Formaldehyde, glyoxal, and methylglyoxal in air and cloudwater at a rural mountain site in central Virginia

J. William Munger, D. J. Jacob, B. C. Daube, and L. W. Horowitz
Division of Applied Sciences and Department of Earth and Planetary Sciences, Harvard University, Cambridge

W. C. Keene
Department of Environmental Sciences, University of Virginia, Charlottesville

B. G. Heikes
Center for Atmospheric Chemistry Studies, Graduate School of Oceanography, University of Rhode Island Narragansett

Abstract. As part of the Shenandoah Cloud and Photochemistry Experiment (SCAPE), we measured formaldehyde (HCHO), glyoxal (CHOCHO), and methylglyoxal (CH$_3$C(O)CHO) concentrations in air and cloudwater at Pinnacles (elevation 1037 m) in Shenandoah National Park during September 1990. Mean gas-phase concentrations of HCHO and CHOCHO were 980 and 44 pptv, respectively. The concentration of CH$_3$C(O)CHO rarely exceeded the detection limit of 50 pptv. Mean cloudwater concentrations of HCHO and CHOCHO were 9 and 2 μM, respectively; the mean CH$_3$C(O)CHO concentration was below its detection limit of 0.3 μM. The maximum carbonyl concentrations were observed during stagnation events with high O_3, peroxydes, and CO. Outside of these events the carbonyls did not correlate significantly with O_3, CO, or NO$_y$. Carbonyl concentrations and concentration ratios were consistent with a major source for the carbonyls from isoprene oxidation. Oxidation of CH$_4$ supplies a significant background of HCHO. The carbonyl concentrations were indistinguishable in two size fractions of cloudwater having a cut at d=18 μm. Gas- and aqueous-phase concentrations of HCHO from samples collected during a nighttime cloud event agree with thermodynamic equilibria within a factor of 2. Samples collected during a daytime cloud event show HCHO supersaturation by up to a factor of 4. Positive artifacts in the cloudwater samples due to hydrolysis of hydroxymethylhydroperoxide (HOCH$_2$OOH) could perhaps account for this discrepancy.

1. Introduction

Formaldehyde (HCHO), glyoxal (CHOCHO), and methylglyoxal (CH$_3$C(O)CHO) are generated in the atmosphere from the oxidation of hydrocarbons. Formaldehyde and methylglyoxal are important atmospheric precursors of OH and peroxyacylnitrile (PAN), respectively. Glyoxal and methylglyoxal are tracers for the oxidation of a number of hydrocarbons, including in particular isoprene. Although HCHO has been extensively studied in urban, rural and remote atmospheres (cf. Carlier et al., 1986), measurements of CHOCHO and CH$_3$C(O)CHO have been reported only for urban air in Brazil [Grosjean et al., 1990] and for cloudwater in the Los Angeles area [Munger et al., 1990].

Because they have large hydration constants, HCHO, CHOCHO, and CH$_3$C(O)CHO are moderately to highly soluble [Beutier, 1992]. Oxidation of HCHO by OH in fog and cloud droplets has been postulated as a source of HCOOH [Chameides, 1984], and S(IV) adducts with HCHO make significant contributions to the total dissolved S(IV) [Munger et al., 1986]. Facchini et al. [1992] report simultaneous measurements of HCHO in gas and liquid phases in the Po valley, Italy; they observed a large excess of aqueous HCHO that could not be accounted for by S(IV) adducts alone.

In this paper we report measurements of gas-phase and cloudwater HCHO, CHOCHO, and CH$_3$C(O)CHO made at a mountain ridge site in Shenandoah National Park, Virginia, during the Shenandoah Cloud and Photochemistry Experiment (SCAPE) in September 1990. We examine diel variation of the carbonyls and their correlations with other trace gases and we compare observations with photochemical model results to evaluate our current understanding of atmospheric sources and sinks for these species. Finally, we examine the thermodynamics of partitioning between the gas phase and the cloudwater. Additional measurements during SCAPE included O$_2$, NO, NO$_2$, NO, H$_2$O$_2$, ROOH, UV radiation, carboxylic acids, and cloudwater composition [Jacob et al., this issue; Keene et al., this issue; Talbot et al., this issue].

2. Methods

Carbonyl and cloudwater samples were collected from a 15-m tower on a ridge at Pinnacles in Shenandoah National
2.1. Sample Collection

Gas-phase carbonyls were collected using a mist chamber filled with an acidified solution of 2,4-dinitrophenylhydrazine (DNPH) [Cofer and Edahl, 1986]. Talbot et al. [1988] have demonstrated that this technique efficiently samples soluble gases. Ozone causes a negative interference in HClO sampled with 2,4-DNPPI-coated silica gel cartridges, but no interference was observed when sampling with impingers [Arnis and Tejada, 1989]. An O₃ interference is not expected with mist chambers because, as with impingers, the 2,4-DNPH and hydrazones are distributed throughout a bulk solution rather than concentrated in a frontal zone.

A droplet separator (section 2.3) upstream of the mist chamber excluded large drops and particles (d > 1 μm) from the sample stream. Samples were collected for 1-2 hours at a nominal flow rate of 10 L min⁻¹ measured with a mass-flow meter (MKS Instruments Incorporated, Andover, Massachusetts). Evaporation of the scrubbing solution limited the collection time during periods of low humidity; samples with too little volume at the end were discarded. After removing the scrubbing solution the mist chamber was rinsed with a mixture of hexane (C₆H₁₄) and dichloromethane (CH₂Cl₂); the rinses were combined with the scrubbing solution. The hydrazone derivatives were separated by three extractions with C₆H₁₄/CH₂Cl₂ and then washed with a few milliliters of water to remove unreacted DNPH and excess acid. The hydrazones were then evaporated to dryness in a glass vial under a stream of N₂ and stored in a freezer until analyzed. Reagent and sampling blanks were generated by extracting unexposed aliquots from each batch of scrubbing solution and by analyzing dynamic field blanks from mist chambers that were exposed for a few seconds.

Size-segregated cloudwater samples were collected with an active-strand collector [Keene et al., this issue]. Coarse droplets (d > 18 μm) impacted on 9.5-mm Teflon rods and fine droplets (5.5 μm < d < 18 μm) impacted on Teflon strands behind the rods. Each fraction drained separately to a collection bottle. This collector used more rows of smaller diameter rods than described by Munger et al. [1989] to achieve a sharper size cut. Liquid water content (LWC) was estimated for each size fraction of droplets from the corresponding volume of water sampled by the collector, the volume of air processed, and the theoretical collection efficiencies of the rods and strands. These data were compared with LWC measured in parallel using a device described by Valente et al. [1989]. Results for sampling intervals with clouds continuously present typically agreed within ±5% or ±0.03 g m⁻³. At the end of the sampling interval (typically 1 - 1.5 hours) a 5-mL aliquot from each size fraction was treated with acidified 2,4-DNPH [Grosjean and Wright, 1983]. After incubation the hydrazones were extracted by the same procedure used for the mist-chamber samples.

2.2. Carbonyl Analysis

The dried and frozen hydrazones were redissolved in C₆H₁₄/CH₂Cl₂ and analyzed by HPLC using a Dionex 4500i chromatograph with a Rheodyne 7010 injection valve. The samples were eluted at 1.2 mL min⁻¹ using a solvent program that varied from 50 to 90% CH₂CN in H₂O through a 4.6 x 150 mm Alltech Adsorbosphere C18 5-μm column. Peaks were detected at 365 and 410 nm using two photometric detectors in series. The second detector at 410 nm allowed better sensitivity for the dicarboxyls, whose hydrazones have an absorbance peak shifted to higher wavelengths than the hydrazones of aldehydes [Munger et al., 1990]. The ratio of peak area at the two wavelengths served as a qualitative check on peak identity. A typical chromatogram, Figure 1, shows baseline separation for the compounds of interest. The peaks were quantified using the ratio of their area to that of 2,4-dinitrophenylcyclohexanone added as an internal standard to the mist-chamber and cloudwater aliquots. Carbonyl adducts that are stable at low pH are not detected; in particular, hydroxymethanesulfonate, the S(IV) adduct, is not recovered as a hydrazone [Munger et al., 1990]. Standards were made from hydrazine derivatives that were synthesized in the laboratory and from aqueous solutions of selected carbonyls that were treated as the cloudwater aliquots. Sets of standards were prepared in the field as well to check stability of the hydrazones. Data for samples were corrected based on the field blanks. Minimum detection limits were 0.5, 0.75, and 1.5 nmol/sample for HCHO, CHOCHO, and CH₃C(O)(CHO), respectively, based on variances of repeated standard runs. For 1-hour sampling intervals these correspond to 15, 20, and 50 ppt, respectively, in gas-phase samples. For 5-mL aliquots of cloudwater the detection limits would be 0.1, 0.15, and 0.3 μM, respectively. Relative standard errors of the
The droplet separator was mounted on a horizontal boom ~2 m from the tower and used for sampling in both cloudy and clear conditions. The mist chambers used in carbonyl and carboxylic acid sampling were connected to the droplet separator via ~3 m of 4-mm ID Teflon tubing.

3. Results and Discussion

3.1. Carbonyl Concentrations

Formaldehyde was the dominant carbonyl measured at Pinnacles, with a mean of 980 pptv, compared to 44 pptv CHOCHO and < 50 pptv CH$_3$C(O)CHO. Most previous measurements of HCHO at rural sites in North America were made during the summer months and indicate higher concentrations than reported here (Table 2). However, measurements made in March [Harris et al., 1989] indicate lower concentrations. Concentrations of HCHO at Pinnacles were higher than those observed in marine air or the free troposphere, where mean values are generally 100 - 400 pptv [Lowe and Schmid, 1983; Cartler et al., 1986; Harris et al., 1992; Heikes, 1992]. Maximum carbonyl concentrations were observed during pollution episodes (O$_3$ ~ 70 ppbv; CO > 200 ppbv) on September 5-8 and September 12-13 (Figure 3). These episodes were associated with warm temperatures and stagnating air masses [Jacob et al., this issue]. Carbonyl concentrations were not so high during a subsequent episode a week later that had lower maximum O$_3$ (O$_3$ ~ 50 ppbv).

Carbonyl concentrations measured in cloud water are listed in Table 3. Two long-duration cloud events were sampled during SCAPE commencing at 2000 eastern daylight time (EDT) on September 8 and at 0700 EDT on September 13. In both cases the clouds were associated with frontal systems and were part of widespread cloud cover. Meteorological conditions during the cloud events are summarized by Keene et al. [this issue]. Additional short-duration events were sampled on September 20 and 22 that are included in the statistics of Table 3 but will not be discussed in detail because they were too short to evaluate temporal trends and cloud was discontinuous. The mean HCHO (8 μM) exceeded glyoxal in the cloud water by a factor of 4-5 (Table 3).

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet flow</td>
<td>1200 L min$^{-1}$</td>
</tr>
<tr>
<td>Sample flow</td>
<td>50 L min$^{-1}$</td>
</tr>
<tr>
<td>Velocity at jet (D in Figure 2)</td>
<td>10 m s$^{-1}$</td>
</tr>
<tr>
<td>Velocity ratio jet/sample</td>
<td>10.5</td>
</tr>
<tr>
<td>Reynolds Number at jet</td>
<td>34000</td>
</tr>
<tr>
<td>Separation size cut</td>
<td>1 μm</td>
</tr>
<tr>
<td>Pressure drop</td>
<td>32 Pa</td>
</tr>
<tr>
<td>Outside diameter</td>
<td>10 cm</td>
</tr>
<tr>
<td>Inside diameter at jet</td>
<td>5 cm</td>
</tr>
<tr>
<td>Site</td>
<td>Statistic</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Pinnacles, Virginia</td>
<td>range</td>
</tr>
<tr>
<td>(Sept.)</td>
<td>Median</td>
</tr>
<tr>
<td>Pinnacles, Virginia</td>
<td>quartile</td>
</tr>
<tr>
<td>(Sept.)</td>
<td>Mean ± s.d.</td>
</tr>
<tr>
<td>Pinnacles, Virginia</td>
<td>N</td>
</tr>
<tr>
<td>(Sept.)</td>
<td></td>
</tr>
<tr>
<td>Egbert Ontario</td>
<td>mean ±s.d.</td>
</tr>
<tr>
<td>(July-Aug.)</td>
<td></td>
</tr>
<tr>
<td>Dorset, Ontario</td>
<td>mean ±s.d.</td>
</tr>
<tr>
<td>(July-Aug.)</td>
<td></td>
</tr>
<tr>
<td>Dorset, Ontario</td>
<td>range</td>
</tr>
<tr>
<td>(April)</td>
<td></td>
</tr>
<tr>
<td>Sarnia, Ontario</td>
<td>median</td>
</tr>
<tr>
<td>(June-July)</td>
<td></td>
</tr>
<tr>
<td>Lewes, Delaware</td>
<td>mean</td>
</tr>
<tr>
<td>(March)</td>
<td></td>
</tr>
<tr>
<td>Cold Creek, Ontario</td>
<td>range</td>
</tr>
<tr>
<td>(July)</td>
<td></td>
</tr>
<tr>
<td>Scotia, Pennsylvania</td>
<td>range</td>
</tr>
<tr>
<td>(July-Aug.)</td>
<td></td>
</tr>
<tr>
<td>North Carolina</td>
<td>range</td>
</tr>
<tr>
<td>(June-July)</td>
<td></td>
</tr>
</tbody>
</table>

3.2. Diel Trends

Diel patterns in the carbonyl concentrations were small relative to synoptic-scale variations (Figure 4). Observations at flatland sites indicate minimum HCHO concentrations at night due to deposition from a shallow mixed layer [Martin et al., 1991; Hastie et al., 1993]. This effect was not observed at our site because the downslope circulation at night maintained a strong ventilation. Similarly, O$_3$ and the carboxylic acids [Talbot et al., this issue], which are also depleted during the night at surface sites, had weak diel cycles in our observations. Nighttime ventilation is a general characteristic of observations at mountain sites [Aneja et al., 1991; Poulida et al., 1991].

3.3. Sources of Carbonyls

HCHO was correlated with CHOCHO ($r^2 = 0.43$) and with total organic peroxides ($r^2 = 0.63$). The maximum concentrations of HCHO and CHOCHO were observed on September 7 and September 10-11, coincident with episodes of
Figure 3. Concentrations of \(\text{O}_3 \) (solid curves) CO (dashed curve), \(\text{H}_2\text{O}_2 \), HCHO, and CHOCHO are shown for the month of September 1990 at Pinnacles, Shenandoah National Park. Concentrations of HCHO and CHOCHO in individual samples are indicated by triangles; the dashed curves are 24-hour averages. Cloud interception at the site is indicated by hatching in the upper panel.

Elevated \(\text{H}_2\text{O}_2 \) (1.5 ppbv) and \(\text{O}_3 \) (70 ppbv). However, the carbonyls did not correlate with \(\text{O}_3 \) or \(\text{H}_2\text{O}_2 \) outside these episodes. The highest concentrations of \(\text{NO}_x \) and CO observed during SCAPE were not associated with high carbonyl concentrations. More generally, there was no correlation between carbonyls and these pollutants, implying that anthropogenic sources are not important carbonyl precursors. We also found no correlation between the carbonyls and carboxylic acids (HCOOH and CH\(_3\)COOH).

The association between carbonyls and photochemical products, particularly ROOH, would be consistent with a dominant source for carbonyls from oxidation of biogenic hydrocarbons, e.g., isoprene. We examine this issue further with a one-dimensional photochemical model for the continental boundary layer during SCAPE. [Jacob et al., this issue]. Carbonyl compounds are produced in the model by oxidation of isoprene [Paulson and Seinfeld, 1992] and other hydrocarbons [Atkinson, 1990] and are removed by photolysis and reaction with OH [Atkinson et al., 1993]. We used revised values for the CH\(_3\)C(O)(OH) quantum yields [Raber and Moortgat, 1995] that are about twice the values recommended by Atkinson et al. [1993].

We present calculations with 24-hour average isoprene emissions of 0, 0.5, and \(1 \times 10^{11} \) molecules cm\(^{-2}\) s\(^{-1}\), including a standard diel cycle [Jacob et al., 1989, 1993]. Constant emissions of \(\text{NO}_x \) in the range 1-2 \(x 10^{11} \) molecules cm\(^{-2}\) s\(^{-1}\), depending on the isoprene flux, are assumed in order to match the mean noon-time NO concentration of 0.4 ppbv measured in SCAPE. Average ethene and propene emission rates for the eastern United States are used [McKeen et al., 1991], representing presumably upper limits for this site, which is relatively clean compared to most sites in the eastern United States. Fixed boundary layer concentrations of CO (200 ppbv), CH\(_4\) (1.7 ppmv), C\(_2\)H\(_6\) (2.2 ppbv), C\(_3\)H\(_8\) (1.3

Table 3. Carbonyl Concentrations in Cloudwater

<table>
<thead>
<tr>
<th>Location</th>
<th>HCHO</th>
<th>CHOCHO</th>
<th>CH(_2)C(O)CHO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fine fraction (d<18 (\mu)m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>minimum</td>
<td><0.1</td>
<td><0.15</td>
<td><0.3</td>
</tr>
<tr>
<td>25%ile</td>
<td>3.3</td>
<td>0.7</td>
<td><0.3</td>
</tr>
<tr>
<td>median</td>
<td>7.1</td>
<td>1.9</td>
<td>0.4</td>
</tr>
<tr>
<td>mean ± s.d.</td>
<td>8.9 ± 8.4</td>
<td>2.2±2.8</td>
<td><0.8(^a)</td>
</tr>
<tr>
<td>75%ile</td>
<td>13.4</td>
<td>2.6</td>
<td>0.7</td>
</tr>
<tr>
<td>maximum</td>
<td>21.9</td>
<td>12.4</td>
<td>9.4</td>
</tr>
<tr>
<td>N</td>
<td>37</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>Coarse fraction (d>18 (\mu)m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>minimum</td>
<td>0.8</td>
<td>< 3</td>
<td><0.3</td>
</tr>
<tr>
<td>25%ile</td>
<td>4.6</td>
<td>0.6</td>
<td><0.3</td>
</tr>
<tr>
<td>median</td>
<td>7.8</td>
<td>1.2</td>
<td><0.3</td>
</tr>
<tr>
<td>mean ± s.d.</td>
<td>7.9±5.9</td>
<td>1.4±1.5</td>
<td><0.3(^a)</td>
</tr>
<tr>
<td>75%ile</td>
<td>13.1</td>
<td>2.3</td>
<td>0.4</td>
</tr>
<tr>
<td>maximum</td>
<td>20.4</td>
<td>6.2</td>
<td>1.7</td>
</tr>
<tr>
<td>N</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>Henninger Flats, California(^b)</td>
<td>11-142</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>San Pedro Hill, California(^b)</td>
<td>5-50</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Ventura, California(^c)</td>
<td>3-33</td>
<td>5-27</td>
<td>3-7</td>
</tr>
<tr>
<td>Riverside, California(^d)</td>
<td>4-228</td>
<td>35-276</td>
<td>25-128</td>
</tr>
</tbody>
</table>

\(^a\) Statistics are computed using apparent concentrations and reported as an upper limit if the result is below the detection limit.

\(^b\) Range, Munger et al. [1989].

\(^c\) Range, Munger [1989].

\(^d\) Range, Munger et al. [1990].
The mean CH$_2$C(O)CHO concentrations predicted in the simulation are below our detection limits for CH$_2$C(O)CHO. The observed mean HCHO and CHOCHO concentrations (Table 2) are in reasonable agreement with the simulation using an isoprene flux of 5 x 1010 molecules cm$^{-2}$ s$^{-1}$, which is somewhat lower than the typical midsummer value estimated for the region. Above average carbonyl concentrations, which are consistent with the high isoprene simulation, were observed only in the first half of September but not later in the month as the vegetation came closer to senescence, resulting in a shutt off of isoprene emissions [Goldstein, 1994; Monson et al., 1994]. Decreased solar radiation and water vapor between September 1 and October 1 [Jacob et al., this issue] had a negligible effect on carbonyl concentrations, because both the formation and the destruction of carbonyls are photochemical processes. The difference noted in section 3.1 between HCHO concentrations at Pinnacles and other rural sites during the summer is consistent with a seasonal cycle of HCHO that parallels isoprene emissions. The importance of isoprene as a HCHO precursor is in agreement with Shepson et al. [1991] who argued that isoprene is a major source of HCHO based on observed HCHO:CH$_3$CHO ratios at a rural site in Ontario.

3.4. Aqueous Phase Partitioning

Finally, we examine the phase partitioning of carbonyls during cloud events. Because carbonyl solubility is pH independent and our method does not include any adducts that may be present, carbonyl concentrations should be independent of droplet size if they are entirely controlled by equilibrium with the surrounding gas. In general, the fraction, f, of soluble gas in cloud droplets at equilibrium is given by

$$ f = \frac{LRT^*}{(1+LRT^*)}, $$

where L is the liquid water content of the cloud, R is the gas constant, H^* is an effective Henry's law constant

$$ H^* = [C]_{total}/P $$

<table>
<thead>
<tr>
<th>Table 4. Simulated Carbonyl Concentrations, pptv</th>
</tr>
</thead>
<tbody>
<tr>
<td>isoprene flux (molecule cm$^{-2}$ s$^{-1}$)</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>HCHO</td>
</tr>
<tr>
<td>CHOCHO</td>
</tr>
<tr>
<td>CH$_3$C(O)CHO</td>
</tr>
</tbody>
</table>

Fractional contributions to HCHO production

isoprene	0.44	0.60	
methane	0.73	0.41	0.28
other	0.27	0.15	0.12

Twenty-four-hour mean concentrations at 1 km altitude obtained in a one-dimensional boundary layer model for the conditions observed in Shenandoah Cloud and Photochemistry Experiment.
Despite differences in trajectories leading to lower pH and higher levels of inorganic acids in samples from September 13 compared to September 8 [Keene et al., this issue], total carbonyl concentrations were similar for the two cloud events. During both cloud events the carbonyl concentrations tend to decrease over the duration of the cloud. Increased upslope flow associated with cloud dissipation could account for the rise in carbonyls, as well as concomitant increases in cloudwater H^+, NO_3^-, and SO_4^{2-} and carboxylic acids [Keene et al., this issue].

Measured CHOCHO concentrations in the gas phase and CHOCHO partial pressures calculated to be in thermodynamic equilibrium with measured aqueous phase concentrations were at or below the detection limit of 10 ppb. Although consistent with thermodynamics, limited analytical resolution precluded more detailed analysis of CHOCHO phase partitioning. Figure 6 compares the measured gas-phase HCHO with the predicted equilibrium partial pressure determined from the measured aqueous concentrations. Measured and predicted HCHO were similar, but individual points from the September 8 event varied by up to a factor of 2. Two samples with gas-phase concentrations > 2 ppbv are suspect, but we have no independent reasons to exclude that relates partial pressure, P, to total aqueous concentration, C_{total}, including thermodynamic equilibria (e.g., hydration, dissociation, or complexation), and T is the temperature. For the carbonyls only the hydration equilibria are included in H^+. At typical LWC of the order of 0.1 g m$^{-3}$, H^+ must exceed $\sim 10^5$ M atm$^{-1}$ to reach 50% partitioning in the droplets.

Gas- and aqueous-phase concentrations of HCHO and CHOCHO during the cloud events are shown in Figures 5a and 5b. Concentrations of CH$_2$C(O)CHO were too low for meaningful comparisons. The concentrations in fine and coarse fractions were indistinguishable (Table 3). Aqueous-phase concentrations measured in the cloudwater samples were scaled by the cloud liquid water contents [Keene et al., this issue], to convert to atmospheric mixing ratios. The coarse droplets ($d > 18 \mu m$) generally had a larger fraction of the LWC, which accounts for their higher contributions to total carbonyl loadings. Formaldehyde, with an effective Henry's law constant of 2970 M atm$^{-1}$ at 25°C ($\Delta H = -60$ kJ mole$^{-1}$) [Betterton, 1992] is predominantly in the gas phase during both cloud events. Up to 50% of glyoxal, with an effective Henry's law constant of 2.3×10^5 M atm$^{-1}$ [Betterton and Hoffmann, 1988], is in the aqueous phase at times.

Figure 5. Relative contributions of gas phase, coarse cloud droplets ($d > 18 \mu m$), and fine cloud droplets ($5.5 < d < 18 \mu m$) to the total atmospheric concentrations of HCHO and CHOCHO are shown versus local (eastern daylight) time during cloud events sampled on (a) September 8-9, and (b) September 13, 1990, at Pinnacles, Shenandoah National Park. The fraction of carbonyl in the droplets is determined from the measured concentration and liquid water content for each fraction. Starting and ending time of the cloud event are indicated by vertical dashed lines.

Figure 6. Measured and equilibrium partial pressure of HCHO is plotted against local (eastern standard) time during the cloud events sampled at Pinnacles, Shenandoah National Park. Measured gas-phase concentrations are indicated by crosses and connected by lines. The partial pressures in equilibrium with fine ($5.5 < d < 18 \mu m$) and coarse ($d > 18 \mu m$) droplets are indicated by open and solid squares, respectively. The equilibrium constants and temperature coefficients used in the calculation are given in the text.
them. Keene et al. [this issue] also observed good agreement
between measured and predicted carboxylic acid concentra-
tions during the September 8 cloud.

The droplets were considerably oversaturated with
respect to gas-phase HCHO and cloudwater concentrations
were less uniform during the September 13 cloud event.
Keene et al. [this issue] also observed the greatest deviations
from equilibrium by HCOOH during the September 13 cloud
event. The influence of canopy water, which they suggest
would damp temporal fluctuations in the gas phase, cannot
explain the consistent HCHO oversaturation. One possible
explanation for the apparent excess HCHO is hydrolysis of
HOC\textsubscript{2}H\textsubscript{2}O\textsubscript{2} (hydroxymethylhydroperoxide (HMHP))
after collection. Significant concentrations of HMHP have
been observed in air above a forest [Lee et al., 1993] and in precipi-
tuation [Hellfroisser and Gáb, 1989]. Heterogeneous pathways
involving H\textsubscript{2}O\textsubscript{2} addition to the Criegee intermediates
from ozonolysis of biogenic hydrocarbons have been sug-
gested as possible mechanisms to form HMHP in the atmos-
phere [Gáb et al., 1985]. HMHP has a Henry's law constant
of \(5 \times 10^{-3} \text{ M atm}^{-1} \) at 22 C. HMHP hydrolysis to H\textsubscript{2}O\textsubscript{2} and
H\textsubscript{2}C\textsubscript{2}O\textsubscript{2}\(\text{H}\)\textsubscript{2}\text{O}\textsubscript{2}\text{H} the hydrated form of HCHO is base catalyzed \(\tau_{1/2}\)
increases from 3 min at \(pH 7\) to > 1 hour at \(pH < 5.7\) [Zhou and Lee, 1992]. Empirical evidence, however, indicates that
HMHP partially hydrolyzes to yield artifact H\textsubscript{2}O\textsubscript{2} even at \(pH 3\)
[Lee et al., 1993]. For carbonyl analysis, aliquots are
brought to \(pH 1\) and are allowed to incubate with 2,4-DNPH
for several hours. Some hydrolysis may occur in this interval,
or HMHP may react directly with 2,4-DNPH to form a hydrazone.

4. Summary

The mean gas-phase concentrations of HCHO and
CHOCHO observed during September 1990 at Pinnacles in
Shenandoah National Park were 980 and 40 pptv, respec-
tively; CH\textsubscript{3}C(O)CHO was generally < 50 pptv. The carbonyl
data are consistent with oxidation of isoprene being a major
source of HCHO and CHOCHO. The maximum concentra-
tions (HCHO > 2 ppbv, CHOCHO > 100 ppbv) were
observed during stagnation episodes with warm temperatures
and elevated levels of \(O_3\) and H\textsubscript{2}O\textsubscript{2}. Although high levels of
primary pollutants, \(NO_2\) and \(CO\), were also observed during
these periods, there was no correlation between them and the
carbonyls. The short lifetime against photolysis (25 min at
noon) explains the generally low concentrations of
CH\textsubscript{3}C(O)CHO. No strong diel cycles were observed for
either HCHO or CHOCHO. As much as 50% of CHOCHO is
partitioned to the aqueous phase during cloudy periods, while
HCHO remains > 90% in the gas phase. The carbonyl
concentrations measured in the fine and coarse droplet fractions
showed no significant differences, which is consistent with
rapid equilibrium between the gas and the aqueous phases.
Formaldehyde concentrations in the cloudwater were signifi-
cantly higher than expected from equilibrium with the gas
phase during a daytime cloud event. HMHP, which can be
formed from ozone-alkene reactions, is highly soluble and its
hydrolysis to HCHO and H\textsubscript{2}O\textsubscript{2} during the carbonyl analysis
could perhaps account for the excess HCHO.

Acknowledgments. This work was supported by the National
Science Foundation through grants to Harvard University (NSF-
ATM-881125, NSF-ATM-93-04217) University of Virginia (NSF-
ATM-8911815), University of Rhode Island (NSF-ATM-
9015769), and additional support from Merck Foundation to DJJ.
The H\textsubscript{2}O\textsubscript{2} measurements were supported by the Electric Power
Research Institute under contract RP-2023-12 to BGII. Field
facilities and meteorological measurements were provided by the
Mountain Cloud Chemistry Project, with particular assistance
from Patricia Thompson, and by the Shenandoah National Park.
F. Gimmelfarb and A. Culman performed the sample analysis
and data reduction. The participation of B. Mosher, B. Talbot, J.
Maben, M. Lee, and D. Pierotti contributed to the success of this
experiment.

References

Anejla, V. P., S. Dusinger, Z. Li, C. S. Claiborn, and A. Murthy,
Ozone climatology at high elevations in the southern Appala-
Armstrong, R. R. and S. B. Tejada, 2,4-Dinitrophenylhydrozinc-coated
silica gel cartridge method for determination of formaldehyde in
Atkinson, R., Gas-phase tropospheric chemistry of organic com-
Atkinson, R., D. L. Baulch, R. A. Cox, R. F. Hampson, Jr., J. A.
Kerr, and J. T. Troe, Evaluated kinetic and photochemical data
for atmospheric chemistry: Supplement IV. IUPAC subcom-
mittee on gas kinetic data evaluation for atmospheric chemistry,
Betterton, E. A., Henry's law constants of soluble and moderately
soluble organic gases: Effects on aqueous phase chemistry, in
Gaseous Pollutants: Characterization and Cycling, edited by
Betterton E. A., and M. K. Hoffmann, Henry's law constants of
some environmentally important aldehydes, Environ. Sci.
Carlberg, P., H. Hannachi, and G. Mouvier, The chemistry of car-
bonyl compounds in the atmosphere-A review. Atmos. Envi-
Chameides, W. L., The photochemistry of a remote marine strati-
Cofer, W. R., III, and R. E. Edahl, Jr. A new technique for collection,
concentration and determination of gaseous tropospheric
Faccini, M. C. et al., Phase-partitioning and chemical reactions of
low molecular weight organic compounds in fog. Tellus,
Gáb, S. E., Hellfroisser, W. V. Turner, and F. Korte, Hydroxymethyl
hydroperoxide and bis(hydroxymethyl)peroxide from gas-phase
ozonolysis of naturally occurringalkenes, Nature, 316, 535-536,
1985.
Goldstein, A. H., Non-methane hydrocarbons above a midlati-
titude forest: Biogenic emissions and seasonal concentration
Grosjean, D., and B. Wright, Carbonyls in urban fog, ice fog,
cloudwater and rainwater, Atmos. Environ., 17, 2093-2096,
1983.
Grosjean, D., A. H. Miguel, and T. M. Tavares, Urban air pollu-
tion in Brazil: Aceataldehyde and other carbonyls, Atmos.
Harris, G. W., G. I. Mackay, T. Iguchi, L. K. Mayne, and H. I.
Schiff. Measurements of formaldehyde in the troposphere by
tunable diode laser absorption spectroscopy, J. Atmos. Chem.,
Harris, G. W., D. Klempt, T. Zenker, and J. P. Burrows, Tunable
diode laser measurements of trace gases during the 1988
Polarstern cruise and intercomparisons with other methods, J.

B. C. Daube, L. W. Horowitz, D. J. Jacob, and J. W. Munger (corresponding author (email: jwm@io.harvard.edu)), Division of Applied Sciences and Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138.

B. G. Heikes, Center for Atmospheric Chemistry Studies, Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882.

W. C. Keene, Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22903.

(Received April 18, 1994; revised January 3, 1995; accepted January 12, 1995.)