker is assumed to be equal to that 
of health facilities. 
(3) Average between the fee reported by Sicuri et al. [23] and the one reported by Somi et al. [26]. 
(4) Based on the user fee for treatment in the health sector. User fee for treatment by community health worker is 
assumed to be equal to that of health facilities. 
(5) Medicine costs for treating one malaria episode with artemether-lumefantrine. Cost estimate based on 798 
private for-profit outlets in mainland Tanzania reported by Tougher et al. [27] and adjusted for the average 
weight (proxied by age) of malaria cases in Dar es Salaam. 
(6) Average transportation cost of 259 patients from 6 health facilities of Dar es Salaam, as reported by Yukick 
et al. [22]. 

 

 Household indirect costs were estimated by calculating productivity losses due to illness, 

anemia, and neurological sequelae. Changes in productivity were estimated using a human 

capital approach where market wage rates were used as a proxy for an individual’s  productive  

potential [28]. Time lost per symptomatic malaria episode has been estimated at 4.2 days in 

Tanzania [26]. Adult care-takers of sick children aged 0-9 years of age were presumed to also 

lose 4.2 days of productivity, and care-takers of children aged 10-14 to lose 1 day (25% of the 

time for younger children). Time lost in transportation or in medical facilities was not included to 

avoid double-counting, as affected individuals would already be out of economically productive 

activities due to malaria illness. The average monthly income in Dar es Salaam was abstracted 

from the 2006 Tanzanian Integrated Labour Force Survey (ILFS) database [29]. Taking into 
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account the probability of unemployment, the average income in Dar es Salaam was calculated 

per 5-year age groups and the overall average income was weighted by the age distribution of 

malaria cases. Further, it was premised that care-takers of sick children would be women above 

15 years of age so that such productivity losses would be calculated using the average income of 

this gender group – income for women in Dar es Salaam are roughly 60% lower than that of 

men. Note that caretakers of sick individuals or individuals affected by malaria may be non-

economically active students that would also experience a reduction in their amount of earned 

education. Because of methodological difficulties in precisely quantifying the accumulation of 

human capital in this population, this type of indirect costs was not considered in the present 

economic evaluation.  

 Iron deficiency anemia can lead to important cognitive deficits in children and has 

negative impacts on adult work capacity [30]. Malaria is an important contributor of iron 

deficiency anemia, even in asymptomatic individuals [31,32]. Productivity losses due to anemia 

are estimated to be of the order of 5% for blue-collar type work and can be as high as 17% for 

heavy manual labor [30]. Malaria infections cause a mean hemoglobin decrease of 8.4 g/L [3,33] 

and this shift was applied to the mean hemoglobin level of male and female aged 15 years of age. 

Distribution  of  hemoglobin  levels  for  Dar  es  Salaam’s  adult  population  was  abstracted  from  the  

literature (Table 2) and it was estimated that 16.9% of malaria cases would become anemic 

because of the infection. Productivity losses due to anemia were estimated by calculating average 

income per 5-year age groups, using data from Dar es Salaam in the 2006 ILFS [29], and 

assuming that income would be reduced by 5% due to anemia for the proportion of the 

population that became anemic as a result of malaria. Lost income was averaged using the age 

distribution of malaria cases as weights. The effect of malaria-attributable anemia on 
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productivity was assumed to last for 4 weeks, as informed by studies on the duration of post-

malaria hematological recovery [4-6]. 

 Severe malaria has been associated with long-term cognitive impairments [34-37]. The 

impacts of such persistent neurological sequelae on lifetime productivity are clear but precise 

effect size estimates are unavailable. The proportion of malaria infections resulting in 

neurological sequelae has been estimated to be 0.00906% [2], and the productivity of individuals 

with such sequelae was assumed to be reduced by 15% - an estimate that can be considered 

conservative. Individuals were further presumed to be economically productive between the ages 

of 15 to 64 years and the average yearly earnings of this age group was calculated using data 

from Dar es Salaam, as reported in the 2006 ILFS [29]. Yearly earnings were estimated at $946 

USD in this population so that the productivity losses due to neurological sequelae would be of 

$142 USD per year for affected individuals. The present value of lifetime productivity losses 

(LPL) due to neurological sequelae was estimated using the following formulae and a 3% 

discount rate: 

 

where E is the average yearly earnings, r is the discount rate (3%), ex is the local life expectancy 

at age x, and Agex is the age at which an individual develops neurological sequelae. The average 

lifetime productivity loss was then calculated using the age distribution of malaria deaths. 

Lifetime productivity loss due to premature mortality was not included in this analysis because 

LPL =

E{[1 (1+ r) (ex  15) ] / r}*(1+ r) (15 Agex );     if Agex <15 and (ex + Agex ) < 65

E{[1 (1+ r) (65 15) ] / r}*(1+ r) (15 Agex );     if Agex <15 and (ex + Agex )  65

E{[1 (1+ r) (ex  Agex ) ] / r}*(1+ r) (15 Agex );  if Agex  15 and (ex + Agex ) < 65

E{[1 (1+ r) (65 Agex ) ] / r};                          if Agex  15 and (ex + Agex )  65
0;                                                                if Agex  65
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of  extreme  uncertainty  in  estimates  of  an  individual’s  lifetime  consumption  of  goods/services  

(education, health, etc.) that would need to be deducted from lifetime earnings. 

 Household direct and indirect costs were then combined assuming that only 17% of new 

malaria infections would be symptomatic and that asymptomatic infections would not lead to any 

costs, except through anemia-attributable productivity losses. The following formulas were used 

to calculate the average societal cost per malaria infection and per malaria death: 

Societal Cost
Infection

= P
Symp

P
TSBii=1

5

 *(Fee
i
+MedCost

i
+Transport

i
) 

 
 
 + PL

Ill{ }*+PL
Hb

+ (P
NS

*LPL
NS

)

Societal Cost
Death

=Cost
Funeral

 

where PSymp is the proportion of infections that are symptomatic (17%); PTSBi is the proportion of 

symptomatic individuals falling into each of the five treatment-seeking behaviors defined in 

Table 2.S5; Feei, MedCosti, and Transportiare the health fee, medicine costs, and transportation 

costs, respectively, incurred by individuals seeking care in each of these five categories (see 

Table 2.S5); PLIll is the productivity loss due to being sick or caring for sick children (note that 

PLIll is a weighted average of productivity losses by age group and is equal to $5.25); PLHb is the 

productivity loss associated with anemia ($0.20); PNS is the proportion of all malaria infection 

leading to neurological sequelae (0.009%); LPLNS is the present value of lifetime productivity 

losses due to neurological sequelae ($2,263);and CostFuneral is the cost of a funeral ($40.4). 
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SUPPLEMENTARY APPENDIX 2.2 

 
Table 2.S6: Distributions and parameter values used for the probabilistic sensitivity analysis. 

Parameters Distribution* Notes 
EFFECTIVENESS   

Prevalence ratio for the intervention (log scale) Truncated Normal (ln(0.81); 0.072) 1 
DISABILITY-ADJUSTED LIFE YEARS   

Disability weight for infectious disease: mild Triangular (min=0.002; max=0.011) 2 
Disability weight for infectious disease: moderate Triangular (min=0.033; max=0.081) 2 
Disability weight for infectious disease: severe Triangular (min=0.139; max=0.298) 2 
Disability weight for anemia: mild Triangular (min=0.002; max=0.011) 2 
Disability weight for anemia: moderate Triangular (min=0.038; max=0.086) 2 
Disability weight for anemia: severe Triangular (min=0.112; max=0.228) 2 
Disability weight for cognitive impairments Triangular (min=0.141; max=0.314) 2 
Duration of a malaria episode (days) Uniform (min=14, max=28) 3 
Duration of anemia (days) Uniform (min=21, max=35) 4 

TREATMENT-SEEKING BEHAVIORS   
Proportion seeking care at/through health facility 
(PSHF), community-health workers (PSTSB1), 
pharmacy/store (PSTSB2), traditional healers 
(PSTSB3), and not seeking treatment (PSTSB4). 

PSHF =Triangular (min=54%; max=81%) 
PSTSBi = PTSBi+[PTSBi*(PHF-PSHF)/(1-PHF)] 5 

COSTS SAVINGS (PROVIDER)   
Proportion treated as out-patient (POut) Triangular (min=72%; max=95%) 6 
Proportion diagnosed using microscopy (PMic) Triangular (min=33%; max=55%) 7 
Costs of diagnostic with microscopy (CDMic) Triangular (min=0.45$; max=0.75$) 7 
Cost of diagnostic with RDT (CDRDT) Triangular (min=0.52$; max=4.94$) 8 
Outpatient’s  cost  of  treatment  (CTOut) Triangular (min=1.26$; max=5.22$) 9 
Inpatient’s  cost  of  diagnostic  and  treatment  
(CTDIn) 

Triangular (min=58.38$; max=90.51$) 10 

COSTS SAVINGS (SOCIETY)   
Fee for traditional healer Triangular (min=0.21; max=5.19) 11 
Cost of artemether-lumefantrine at pharmacy/store Triangular (min=0.51; max=1.03) 12 
Transportation costs to health facility/healer Triangular (min=0.20; max=0.42) 13 
Number of days lost to malaria episode (N) and to 
care for children aged 10-14 years of age (N10-14) 

N = Triangular (min=2; max=5) 
N10-14=N*Uniform (min=20%; max=30%) 14 

Proportion of earnings lost to anemia  Uniform (min=2.5%; max=7.4%) 15 
Proportion of earnings lost to neurological 
sequelae 

Triangular (min=10%; max=20%) 16 

Funeral costs Triangular (min=30.53$; max=50.26$) 17 
 

Note: All prices are in 2012 US dollars. 
*The modes of the triangular distributions correspond to the values used to calculate the cost-effectiveness ratios. 
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Notes: 

1- Adapted from Maheu-Giroux and Castro [1]. Because it is biologically impossible for 

larviciding to cause an increase in malaria incidence, the normal distribution was truncated 

for values above the null. 

2- The 95% confidence intervals of the disability weights reported in the 2010 GBD study were 

used as minimum and maximum values of the triangular distribution [2].  

3- For the duration of malaria episodes, the same distribution as the one reported in the GBD 

2010 study was used [3]. 

4- The post-malaria recovery period reported in the literature [4-6] was used and ±1 week was 

added to that quantity. 

5- Lowest and highest age-specific proportions of individual attending health facilities in the 

UMCP data. The other 4 treatment-seeking behaviors were rescaled such that the sum of 

these proportions would still be equal to 1. PSTSBi refers to the re-sampled proportion 

whereas PTSBi refers to the values described in Table 5. 

6- Minimum for severe malaria is reported in Reyburn et al. [7]. An upper bound of 95% for this 

distribution was assumed.  

7- Minimum and maximum values of the triangular distributions were calculated as ±25% the 

mode of the distribution. 

8- Minimum is obtained by considering only the price of test (excluding labor), as reported by 

Harchut et al. [8]. Maximum value is taken from White et al. [9]. 
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9- Minimum value is the negotiated WHO/Novartis price, excluding adjustments for wastage and 

transport. Maximum value corresponds to the price reported in the AFRO essential drug 

price indicator.  

10- Minimum and maximum values as reported by Lubell et al. [10]. 

11- Minimum is reported by Somi et al. [11] and maximum by Sicuri et al.[12]. 

12- Minimum and maximum values correspond to the interquartile range reported by Tougher et 

al. [13]. 

13- Minimum and maximum values correspond to the 95% confidence interval reported by 

Yukich et al. [14]. 

14- Values for this triangular distribution are taken from the review of Chima et al. [15]. For 

children aged 10-14 years of aged, it was assumed that it would correspond to 20-30% of 

an adult illness time. 

15- Minimum value taken by reducing by 50% the estimate of 5% loss in earning. Maximum 

value corresponds to a situation where 20% of workers in Dar es Salaam are involved in 

manual work where lost in earnings is estimated at 17% [16]. 

16- A uniform distribution was used to acknowledge the fact that prior information on this 

parameter  is  uncertain.  The  minimum  and  maximum  values  correspond  to  the  authors’  

evaluation of a plausible conservative range. 

17- Minimum value reported by Ngalula et al. [17] and maximum value by Dercon et al. [18]. 
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SUPPLEMENTARY APPENDIX2.3 

SYSTEMATIC REVIEW OF COST-EFFECTIVENESS ANALYSES OF INSECTICE-

TREATED BEDNETS AND INDOOR RESIDUAL SPRAYING FOR MALARIA CONTROL IN 

AFRICA 

 In order to contextualize the results of this economic evaluation of larviciding for malaria 

control, cost-effectiveness analyses of indoor residual spraying (IRS) and insecticide-treated 

bendets (ITN) for malaria control in SSA were systematically reviewed. This review will help 

examine the methodological issues and assumptions upon which these economic evaluations are 

based. 

METHODOLOGY 

PubMed was queried using the terms described below (Table 2.S7). No time restriction 

was imposed. The search retrieved 402 publications that were evaluated based on either title 

alone (n=253) or title and abstract (n=149). The eligibility and exclusion criteria are described in 

Table 2.S8. A total of 12 articles for IRS and 24 for ITN were selected based on their title and 

abstract but 5 IRS and 6 ITN studies were excluded after reading the paper (Table 2.S9). Finally, 

one IRS study was identified through other means and included in the review. Hence, a total of 7 

IRS and 18 ITN cost-effectiveness studies were included in the final review. 
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Table 2.S7:PubMed search query information for the systematic review 
PubMed Search: 
(malaria OR falciparum) AND (cost OR cost-effectiveness) AND ((ITN OR bed net* OR 
bednet* OR net OR long-lasting insecticide-treated net* OR LLIN) OR ((insecticide OR 
residual house spraying OR indoor residual spraying OR IRS))) AND (Africa) 

 
 

Table 2.S8:Eligibility and exclusion criteria for the systematic review. 

Eligibility 
Criteria 

-Study conducted in Africa. 
-Study reports cost-effectiveness of IRS or ITN. 
-Malaria cases, malaria deaths, or DALYs are the health 
outcomes. 

Exclusion 
Criteria 

-Study not relevant to malaria. 
-Literature review. 
-Letter to the Editor. 
-Studies conducted on packages of interventions where we 
cannot distinguish between IRS, ITN, or any combinations of 
interventions. 
-Study is published in a language other than English, French, or 
Portuguese. 

 
 
 

Table 2.S9:Studies retrieved, selected, and included in the systematic review. 

Articles Retrieved (IRS and ITN combined) 402 

Articles selected based on title and abstract IRS = 12 
ITN = 24 

Final number of articles included in the 
review 

IRS = 7 
ITN = 18 

 
 
RESULTS 

 A summary of the reviewed cost-effectiveness studies of IRS is present in Table 2.S10. 

Cost-effectiveness studies of ITN is presented in Table 2.S11. 

 



 

 
11

1 

Ta
bl

e 
2.

S1
0:

 S
um

m
ar

y 
of

 c
os

t-e
ff

ec
tiv

en
es

s a
na

ly
se

s o
f i

ns
ec

tic
id

e 
re

si
du

al
 sp

ra
yi

ng
 in

te
rv

en
tio

ns
 c

on
du

ct
ed

 in
 su

b-
Sa

ha
ra

n 
A

fr
ic

a.
 

C
ou

nt
ry

 
Y

ea
r 

of
 

Pr
og

ra
m

 
C

ur
re

nc
y 

A
ge

 
G

ro
up

 
Pe

rs
pe

ct
iv

e 
C

os
t 

PP
Y

 
Ef

fe
ct

 S
iz

e 
In

ci
de

nc
e 

pe
r 

1,
00

0 
C

ER
 / 

In
fe

ct
io

n 
C

ER
 / 

D
ea

th
 

C
ER

 / 
D

A
LY

 
R

ef
 

Lo
w

 a
nd

 
M

id
dl

e 
In

co
m

e 
C

ou
nt

rie
s 

N
A

 
U

SD
 

20
01

 
N

A
 

Pr
ov

id
er

 
N

A
 

50
%

 re
du

ct
io

n 
in

 in
ci

de
nc

e;
 

17
%

 re
du

ct
io

n 
in

 c
hi

ld
 

m
or

ta
lit

y 

N
A

 
N

A
 

N
A

 

O
nc

e 
a 

ye
ar

: 
M

al
at

hi
on

 
=$

12
; D

D
T 

=$
9;

 
D

el
ta

m
et

hr
in

 
=$

10
; λ

-
cy

ha
lo

th
rin

 
=$

10
; T

w
ic

e 
a 

ye
ar

: M
al

at
hi

on
 

=$
24

; D
D

T 
=$

17
; 

D
el

ta
m

et
hr

in
 

=$
18

; λ
-

cy
ha

lo
th

rin
 

=$
19

 

[1
] 

So
ut

h 
A

fr
ic

a 
an

d 
M

oz
am

bi
q

ue
 

SA
 =

19
97

-
19

99
; M

Z 
=1

99
9-

20
01

 

U
SD

 
20

05
 

<5
 

Pr
ov

id
er

 

SA
 

=$
3.

27
 

an
d 

M
Z 

=$
3.

90
 

5.
5 

ch
ild

 
de

at
hs

 a
ve

rte
d 

pe
r 1

,0
00

 
ch

ild
-y

ea
rs

 

N
A

 
N

A
 

SA
 

=$
4,

35
7;

 M
Z 

=$
3,

93 3 

SA
 =

$1
32

;  
M

Z 
=$

11
9 

[2
] 

SS
A

 
H

yp
ot

he
tic

al
 1

0 
ye

ar
s 

pr
og

ra
m

 
In

t 2
00

0 
<5

 
Pr

ov
id

er
 

N
A

 

50
%

 re
du

ct
io

n 
in

 in
ci

de
nc

e;
 

20
%

 re
du

ct
io

n 
in

 c
as

e 
fa

ta
lit

y 

In
ci

de
nc

e:
 

A
fr

-D
= 

1,
43

6;
 A

fr
-

E=
 1

,1
84

. 
M

or
ta

lit
y:

 
A

fr
-D

= 
7;

 
A

fr
-E

 =
 8

. 

N
A

 
N

A
 

A
fr

-D
 =

$3
2;

  
A

fr
-E

 =
$4

1 
[3

] 

K
en

ya
 

19
99

-2
00

0 
~U

SD
 

20
00

 
0-

99
 

Pr
ov

id
er

 
$0

.8
8 

R
R

=0
.2

5 
(0

.2
4-

0.
27

) 
N

A
 

$9
 

N
A

 
N

A
 

[4
] 

  
 

111



 

 
11

2 

Ta
bl

e 
2.

S1
0 

(C
on

tin
ue

d)
: S

um
m

ar
y 

of
 c

os
t-e

ff
ec

tiv
en

es
s a

na
ly

se
s o

f i
ns

ec
tic

id
e 

re
si

du
al

 sp
ra

yi
ng

 in
te

rv
en

tio
ns

 c
on

du
ct

ed
 in

 su
b-

Sa
ha

ra
n 

A
fr

ic
a.

 

C
ou

nt
ry

 
Y

ea
r 

of
 

Pr
og

ra
m

 
C

ur
re

nc
y 

A
ge

 
G

ro
up

 
Pe

rs
pe

ct
iv

e 
C

os
t 

PP
Y

 
Ef

fe
ct

 S
iz

e 
In

ci
de

nc
e 

pe
r 

1,
00

0 
C

ER
 / 

In
fe

ct
io

n 
C

ER
 / 

D
ea

th
 

C
ER

 / 
D

A
LY

 
R

ef
 

SS
A

 
(m

od
el

) 
N

A
 

U
SD

 
19

95
 

<1
 

Pr
ov

id
er

 &
 

C
om

m
un

ity
 

O
nc

e 
ye

ar
ly

 
($

5.
76

-
10

.1
8)

; 
Tw

ic
e 

ye
ar

ly
 

($
11

.5
3-

20
.3

6)
 

52
%

 d
ec

re
as

e 
in

 a
ll 

ca
us

e 
m

or
ta

lit
y 

1,
50

0 
N

A
 

N
A

 
O

nc
e 

ye
ar

ly
 

($
16

-2
9)

; T
w

ic
e 

ye
ar

ly
 ($

32
-5

8)
 

[5
] 

M
oz

am
bi

q
ue

 
0 

U
SD

 
20

00
 

2-
15

 
(p

ar
as

ita
em

ia
) &

 
0-

99
 

(c
lin

ic
al

 
ca

se
) 

Pr
ov

id
er

 
$4

.8
2 

11
,8

57
 

m
al

ar
ia

 c
as

es
 

av
er

te
d 

N
A

 
$2

9.
43

 
0 

N
A

 
[6

] 

M
od

el
 

A
re

a 
in

 
A

fr
ic

a 
19

78
 

~U
SD

 
19

75
 

0-
99

 
G

ro
ss

 C
ER

 
$2

 

40
%

 re
du

ct
io

n 
in

 c
ru

de
 d

ea
th

 
ra

te
 (a

du
lt)

; 
50

%
 re

du
ct

io
n 

in
 in

fa
nt

 
m

or
ta

lit
y 

N
A

 
N

A
 

$2
50

 
(a

ll)
; 

$6
00

 
(in

fa
nt

s
) 

N
A

 
[7

] 

  
 

112



 

 
11

3 

Ta
bl

e 
2.

S1
1:

 S
um

m
ar

y 
of

 c
os

t-e
ff

ec
tiv

en
es

s a
na

ly
se

s f
or

 in
se

ct
ic

id
e-

tre
at

ed
 b

ed
ne

t i
nt

er
ve

nt
io

ns
 c

on
du

ct
ed

 in
 su

b-
Sa

ha
ra

n 
A

fr
ic

a.
 

C
ou

nt
ry

 
Y

ea
r 

of
 

Pr
og

ra
m

 
C

ur
re

nc
y 

A
ge

 
G

ro
up

 
Pe

rs
pe

ct
iv

e 
C

os
t P

PY
 

Ef
fe

ct
 

Si
ze

 
In

ci
de

nc
e 

pe
r 

1,
00

0 
C

ER
 / 

In
fe

ct
io

n 
C

ER
 / 

D
ea

th
 

C
ER

 / 
D

A
LY

 
R

ef
 

Lo
w

 a
nd

 
M

id
dl

e 
In

co
m

e 
C

ou
nt

rie
s 

H
yp

ot
he

tic
al

 
Pr

og
ra

m
 

U
SD

 2
00

1 
<5

 
Pr

ov
id

er
 

N
A

 

5.
5 

ch
ild

 
de

at
hs

 
av

er
te

d 
pe

r 1
,0

00
 

ch
ild

-
ye

ar
s 

N
A

 
N

A
 

N
A

 

Pe
rm

et
-

rh
in

 =
$1

7 
D

el
ta

m
et

-
hr

in
 =

$1
1 

[1
] 

Er
itr

ea
 

(E
R

); 
To

go
 

(T
G

); 
M

al
aw

i 
(M

W
); 

Se
ne

ga
l 

(S
G

); 
Ta

nz
an

ia
 

(T
Z)

;  

ER
=2

00
1-

20
05

; 
TG

=2
00

4;
 

M
W

=1
99

9-
20

05
; 

SG
=2

00
0-

20
05

; 
TZ

=2
00

2-
20

05
 

U
SD

 2
00

5 
<5

 
Pr

ov
id

er
 

C
os

t p
er

 
IT

N
: 

ER
=$

3.
98

; 
TG

=$
3.

32
; 

M
W

=$
3.

36
; 

SG
=$

8.
05

; 
TZ

=$
4.

80
 

50
%

 
re

du
ct

io
n 

in
 

in
ci

de
nc

e;
 

20
%

 
re

du
ct

io
n 

in
 c

as
e 

fa
ta

lit
y 

N
A

 
N

A
 

In
cl

ud
in

g 
re

-
tre

at
m

en
t: 

ER
=$

43
8;

 
TG

=$
1,

17
4;

 
M

W
=$

1,
10

5
; 

SG
=$

2,
19

9;
 

TZ
=$

78
8.

 

In
cl

ud
in

g 
re

-
tre

at
m

en
t: 

ER
=$

13
; 

TG
=$

36
; 

M
W

=$
33

; 
SG

=$
67

; 
TZ

=$
24

. 

[2
] 

SS
A

 
H

yp
ot

he
tic

al
 

10
 y

ea
rs

 
pr

og
ra

m
 

IN
T 

20
00

 
<5

 
Pr

ov
id

er
 

N
A

 
R

R
=0

.2
5 

(0
.2

4-
0.

27
) 

In
ci

de
nc

e:
 

A
fr

-
D

=1
,4

36
; 

A
fr

-
E=

1,
18

4.
 

M
or

ta
lit

y:
 

A
fr

-D
=7

; 
A

fr
-E

=8
. 

N
A

 
N

A
 

A
fr

-D
 

=$
29

 
 A

fr
-E

 
=$

41
 

[3
] 

K
en

ya
 

19
99

-2
00

0 
~U

SD
 

20
00

 
0-

99
 

Pr
ov

id
er

 
$2

.0
2-

2.
34

 

19
%

 
de

cr
ea

se
 

in
 a

ll 
ca

us
e 

m
or

ta
lit

y;
 

46
%

 
de

cr
ea

se
 

in
 m

al
ar

ia
-

re
la

te
d 

m
or

bi
di

ty
  

N
A

 
$2

9 
N

A
 

N
A

 
[4

] 

 

113



 

 
11

4 

Ta
bl

e 
2.

S1
1 

(C
on

tin
ue

d)
: S

um
m

ar
y 

of
 c

os
t-e

ff
ec

tiv
en

es
s a

na
ly

se
s f

or
 in

se
ct

ic
id

e-
tre

at
ed

 b
ed

ne
t i

nt
er

ve
nt

io
ns

 c
on

du
ct

ed
 in

 su
b-

Sa
ha

ra
n 

A
fr

ic
a.

 

C
ou

nt
ry

 
Y

ea
r 

of
 

Pr
og

ra
m

 
C

ur
re

nc
y 

A
ge

 
G

ro
up

 
Pe

rs
pe

ct
iv

e 
C

os
t P

PY
 

Ef
fe

ct
 

Si
ze

 
In

ci
de

nc
e 

pe
r 

1,
00

0 
C

ER
 / 

In
fe

ct
io

n 
C

ER
 / 

D
ea

th
 

C
ER

 / 
D

A
LY

 
R

ef
 

SS
A

 
(m

od
el

) 
N

A
 

U
SD

 1
99

5 
<5

 
Pr

ov
id

er
 &

 
C

om
m

un
ity

 
N

ot
 

m
en

tio
ne

d 
0.

69
 (I

TN
 

vs
 IR

S)
 

15
00

 
N

A
 

N
A

 

B
ed

ne
t 

on
ly

 
$1

9-
85

; 
B

ed
ne

t &
 

in
se

ct
ic

id
e 

$2
5-

96
 

[5
] 

So
ut

h 
A

fr
ic

a 
(K

w
aZ

ul
u

-N
at

al
) 

19
98

-1
99

9 
(C

om
pa

ris
on

 
IT

N
 v

s 
IR

S)
 

U
SD

 1
99

9 
A

ll 
Pr

ov
id

er
 

7.
62

 

H
R

 fo
r 

in
fa

nt
 

m
or

ta
lit

y 
of

 0
.7

8 

25
3 

(1
74

.5
 

/0
.6

9)
 

16
 

$1
,6

96
 

N
A

 
[8

] 

D
R

C
 

20
05

-2
00

6 
(C

om
pa

ris
on

 
IT

N
 v

s 
di

ag
no

si
s, 

tre
at

m
en

t, 
IP

Tp
, 

A
N

C
 s

er
vi

ce
s)

 

U
SD

 2
00

5 
Pr

eg
n-

an
t 

w
om

en
 

Pr
ov

id
er

 
N

A
 

R
ed

uc
tio

n 
in

 a
ll-

ca
us

e 
m

or
ta

lit
y 

of
 1

7%
 

am
on

g 
U

5 

U
se

d 
an

 
in

fa
nt

 
m

or
ta

lit
y 

ra
te

 o
f 

95
/1

,0
00

 

N
A

 
$4

11
.1

3 
$1

7.
22

 
[9

] 

To
go

 
20

04
-2

00
5 

U
SD

 2
00

4 
<5

 
Pr

ov
id

er
 

$5
.9

5 
(p

er
 

LL
IN

 
di

st
rib

ut
ed

) 

R
ed

uc
tio

n 
in

 
in

ci
de

nc
e 

of
 5

0%
 

an
d 

5.
5 

de
at

hs
 

av
er

te
d 

pe
r 1

,0
00

 

1,
20

9 
4.

4 
$8

56
 

$2
2.

1 
[1

0]
 

U
ni

te
d 

R
ep

ub
lic

 
of

 
Ta

nz
an

ia
 

20
04

-2
00

6 
U

SD
 2

00
6 

<5
 

Pr
ov

id
er

 
$7

.5
7 

(p
er

 
IT

N
 

de
liv

er
ed

) 
PE

=2
7%

 

In
ci

de
nc

e 
of

 m
al

ar
ia

 
ou

tp
at

ie
nt

 
in

 U
5 

is
 

72
3/

1,
00

0 

N
A

 
$8

73
 

N
A

 
[1

1]
 

U
ni

te
d 

R
ep

ub
lic

 
of

 
Ta

nz
an

ia
 

19
96

-2
00

0 
U

SD
 2

00
0 

<5
 

Pr
ov

id
er

 
$1

3.
38

 p
er

 
tre

at
ed

-n
et

 
ye

ar
 

N
A

 (7
3 

de
at

hs
 

av
er

te
d)

 

In
fa

nt
 

m
or

ta
lit

y 
=7

3;
 

C
hi

ld
 

m
or

ta
lit

y 
=1

5 

N
A

 
$1

,5
59

 
$5

7 
[1

2]
 

114



 

 
11

5 

Ta
bl

e 
2.

S1
1 

(C
on

tin
ue

d)
: S

um
m

ar
y 

of
 c

os
t-e

ff
ec

tiv
en

es
s 

an
al

ys
es

 fo
r i

ns
ec

tic
id

e-
tre

at
ed

 b
ed

ne
t i

nt
er

ve
nt

io
ns

 c
on

du
ct

ed
 in

 s
ub

-
Sa

ha
ra

n 
A

fr
ic

a.
 

C
ou

nt
ry

 
Y

ea
r 

of
 

Pr
og

ra
m

 
C

ur
re

nc
y 

A
ge

 
G

ro
up

 
Pe

rs
pe

ct
iv

e 
C

os
t P

PY
 

Ef
fe

ct
 

Si
ze

 
In

ci
de

nc
e 

pe
r 

1,
00

0 
C

ER
 / 

In
fe

ct
io

n 
C

ER
 / 

D
ea

th
 

C
ER

 / 
D

A
LY

 
R

ef
 

K
en

ya
 

19
97

-1
99

9 
U

SD
 1

99
6 

<5
 

Pr
ov

id
er

 &
 

C
om

m
un

ity
 

$1
.4

0 
($

1.
90

 
pe

r I
T

N
) 

R
ed

uc
tio

n 
in

 
in

ci
de

nc
e 

of
 4

6%
; 

re
du

ct
io

n 
in

 a
ll 

ca
us

e 
m

or
ta

lit
y 

of
 1

9%
 

N
A

 
N

A
 

$1
,2

14
 

$4
9 

[1
3]

 

Su
b-

Sa
ha

ra
n 

A
fr

ic
a 

N
ot

 
m

en
tio

ne
d 

U
SD

 1
99

5 
1-

11
9 

m
on

th
s 

Pr
ov

id
er

 
3.

79
 

N
ot

 
m

en
tio

ne
d 

U
5 

=1
,5

00
; 5

-
10

 =
55

5 
N

A
 

N
A

 
N

o 
re

bo
un

d 
=$

44
 

[1
4]

 

G
ui

ne
a 

N
ot

 
m

en
tio

ne
d 

U
SD

 1
99

4 
<5

 
Pr

ov
id

er
 

3 

50
%

 
re

du
ct

io
n 

in
 

in
ci

de
nc

e;
 

35
%

 
re

du
ct

io
n 

in
 a

ll-
ca

us
e 

m
or

ta
lit

y 

M
or

ta
lit

y 
=1

4 
N

A
 

N
A

 
$4

3 
[1

5]
 

T
he

 
G

am
bi

a 
19

90
-1

99
5 

U
SD

 1
99

0 

T
he

 
co

ho
rt 

of
 

ch
ild

re
n 

bo
rn

 
in

 1
99

0 
an

d 
fo

llo
w

e
d 

fo
r 5

 
ye

ar
s 

Pr
ov

id
er

 
N

A
 

Es
tim

at
ed

 
fr

om
 1

0 
vi

lla
ge

s 

1-
6 

m
o 

=2
00

; 6
-

12
 m

o 
=8

00
; 1

-5
 

ye
ar

s 
=1

,0
00

 

N
A

 
$7

11
 

N
A

 
[1

6]
 

T
he

 
G

am
bi

a 
19

91
-1

99
2 

U
SD

 1
99

2 
<1

0 
Pr

ov
id

er
 &

 
C

om
m

un
ity

 
N

A
 

U
5 

m
or

ta
lit

y 
re

du
ce

d 
by

 
17

%
 

44
0 

N
A

 
$4

71
 

$3
1.

5 
[1

7]
 

115



 

 
11

6 

Ta
bl

e 
2.

S1
1 

(C
on

tin
ue

d)
: S

um
m

ar
y 

of
 c

os
t-e

ff
ec

tiv
en

es
s 

an
al

ys
es

 fo
r i

ns
ec

tic
id

e-
tre

at
ed

 b
ed

ne
t i

nt
er

ve
nt

io
ns

 c
on

du
ct

ed
 in

 s
ub

-
Sa

ha
ra

n 
A

fr
ic

a.
 

C
ou

nt
ry

 
Y

ea
r 

of
 

Pr
og

ra
m

 
C

ur
re

nc
y 

A
ge

 
G

ro
up

 
Pe

rs
pe

ct
iv

e 
C

os
t P

PY
 

Ef
fe

ct
 

Si
ze

 
In

ci
de

nc
e 

pe
r 

1,
00

0 
C

ER
 / 

In
fe

ct
io

n 
C

ER
 / 

D
ea

th
 

C
ER

 / 
D

A
LY

 
R

ef
 

G
ha

na
 

19
93

-1
99

4 
U

SD
 1

99
4 

<5
 

Pr
ov

id
er

 &
 

C
om

m
un

ity
 

$1
.2

 p
er

 
ch

ild
-y

ea
r 

($
2.

4 
pe

r 
be

dn
et

) 

A
ll-

ca
us

e 
m

or
ta

lit
y 

re
du

ce
d 

by
 

25
%

 in
 

U
5.

 

N
A

 
N

A
 

$2
,0

03
 

$7
3.

5 
[1

8]
 

W
es

t 
A

fr
ic

a 
5 

ye
ar

s 
of

 
fo

llo
w

-u
p 

~U
SD

 
19

96
 

C
oh

or
t 

of
 

ne
w

-
bo

rn
 

Pr
ov

id
er

 
N

A
 

60
%

 
de

cr
ea

se
 

in
 

m
or

ta
lit

y 
in

 th
e 

1-
4 

ye
ar

s 
ol

d;
 

45
%

 
de

cr
ea

se
 

in
 c

lin
ic

al
 

ep
is

od
es

 

N
A

 
N

A
 

N
A

 

10
0%

 
co

m
pl

ia
n-

ce
 =

 
$1

8.
88

; 
50

%
 

co
m

pl
ia

n-
ce

 =
 

$3
8.

04
 

[1
9]

 

T
he

 
G

am
bi

a 
19

89
-1

99
0 

U
SD

 1
99

0 
1-

4 
ye

ar
s 

of
 a

ge
 

Pr
ov

id
er

 &
 

C
om

m
un

ity
 

$5
.6

5 
pe

r 
ch

ild
-y

ea
r 

0 
N

A
 

N
A

 
$1

87
.5

3 
$7

.9
 

[2
0]

 

 
A

N
C

 =
 a

nt
en

at
al

 c
ar

e;
 D

R
C

 =
 D

em
oc

ra
tic

 R
ep

ub
lic

 o
f t

he
 C

on
go

; I
N

T 
= 

in
te

rn
at

io
na

l d
ol

la
r; 

IP
Tp

 =
 in

te
rm

itt
en

t t
re

at
m

en
t f

or
 m

al
ar

ia
 in

 
pr

eg
na

nc
y;

 IT
N

 =
 in

se
ct

ic
id

e 
tre

at
ed

 n
et

s;
 IR

S 
= 

in
do

or
 re

si
du

al
 s

pr
ay

in
g;

 L
LI

N
 =

 lo
ng

-la
st

in
g 

in
se

ct
ic

id
e-

tre
at

ed
 n

et
s;

 N
A

 =
 n

ot
 a

pp
lic

ab
le

; U
5 

= 
un

de
r f

iv
e 

ye
ar

s 
of

 a
ge

; U
SD

 =
 U

ni
te

d 
St

at
es

 d
ol

la
r. 

 

116



 

    

 
117 

REFERENCES 

1. Breman J, Mills A, Snow R, Jo-Ann Mulligan J, Lengeler C, et al. (2006) Conquering Malaria. 

In: Jamison DT, Breman JG, Measham AR, Alleyne G, Claeson M et al., editors. Disease 

Control Priorities in Developing Countries. 2nd Edition ed. Washington, DC: World Bank. 

2. Yukich JO, Lengeler C, Tediosi F, Brown N, Mulligan JA, et al. (2008) Costs and 

consequences of large-scale vector control for malaria. Malar J 7: 258. 

3. Morel CM, Lauer JA, Evans DB (2005) Cost effectiveness analysis of strategies to combat 

malaria in developing countries. BMJ 331: 1299. 

4. Guyatt HL, Corlett SK, Robinson TP, Ochola SA, Snow RW (2002) Malaria prevention in 

highland Kenya: indoor residual house-spraying vs. insecticide-treated bednets. Trop Med 

Int Health 7: 298-303. 

5. Goodman CA, Coleman PG, Mills AJ (1999) Cost-effectiveness of malaria control in sub-

Saharan Africa. Lancet 354: 378-385. 

6. Conteh L, Sicuri E, Manzi F, Hutton G, Obonyo B, et al. (2010) The cost-effectiveness of 

intermittent preventive treatment for malaria in infants in Sub-Saharan Africa. PLoS One 

5: e10313. 

7. Walsh JA, Warren KS (1979) Selective primary health care: an interim strategy for disease 

control in developing countries. N Engl J Med 301: 967-974. 

8. Goodman CA, Mnzava AE, Dlamini SS, Sharp BL, Mthembu DJ, et al. (2001) Comparison of 

the cost and cost-effectiveness of insecticide-treated bednets and residual house-spraying 

in KwaZulu-Natal, South Africa. Trop Med Int Health 6: 280-295. 



 

    

 
118 

9. Becker-Dreps SI, Biddle AK, Pettifor A, Musuamba G, Imbie DN, et al. (2009) Cost-

effectiveness of adding bed net distribution for malaria prevention to antenatal services in 

Kinshasa, Democratic Republic of the Congo. Am J Trop Med Hyg 81: 496-502. 

10. Mueller DH, Wiseman V, Bakusa D, Morgah K, Daré A, et al. (2008) Cost-effectiveness 

analysis of insecticide-treated net distribution as part of the Togo Integrated Child Health 

Campaign. Malar J 7: 73. 

11. Mulligan JA, Yukich J, Hanson K (2008) Costs and effects of the Tanzanian national 

voucher scheme for insecticide-treated nets. Malar J 7: 32. 

12. Hanson K, Kikumbih N, Armstrong Schellenberg J, Mponda H, Nathan R, et al. (2003) Cost-

effectiveness of social marketing of insecticide-treated nets for malaria control in the 

United Republic of Tanzania. Bull World Health Organ 81: 269-276. 

13. Wiseman V, Hawley WA, ter Kuile FO, Phillips-Howard PA, Vulule JM, et al. (2003) The 

cost-effectiveness of permethrin-treated bed nets in an area of intense malaria transmission 

in western Kenya. Am J Trop Med Hyg 68: 161-167. 

14. Coleman PG, Goodman CA, Mills A (1999) Rebound mortality and the cost-effectiveness of 

malaria control: potential impact of increased mortality in late childhood following the 

introduction of insecticide treated nets. Trop Med Int Health 4: 175-186. 

15. Jha P, Bangoura O, Ranson K (1998) The cost-effectiveness of forty health interventions in 

Guinea. Health Policy Plan 13: 249-262. 

16. Graves PM (1998) Comparison of the cost-effectiveness of vaccines and insecticide 

impregnation of mosquito nets for the prevention of malaria. Ann Trop Med Parasitol 92: 

399-410. 



 

    

 
119 

17. Aikins MK, Fox-Rushby J, D'Alessandro U, Langerock P, Cham K, et al. (1998) The 

Gambian National Impregnated Bednet Programme: costs, consequences and net cost-

effectiveness. Soc Sci Med 46: 181-191. 

18. Binka FN, Mensah OA, Mills A (1997) The cost-effectiveness of permethrin impregnated 

bednets in preventing child mortality in Kassena-Nankana district of Northern Ghana. 

Health Policy 41: 229-239. 

19. Evans DB, Azene G, Kirigia J (1997) Should governments subsidize the use of insecticide-

impregnated mosquito nets in Africa? Implications of a cost-effectiveness analysis. Health 

Policy Plan 12: 107-114. 

20. Picard J, Aikins M, Alonso PL, Armstrong Schellenberg JR, Greenwood BM, et al. (1993) A 

malaria control trial using insecticide-treated bed nets and targeted chemoprophylaxis in a 

rural area of The Gambia, west Africa. 8. Cost-effectiveness of bed net impregnation alone 

or combined with chemoprophylaxis in preventing mortality and morbidity from malaria in 

Gambian children. Trans R Soc Trop Med Hyg 87 Suppl 2: 53-57. 

 



 

    

 
120 

PAPER #3 : DO MALARIA VECTOR CONTROL MEASURES IMPACT DISEASE-

RELATED BEHAVIOUR AND KNOWLEDGE? EVIDENCE FROM A LARGE-SCALE 

LARVICIDING INTERVENTION IN TANZANIA 

Mathieu Maheu-Giroux1& Marcia C Castro1* 

1 Department of Global Health & Population, Harvard School of Public Health, 665 

Huntington Avenue, Bldg I, Room 1113, Boston, MA 02115, USA 

 

Published November 2013 in Malaria Journal 12:422. 

ABSTRACT 

Background 

 Recent efforts of accelerated malaria control towards the long-term goal of elimination 

had significant impacts in reducing malaria transmission. While these efforts need to be 

sustained over time, a scenario of low transmission could bring about changes in individual 

disease risk perception, hindering adherence to protective measures, and affecting disease-related 

knowledge. The goal of this study was to investigate the potential impact of a successful malaria 

vector control intervention on bednet usage and malaria-related knowledge. 

Methods 

 Dar  es  Salaam’s  Urban Malaria Control Program was launched in 2004 with the aim of 

developing a sustainable larviciding intervention. Larviciding was scaled-up using a stepped-

wedge design. Cross-sectional and longitudinal data were collected using a randomized cluster 

sampling design (2004-2008). Prevalence ratios (PR) for the effect of the larviciding intervention 
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on bed net usage (N=64,537)  and  household  heads’  knowledge  of  malaria  symptoms  and  

transmission (N=11,254) were obtained from random effects regression models.  

Results 

 The probability that individuals targeted by larviciding had used a bednet was 5% time 

less than that of the non-intervention areas (PR=0.95; 95% credible intervals (CrI): 0.94-0.97) 

and the magnitude of this effect increased with time. Larviciding also led to a decline in 

household  heads’  knowledge  of  malaria  symptoms  (PR=0.88;;  95%  CrI:  0.83-0.92) but no 

evidence of effect on knowledge of malaria transmission was found. 

Conclusion 

 Successful control interventions could bring about further challenges to sustaining gains 

in reducing malaria transmission if not accompanied by strategies to avoid changes in individual 

knowledge and behaviour. This study points to two major research gaps. First, there is an urgent 

need to gather more evidence on the extent to which countries that have achieved significant 

decline in malaria transmission are also observing changes in individual behaviour and 

knowledge. Second, multidisciplinary assessments that combine quantitative and qualitative data, 

utilizing theories of health behaviour and theories of knowledge, are needed to optimize efforts 

of national malaria control programmes, and ultimately contribute to sustained reduction in 

malaria transmission. 
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BACKGROUND 

 The last decade witnessed a rapid scale-up of effective malaria control interventions 

supported by the mobilization of important programmes and initiatives [1]. The increased 

coverage of packages of interventions of proven efficacy is believed to have led to important 

declines in malaria transmission and disease burden, particularly after 2005, in some areas of 

sub-Saharan Africa [2-4]. Globally, it is estimated that malaria incidence has declined by 17% 

and that malaria mortality rates have been reduced by 26% since 2000 [5]. The persistent 

shrinking of the malaria map and shift from moderate/high to low malaria endemicity in some 

countries has important consequences on population-level immunity[6], and raises questions for 

programme managers and policy-makers regarding sustainability of the achievements to avoid 

resurgence, as observed in the past [7], and to pursue malaria elimination [8,9]. In fact, out of the 

99 malaria-endemic countries, 34 have now set or are realistically considering elimination targets 

[10]. 

 The Global Malaria Eradication Program (1955-1969) taught us that maintaining 

momentum when malaria transmission is declining is of prime importance to programmatic 

success [11]. One of the cardinal requirements for moving beyond control to elimination is to 

sustain high rates of effective coverage of control measures within a low transmission 

environment [12]. Reducing malaria to low transmission levels, however, could negatively 

impact disease risk perception by local communities, policy makers, and international funders 

[13-15]. Few studies thoroughly investigated the impacts of malaria control on individual health 

behaviour and disease-related knowledge. Qualitative evidence suggests that bednet usage could 

decrease following a reduction in mosquito nuisance and malaria transmission [13,16,17]. 

Further, lack of experience with episodes of malaria illness and inaccurate home diagnosis have 
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been suggested as contributing factors to delays in appropriate treatment-seeking behaviour 

[18,19]. 

 This paperaddresses the issue of potential behaviour change following successful malaria 

control efforts. Specifically, the potential impact of a vector control strategy on malaria-related 

behaviour and knowledge is assessed using data from the Urban Malaria Control Programme 

(UMCP) in Dar es Salaam (United Republic of Tanzania) [20]. This programmewas chosen 

because after three years of larval control the odds of individuals living in areas treated with 

larvicide being infected with malaria were 21% lower than those who lived in untreated areas 

[21]. This study’s hypothesis is that as mosquito density and malaria transmission are reduced in 

Dar es Salaam, three changes could happen. First, as fewer infections are observed, people do 

not perceive malaria as a major risk for their health (or that of their family), and therefore the use 

of protective measures is relaxed. Although this change was not observed in a recent qualitative 

study in Zanzibar, it was stressed as a real possibility in low transmission areas [22]. Second, as 

people witness fewer episodes of malaria in their immediate social network, their ability to 

recognize symptoms of the disease is reduced. Third, as the perception of malaria as a major 

health threat decreases, overall knowledge about disease transmission is progressively reduced as 

well. However, given the fact that the UMCP larval control activities were done on a weekly 

basis, and considering that the population was aware of the work of larval control personnel, 

there is a chance that the link between mosquitoes and malaria is not compromised by reduced 

transmission. Thus, this paper examines the effects of the larval control strategy in Dar es 

Salaam on: i) reported bednet usage; ii) knowledge of malaria symptoms; and, iii) knowledge 

that mosquitoes transmit malaria. 

METHODS 
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Study site 

 Dar es Salaam is the largest city of the United Republic of Tanzania with an estimated 

population of 2.7 million in 2005[23]. The smallest administrative units is the ten-cell unit 

(TCU), which is usually comprised of ten to 20 houses, but may contains as many as 100 [24]. 

Malaria transmission in Dar es Salaam is year-round [25] and incidence of malaria often peak 

after the rainy seasons. 

Data collection 

 The UMCP was launched in 2004 with the goal of developing a sustainable community-

based larviciding intervention. From 2004 to 2008, a total of six randomized cluster-sampled 

household surveys were conducted in the targeted area [21]. For the first survey round, ten TCUs 

per ward were randomly drawn and all households in the selected TCUs were eligible to 

participate. From the second survey round onwards, TCUs selected in the first round were 

followed up longitudinally, and cross-sectional data were collected from ten additional TCUs. 

Upon obtaining informed consent, the location of each household was georeferenced and a 

detailed questionnaire was administered. Information collected included: i) house characteristics; 

ii) head of household; iii) use of protective measures; and, iv) individual characteristics of 

household members. An asset index was constructed by performing a principal component 

analysis  of  the  household’s  possessions  and  used  as  a  proxy  of  socio-economic status (SES). A 

total of 48,525 individuals contributed information to the study and 9,379 of these were 

interviewed more than once. Including follow-up data, the total sample size is 64,537 data points, 

of which 11,254 are from household heads. 
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 The larviciding intervention was rolled-out sequentially: it started in March 2006 in three 

wards, scaled up to nine wards in May 2007, and to all intervention areas in April 2008. More 

details about the UMCP design and data collection can be found elsewhere [20,21,26]. 

Statistical analyses 

 The three main outcomes of this study are: i) reported bednet usage the night before the 

survey (any type of bednet); ii)  household  head’s  knowledge  of  at  least  five  malaria  symptoms; 

and, iii)  household  head’s  knowledge  that  mosquitoes  transmit  malaria.  The  larviciding  

intervention was lagged by five weeks, as described by Maheu-Giroux and Castro [21]. 

 Random effect models where used to take into account clustering of individuals at the 

household and TCU levels in the regression models (Model 1). As the larviciding intervention 

was not randomized [21,26], the possibility that ward characteristics are correlated with the 

intervention cannot be eliminated. Therefore, sensitivity of the resultswas assessed by including 

ward fixed effects in the statistical models (Model 2). Finally, the possibility that the changes in 

preventive behaviours and malaria knowledge were not constant through time after initiation of 

larviciding activities was examined (Model 3). Since the outcomes are not rare events, reporting 

odds ratios overstates the relative risk association. Model-adjusted prevalence ratios (PR) were 

therefore calculated directly from logistic regressions using marginal standardization [27,28]. A 

Bayesian framework was chosen because it offered the flexibility to consider fixed effects and 

cluster-level random effects, and straightforward computations of the prevalence ratios (PR) and 

their credible intervals (CrI). 

 Covariates included in the final multivariate models were selected based on careful 

consideration of the following issues: i) subject-matter knowledge about confounding; ii) 

variable exhibiting sufficient variation; and, iii) extent of potential measurement errors. 
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Covariates included in the model when the outcome is bednet usage were: age, gender, use of 

insect repellent, use of sprays, use of coil, living in a house with window screens, SES quintiles, 

weekly rainfall lagged by two weeks (including a quadratic term), and having been surveyed in a 

previous survey round. Since all models included both follow-up and cross-sectional data, 

controls for follow-up individuals were added in order to account for any potential Hawthorne 

effect[29], or the fact that individuals interviewed multiple times adapt their response to 

questions based on what is expected to be correct. As for the models where the outcome is either 

knowledge of malaria symptoms or knowledge of malaria transmission, variables controlled for 

were: age, gender, having been surveyed in a previous survey round, and SES quintiles. Effect 

modification  of  the  intervention  by  age,  the  household’s  head  gender,  and  SES  (dichotomized  as  

richer vs poorer than the median) was investigated using the model that provided the best fit as 

indicated by the deviance information criterion. Details on model specifications, prior 

distributions, model fitting and convergence, and sensitivity analyses can be found in 

Supplementary Appendix3.1. 

Ethical considerations 

 Ethical approval was granted by the Medical Research Coordination Committee of the 

National Institute for Medical Research, Ministry of Tanzania (Reference #NIMR/HQ/R.8a/Vol. 

IX/279&234), and by the Harvard School of Public Health Institutional Review Board (Protocol 

#20323-101). Upon informing the study participants on the goal, specific objectives, risk and 
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Figure 3.1: Prevalence of bed net usage stratified by survey round and larviciding status. 

Confidence intervals are based on 9,999 bootstrap replicates at the TCU levels. (The time frame 

of larviciding phases and survey rounds do not overlap perfectly. Thus, due to small sample size 

and the geographically limited extent of data collection (only one ward), results for 697 data 

points in the larviciding area in survey round 3, and 744 data points in control area in survey 

round 6 are not shown). 
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Figure 3.2:Proportion of household heads knowing at least five symptoms of malaria, stratified 

by survey round and larviciding status. 

Confidence intervals are based on 9,999 bootstrap replicates at the TCU levels. (Prevalence 

estimates based on small sample size and geographically limited extent of data collection (only 

one ward) are not represented). 
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Figure 3.3: Proportion of household heads that know that mosquitoes transmit malaria, stratified 

by survey round and larviciding status. 

Confidence intervals are based on 9,999 bootstrap replicates at the TCU levels. (Prevalence 

estimates based on small sample size and geographically limited extent of data collection are not 

represented). 



 

    

 
132 

RESULTS 

 Characteristics of study participants, stratified by larviciding phase and intervention 

status, are presented in Table 3.1. Given the survey design, the proportion of individuals 

surveyed during the wet season exhibited marked differences; a larger proportion of interviews 

for the larviciding areas of the first larviciding phase and of the non-intervention areas of the 

second larviciding phase were performed during the wet season. The proportion of household 

head between 50 and 64 years of age increased with time (as a result of aging and the fact that 

older household heads enrolled with time), and SES and house-proofing conditions also 

exhibited increasing trends with time. 

 Reported use of bednet increased steadily in the non-intervention areas from 78.7% in 

mid-2004 to 86.0% in 2007, but exhibited yearly variation related to precipitation (Figure 3.1), 

and was lower in larviciding areas as compared to non-intervention ones. With regard to 

knowledge of malaria symptoms by the household head, a continuous decline was observed 

throughout the study period in non-intervention wards from 94.8 to 75.3% (Figure 3.2), and in 

larviciding wards from 62.9 to 62.6%. The proportion of household heads with knowledge that 

mosquitoes transmit malaria rose steadily during the study period in the non-intervention group 

from 68.7 to 90.2% (Figure 3.3), and non-intervention and larviciding areas did not appear to 

differ much. 

 Univariate regression models suggested that the probability of using a bednet the night 

before the survey for individuals residing in larviciding areas was 6% lower (95% CrI: 4-7%) 

than for individuals living in non-intervention areas (Table 3.2). This result was not affected 

when adjusting for additional covariates and when including fixed effects at the ward level. 

When examining if the intervention only had an immediate effect or one that changes with time, 
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the decline in bednet usage observed in the larviciding wards was found to be accentuating with 

time (Table 3.2) so that, after three years of larviciding, the probability of using a net for 

individuals living in the intervention wards was 10% lower (PR=0.90, 95% CrI: 0.84-0.95) than 

for individuals in non-intervention wards. 

 The impact of the larviciding intervention on knowledge of malaria symptoms was also 

shown to be statistically significant (Table 3.3). Here, adding fixed effects at the ward level 

slightly changed the PR for the intervention from 0.91 (95% CrI: 0.87-0.95) to 0.88 (95% CrI: 

0.83-0.92). The PR were unaffected when adjusting for potential confounders. Further, time 

since initiation of larviciding activities had no effect on knowledge of malaria symptoms. 

 No evidence supporting a change in knowledge of malaria transmission as a result of the 

larviciding intervention was found (Table 3.4). Results were not affected by adding fixed effects 

at the ward levels or by adjusting for potential confounders. When allowing for a change of the 

effect of the intervention with time, the results suggested that household heads living in 

larviciding areas were less likely to recognize mosquitoesas vector of malaria as time since 

initiation of larviciding activities increased. Indeed, the model predicts that three years after 

initiation of the larval control intervention, the probability that household heads residing in 

larviciding areas recognized mosquitoes as vector of malaria was 10% lower (PR=0.90; 95% CrI: 

0.75-1.04) than for those living in non-intervention areas. This result did not reach statistical 

significance, however. 

 Finally, neither being under five years old, living in a household headed by a male, nor 

being below the median SES was found to be modifying the effect of the larviciding intervention 

on reported bednet usage (Table 3.5). For both the knowledge of malaria symptoms and malaria 

transmission outcomes, the product term between the larviciding intervention and gender of the 
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household head was not statistically significant, indicating that this variable is not an effect 

modifier. Being below the median SES asset-based index, however, significantly modified the 

effect of the larviciding intervention on malaria knowledge. In fact, the PR for the larviciding 

intervention for heads of household above the median SES was 0.89 (95% CrI: 0.84-0.94) as 

compared 0.84 (95% CrI: 0.78-0.90) for those living below the median SES. Even though the 

product term between SES and the larviciding intervention reached statistical significance for 

knowledge of malaria transmission, the CrI of the SES stratum-specific PRcross the null. 

 

Table 3.2: Effect size estimates of the larviciding intervention on reported bed net usage the 
night before the survey. 

Outcome: Bed net usage  
(N=64,537) 

Model 1 Model 2 Model 3 
PR* 95%  CrI† PR* 95%  CrI† PR* 95%  CrI† 

Univariate       
Larviciding intervention 0.94 (0.93-0.96) 0.94 (0.93-0.96) 0.95 (0.93-0.96) 
Time since initiation of larviciding (years) - - - - 0.98 (0.96-0.99) 
       
Multivariable‡       
Larviciding intervention 0.96 (0.94-0.97) 0.95 (0.94-0.97) 0.96 (0.94-0.97) 
Time since initiation of larviciding (years) - - - - 0.98 (0.97-0.99) 
       
   Trend for time (AR1§) Yes Yes Yes 
   Random effects (Household and TCU) Yes Yes Yes 
   Fixed effects at ward level  Yes Yes 
 
Statistically significant results are bolded.  
To account for the fact that the coefficients of the ward fixed effects exhibited slow convergence, the number of 
iterations used for inference was doubled to 120,000 for Model (2) and (3). 
*PR: Prevalence ratio 
†CrI:  Credible  interval 
§AR1: First-order autoregressive 
‡Control  variables  include:  age, gender, dummy for being a follow-up observation, use of insect repellent, use of 
sprays, use of coil, living in a house with window screens, socio-economic status, and weekly rainfall lagged by 
two weeks (with quadratic term). 
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Table 3.3:Effect size estimates of the larviciding intervention on knowledge of at least five 
malaria symptoms. 

Outcome: Symptoms knowledge 
(N=11,254) 

Model 1 Model 2 Model 3 
PR* 95%  CrI† PR* 95%  CrI† PR* 95%  CrI† 

Univariate       
Larviciding intervention 0.91 (0.87-0.95) 0.88 (0.83-0.92) 0.87 (0.82-0.92) 
Time since initiation of larviciding (years) - - - - 1.03 (0.99-1.07) 
       
Multivariable‡       
Larviciding intervention 0.91 (0.87-0.95) 0.88 (0.83-0.92) 0.87 (0.82-0.92) 
Time since initiation of larviciding (years) - - - - 1.01 (0.98-1.05) 
       
   Trend for time (AR1§) Yes Yes Yes 
   Random effects (TCU) Yes Yes Yes 
   Fixed effects at ward level  Yes Yes 
 
Statistically significant results are bolded. 
*PR: Prevalence ratio 
†CrI:  Credible  interval 
§AR1: First-order autoregressive 
‡Control  variables include: age, gender, dummy for being a follow-up observation, and socio-economic status. 

 
 
 

Table 3.4:Effect size estimates of the larviciding intervention on knowledge of malaria 
transmission. 

Outcome: Knowledge of malaria 
transmission (N=11,254) 

Model 1 Model 2 Model 3 
PR* 95%  CrI† PR* 95%  CrI† PR* 95%  CrI† 

Univariate       
Larviciding intervention 1.01 (0.96-1.05) 1.00 (0.95-1.05) 1.01 (0.95-1.06) 
Time since initiation of larviciding (years) - - - - 0.97 (0.92-1.02) 
       
Multivariable‡       
Larviciding intervention 1.01 (0.96-1.05) 1.00 (0.95-1.05) 1.02 (0.97-1.07) 
Time since initiation of larviciding (years) - - - - 0.96 (0.92-1.01) 
       
   Trend for time (AR1§) Yes Yes Yes 
   Random effects (TCU) Yes Yes Yes 
   Fixed effects at ward level  Yes Yes 
 
Statistically significant results are bolded.  
*PR: Prevalence ratio 
†CrI:  Credible  interval 
§AR1: First-order autoregressive 
‡Control  variables  include:  age,  gender,  dummy  for  being a follow-up observation, and socio-economic status. 
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Table 3.5: Effect modification of the larviciding intervention by age, gender, and socio-

economic status on bed net usage, knowledge of malaria symptoms, and knowledge of malaria 
transmission. 

 
Effect modification of the larviciding intervention by age, gender, and socio-economic status 

(Prevalence ratios and 95% credible intervals) 
 

       
Bed  net  usage  (N=64,537)  †     
 Aged  ≥5  years <5  years‡     
Control 1.00 1.02 (1.01-1.03)     
Larviciding 0.95 (0.94-0.97) 1.00 (0.99-1.01)     
       
Within Strata Effect 0.95 (0.94-0.97) 0.95 (0.93-0.97)     
       
 Female head Male head  Rich Poor  
Control 1.00 1.00 (0.99-1.01)  1.00 0.98 (0.97-0.99)  
Larviciding 0.95 (0.94-0.97) 1.00 (0.99-1.01)  0.95 (0.93-0.96) 1.01 (0.99-1.03)  
       
Within Strata Effect 0.95 (0.94-0.97) 0.96 (0.94-0.97)  0.95 (0.93-0.96) 0.97 (0.95-0.99)  
       
Knowledge of malaria symptoms (N=11,254) ‡     
 Female head Male head  Rich Poor  
Control 1.00 1.01 (0.99-1.03)  1.00 0.95 (0.92-0.97)  
Larviciding 0.86 (0.80-0.91) 1.02 (0.98-1.06)  0.89 (0.84-0.94) 0.95 (0.91-0.99)  
       
Within Strata Effect 0.86 (0.80-0.91) 0.88 (0.83-0.93)  0.89 (0.84-0.94) 0.84 (0.78-0.90)  
       
Knowledge of malaria transmission (N=11,254) ‡     
 Female head Male head  Rich Poor  
Control 1.00 1.06 (1.04-1.09)  1.00 0.90 (0.88-0.92)  
Larviciding 0.98 (0.92-1.04) 1.04 (0.99-1.08)  1.05 (0.99-1.10) 0.89 (0.83-0.95)  
       
Within Strata Effect 0.98 (0.92-1.04) 1.02 (0.96-1.07)  1.05 (0.99-1.10) 0.94 (0.88-1.00)  
       
 
Statistically significant results are bolded. 
To account for the fact that the coefficients of the ward fixed effects exhibited slow convergence for the 
‘Bed  net  Usage’  models,  the  number  of  iterations  used  for  inference  was  doubled  to  120,000. 
†  Models  for  the  bed  net  usage outcome are adjusted for: age, gender, dummy for being a follow-up 
observation, use of insect repellent, use of sprays, use of coil, living in a house with window screens, 
socio-economic status, and weekly rainfall lagged by two weeks (with quadratic term). Models also 
include: a semiparametric time trend, random effects at household and TCU levels, and fixed effects at 
the ward level (as in Model 2).  
‡  Models for the knowledge of malaria symptoms and malaria transmission outcomes are adjusted for: 
age, gender, dummy for being a follow-up observation, and socio-economic status. Models also include: 
a semiparametric time trend, random effects at TCU level, and fixed effects at the ward level (as in 
Model 2). 
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DISCUSSION 

 These results showed that individuals targeted by the larviciding intervention in Dar es 

Salaam were significantly less likely to have used a bednet the night before the survey. The 

magnitude of this effect increased with time such that, three years after the initiation of 

larviciding activities, individuals in intervention areas were 10% less likely to use their bednet as 

compared to individuals living in non-intervention areas. There was also a decline in household 

heads’  knowledge  of  malaria  symptoms  and  this  effect  was more pronounced for individuals of 

low SES. No differences between larviciding and non-intervention areas, with respect to 

knowledge of malaria transmission, were found.  

 With regard to bednets, several studies have suggested that their use is a function of 

night-time temperature, perceived malaria risk and density of nuisance biting insects [30-32]. 

Thus, the significant reduction in the probability of using a bednet in UMCP intervention areas 

could result from two factors. First, the UMCP made a programmatic decision to control larval 

stages of nuisance biting insects such as Culex quinquefasciatus (a mosquito involved in the 

transmission of lymphatic filariasis, but not malaria), as an effort to gain community support. A 

significant reduction in nuisance biting rates could deter individuals from using bednets if 

personal protection against mosquito bites is not perceived as being necessary anymore. 

Nevertheless, data from the first phase of the UMCP intervention suggest that routine larviciding 

was not successful in suppressing nuisance biting, and culicine mosquitoes were still responsible 

for more than 100 bites per exposed person per night in the intervention wards [20]. The impact 

of controlling nuisancebiting insects will be context specific, however, depending on the relative 

abundance of different species of mosquitoes. Second, the reduction in the prevalence of malaria 

infection from 20.8% in 2004 to 1.7% in 2008 following larval control [21,26] can potentially 
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change the individual perception of malaria risk. In this case, the disease may not be perceived as 

a threat to health anymore, leading to varied behaviour changes, including reduced adoption of 

personal protective measures, such as bednet use. The reported results tend to support this 

hypothesis. 

 Despite the significant reduction in the probability of using a bednet following the 

larviciding intervention, the proportion of individuals using a net in non-intervention areas 

increased throughout the study period.In October 2004the Tanzania National Voucher Scheme 

was launched. The aim of this programme was to provide every pregnant woman with a printed 

voucher valued at TZS2,750 (USD2.75 in 2004) to purchase a discounted-price bed net[33]. In 

October 2006, a second voucher was introduced targeting mothers and caretakers of infants aged 

nine months at the time of measles vaccination [34] and , in January 2007, the value of the 

voucher was increased to TZS3,250 [35]. The subsequent introduction and improvements of 

these financial incentives could thus have resulted in higher bed net ownership and usage. 

 A decline in the knowledge of malaria symptoms, particularly in areas under the UMCP 

larval control intervention,  is  also  worrisome.  Caregivers’  inability  to  recognize  malaria  

symptoms has been cited as an impeding factor for early treatment of severe malaria in Tanzania 

[19]. With lower transmission intensities, population-level immunity is expected to decrease and 

the clinical spectrum of severe malaria may change with cerebral malaria accounting for a higher 

proportion of cases[6]. Therefore, early and proper recognition of symptoms is crucial to reduce 

malaria morbidity and mortality [36]. Of particular concern is the finding that SES is modifying 

the relationship between larviciding and knowledge of malaria symptoms. Given that out-of-

pocket expenditure for malaria treatment usually consumes a larger proportion of low SES 
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households’  budget  [37], inappropriate or delayed treatment could potentially be exacerbated in 

these disadvantaged households by their inability to recognize malaria symptoms. 

 If knowledge is formed based on experience, one could hypothesize that as malaria 

transmission goes down, and fewer cases are observed, personal experience with malaria 

episodes also reduces, and thus the ability of individuals to properly identify disease symptoms 

may be compromised. That would be maximized if malaria was not perceived as a major threat. 

While intuitively it is reasonable to assume that these changes would increase over time 

(assuming that transmission remains fairly low or declines even further), this  study’s results do 

not support that. In addition, the available data do not allow assessing the mechanisms through 

which knowledge of malaria symptoms is changed. 

 Regarding knowledge that mosquitoes transmit malaria, there is no evidence of changes 

following the UMCP larval control. Two factors could explain this result. First, community 

sensitization and participation are a central component of an integrated vector management 

strategy as endorsed by the World Health Organization [38]. In Dar es Salaam, each TCU has a 

leader and the UMCP worked closely with them to foster support for the larviciding activity, and 

to guarantee unrestricted access to breeding habitats, many located on private properties. 

Therefore, the population living in the UMCP area was aware of the presence and the purpose of 

larval control teams. Second, larval control personnel conducted their work wearing a UMCP T-

shirt, displaying the name of the project and the life cycle of the mosquito. Thus, the weekly 

presence of the larval control teams may have acted as a regular reminder of the importance of 

mosquitoes for malaria transmission. These two factors could potentially overcome the expected 

decline in knowledge in scenarios of low malaria transmission. 
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 The strengths of this study include its large geographic and temporal extents, availability 

of reliable baseline information, control of many potential confounders, reporting of effect size 

estimates on the risk ratio scale, a large sample size, and detailed use of robustness checks and 

sensitivity analyses. The study has some limitations. First, the order of the rollout of the 

intervention was not randomly allocated. If ward-level characteristics are correlated with the 

intervention, the reported effect size estimates could be biased. Nevertheless, including fixed 

effects at the ward level, which control for ward-level time-invariant confounders, did not affect 

the reported effect size estimates. Second, information on knowledge of malaria symptoms and 

transmission was only collected from household heads. Intra-household decisions about health 

expenditure and treatment-seeking behaviour follow a complex process that involves trade-offs 

and bargaining among household members. This  paper’s inferences are thus based on the 

assumption that the household head’s  level  of  malariaknowledge  is  representative  of  that  of  other  

household members involved in this decision making process. The fact that gender was not 

found to be an effect modifier tends to support this assumption. 

 This  study’s  findings need to be discussed in light of the current efforts of intensified 

malaria control with the goal of eradication. In countries considering elimination, and in areas 

where transmission has been reduced to very low levels for a few years, acquired immunity is 

low and thus sustaining gains of malaria control becomes crucial to prevent outbreaks and 

resurgence of the disease [11], such as that occurred in Sri Lanka during the late 1960s [7]. If 

knowledge and behaviour change follows successful interventions that reduce malaria 

transmission to low levels, then sustainability of control efforts and gains may be at risk. A 

potential strategy to address these issues, currently largely neglected by national malaria control 
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programmes, is the implementation of a comprehensive behavioural change communication 

process, which addresses gaps in knowledge and problems in disease risk perception. 

Conclusions 

 This study points to two major research gaps. First, there is an urgent need to conduct 

more studies, similar to this one, to assess the extent to which countries that have achieved 

significant decline in malaria transmission are also observing changes in individual behaviour 

and knowledge. Second, multidisciplinary assessments that combine quantitative and qualitative 

data, utilizing theories of health behaviour and theories of knowledge, are needed to inform and 

optimize efforts of national malaria control programmes, and ultimately contribute to sustained 

reductions in malaria transmission. 
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SUPPLEMENTARY APPENDIX 3.1: 

BACKGROUND 

In this supplementary appendix, we provide detailed information on the statistical 

analyses we performed. We have organized this supplement in four sections. First we describe in 

greater details the three model specifications used in the manuscript. Second, the different prior 

distributions  for  the  models’  parameters  and  hyperparameters  are  defined.  Third,  we  described  

how the models were fitted and the type of convergence diagnostic performed. Lastly, we 

describe some of the sensitivity analyses we performed to assess the robustness of our findings. 

MODEL SPECIFICATIONS 

We assumed that our binary outcomes followed a Bernoulli distribution, Yi~ 

Bernoulli(pi), where pi is the probability of an individual having the outcome, which is itself a 

function of covariates modelled with a logit link. We present three models with increasing levels 

of complexity, as described below. 

Model 1: TCU and household random effects model 

logit(pitjk ) =   +  (Interventionit )+ Xit + f (Time)+ j + k + itjk  

),0(~ and ,),0(~ ),,0(~ 2
itjk

2
k

2 VHVXVP P NNN kj  

where pitjk is the probability of individual i at time t living in TCU j and, if applicable, household 

k, to have the outcome of interest (i.e., used a bednet, know malaria symptoms, and know how 

malaria is transmitted); β  is the coefficient of the larviciding intervention; δ is a vector of 

coefficients for control variables in X; μj is a TCU-level random effect; and υk is an household 

random effect. Note that the household level random intercept is included only when the 
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outcome is bednet usage (individual level variable) as information on knowledge of malaria 

symptoms and transmission was recorded for household heads only. Finally, the time trend was 

accounted for with f(.), a semi-parametric smooth function where a spline penalty follows a first 

order autoregressive process [1]. 

Model 2: TCU and household random effects model with ward fixed effects 

logit(pitjk ) =   +  (Interventionit )+ Xit + Wardit + f (Time)+ j + k + itjk  

 

where pitjk is the probability of individual i at time t living in TCU j and, if applicable, household 

k to have the outcome of interest; ω  is a vector of coefficients for the ward fixed effects; and β,  

δd, f(.), μj, and υk are similar to those described in Model 1.  

Model 3: TCU and household random effects model with ward fixed effects and allowing for 

change in slope as a function of time since initiation of intervention 

logit(pitjk ) =   +  (Interventionit )+ (Time Since Interventionit )+

 Xit + Wardit + f (Time)+  j + k + itjk
 

 

where pitjk is the probability of individual i at time t living in TCU j and, if applicable, household 

k to have the outcome of interest; β is the coefficient for the level shift in the outcome due to the 

intervention;;  γ  is  the  coefficient  for  the  change  in  slope  as  a  function  of  time  (in  years)  since  the  

initiation of the larviciding activities; and ω,  δd, f(.), μj, and υk are similar to those described in 

Models 1 and 2. 

PRIOR DISTRIBUTIONS 

),0(~ and ,),0(~ ),,0(~ 2
itjk

2
k

2 VHVXVP P NNN kj

),0(~ and ,),0(~ ),,0(~ 2
itjk

2
k

2 VHVXVP P NNN kj
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Priors for the regression parameters were assumed to have non-informative Gaussian 

(mean = 0, precision= 0.001) distributions. Priors for the standard deviations of the random 

effects at the TCU and household levels were assumed to follow non-informative Uniform (0, 

100) distributions. The hyperparameters for the first order autoregressive semi-parametric 

smooth were given a Gamma (shape = 1, scale = 1e-5) prior for the precision parameter, as 

proposed by Natário and Knorr-Held [2], and a Gaussian (mean = 0, precision = 0.40) prior for 

the first lag correlation parameter, which was defined on the logit scale. In order to improve 

mixing of the MCMC chains and faster convergence, hierarchical centering and parameter 

expansion were used [3,4]. 

MODEL FITTING 

The Bayesian models were fitted using Markov Chain Monte Carlo (MCMC) 

simulations. All analyses were performed using the R statistical software [5]. Estimation of the 

marginal posterior distribution of the parameters of interest was performed using JAGS [6,7]. An 

adaptive phase of 5,000 iterations and a minimum of 65,000 iterations from the Metropolis-

Hasting algorithm were used for inferences (5,000 iterations used as burn-in). Convergence and 

stationarity were assessed through visual inspection of trace plots, the Raftery-Lewis statistic [8], 

and the Heidelberger and Welch's diagnostic [9].  The  ‘rjags’  and  ‘CODA’  libraries  were  used  as  

an interface to run JAGS directly from R [10] and perform convergence diagnosis [11], 

respectively. Observations with missing data for age (n=44) were retained in the analysis using 

the missing indicator method [12]. 

SENSITIVITY ANALYSES 

The robustness of our results to model specification was also investigated. Specifically, 

we examined the sensitivity of the choice of penalty type for the time trend (1st order 
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autoregressive versus 1st and 2nd order random walks), different covariates adjustments (SES 

versus educational level and occupation), potential spillover effects (contamination of our 

intervention wards from non-intervention areas), and presence of spatially structured effects 

using Conditionally Auto-Regressive models [13]. Results from these sensitivity analyses 

demonstrated that our reported effect size estimates were robust to our modelling assumptions 

and only the three main models described above will be reported in this paper. 
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