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We propose a systematic approach for a better understanding of
how HIV viruses employ various combinations of mutations to re-
sist drug treatments, which is critical to developing new drugs and
optimizing the use of existing drugs. By probabilistically modeling
mutations in the HIV-1 protease or reverse transcriptase (RT) iso-
lated fromdrug-treated patients, we present a statistical procedure
that first detects mutation combinations associated with drug re-
sistance and then infers detailed interaction structures of thesemu-
tations. The molecular basis of our statistical predictions is further
studied by using molecular dynamics simulations and free energy
calculations. We have demonstrated the usefulness of this sys-
tematic procedure on three HIV drugs, (Indinavir, Zidovudine,
and Nevirapine), discovered unique interaction features between
viral mutations induced by these drugs, and revealed the structural
basis of such interactions.

Bayesian model selection ∣ free energy calculation ∣ Markov chain
Monte Carlo ∣ molecular dynamics ∣ mutation interactions

HIV drug-resistance, which is caused by mutations of viral pro-
teins that disrupt the drugs’ binding but do not affect the viral

survival, is a major hurdle that hinders a successful treatment of
AIDS (1, 2). Due to the high rate and low fidelity of HIV replica-
tion, resistant strains quickly become dominant in a viral popula-
tion under the selection pressure of a drug. By sequencing viral
strains in the treated-patient isolates, genotypic data have been
accumulated for the drugs targeting two viral enzymes, protease
and reverse transcriptase, that are essential to the virus’s replica-
tion. Because each mutation of the viral protein is not equally
important for drug resistance, the observed, complicated muta-
tion patterns are difficult to interpret (3, 4) and are limited in
helping physicians design the best therapeutic regimen for a
patient (5) (Fig. 1A).

In past decades, many statistical learning methods (3, 4, 67–8)
have been employed to help predict phenotypes from genotypes.
There are also rule-based systems that infer drug-resistance levels
from sequence information such as the Stanford University HIV
Drug Resistance Database (Stanford HIVdb). However, these
methods provide little insight on the genetic and molecular basis
of drug resistance and often give inconsistent results when
analyzing the same input mutation data (4, 6).

In the present study, we investigated the problem of mutation
interactions of the HIV induced by a certain drug treatment.
Using a unique probabilistic model, we first detect resistant mu-
tation combinations (9) and infer the interaction dependence
structure of these combinations. Then, we use molecular dy-
namics (MD) simulations to reveal the molecular basis of how
these mutations interact with each other to interfere with the
drugs’ binding. We have shown that our procedure is applicable
to different antiretroviral drugs treating different types of HIV
infection by analyzing the sequence mutations induced by three
different drug treatments: a protease inhibitor (indinavir), a nu-
cleoside analog reverse-transcriptase inhibitor (zidovudine), anda
nonnucleoside reverse-transcriptase inhibitor (nevirapine). We
have rediscovered the majority of known resistant mutations to

the three drugs (10) and uncovered several interacting structures
for thesemutations. Particularly, for proteasewehavediscovered a
conditional independence structure among the mutations M46I,
I54V, andV82Athat is consistentwith several previous experimen-
tal results (3, 5, 6, 111213–14) but has not been documented in the
literature. Our MD simulations and free energy analyses have
further confirmed and provided the molecular basis and implica-
tion of this conditional independence.

Results
Analytical Pipeline for Studying HIV Mutation Data.We first design a
Bayesian variable partition (BVP) model, a generalization of the
“Bayesian epistasis association mapping” (BEAM) model in
Zhang and Liu (9), to select mutations that are associated with
drug resistance. Next, we design a recursive model selection
(RMS) procedure that recursively partitions a set of mutation po-
sitions into three subsets so that the three sets of variables either
follow a chain-dependence structure, or a “V” structure (see
Methods section) to infer the dependence structure among the
interacting mutation positions found by the BVP model. Finally,
we illustrate the molecular basis of the mutation patterns pre-
dicted by BVP and RMS by using molecular dynamics simulations
and inhibitor-residue free energy decomposition analyses.

Complex Interaction Patterns for Drug Resistance of Indinavir. The
data contain 949 HIV-1 (type B) protease sequences from in-
dinavir-treated patients (indinavir is the only PI in their therapy)
and 4,146 sequences (HIV-1 type B) from untreated patients.
HIV-1 protease has 99 amino acids and each position has muta-
tions in the dataset. Any combination of mutations among these
99 positions may be related to the virus’ drug resistance capabil-
ity. Our goal is to find those positions that are either indepen-
dently or interactively associated with the indinavir treatment.

Fig 1 shows the posterior probabilities for each marker to be
associated interactively with the indinavir treatment based on the
BVP model under two different prior distributions. We can see
that the results are insensitive to the priors. Nine out of the
10 positions with high posterior probabilities of interaction
(i.e., 10, 24, 32, 46, 54, 71, 73, 82, and 90) are on the drug resis-
tance mutation list (5) updated in spring 2008 (Fig S1). The only
one not on the list is position 47, which is well-known to be
associated with indinavir drug resistance when combined with
position 32 (3). We have found 17 mutation patterns (out of a
total of 2099 possibilities) that are associated with indinavir treat-
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ment with a posterior probability >0.0001 (this cutoff is much
higher than the equally likely probability 1∕2099). Table S1 in
SI Text tabulates these patterns and their respective posterior
probabilities. Phenotypic data from Stanford HIVdb provides
confirming evidence for the configurations of the top interaction
pattern f24; 32; 46; 54; 82g (SI Text). Many of these mutations are
well-known for their drug resistance effects. For example, it is
known that the mutations of V82A\F\T or L90M are necessary
but not sufficient for measurable resistance to indinavir (11).

Dependence Structure of Interaction for Drug Resistance of Indinavir.
We applied the RMS procedure to infer the detailed dependence
structure among the interacting positions 10, 24, 32, 46, 47, 54, 71,
73, 82, and 90 (Fig. 2). Two marginally independent interaction
groups were found with high confidence: one is composed mainly
of 46, 54, and 82; and the other of 73 and 90 (more details are
given in SI Text). Interestingly, we found a strong conditional in-
dependence structure in group f46; 52; 82g. Given the amino acid
at position 82, mutations at 46 and 54 are mutually independent.
The data did not provide strong enough information regarding
the structures for other variables (mutations) in this group, for
example, 24, 32, and 47. For the second group, 73 and 90 strongly
interact with each other.

In the study of Zhang et al. (13), a rebound in virus levels in
plasma following the initial sharp decline at the beginning of
indinavir therapy was found to be associated with a sequential
acquisition of mutations at the protease positions of
46 → 82 → 54. We further searched the Stanford HIVdb, and
found that 112 patients from the treated group (HIV-1, main
group, and subtype B) had indinavir as their only PI in their
therapy and also have detailed mutation records (more than
one complete protease sequences) during the course of therapy.
Among them 53.6% (60 patients) have at least one of the muta-
tions at positions 46, 54, and 82. We observed no patient with the
single mutation V82I, with the single mutation at 54, or with the
double mutations at 46 and 54. Among the 21 patients who have
all three mutations, only six of them have detailed mutation re-
cords such that we can tell the exact order of sequential acquisi-
tion of these three mutations. Four out of the six have the order
46 → 82 → 54, one has the order 82 → 46 → 54, and another has
the order 82 → 54 → 46. Whereas all these observed orders are
consistent with our inferred conditional independence structure,
the non-observed orders, 46 → 54 → 82 and 54 → 46 → 82, are
not. This suggests that the conditional independence is a direct
consequence of sequential acquisition of the three mutations.

Molecular Basis of Interacting Mutations Revealed by MD Simulations
and Free Energy Calculations. To further investigate the molecular
implication of the mutation interactions within the f46; 54; 82g
group, and within the f73; 90g group, we conducted MD simula-
tions to analyze the binding free energies of the protease/
indinavir complexes (SI Text). The free energy decomposition
analyses for the wild-type and tenmutant proteases (Table 1) show
that the drug resistantmutations primarily affect the van derWaals
interactions between indinavir and the protease. Most of the
mutations in the f46; 54; 82g group show positive relative binding
free energies, that is, decrease of indinavir’s binding affinity.

Among the three single mutations, two of them (M46I and
V82A) substantially increase the indinavir binding free energies
(−77.30� 0.45 and −75.67� 1.50), whereas I54V does not im-
pair the binding. This result is consistent with our observation
in the Stanford HIVdb. Among the 112 patients who have more
than one mutation record during their indinavir therapy, 10 have
the single mutation at 46, 10 have the single mutation at 82, and
zero have the single mutation at 54.

Among the double mutations, M46I/V82A and I54V/V82A
severely impair the binding of indinavir whereas M46I/I54V does
not significantly weaken the binding of indinavir. Incidentally,
among the 112 patients in the Stanford HIVdb, 11 have double
mutations at positions 46 and 82, eight at positions 54 and 82, and
zero at positions 46 and 54. It appears that 46 and 54 cannot in-
teract to resist to indinavir without the mutation at 82. The ob-
servations that double mutations M46I/V82A and I54V/V82A
are the two strongest resistant mutants may have important im-
plications for improving the potency of indinavir to combat resis-
tance. If we can decrease the interaction between V82 and a
derivative of indinavir without affecting the total binding affinity
of the inhibitor, the resistant effects of 46 and 54 will be reduced,
as well. This example highlights the usefulness of our approach for
uncovering the interaction structure between mutations in devel-
oping potent drugs.

The triple mutation M46I/I54V/V82A impairs the binding of
indinavir. As mentioned before, these three mutations occur se-
quentially in specific orders. Because single mutation at 54 is
not able to resist indinavir, the first mutation has to be at either
46 or 82 so that the mutant virus can have a better chance to sur-
vive the attack of indinavir. If the first mutation occurs at 46, the
second mutation has to be at 82 because the double mutations at
46 and 54 cannot resist to indinavir, as well. If the first mutation is
at 82, the subsequent mutation can be at either 46 or 54. We ob-
served exactly these (and only these) three possible orders

Fig. 1. The posterior probabilities for each mutation to be associated inter-
actively with indinavir treatment. The Upper shows the posterior probabil-
ities using prior one, which assumes that it is equally likely (1∕3) for a
mutation to be unassociated, individually associated, and interactively asso-
ciated with the drug treatment. The Lower shows the posterior probabilities
using a more stringent prior (prior two) assuming that only two makers are
expected to be associated with the drug, either individually or interactively.

Fig. 2. Detection of a detailed mutation interaction structure for resisting
indinavir. Positions 46 and 54 are conditionally independent given position
82, denoted as 42⊥54j82. The ? indicates where we are not able to confi-
dently infer the dependence structure (SI Text).
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(46 → 82 → 54, 82 → 46 → 54 and 82 → 54 → 46) in the Stanford
HIVdb database. Our energy calculation and probabilistic model-
ing are all consistent with this sequential acquisition observa-
tion (Fig. 3).

Compared to the protease with a single mutation M46I, the
additional mutation I54V makes more residues contributing fa-
vorably to the indinavir binding (nine vs. five). From Fig. 3B1 and
C1 we can see that these nine favorable residues spread around
the binding pocket, and thus enhance the binding of indinavir
right in the pocket and block the function of protease. However,
with V82A, the additional mutation I54V does not make indina-
vir interact more or less favorably with residues (seven vs. seven),
which may superficially suggest that I54V would not affect the
resistance caused by V82A. However, we can see from Fig. 3C2
that the seven favorable residues cluster tightly at one side of the
binding pocket and the seven unfavorable ones at the other side.
We speculate that such an uneven or asymmetric distribution of
favorable/unfavorable residues may have pushed indinavir aside
from blocking the binding pocket and thus reduced the potency of
the drug.

The resistance caused by 70 and 90 cannot be explained by the
binding free energy analysis that is consistent with observations
made in the previous experiments (15, 16), suggesting that the
group f73; 90g may follow a different resistant mechanism rather
than impairing the binding affinity (SI Text).

Two Drugs Attacking Reverse Transcriptase. HIV-1 RT is a hetero-
dimer consisting of p66 and p51 subunits. The p66 subunit is com-
posed of all 560 amino acids of RT whereas p51 subunit is
composed of the first 440 amino acids. RT is critical for RNA-
dependent DNA polymerization and DNA-dependent DNA
polymerization. We analyzed drug resistant mutation data of
two drugs targeting RT: Zidovudine, a nucleoside analog reverse
transcriptase inhibitor (NRTI), and Nevirapine, a non-nucleoside
reverse transcriptase inhibitor (NNRTI).

Zidovudine is not designed to bind with RTand block the func-
tion of RT (unlike indinavir and nevirapine in the following) but
rather to compete with natural dNTPs for incorporation into the
newly synthesized DNA chains where it causes chain termination.
Therefore, we cannot investigate its structural basis of resistant
mutations by using MD simulations and free energy decomposi-
tions. To date, three biochemical mechanisms of NRTI drug
resistance have been uncovered or proposed (3, 17). These
different resistance mechanisms seem to correlate with different
sets of mutations in RT (17), but further biochemical investiga-
tions are needed to confirm which mechanism corresponds to
which independent mutation set (SI Text). Unlike NRTIs,
NNRTIs bind to a hydrophobic pocket in RT close to the active
site and their binding can block the catalytic activity of RT. The

RT mutations resistant to NNRTIs often occur in the hydropho-
bic binding pocket to deteriorate the inhibitors’ binding.

We have analyzed two RT-related datasets in the Stanford
HIVdb by using our statistical procedure: for zidovudine, 339
HIV-1 type B RT sequences from zidovudine-treated patients
and 2187 sequences (HIV-1 type B) from untreated patients
contain mutations at each position of the 190aa-long polypeptide
sequences (from position 31 to 220 of RT); for nevirapine, 380 RT
sequences from nevirapine-treated patients and 1622 RT se-
quences from untreated patients (both HIV-1 type C) correspond
to the same 190aa-long region as in the zidovudien data. Any
combination of mutations among these 190 positions may be
related to the virus’ drug resistance capability. Our goal is to find
those positions that are either independently or interactively
associated with each of the treatments.

Interaction Patterns for Drug Resistance of Zidovudine. Fig. S3A
shows the interactively associated mutations the BVP model
found, all of which are on the drug resistance mutation list.Ta-
ble S2 shows all the mutation interaction patterns we found.
The top three have a posterior probability >0.25. We have also
checked the detailed configurations of the top interaction pat-
terns with the phenotypic data [fold resistance from the Stanford
HIVdb (Table S4), which provide confirming evidence for the sig-
nificant ones (after Bonferroni corrections).

As shown in Fig. S3B, the RMS procedure decomposed the set
of interactingmutations f41; 67; 70; 210; 215; 219g into three inde-
pendent groups: f41; 210; 215g for group one, f67; 219g for group
two, and 70 for group three. For group one, it has been observed
thatmutations betweenM41L,L210W, andT215Y/F tend to occur
together (3, 1819–20). We also inferred that L210Wappears after
T215Y/F, which is consistent with crystallographic studies. The
aromatic side chain of Trp 210 can stabilize the interaction of
Phe/Tyr215 with the dNTP-binding pocket (19). For group two,
it has been observed earlier that these twomutations usually occur
together (3) The finding that position 70 is independent of the
others suggests that the R → K reversion of residue 70 may repre-
sent a compensatory mechanism allowing a functional rearrange-
ment of the dNTP-binding pocket in the mutated RT (19).

No Interactions Among Nevirapine-Resistant Mutations.Our analyses
of the nevirapine data suggested that the interactions among ne-
virapine-resistant mutations are very weak. As shown in Fig. S4A,
the posterior probabilities for mutations 103, 181, 188, and 190 to
interact are reasonably high under one prior distribution, whereas
these probabilities diminished to near zero when another prior is
used. Fig. S4B shows the total posterior probability for a mutation
to resist to the drug, indicating that the results from using the two
priors are consistent. Six mutations, 103, 106, 135, 181, 188, and

Table 1. The binding free energies and the energy components calculated by MM/GBSA (kcal∕mol)

No. ΔEvdw ΔEele ΔGGB ΔGSA ΔEele þ ΔGGB ΔEvdw þ ΔGSA ΔGcal ΔΔGcal *

WT −80.00 ± 0.16 †
−25.59 ± 0.35 33.97 ± 0.35 −9.87 ± 0.06 8.37 ± 0.00 −89.87 ± 0.22 −81.50 ± 0.46 0.00

Group 1
M46I −77.43 ± 1.85 −24.01 ± 0.39 34.46 ± 0.37 −10.32 ± 0.64 10.44 ± 0.76 −87.74 ± 1.21 −77.30 ± 0.45 4.20
I54V −82.99 ± 0.26 −25.38 ± 0.21 36.13 ± 0.16 −9.25 ± 0.57 10.74 ± 0.37 −92.24 ± 0.83 −81.50 ± 0.46 0.00
V82A −75.98 ± 1.27 −24.67 ± 0.10 34.54 ± 0.13 −9.56 ± 0.00 9.87 ± 0.23 −85.54 ± 1.27 −75.67 ± 1.50 5.83
M46I/I54V −83.26 ± 1.05 −22.01 ± 1.23 34.19 ± 1.44 −9.98 ± 0.06 12.18 ± 0.21 −93.24 ± 1.11 −81.06 ± 0.90 0.44
M46I/V82A −70.84 ± 2.86 −24.92 ± 1.87 33.96 ± 1.40 −9.67 ± 1.43 9.04 ± 0.47 −80.52 ± 4.29 −71.48 ± 4.76 10.02
I54V/82A −71.84 ± 0.64 −19.62 ± 0.92 31.08 ± 1.06 −9.82 ± 0.01 11.46 ± 0.13 −81.66 ± 0.63 −70.20 ± 0.77 11.30
M46I/I54V/
V82A

−79.58 ± 0.91 −19.09 ± 0.17 29.89 ± 0.41 −8.92 ± 0.59 10.79 ± 0.24 −88.50 ± 0.33 −77.71 ± 0.08 3.79

Group 2
G73S −78.79 ± 0.50 −24.76 ± 0.51 33.26 ± 0.14 −10.36 ± 0.67 8.50 ± 0.37 −89.15 ± 0.17 −80.65 ± 0.54 0.85
L90M −80.56 ± 0.32 −27.13 ± 0.33 35.59 ± 0.06 −9.78 ± 0.06 8.46 ± 0.39 −90.33 ± 0.38 −81.87 ± 0.00 −0.37
G73S/L90M −81.31 ± 0.37 −22.89 ± 0.19 33.01 ± 0.05 −9.80 ± 0.00 10.12 ± 0.24 −91.11 ± 0.38 −80.99 ± 0.14 0.51

*ΔΔGcal is the difference between the binding free energy of the mutated complex and that of the wild-type.
†Standard deviations were estimated from two block average values.
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190, have posterior probabilities >0.99 under both prior distribu-
tions. All but mutation 135 are on the drug resistant mutation
list (5, 20). Some other positions with slightly lower posterior
probabilities are also of interest. For example, it was known that
K101E causes low-level resistance to each of the NNRTIs (3).
The independent effects of the mutations 103, 106, 181, 188,
and 190 are further confirmed by using the RMS procedure.

We have conducted molecular dynamics simulations and free
energy calculations for the single mutations we found for nevira-
pine. The predicted binding free energies and the corresponding

energy components for the wild-type and five mutated RT/nevi-
rapine complexes are shown in Table 2. The nevirapine/RT
residue interactions in each of the mutated complexes and the
wild-type complex were decomposed and compared systemati-
cally in Fig. S2. Interestingly, we found that K103Nmutation does
not significantly change the binding mode of nevirapine in the
active site of RT, which is consistent with previous studies
(21). For the other mutations, the loss of the binding of the mu-
tated residue is an important contributor to the loss of the binding
free energies of nevirapine (SI Text).

Fig. 3. Energetic and structural insight of the resistance mechanism. A1: The difference between each residue’s contribution to the interaction with indinavir
in (A1) theM46I/I54V and theM46I; (A2) the I54V/V82A and the V82A. ΔΔGwas calculated by subtracting each residue’s interaction energy in the single mutant
(e.g., M46I) from the double mutant (M46I/I54V). Residues with absolute value greater than 0.75 kcal∕mol are labeled. Structural distributions of important
residues in Fig 3 A1 and A2 are shown in B1 and B2, resp. The protease is shown in Blue Strand and indinavir in Green Stick. Residues with negative and positive
ΔΔG’s, which represent residues contributing more and less favorably to binding with indinavir in the double mutant (e.g., M46I/I54V) than in the single
mutant (e.g., M46I) resp., are shown in Red and Green CPK models, resp. The favorable residues to the binding of indinavir to the M46I/54V mutant are
shown as the Red CPK model and those of the unfavorable residues as the Green CPK model. Alignment of the average structure of the double and single
mutant complexes (C1) between M46I/54V and M46I mutated; (C2) between I54V/V82A and V82A. The average structure was obtained by averaging the 125
snapshots taken from 0.5–3.0 ns MD simulations. The double (e.g., M46I/I54V) and single (e.g., M46I) protease mutants are shown in Blue and Green strands,
resp. Indinavirs bound to the double (e.g., M46I/I54V) and single (e.g., M46I) are shown in Red andGreen Sticks, resp. The Pink Arrow shows the configurational
change of indinavir in the two complexes. The cooperation between, for example, V54 and A82 significantly changes the active site’s conformation that further
enhances resistance caused by the mutation at position 82 alone. The conformational change is manifested in the alignment of the average structures of the
double (e.g., I54V/V82A) and single (e.g., V82A) mutant complexes.
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Discussion
We have proposed a unique procedure that combines Bayesian
statistical modeling with molecular dynamic simulations to inves-
tigate complex interactions of drug resistance mutations of the
HIV-1 protease and reverse transcriptase. The interacting muta-
tions we have inferred, solely based on the data of treated and
untreated HIV-1 sequences isolated from AIDS patients, agree
very well with the drug resistance mutation list (updated spring
2008) (5). More importantly, our method can also delineate the
complicated interactions among these mutations, revealing inde-
pendent groups (related with different resistant mechanisms) and
conditional independence relationship (indicating sequential
occurrence of mutations). The follow-up MD simulations and
free energy analyses reveal that mutations at positions 46, 54,
and 82 of the protease directly affect the binding of indinavir,
whereas mutations at 73 and 90 do not, and the additional muta-
tion I54V neutralizes the resistance caused by M46I while ampli-
fying the one caused by V82A.

Most published works (7, 8, 23) attempted to predict phenotype
(e.g., fold change) from genotype by using genotype-phenotype
data from Stanford HIVdb. The phenotype data, unfortunately,
were measured in vitro. Due to complex disease progression
and other pharmacokinetic factors, the fold change measured in
vitro does not necessary imply virologic failure in vivo (3). In con-
trast, our Bayesian method is not designed to predict phenotypes,
but constructed to detect mutation patterns associated with drug
treatment by using only the genotype-treatment data.

Among all the published methods (7, 8, 23, 24) that are related
to our study, the one by Haq et al.(24) is most closely related.
They attempted to achieve a similar goal by using similar datasets.
Technically, their method tests individually all two-way and three-
way mutation interactions for associations with drug treatment,
and then selects significant terms to fit a full log-linear model
with up to three-way interactions. They found many significant
two- and three-way interactions, and a log-linear model with
15 positions. Although many of their findings are consistent with
ours, Haq et al. (23) did not aim to and could not pin down the
detailed interaction structures as we reported here that can lead
to testable biological hypotheses (12, 13) and are to be verified
biophysically. The lack of such an interaction structure, generally,
makes it difficult to interpret the results. In addition, their ex-
haustive search and model building strategies may both be expen-
sive to scale up and tend to miss high-order dependence
structures (9) that are critical in revealing the molecular basis
of drug resistance (e.g., the order of mutations of positions
f46; 54; 82g to cause resistance).

There are still many complications that have not been consid-
ered in our current model. For example, our HIV data are from
all over the world (downloaded from the Stanford HIVdb). It is
possible that there are multiple subpopulations in both treated
and untreated populations. Thus, population structure and pos-
sibly other factors may bias our statistical analysis, which is why it
is important to conduct the follow-up molecular dynamic compu-
tations. Another issue is the quasi-species nature of HIV-1. The
HIV-1 population within an individual consists of innumerable

variants and minor variants that often go undetected (3). It is
possible that our data underrepresented those minor variants.

Furthermore, HIV-1 drug resistance can be not only acquired
(developing in a person receiving antiretroviral treatment) but
also transmitted (occurring because a virus with drug-resistance
mutations was transmitted to a drug-naive person) (14). In recent
years, the transmitted resistance occurrence has been increasing
due to scaled-up antiretroviral treatments. In Europe, North
America, and Brazil, it has been reported that the prevalence
of drug resistance ranges from 5–15% in newly diagnosed
individuals (14). Because our untreated sequence data were col-
lected from 1982 to 2005, it is possible that there are several
transmitted drug resistant sequences in the untreated group that
may affect both the sensitivity of our BVP algorithm and the
power of our Bayesian model structure inference method.
Because there are many antiretroviral drugs, cross-resistance is
a severe and practical problem (3).

Nevertheless, this proof-of-concept study has demonstrated
that the insights obtained from MD simulations guided by the
Bayesian inference can shed light on how to improve the potency
of drugs to combat resistance. We believe that this procedure
can be generalized and applied to study drug resistance in other
infectious diseases, antibiotics, or cancer cells.

Methods and Materials
Bayesian Variable Partition Model. Suppose there are Nt sequences in the
drug-treated sample and Nu sequences in the untreated sample. Each se-
quence is of p-residues long, and residue type Xj at position j can be one
of Lj-possible amino acids. The dataset consists of observations on the status
(or response) variable Y of each sequence, that is , zero if it is from an un-
treated person and one if from a treated person, and its p, “explanatory”
variables, X1;…; Xp (i.e., the sequence). The Nt sequences are assumed to
be independent and identically distributed (IID) observations of the variables
X1;…; Xp from the treated population and the Nu sequences are IID observa-
tions of these variables from the untreated population.

The Bayesian variable partition (BVP) model seeks to partition the p vari-
ables into three groups: G0 for variables unlinked to the response variable
Y ,G1 for variables associated independently with Y , and G2 for variables
jointly associated with Y . Let the vector I ¼ ðI1;…; IpÞ indicate memberships
so that Ij ¼ k if Xj is in group k. The BVP model postulates that, for indi-
vidual i,

PðXi1;…;XipjY i;IÞ¼
�Y

Ij¼0

PðXijÞ
��Y

Ij¼1

PðXijjY iÞ
�
PðXi;G2

jY iÞ;

where we define Xi;G2
¼ fXij∶Ij ¼ 2g. Let ðX;YÞ be the observed data with

N ¼ Nt þ Nu including both treated and untreated. We have the joint poster-
ior distribution:

PðX;IjYÞ¼PðXjI;YÞπðIÞ

¼πðIÞ
YN
i¼1

��Y
Ij¼0

P0ðXijÞ
�

×
�Y

Ij¼1

P1ðXijjY iÞ
�
P2ðXi;G2

jY iÞ
�
;

assuming that the partition indicator I and Y are mutually independent a
priori. Note that I is the same for all individuals and πðIÞ is its prior distribu-

Table 2. The binding free energies and the energy components calculated by MM/GBSA (kcal∕mol)

ΔEvdw ΔEele ΔGGB ΔGSA ΔEele þ ΔGGB ΔEvdw þ ΔGSA ΔGcal ΔΔGcal *

Wild −41.90 ± 0.04 †
−3.75 ± 0.50 17.62 ± 0.23 −4.92 ± 0.03 13.88 ± 0.27 −46.81 ± 0.01 −32.94 ± 0.26 0.00

G190A −39.67 ± 0.27 −1.82 ± 0.48 16.47 ± 0.42 −4.90 ± 0.02 14.64 ± 0.06 −44.57 ± 0.25 −29.92 ± 0.18 3.02
K103N −42.57 ± 0.13 −3.59 ± 0.13 18.83 ± 0.02 −4.87 ± 0.01 15.24 ± 0.15 −47.46 ± 0.14 −32.22 ± 0.29 0.72
V106A −41.31 ± 0.27 −5.31 ± 0.95 18.25 ± 0.49 −4.87 ± 0.02 12.94 ± 0.46 −46.18 ± 0.26 −33.24 ± 0.72 −0.30
Y181C −41.53 ± 0.56 −6.47 ± 0.46 19.73 ± 0.22 −4.92 ± 0.02 13.62 ± 0.24 −46.45 ± 0.58 −33.19 ± 0.34 −0.25
Y188C −39.42 ± 0.27 −4.28 ± 0.92 19.21 ± 0.73 −5.11 ± 0.00 14.92 ± 0.18 −44.53 ± 0.27 −29.61 ± 0.09 3.33

*ΔΔGcal is the difference between the binding free energy of the mutated complex and that of the wild-type.
†Standard deviations were estimated from two block average values.
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tion. We model P0ðXijÞ by a multinomial distribution (it is independent of Yi

because the variable is in group zero), denoted as multinom (θj), with θj fol-
lowing a Dirichlet distribution a priori. Similarly, we model P1ðXij jYiÞ by mul-
tinom (θj;Yi

) with θj;Yi
following a Dirichlet prior and model P2ðXi;G2

jYiÞ by
multinom (ΘG2 ;Yi

). For Yi ¼ 1 (treated), the dimension of ΘG2 ;1 is equal to
the cardinality of the support of Xi;G2

and ΘG2 ;1 follows a Dirichlet prior.
Ideally, all mutation positions among the untreated sequences (Yi ¼ 0)

should be mutually independent. Complications may arise, however. We thus
introduce a model indicator variable Jun (same for all untreated individuals)
so that the independence prior model ΘG2 ;0 ¼ Q

j∈G2
θj;0 holds only when

Jun ¼ 0, with θj;0 following a Dirichlet distribution; ΘG2 ;0 is fully saturated
as ΘG2 ;1 when Jun ¼ 1, following a full Dirichlet distribution. We observed
that Jun ¼ 0 in most cases, that is, the mutations in G2 are mutually indepen-
dent for untreated individuals. Conditional on I and Jun, we can integrate out
all the multinomial parameters so as to have the posterior distribution of
ðI; JunÞ. A Markov chain Monte Carlo (MCMC) algorithm (9) can be designed
to sample from this posterior distribution so as to infer which variables are
associated with the treatment status. More details on BVP can be found in
SI Text.

Recursive Model Selection. In the above BVP model, variables in G2 are not
given any simplifying dependence structure, which in statistical term means
that a “fully saturated” model was used. However, in practice, often a much
more desirable and simpler model that takes advantage of conditional inde-
pendence relationships among the variables can fit the data well. A possible
approach is to infer a complete Bayesian network for all the variables in G2.
But this is computationally expensive and tends to over fit the limited
amount of data. Our strategy is to first infer among two classes of cruder
models, that is, the chain-dependence model and the V-dependence model,
and then recursively apply this strategy until the data do not support more
detailed models.

We say that a group of variables XG follow a chain-dependence model if
the index set G can be partitioned into three subgroups A, B, and C such that
XA and XC are independent given XB, such as XA → XB → XC . Only set C is

allowed to be empty, in which case this model degenerates to the saturated
model. Under the chain-dependence model, we can decompose the joint dis-
tribution of XG as: PðXGÞ ¼ PðXAÞPðXBjXAÞPðXC jXBÞ (Fig. S5A). We say that
XG follow a V-dependence model if XA and XC are mutually independent,
that is, PðXGÞ ¼ PðXAÞPðXC ÞPðXBjXA; XCÞ. In this case, XB can be viewed as
“children” of XA and XC (Fig. S5B). Although these models are not fully iden-
tifiable, RMS attempts to land in the best equivalent class of models.

We define a model indicator ICV, which is equal to one for the chain-
dependence model and zero for the V-dependence model. We let Π denote
the set partition, that is, indicating which indices in G belong to which subset.
In SI Text, we detailed the model likelihoods for the two competing models
conditional on the partition Π, that is, PðDjΠ; ICV ¼ 1Þ and PðDjΠ; ICV ¼ 0Þ,
where D denotes all the data. Assuming an equal prior probability for ICV,
we have that:

PðΠ;ICV jDataÞ∝PðDatajΠ;ICV ÞPðΠÞPðICV Þ: [1]

Here PðDjΠ; ICV ¼ 1Þ and PðDjΠ; ICV ¼ 0Þ can be computed, respectively, by
using formulas (S5) and (S9) of SI Text. An MCMC algorithm is designed to
simulate from (1) and to find the optimal model type and variable partition.
The procedure is applied recursively until only single-variable nodes are avail-
able. We applied RMS to both treated data and untreated data separately.
Fig. 2 illustrates the structure we found in the treated data (Fig. S7 shows the
details of recursion). In contrast, we could not find an unambiguous structure
in the untreated data.
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