Sources of upper tropospheric HOx over the South Pacific Convergence Zone: A case study

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation

Published Version
doi:10.1029/2000JD000304

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:14121855

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Sources of upper tropospheric HO$_x$ over the South Pacific Convergence Zone: A case study

Received 27 December 2000; revised 2 July 2001; accepted 5 July 2001; published 12 November 2002.

1. Introduction

Tropical regions play an important role in determining the global oxidizing power of the atmosphere because of the high UV radiation and humidity, promoting the formation of hydrogen oxide radicals radicals (HO$_x$ = OH + peroxy radicals). Surprising results have emerged from the first measurements of HO$_x$ radicals in the upper troposphere: observed HO$_x$ levels were frequently 2–4 times higher than expected based on the commonly assumed primary source:

\[\text{O}_3 + \text{hv} \rightarrow \text{O}(^1\text{D}) + \text{O}_2 \]
\[\text{O}(^1\text{D}) + \text{H}_2\text{O} \rightarrow \text{OH} + \text{OH} \]

To explain the elevated levels of HO$_x$ in the upper troposphere, new sources have been suggested. Acetone (CH$_3$C(O)CH$_3$) was found to be a major source at low levels of water vapor in the upper troposphere [Singh et al., 1995; Arnold et al., 1997; McKeen et al., 1997; Wennberg et
Recent studies have suggested that deep convection may be an effective process in lifting HO\textsubscript{x} precursors from the boundary layer to the middle and upper troposphere \cite{Prather and Jacob, 1997}. Several of these precursors have been identified including methylhydroperoxide (CH\textsubscript{3}OOH) \cite{Jaegle et al., 1997; Folkins et al., 1998; Cohan et al., 1999], formaldehyde (CH\textsubscript{2}O) and other aldehydes \cite{Müller and Brasseur, 1999]. Photolysis of convected peroxides and formaldehyde, together with acetone seemed to provide a strong enough source to account for the observed levels of HO\textsubscript{x}. The importance of these new sources was tested successfully for northern midlatitudes \cite{Jaegle et al., 2001] and tropical northern and southern Pacific oceans \cite{Crawford et al., 1999], in air masses impacted by natural (biomass burning) and anthropogenic pollution. In this paper we examine the question of the origin of HO\textsubscript{x} radicals and the mechanism controlling the fast photochemistry of upper tropospheric HO\textsubscript{x} in the clean tropical southern Pacific ocean during a season when biomass burning and advection of continental emitted species were low.

In particular, we focus the study on the convection outflow and surrounding air from the South Pacific Convergence Zone (SPCZ). Our analysis is based on extensive observations of HO\textsubscript{x} radicals, their precursors, and related species obtained during the Pacific Exploratory Mission in the tropics (PEM-Tropics B). This mission was designed to provide a detailed picture of tropospheric chemistry over the South Pacific Basin during the wet season (March–April 1999) \cite{Raper et al., 2001]. Our analysis is based on data from the DC-8 aircraft northeast of Fiji (17°S, 177°E) as the aircraft traversed an extensive and strong band of SPCZ convection convective outflow at 10–12 km altitude (section 2).

The SPCZ is a major dynamical feature within the South Pacific. It is characterized by strong upward and downward motions and convective precipitations, and represents a barrier for horizontal atmospheric transport \cite{Gregory et al., 1999}. Air north and south of the SPCZ has distinct chemical signatures, reflective of the impact of long range transport, dry air and subsidence south of the SPCZ and strong ascending motions and precipitations related to convective clouds north of the SPCZ. The SPCZ flight during PEM-Tropics B offers us the opportunity to focus on HO\textsubscript{x} sources and chemistry in the tropical upper troposphere along a strong gradient of convective influence.

Our approach is based on a zero-dimensional (0-D) model (section 3) constrained by the ensemble of PEM-Tropics B aircraft observations. This model allows us to identify the dominant HO\textsubscript{x} sources controlling the HO\textsubscript{x} concentration in the upper troposphere along the flight track. Budget calculations are then performed and dominant sources are discussed as a function of latitude (section 4).

2. Experimental Conditions

Flight 10 was dedicated to the study of SPCZ-related convection. The flight traversed the extensive and strong band of convection, sampling air masses on the edges and the outflow of the convective system (Figure 1). The flight took place during daytime, starting from Fiji on 20 March, 2230 UTC (20 March, 0930 local solar time), ending on 21 March at 0615 UTC (20 March, 1715 local solar time). Figure 2 shows the altitude of the aircraft and the measured values of NO\textsubscript{2} photolysis rate as a function of time.
Chemical variations observed across the SPCZ at 200–300 hPa (Figure 1) showed the transition between subtropical and tropical air masses as well as strong convective influence within the SPCZ itself. In addition to the SPCZ convection area, a near-zonal band of deep convection was present between 5° and 15°S at the northern type of the flight track, commensurate with the southern branch of the ITCZ [Fue!berg et al., 2001]. The satellite image of Figure 1 displays two distinct regions: a region north of the SPCZ, characterized by a strong convective activity and a cloud free region south of the SPCZ characterized by dry air and subsidence. We calculated 3-day kinematic backward trajectories using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) 1997 model (Web address: http://www.arl.noaa.gov/ready/hysplit4.html, NOAA Air Resources Laboratory, Silver Spring, MD) starting at 10 km altitude along the flight track (Figure 3). Most of the trajectories showed a weak northeasterly flow of tropical maritime air, with those South of 20°S traversing Australia within the past 2 weeks.

In Figure 1 and Table 1, median concentrations at 8–12 km altitude observed along the flight track are reported for four distinct regions. In the southern part of the track (south of 20°S), relatively high concentrations of ozone (mean value 32 ppbv), NO (mean value 29 pptv) and small enhancements of CO (up to 58 ppbv) were measured (Figure 4), suggesting some continental influence. Indeed, back trajectories indicate that air arriving on the southwest side of the SPCZ in the upper troposphere originated from Australia (Figure 3). Pickering et al. [2001] also concluded that air arriving on the southwest side of the SPCZ at 11 km likely consisted of outflow from deep convection over northern Australia 3 days earlier. Observed PAN and HNO3 concentrations were also relatively high in this region (median values 59 pptv and 109 pptv, respectively). High mixing ratios of acetone and methanol were measured in the southwest portion of the flight suggesting a continental biogenic origin of the sampled air mass [Jacob et al., 2001].

![Figure 3. Three-day kinematic backward trajectories from the HYSPLIT4 trajectory model, analyzed meteorological fields are from NCEP/FNL. Trajectories start at 10 km altitude and are calculated for equally spaced points along flight 10 track. Starting points are marked with diamonds, ending points with triangles.](image-url)

<table>
<thead>
<tr>
<th>Observations</th>
<th>24°–20°S South of SPCZ</th>
<th>20°–17°S SPCZ</th>
<th>17°–13°S North of SPCZ</th>
<th>13°–10°S ITCZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure, hPa</td>
<td>262 (215–350)</td>
<td>216 (215–348)</td>
<td>238 (216–341)</td>
<td>245 (216–350)</td>
</tr>
<tr>
<td>Ozone column, DU</td>
<td>254 (253–261)</td>
<td>253 (250–254)</td>
<td>251 (250–253)</td>
<td>258 (253–259)</td>
</tr>
<tr>
<td>H2O, pptv</td>
<td>86 (36–393)</td>
<td>296 (65–1268)</td>
<td>165 (97–1469)</td>
<td>354 (136–2304)</td>
</tr>
<tr>
<td>RH (water),</td>
<td>22 (5–43)</td>
<td>77 (9–154)</td>
<td>61 (20–93)</td>
<td>86 (26–106)</td>
</tr>
<tr>
<td>RH (ice),</td>
<td>19 (4–44)</td>
<td>76 (7–163)</td>
<td>58 (17–91)</td>
<td>85 (23–107)</td>
</tr>
<tr>
<td>OH, pptv</td>
<td>0.24 (0.12–0.39)</td>
<td>0.23 (0.13–0.34)</td>
<td>0.18 (0.09–0.27)</td>
<td>0.24 (0.13–0.53)</td>
</tr>
<tr>
<td>H2O2, pptv</td>
<td>6 (3–10)</td>
<td>7 (3–15)</td>
<td>7 (5–9)</td>
<td>9 (7–14)</td>
</tr>
<tr>
<td>CH3OH, ppmv</td>
<td>146 (97–502)</td>
<td>160 (80–352)</td>
<td>174 (101–263)</td>
<td>201 (114–481)</td>
</tr>
<tr>
<td>CH3OOH, ppmv</td>
<td>67 (34–158)</td>
<td>116 (30–304)</td>
<td>100 (37–212)</td>
<td>116 (45–181)</td>
</tr>
<tr>
<td>CH4, pptv</td>
<td>80 (56–306)</td>
<td>110 (56–182)</td>
<td>96 (52–253)</td>
<td>118 (80–201)</td>
</tr>
<tr>
<td>NO, pptv</td>
<td>39 (5–59)</td>
<td>10 (7–38)</td>
<td>10 (6–19)</td>
<td>12 (6–78)</td>
</tr>
<tr>
<td>HNO3, pptv</td>
<td>109 (51–145)</td>
<td>37 (5–135)</td>
<td>26 (9–52)</td>
<td>39 (33–42)</td>
</tr>
<tr>
<td>CH3,I, ppmv</td>
<td>0.08 (0.02–0.17)</td>
<td>0.21 (0.08–0.40)</td>
<td>0.11 (0.08–0.19)</td>
<td>0.13 (0.07–0.16)</td>
</tr>
<tr>
<td>CO, pptv</td>
<td>48 (42–58)</td>
<td>46 (41–54)</td>
<td>49 (46–51)</td>
<td>49 (47–54)</td>
</tr>
<tr>
<td>PAN, pptv</td>
<td>59 (10–117)</td>
<td>10 (8–113)</td>
<td>8 (7–14)</td>
<td>9 (8–12)</td>
</tr>
<tr>
<td>Methanol, pptv</td>
<td>2706 (402–2866)</td>
<td>895 (402–1780)</td>
<td>1841 (903–2740)</td>
<td>786 (395–2589)</td>
</tr>
<tr>
<td>Propane, pptv</td>
<td>6 (4–11)</td>
<td>5 (3–7)</td>
<td>6 (4–7)</td>
<td>6 (4–9)</td>
</tr>
<tr>
<td>CH4, ppmv</td>
<td>1715 (1706–1742)</td>
<td>1713 (1700–1733)</td>
<td>1714 (1708–1718)</td>
<td>1715 (1706–1721)</td>
</tr>
<tr>
<td>Acetone, pptv</td>
<td>509 (303–533)</td>
<td>372 (304–454)</td>
<td>423 (388–544)</td>
<td>351 (337–373)</td>
</tr>
<tr>
<td>Aerosol surface area</td>
<td>3 (1–4)</td>
<td>1135 (1–149352)</td>
<td>3 (0–39201)</td>
<td>741 (0–6479)</td>
</tr>
</tbody>
</table>

(a) The values are medians. The minimum and maximum are listed in parentheses.
In contrast, ethane and propane, emitted preferentially by anthropogenic sources, have constant mixing ratios as a function of latitude. For the regions further north, PAN and HNO₃ median mixing ratios were lower than 10 and 40 pptv, respectively. The region south of the SPCZ was characterized by strong subsidence associated with the upper tropospheric subtropical jet. Consequently in this region, water vapor concentrations were low (median value 86 ppmv).

The flight segment between 17° and 20°S was characterized by deep convection associated with the SPCZ as evidenced by high concentrations of water vapor, CH₃I and CH₃OOH and low concentrations of ozone and NO. Between 13°S and 17°S, the air mass was drier, but NO and ozone concentrations remained low. Finally, the northernmost part of the flight took place in ITCZ convective outflow with chemical composition very similar to that of the SPCZ outflow.

3. Model Description

We use a steady state photochemical box model [Crassier et al., 1999] including the Regional Atmospheric Chemistry Model (RACM) mechanism [Stockwell et al., 1997]. This mechanism is suitable for representation of remote to polluted urban conditions. The model is constrained with the observed 1-minute averages of the concentrations along the flight track for species other than HO₂. The constrained species are NOₓ (NO + NO₂), O₃, H₂O, CO, CH₄, acetone, propane, methanol, ethanol, ethane, PAN, HNO₃, H₂O₂ and CH₃OOH. When measurements were unavailable, median values shown in Table 1 were used for model calculation. The constrained parameters are held constant throughout each simulation. NO is allowed to vary diurnally and is constrained so that the NO concentration matches the measurement at the time of the day of the observation. Temperature, pressure and aerosol surface area are also determined from the aircraft observations. Photolysis rates are calculated for clear sky conditions with the NCAR Tropospheric Ultraviolet-Visible radiative transfer code [Madronich and Weller, 1990], scaled to the values of J(NO₂) observed aboard the aircraft [Shetter et al., 2002] to account for cloud effects using the correction factor J(NO₂)observed/J(NO₂)clear sky. For wavelengths smaller than those relevant for J(NO₂), this approach can lead to a slight overcorrection of the photolysis rate (for example J(1D)).

Heterogeneous reactions of HO₃, NO₃, NO₂ and N₂O₅ in aerosols are included with reaction probabilities of 0.1, 0.0001, 0.01, and 0.1 respectively [Jacob, 2000] and assuming aerosols to be aqueous. Aerosol surface areas measured during flight 10 remained around 3 μm² cm⁻³ except in cirrus clouds associated with convective outflow, where surface areas were considerably higher (see Table 1). In these cirrus clouds, a reaction probability of 0.025 was used for H₂O₂ following Cooper and Abbatt [1996].

The photochemical model is integrated to diurnal steady state as defined by reproducibility of concentrations over a one-day cycle. CH₂O is a prognostic variable in photochemical steady state in the model; however, the model systematically underestimates the observations by a factor of 2 to 6. A similar difficulty in simulating CH₃OH has been pointed out for the ensemble of PEM-Tropics B data [Ravetta et al., 2000] and in previous studies [Schultz et al., 1999; Jaeglé et al., 2001]. According to Singh et al. [2000], heterogeneous conversion of methanol to CH₂O on aerosols might provide an additional source of formaldehyde. During Flight 10, however, no clear correlation was found between methanol and aerosol surface area. Constraining CH₂O with observed values increases of HO₂ mixing ratios by 25%.

Peroxides in the upper troposphere may be produced locally, serving as reservoirs for HO₂, or they may be convected from lower altitudes, providing a primary source of HO₂ to the upper troposphere [Jaegle et al., 1997; Prather and Jacob, 1997; Cohan et al., 1999; Mari et al., 2000]. The impact of convective injection can be estimated by comparison of the photochemical steady state concentrations computed with the model with observed values (results of both nonlocal and local contributions). Local contribution was determined from a steady state photochemical calculation with all the normally fixed species except CH₃OOH and H₂O₂. The ratio of measured-to-calculated concentrations in the upper troposphere then provides a good indicator of nonlocal contribution if higher than unity. A second criteria was applied to determine where nonlocal contribution coincides with convective injection. We looked at air masses for which CH₃I and relative humidity were in the top octile of measurements at 8–12 km altitude (i.e., CH₃I > 0.2 pptv and relative humidity >89%) [Cohan et al., 1999]. Thus, in the following, convected peroxides are defined as the nonlocal portion determined from a steady state calculation when correlated with high CH₃I and relative humidity. Both criteria lead to the conclusion that convocation increased CH₃OOH by a factor of 1.9–5.5, essentially in the SPCZ cloud region (Table 2), suggesting that, in the case of CH₃OOH, convective transport could be important. By contrast, observed median H₂O₂ mixing ratios were within 30% of the photochemical steady state computed by the model, revealing that local photochemistry could sustain the observed H₂O₂ mixing ratios without invoking transport. This is also consistent with vertical transport of H₂O₂ being limited in the con-
Table 2. Median Values for the Ratio of Measured-to-Calculated CH3OOH and H2O2 Total Production and Amplification Factor in the Upper Troposphere (8 to 12 km) for the Four Regions Along the Flight Track in Figure 1

<table>
<thead>
<tr>
<th></th>
<th>24°–20°S</th>
<th>20°–17°S</th>
<th>17°–13°S</th>
<th>13°–10°S</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2O2 (meas/calc)</td>
<td>0.98 (0.63–3.6)</td>
<td>0.78 (0.13–1.73)</td>
<td>1.03 (0.23–1.38)</td>
<td>0.87 (0.4–1.60)</td>
</tr>
<tr>
<td>CH3OOH (meas/calc)</td>
<td>1.03 (0.32–1.97)</td>
<td>1.44 (0.23–5.55)</td>
<td>1.23 (0.37–3.63)</td>
<td>1.23 (0.43–3.14)</td>
</tr>
<tr>
<td>Total HOx production pptv/d</td>
<td>1577 (589–4121)</td>
<td>1270 (563–4271)</td>
<td>1238 (537–2619)</td>
<td>2349 (1347–6890)</td>
</tr>
<tr>
<td>Amplification factora</td>
<td>1.32 (1.09–1.80)</td>
<td>1.14 (0.95–1.56)</td>
<td>1.22 (1.01–1.29)</td>
<td>1.12 (0.86–1.54)</td>
</tr>
</tbody>
</table>

aThe values are medians. The minimum and maximum values are listed in parentheses.

b Amplification factor for methane oxidation A_{CH4} is defined as the relative increase in the primary source of HOx due to oxidation of CH4 by OH.

4. Comparison Between Model and Observations

In Figure 5, we examine the trend of HOx yields from CH3OOH, acetonitrile and CH4 as a function of NOx mixing ratios and $P(\text{HOx})$ calculated by the box model. The HOx yields from methane and acetone increase with increasing NOx. The HOx yield from CH4 increases with NOx from about 0.25 at NOx = 10 pptv to 0.5 at NOx = 60 pptv and decreases with increasing HOx production rate from 0.5 to nearly zero. These variations are consistent with previous studies [Folkins and Chatfield, 2000; Jaegle et al., 2001]. The HOx yield from acetone increases with increasing NOx and decreasing primary production. This variation reflects the greatest impact of acetone on tropospheric chemistry for high NOx mixing ratios. The HOx yield from CH3OOH decreases with increasing NOx and increasing primary production from about 1.7 at NOx = 10 pptv and $P(\text{HOx}) = 100$ pptv/day to 1.3 at NOx = 60 pptv and $P(\text{HOx}) = 1500$ pptv/day similar to the values calculated by Folkins and Chatfield [2000].
shown in this plot are the least squares correlation coefficient (r^2) between model and observations, the slope (s) of the linear fit obtained by the multilinear regression method [Bevington, 1969], and the median ratio (R) of simulated-to-observed mixing ratios. We find that the model captures 80% of the variance of the observed HO$_2$ concentrations. The median simulated-to-observed ratio is 1.1 and the slope of the linear fit is 0.85. The simulation of OH mixing ratio is poorer with 38% of the variance of observed OH captured by the model. The median simulated-to-observed ratio is 0.86 and the slope is 0.67. Figure 7 shows HO$_x$ mixing ratios from the model and the observations as a function of latitude. A maximum is both measured and simulated in the SPCZ region (13.5 pptv) at 19$^\circ$S. In the northern edge of the SPCZ region, simulated HO$_x$ mixing ratios decrease sharply under 1 pptv due to high aerosol surface areas representative of cirrus clouds. There were no observations under these conditions. Two maxima are calculated and observed in the southern branch of the ITCZ with HO$_x$ levels rising up to 13 and 15 pptv, respectively. Between the two cloud bands, HO$_x$ mixing ratios are halved and the dry intermediate region is characterized by a minimum of HO$_x$ abundances. The origin of these latitudinal variations is studied in the following section. As seen in Figure 6, the HO$_2$/OH ratio varies from 20 to 90, with the median model to observed ratio for HO$_2$/OH of 1.26. The model represents the observed ratio with a correlation coefficient $r^2 = 0.37$. However, this low correlation coefficient is better than the one obtained for the entire set of data during PEM-Tropics b) c)
In the 6- to 12-km altitude range; Ravetta et al., submitted). In Figure 7, the variation of the HO2/OH ratio with latitude shows a region of enhanced values south of 20°S, where NO concentrations were also largest. The model simulates the observed peaks of HO2/OH ratio along the flight track, although, it tends to slightly overestimate the ratio.

5. Primary Sources of HOx

In order to quantify and better understand the processes involved in the variation of the HOx levels as a function of latitude, we perform a budget calculation following the methodology described above. Figure 8 shows the variation of HOx yields as a function of latitude for methylhydroperoxide, acetone, and methane in the four regions described previously. The HOx yield of acetone is maximum south of 20°S as could be expected in a region of relatively high NOx mixing ratios and low P(HOx). The yield is minimum north of 10°S where the impact of high NOx mixing ratios is counteracted by high P(HOx). HOx yield CH3OOH is maximum in the cloud free region between SPCZ and the zonal cloud band, characterized by low NOx mixing ratio and low P(HOx). In contrast, minimum values are calculated above 13°S where mean NOx mixing ratio and P(HOx) are higher. The upper troposphere in the tropical region sampled during PEM-Tropics B is characterized by high HOx production rates (around 2000 pptv/d) and low NOx concentrations (<60 pptv). Under these conditions, negative values of yield from HOx can be predicted as shown in Figure 8. During this flight, we found a maximum amplification of the primary source due to the oxidation of methane (ACtl = 1.80) in the southern-most region for points combining maximum observed NO levels (40 < NO < 60 pptv) and low P(HOx) (<200 pptv/d). Only 6% of the simulated points reveal a small quenching (A_CH4). These points correspond to observed NO levels lower than 20 pptv and P(HOx) higher than 1000 pptv/d. Thus, the amplification is largest when is low P(HOx) and NOx mixing ratio is high. This result is concordant with previous findings showing that the dependence of A_CH4 on P(HOx) acts as a weak buffer for HOx concentrations [Crawford et al., 1999; Jaegle et al., 2001].

Dominant primary production terms are plotted in Figure 9 in the 10- to 12-km altitude range where convective injection of CH3OOH was identified. A large fraction of the total HOx production is attributed to water vapor, photolysis of CH3OOH pumped by convection from the marine boundary layer and acetone. North of 20°S, HOx production is driven principally by the O1D + H2O reaction (Table 3); this contribution is strongest in the cloudy regions corresponding to the SPCZ and ITCZ cloud bands (Figure 1) where it accounts for 90% of the total primary production of HOx. We found that 75% of the simulated HOx variance is produced by water vapor. In the drier regions south of 20°S, production from water vapor and acetone are comparable. Production from acetone contributes to 18–81% of the HOx primary production in the 8- to 10-km altitude range (mean contribution 33%) and to 36–77% in the 10- to 12-km altitude range (mean contribution 49%). We found that production from acetone becomes significant and can be dominant over production from water vapor for water vapor mixing ratios lower than 200 ppmv. Impact of convected CH3OOH on the HOx production is limited to the SPCZ cloud band. The effect of convected CH3OOH is sensitive at 10–12 km. In Table 3, the primary production rate from...
CH3OOH accounts for 22% to 64% of the total primary source in this altitude range. Clearly, this impact is spatially restricted to the outflow of the cloud.

6. Conclusion

[20] A 0-D model is applied to study the photochemistry of HOx (HO2 + OH) in the tropical upper troposphere, during the PEM-Tropics B experiment. In particular, airborne observations across the SPCZ-related convection gave the opportunity to quantify the relative contribution of the sources of HOx in a remote nonpolluted tropical region, characterized by NOx-limited conditions and influenced by marine deep convective clouds. The predominant primary sources of HOx are identified as reaction O(1D) + H2O, photolysis of convected CH3OOH and photolysis of acetone. HOx chemistry shows a latitudinal dependence, reflecting the different origins of the air masses traversed by the aircraft. The southernmost region (<20°S) is characterized by a strong subsidence associated with the upper tropospheric subtropical jet and advection of air from Australia. Because of the subsidence, water vapor mixing ratios are low and advection of continental air masses induces relatively high NOx and ozone mixing ratios. In this region, HOx primary production from acetone and water vapor are comparable, in particular in the 10- to 12-km altitude range where production from acetone can account for 36% to 77% of the total primary production rate. Amplification of the primary source due to the oxidation of methane shows maximum values (1.1–1.8) in the southernmost dry region. The SPCZ region is characterized by elevated water vapor mixing ratios and convective injection of low soluble species like CH3I and CH3OOH in the cloud outflow. Total primary production rates are higher than in the southernmost dry region and controlled mainly by water vapor abundances. When enhancement of CH3OOH by convective transport is predicted, production from convected CH3OOH becomes important and contributes for 22% to 64% of the primary production rate. The northern cloud band, corresponding to the southern branch of the ITCZ, is characterized by higher NOx mixing ratios and HOx production rates compared to the SPCZ cloud band. No impact of acetone or convected CH3OOH is predicted and the reaction O(1D) + H2O is largely prevailing. This region is also characterized by some occurrences of low NOx mixing ratios and elevated primary production rates leading to a diminution of HOx primary sources by oxidation of methane. Between, the two cloud bands the aircraft passed through a dry region characterized by relatively low NOx mixing ratios, low primary production rates, and minimum HOx mixing ratios. In this region, production from acetone is important, although rarely dominant, and methane oxidation amplifies the primary source production by 1.0–1.3. The general good agreement in the clean tropical Pacific upper troposphere should not hide the remaining uncertainties regarding HOx in the upper troposphere. Problems remain for very high NOx at which systematic differences between observed and simulated HOx have been found, reflecting gaps in our understanding of the coupling between HOx and NOx [Brune et al., 1999;...
Faloona et al., 2000). Chemistry of HO₂ at night and sunlight/sunset is still poorly understood [Wennberg et al., 1999; Jaegle et al., 1999] and the fate of inside cirrus clouds certainly needs further study.

References

D. Blake, Department of Chemistry, University of California, Irvine, CA 92717, USA.

W. H. Brune, Department of Meteorology, The Pennsylvania State University, University Park, PA 16802-5013, USA.

I. Faloona, Atmospheric Chemistry Division, National Center for Atmospheric Research, Boulder, CO 80305, USA.

B. Heikes, Center for Atmospheric Chemistry Studies, University of Rhode Island, Narragansett, RI 02882, USA.

D. J. Jacob, Division of Engineering and Applied Science, Harvard University, Cambridge, MA 02138, USA.

C. Mari and C. Sauv, Laboratoire d’Aérologie, UMR 5560 CNRS/Université Paul Sabatier, Toulouse, F-31400, France. (marc@aero.obs-mip.fr).

M. Avery, Department of Physics, Hampton University, Hampton, VA 23668, USA.

S. T. Sandholm, Earth and Atmospheric Sciences Baker Building, Georgia Institute of Technology, Atlanta, GA 30332, USA.

H. B. Singh, NASA Ames Research Center, Moffett Field, CA 94035, USA.

F. Ravetta, Service d’Aéronomie du CNRS, Université Paris 6, Boîte 102, 4 Place Jussieu, 75252,Paris Cedex 05, France.

R. W. Talbot, CSRC/EOS, University of New Hampshire, Durham, NH 03824, USA.

D. Tan, Georgia Institute of Technology, Atlanta, GA 30332-0340, USA.