Observed OH and HO2 in the upper troposphere suggest a major source from convective injection of peroxides
Observed OH and HO$_2$ in the upper troposphere suggest a major source from convective injection of peroxides

L. Jaegle,1 D. J. Jacob,2 P. O. Wennberg,1 C. M. Spivakovskiy,1 T. F. Hanisco,1
E. J. Lanzendorf,1 E. J. Hintsa,1 D. W. Fahey,2 E. R. Keim,2 M. H. Proffitt,2 E. L. Atlas,3
F. Flocke,3 S. Schaufeller,3 C. T. McElroy,4 C. Midwinter,3L. Pfister,5 J. C. Wilson6

Abstract. ER-2 aircraft observations of OH and HO$_2$ concentrations in the upper troposphere during the NASA/STRAT campaign are interpreted using a photochemical model constrained by local observations of O$_3$, H$_2$O, NO, CO, hydrocarbons, albedo and overhead ozone column. We find that the reaction O(D) + H$_2$O is minor compared to acetone photolysis as a primary source of HO$_X$ (= OH + peroxy radicals) in the upper troposphere. Calculations using a diel steady state model agree with observed HO$_X$ concentrations in the lower stratosphere and, for some flights, in the upper troposphere. However, for other flights in the upper troposphere, the steady state model underestimates observations by a factor of 2 or more. These model underestimates are found to be related to a recent (< 1 week) convective origin of the air. By conducting time-dependent model calculations along air trajectories determined for the STRAT flights, we show that convective injection of CH$_3$OOH and H$_2$O$_2$ from the boundary layer to the upper troposphere could resolve the discrepancy. These injections of HO$_X$ reservoirs cause large HO$_X$ increases in the tropical upper troposphere for over a week downwind of the convective activity. We propose that this mechanism provides a major source of HO$_X$ in the upper troposphere. Simultaneous measurements of peroxides, formaldehyde and acetone along with OH and HO$_2$ are needed to test our hypothesis.

Introduction

The central role of OH (hydroxyl radical) and HO$_2$ (hydroperoxyl radical) in the troposphere has long been recognized [Levy, 1972; Crutzen, 1973; Logan et al., 1981], however it is only in recent years that direct measurements of these short-lived molecules have been made [see review by Crosley, 1995]. In the troposphere, OH is the key agent in the atmosphere's oxidizing capacity, regulating the lifetime of a large number of anthropogenic and natural compounds [Thompson, 1992]. In the upper troposphere, knowledge of the factors controlling HO$_X$ (= OH + peroxy radicals) concentrations is critical for assessing the effects of aircraft on ozone [Brasseur et al., 1996], and the resulting greenhouse radiative forcing [Lacis et al., 1990].

In this paper we present a photochemical model analysis of the first measurements of OH and HO$_2$ concentrations in the upper troposphere. These measurements were obtained as part of the STRAT (Stratospheric Tracers of Atmospheric Transport) ER-2 mission. We compare model and observations of HO$_X$ as a test of the complex set of reactions leading to the production and loss of O$_3$ in the upper troposphere and contrast the upper troposphere to the lower stratosphere. Following the idea presented in Prather and Jacob [this issue], and previously proposed by Chatfield and Crutzen [1984], we examine the impact of deep convective transport of peroxides as a source of HO$_X$ in the upper troposphere.

Aircraft Mission and Photochemical Model

The STRAT mission took place in five successive deployments between 1995 and 1996 out of northern California and Hawaii. In the flights discussed here, NASA's ER-2 aircraft sampled the atmosphere between 4 and 21 km, the majority of observations being in the 8-21 km altitude range. Extensive measurements of OH and HO$_2$ were obtained in the upper troposphere and lower stratosphere using laser induced fluorescence [Wennberg et al., 1995], with a measurement uncertainty of about 30%.

In this study, we compare the observed OH and HO$_2$ concentrations to results from the Harvard 0-D photochemical model applied to diel steady state calculations and to initial-value calculations along trajectories. The model is constrained with local observations (averaged over 1-minute intervals) of O$_3$, H$_2$O, NO, CO, CH$_4$, ethane, propane, butane, aerosol surface area, ozone column, albedo, temperature and pressure along the ER-2 flight track (see Fahey et al. [1995] for a description of the ER-2 payload). "Diel steady state" is defined by reproducibility of concentrations in the model over a 24-hour solar cycle. NO$_X$ (=NO+NO$_2$+NO$_3$+2N$_2$O$_5$+HNO$_2$+HNO$_4$) is assumed to be constant during the day and is adjusted such that the model matches the observations of NO at the time of day of the observations. When no measurements are available for the hydrocarbons, observed correlations between CO and these hydrocarbons from other flights are used. Acetone was not measured during STRAT and is specified in the troposphere from its correlation with CO observed during the DC-8 mission PEM-West B [McKeen et al., this issue] over the Pacific between 4 and 12 km. In the lower stratosphere, at altitudes for which CO values are below 20 ppbv, acetone is assumed to be present in negligible concentrations because of its relatively short lifetime (10-15 days).

Photolysis rates are computed using a six-stream radiative transfer model for the Rayleigh scattering atmosphere constrained with the observed ozone column and albedo. The model reproduces the on-board radiometer observations [McElroy, 1995] of the NO$_2$ photolysis rate to within 10% in all cases. Agreement with observations for photolysis of O$_3$ to O(D) is generally within 30%.

The Harvard photochemical model includes comprehensive descriptions of tropospheric and stratospheric chemistry. Bromine and chlorine chemistry are taken into account, as well as heterogeneous chemistry of N$_2$O$_5$, BrONO$_2$, CIO$_2$, HOCl and HCl. The chemical mechanism is described in Jacob et al. [1996] and Michelsen et al. [1996]. The photolysis of acetone is computed using recent measurements of the temperature-dependent cross-sections and pressure-dependent quantum yield [McKeen et al., this issue]. The model calculates the diel steady
The secondary HO\textsubscript{x} source from CH\textsubscript{2}O photolysis in Figure 2 is mainly from the oxidation of CH\textsubscript{4} by OH; it excludes the contributions associated with the steady state assumption for peroxides (H\textsubscript{2}O\textsubscript{2} and CH\textsubscript{3}OOH). Problems associated with the steady state assumption for peroxides will be a focus of discussion later in this paper.

HO\textsubscript{x} Budget in the Upper Troposphere

Figure 1 compares the observed HO\textsubscript{x} and OH mixing ratios to diel steady state model results for 15 flights in the upper troposphere and the lower stratosphere. Tropopause heights are based on temperature profiles measured from the ER-2 (B. Gary, personal communication), and range between 12 km (mid-latitudes) and 16 km (tropics). In the lower stratosphere, the model calculations are consistently within the uncertainties of the measurements (Figure 1, panels b and d). In the upper troposphere the model generally underestimates the observed HO\textsubscript{x} but not always: the mean ratios of observed to simulated mixing ratios for individual flights vary from 0.9 to 2.5 (mean of 1.5 for all flights). For some individual points, the model underestimates the observations by as much as a factor of 5. The ratio of HO\textsubscript{2}/OH is well reproduced by the model (within 10-15% of observations) both in the troposphere [Hanisco et al., manuscript in preparation, 1997] and stratosphere [Cohen et al., 1994], indicating that the rapid interchange between these short-lived radicals is well understood.

Figure 2 shows the main reactions controlling production and loss of HO\textsubscript{x} in the upper troposphere for a flight on November 7, 1995, when the diel steady state model reproduces the observations well. We have excluded from this Figure the reactions cycling HO\textsubscript{x} with H\textsubscript{2}O\textsubscript{2}, CH\textsubscript{3}OOH, HNO\textsubscript{2}, HNO\textsubscript{3}, HNO\textsubscript{4}, HOC\textsubscript{1}, and HOB\textsubscript{r}, which we assume in the model to be at steady state. Primary sources of HO\textsubscript{x} include the O(1D)+H\textsubscript{2}O reaction and the photolysis of acetone. Photolysis of acetone yields two HO\textsubscript{x} molecules, and leads to production of CH\textsubscript{2}O which can photolyze to yield additional HO\textsubscript{x}, resulting in a total yield of about three HO\textsubscript{x} molecules per acetone molecule photolyzed [Singh et al., 1995]. The source of HO\textsubscript{x} from acetone photolysis shown in Figure 2 is based on this total yield as computed in the model. The secondary HO\textsubscript{x} source from CH\textsubscript{2}O photolysis in Figure 2 is mainly from the oxidation of CH\textsubscript{4} by OH; it excludes the contributions from CH\textsubscript{2}O produced by decomposition of acetone since this contribution is accounted for as part of the primary source from acetone photolysis. Because CH\textsubscript{2}O originates from HO\textsubscript{x} reactions, and is at chemical steady state in the model, we view it as a secondary source of HO\textsubscript{x}.

A remarkable feature of Figure 2 is the relative unimportance of water vapor as a local source of HO\textsubscript{x} in the upper troposphere. The upper troposphere is characterized by low humidity compared to the lower troposphere, and by low ozone levels compared to the lower stratosphere. As a result, the rate of O(1D)+H\textsubscript{2}O shows a pronounced minimum in the upper troposphere. By contrast, the source of HO\textsubscript{x} from acetone photolysis shows little variation with altitude in the troposphere (Figure 2), and dominates over O(1D)+H\textsubscript{2}O as a primary source of HO\textsubscript{x} in the upper troposphere. Loss of HO\textsubscript{x} is dominated by the OH+HO\textsubscript{2} reaction and is therefore quadratic which damps the response of OH and HO\textsubscript{2} concentrations to changes in the HO\textsubscript{x} sources. Not including the acetone source in the upper troposphere would result in predicted HO\textsubscript{x} concentrations a factor of two lower than those shown in Figure 1. Further discussion of the importance of acetone is given by McKeen et al. [this issue].

The Influence of Convection

Data for some flights in Figure 1 show major discrepancies between observed HO\textsubscript{x} concentrations and diel steady state model results. Isentropic back-trajectories using GEOS-1 assimilation data [Schoeberl et al., 1991] show that the flights with the largest discrepancies sampled air a few days downstream of either deep convective complexes over the western tropical Pacific (February 8 and August 3, 1996) or mid-latitude cyclonic storms over the
the ER-2. Observations of condensation nuclei concentrations CH20 (see text for details). The dotted line shows the altitude of lower-bound (diamonds; case B) initial values for peroxides and to the date of the flight with upper-bound (triangles; case A) comparison between observations (solid circles) and diel steady state assuming convective input of peroxides and CH20 three days prior to the flight. The largest discrepancy is found for the February 8, 1996 sun-rise flight over Hawaii. Figure 3 shows the evolution of the observed concentrations of HO2 as a function of solar time. The mixing ratios of ozone measured on this flight between 11 and 14 km (20 ppbv) were combined with elevated concentrations of CN (1000-2000 cm^-3) and CH3I (0.15 pptv) to identify a recent marine boundary layer origin for the air sampled by the ER-2 over Hawaii on February 8, 1996. In a companion paper, Prather and Jacob [this issue] propose that convective injection of CH3OOH, H2O2, and CH2O from the boundary layer provides a major source of HOx in the tropical upper troposphere. H2O2 is expected to be scavenged by precipitation during deep convection because of its high solubility in water, but CH3OOH and CH2O are far less soluble [Bettlerton, 1992] and should escape scavenging. For the February 8 flight, we considered an upper-bound case (A) with initial concentrations of 650 pptv CH3OOH, 590 pptv H2O2, and 200 pptv CH2O; and a lower-bound case (B) with initial concentrations of 410 pptv CH3OOH, 50 pptv H2O2, and 50 pptv CH2O. Case B assumes quantitative scavenging of H2O2 in deep convection. The trajectory calculations for cases A and B bracket the observations and capture the steep rise in HO2 after sunrise, in contrast to the diel steady state calculation. The improved simulation of the early morning rise of HO2 reflects the enhanced concentrations of peroxides, which photolyze at longer wavelength than (O3-->O('D)) or acetone. Note that even if H2O2 were efficiently scavenged during convective pumping (case B), we find that CH3OOH photolysis can still sustain high levels of OH and HO2. In either case, A or B, the convected CH2O is relatively insignificant as a source of HOx, in accord with the calculations of Prather and Jacob [this issue]. Once the aircraft climbs above 14 km (after 8 solar time), water vapor, CN (top panel in Figure 3) and CH3I decrease sharply and the diel steady state calculations are in better agreement with the observations while the trajectory calculations overpredict HO2. The very different tracer levels suggest a different origin for the air above 14 km, not affected by convection.

The potential importance of convective injection of peroxides as a global source of HOx in the upper troposphere depends on the characteristic decay time for the HOx perturbation following a convective event. This characteristic time is defined by the lifetime of the chemical family HOx (= HOx + HNO4 + HNO3 + peroxides) which accounts for HOx recycling from its short-lived reservoirs including peroxides. Figure 5 shows the evolution of HOx, peroxides and formaldehyde obtained by the trajectory cal-
Figure 5. Simulated mixing ratios of HO2, CH2O, CH3OOH and H2O2 in the trajectory model calculation at 11 km altitude initialized with tropical convective outflow on February 4, intercepting the ER-2 flight track 3.5 days later on February 8, and extended another 10 days at the latitude of Hawi. Simulations assuming upper-bound (solid line; case A) or lower-bound (dotted line; case B) enhancements of peroxide in the outflow are compared to a simulation where the peroxides are in diel steady state (dashed line).

Acknowledgments. This work was supported by the National Aeronautics and Space Administration (NASA-NAG5-2688; NASA-NAG2-1100) and the National Science Foundation (NSF-ATM-9622382). We thank the ground crew and pilots of the ER-2 for their efforts in obtaining the data set. STRAT was sponsored by NASA's Upper Atmosphere Research Program, the Atmospheric Effects of Aviation Project, and the Atmospheric Chemistry Modeling and Analysis Program. The project scientists for STRAT were Paul Newman, NASA Goddard, and Steven Wofsy, Harvard University.

References

Prather, M.J., and D.J. Jacob, A persistent imbalance in HOx and NOx photochemistry of the upper troposphere driven by deep tropical convection, Geophys. Res. Lett., this issue.

T.P. Hanisco, E.J. Hintsa, E.J. Lauzenendorf, and P.O. Wennberg, Department of Chemistry, Harvard University, Cambridge, MA 02138.
D.J. Jacob, L. Jaegle (corresponding author), and C.M. Spivakovskiy, Department of Earth and Planetary Sciences, Harvard University, 29 Oxford Street, Pierce Hall, Cambridge, MA 02138. (e-mail: ljc@io.harvard.edu)
C.T. McClary, and C. Midwinter, Atmospheric Environment Service, Downsview, Ontario M3H 5T4, Canada.
L. Pfister, NASA Ames Research Center, Moffett Field, CA 94035.
J.C. Wilson, University of Denver, Denver, CO 80208.

(Received June 30, 1997; accepted September 16, 1997)