Review of Environmental Physiology of the Amphibians, Martin E. Feder and W. W. Burggren

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:14121756</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA</td>
</tr>
</tbody>
</table>
more accessible, species key to identify the most commonly encountered, or most dangerous, species. Similarly, although important life-cycle diagrams are technically sound, they are crammed with information and abbreviations and require considerable effort by the reader to interpret them.

More questioning of accepted knowledge by the author with suggestions for new research directions would have been valuable. Some specialists might be disappointed also at not having all of their work incorporated. I, for example, looked in vain (and perhaps vainly) for my report on the presence in some argasid ticks of well-developed eyes that have a reflective tapetum of trachea instead of a lens.

On the other hand, the book contains few overt factual errors. One I was able to find states that tick oenocytoid hemocytes are similar to insect oenocytes—subdermal cells that secrete lipidic substances. The reader is also not distracted by spelling and typographic errors; information is generally well presented—although I had early misgivings on seeing “critique” converted to a verb in the Introduction.

A comprehensive work on the biology of ticks is long overdue; tick researchers have had to suffer a combination of the outdated textbooks of Arthur and Balashov together with useful, but unbalanced, books that have emanated from conferences. The shortcomings of Biology ofTicks, Volume 1, are relatively unimportant. The unique nature of the collected information, including many photographs and illustrations, makes this a valuable reference for advanced students and researchers. It is a high-quality, well-edited production and its price is a fair one.

Keith Binnington, Entomology, CSIRO, Canberra, Australia

This is an eclectic mix of philosophical essays, review articles, and research reports originating from a symposium honoring the well-known comparative physiologist, Kjell Johansen. The chapter titles and authors provide excellent testimony to the richness and diversity of the intellectual legacy Johansen left upon his premature death in 1987. The four editors are all part of that legacy, and it is significant that they each make unique contributions to assembling this broad spectrum of papers. The aim of this volume, according to the Introduction by Claude Lenfant, editor of the Lung Biology in Health and Disease series, is to inspire young scientists and future students with this interesting collection.

Of the twenty-one chapters, twelve deal with comparative cardiovascular physiology, which was Johansen’s primary research area. These include historical essays (Schmidt-Nielsen), methodological critiques (Rigel and Millard), an ontogenetic alternative to phylogenetic comparisons (Burggren), and molecular (Weber) to whole-animal research reviews (Mangum, writing the only chapter on invertebrates, incidentally). The other nine chapters, on comparative gas exchange and metabolism, include some new ideas that have not been published before (e.g., Perry), other ideas that are already well covered in the literature (e.g., Piper and Scheid), and finally, useful reviews of research in developing fields (e.g., Milsom).

The breadth of this book is also its limitation. The range of circulatory, metabolic, and respiratory topics covered is broader than vertebrate comparative physiologists can successfully attack with modern research programs. It is also difficult to specify the background necessary to make the book a useful teaching companion; some of the papers are highly specialized, while others are more general. Finally, even with a wide range of editorial expertise, some errors were inevitable. For example, in Perry’s chapter dealing with material I routinely review, good ventilation-perfusion matching in monitor lizards is presented as a “paradoxical solution” because of the lack of such close matching in teju lizards (p. 153). Actually, the original references deal with the two different phenomena of spatial and temporal matching in tejus and monitors, respectively.

Frank L. Powell, Medicine, University of California at San Diego, La Jolla, California

This volume provides a long-awaited successor to the seminal volumes on amphibian physiology edited by John A. Moore (Physiology of the Amphibia, Academic Press, New York, 1964–1976). The goal of the editors was to supply a current overview of amphibian environmental physiology that might also serve to direct future research. Following an introductory perspective (largely devoted to exposing common misconceptions about amphibian physiology) by Martin Feder, the remaining 15 chapters in this excellent book are divided into four major sections: (1) Control Systems, (2) Exchange...
of Gases, Osmolytes, Water, and Heat, (3) Energetics and Locomotion, and (4) Development and Reproduction. It is important to note that this book is not a review of amphibian biology and thus does not cover (nor does it aim to cover) many features of amphibian morphology or evolution (even when relevant to physiological interpretation). Most chapters concentrate on the specifics of amphibian physiology from an environmental perspective. Thus, topics such as amphibian immunology and regeneration are not considered in detail.

A number of the chapters are outstanding and provide a comprehensive overview with extensive tables. For example, the chapters on the biophysics of heat and mass transfer, exchange of respiratory gases, thermoregulation, and behavioral energetics all supply lucid summaries of important principles and their application to diverse amphibian taxa. Particularly noteworthy is the chapter on energetics at rest and during locomotion, which includes several very large tables summarizing the literature on both larval and adult amphibian oxygen consumption at rest and during nonsustainable exercise.

Several other chapters are less comprehensive. The material on the nervous system (Chapter 2) and endocrinology (Chapter 3), for example, is in many ways better treated in Chapter 16, which discusses developmental changes in physiological systems.

A particularly excellent feature of the book is the single bibliography containing more than 4500 references to the literature. This list is made considerably more useful by the notation (following each reference) of the chapters that cite that reference, making it much easier to follow a single topic across chapters.

George V. Lauder, Biological Sciences, University of California, Irvine, California

Venomous Reptiles of North America.

The scope of the book is defined by Ernst's statement that "my interests, however, lie principally in natural history; I have excluded technical papers that do not have a direct bearing on the life of the reptile in the wild" (p. viii). This volume covers one helodermatid lizard species, three elapid snake species, and 17 vipersid snake species. The book might be better titled "Venomous Reptiles of the United States and Canada," since North American species found only in Mexico and Central America are not included.

The book begins with a synopsis of characters commonly used in identification, a short discussion of venoms and envenomization, and a dichotomous key. The key is useful only if the specimen