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Techno-economic assessment of the need for bulk energy storage in low-carbon electricity systems with a 

focus on compressed air storage (CAES) 

Abstract 

Increasing electrification of the economy while decarbonizing the electricity supply is among the most 

effective strategies for cutting greenhouse gas (GHG) emissions in order to abate climate change. This thesis 

offers insights into the role of bulk energy storage (BES) systems to cut GHG emissions from the electricity 

sector. 

Wind and solar energies can supply large volumes of low-carbon electricity. Nevertheless, large penetration 

of these resources poses serious reliability concerns to the grid, mainly because of their intermittency. This 

thesis evaluates the performance of BES systems Ȃ especially compressed air energy storage (CAES) 

technology Ȃ for integration of wind energy from engineering and economic aspects. 

Analytical thermodynamic analysis of Distributed CAES (D-CAES) and Adiabatic CAES (A-CAES) suggest high 

roundtrip storage efficiencies (~80% and 70%) compared to conventional CAES (~50%). Using hydrogen to 

fuel CAES plants Ȃ instead of natural gas Ȃ yields a low overall efficiency (~35%), despite its negligible GHG 

emissions. 

The techno-economic study of D-CAES shows that exporting compression heat to low-temperature loads (e.g. 

space heating) can enhance both the economic and emissions performance of compressed air storage plants. 

A case study for Alberta, Canada reveals that the abatement cost of replacing a conventional CAES with 

D-CAES plant practicing electricity arbitrage can be negative (-$40 per tCO2e, when the heat load is 50 km 

away from the air storage site). 

A green-field simulation finds that reducing the capital cost of BES Ȃ even drastically below current levels Ȃ 

does not substantially impact the cost of low-carbon electricity. At a 70% reduction in the GHG emissions 

intensity of the grid, gas turbines remain three times more cost-efficient in managing the wind variability 
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compared to BES (in the best case and with a 15-minute resolution). Wind and solar thus, do not need to wait 

for availability of cheap BES systems to cost-effectively decarbonize the grid. The prospects of A-CAES seem 

to be stronger compared to other BES systems due to its low energy-specific capital cost.   
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Chapter 1: Introduction 
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Decarbonizing the electricity supply is a ǲkey component of cost-effective mitigation strategies ȏforȐ ǥ 
stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous 

anthropogenic interference with the climate system (430Ȃ530 ppm CO2e in ʹͳͲͲȌǳǡ according to the Fifth 

Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) [1]. The importance of the 

electricity sector in the climate change discussion is due to its large share of anthropogenic greenhouse (GHG) 

emissions. In the United States for instance, this sector was responsible for ~32% of the total, or ~40% of the 

energy-related emissions in 2012 [2]. The Fifth Assessment Report of IPCC calls for an 80% market share for 

low-carbon electricity technologies (i.e. renewables, nuclear, and carbon capture and sequestration) by 2050. 

This 2.7 fold increase requires global determination and collaboration to urgently transform the electricity 

sector.  

The purpose of this dissertation is to examine the role of bulk energy storage (BES) technologies, especially 

compressed air energy storage (CAES), from engineering and economic perspectives for managing the 

intermittency of wind-based electricity, with the ultimate goal of reducing GHG emissions from the electricity 

supply.  

Various policy measures have been proposed to decarbonize the electricity sector due to its substantial GHG 

emissions and relatively low abatement costs. The Clean Power Plan, proposed by the United States 

Environmental Protection Agency (EPA) in June 2014, is the newest and most ambitious effort of the federal 

government to cut the CO2 emissions from power plants. This EPA proposal provides a mix of four strategies 

(building blocks) to different states in order to meet their emissions reduction targets for the 2020-30 period. 

It is estimated that the proposed EPA regulation will reduce the carbon emissions from the United Stateǯs 
electricity sector by ~30% from the 2005 levels by the year 2030 [3].  

Wide use of renewable energies (in conjunction with nuclear) is among the four building blocks of the Clean 

Power Plan. Over the past few decades, there has been a massive growth in renewable-based electricity, both 

in the United States and around the globe. The Renewable Portfolio Standards (RPS), which are currently in 

place in 29 states and the District of Columbia, and the federal Production Tax Credit (PCT) program have 

been key to fostering renewables in the United States. 
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Low capital costs, widespread resources, small land footprint, and negligible emissions are among the 

important factors that have made wind energy an attractive renewable source for electricity generation. Wind 

currently accounts for 2.5% of global electricity production (second to hydro in the renewables category). 

The International Energy Agency (IEA) calls for a boost in the market share of wind to 15-18% by 2050 to 

limit the global mean temperature increase to 2 ιC. This scenario translates to a global cumulative wind 

capacity of ~2300 GW, compared to only ~319 GW in 2013 [4].  

The need for such high penetrations of wind, an intermittent and uncertain resource, can undermine the 

resilience of the electric power grid. Currently, the variability in the output of renewables is mostly managed 

by flexible gas turbines. Deep decarbonization mandates will necessitate the limitation of such fossil-fuel 

based solutions. Various storage technologies, such as electrochemical batteries and molten salt heat storage, 

have been under development as pathways to support integration of intermittent renewables without 

substantial GHG emissions. Electricity storage systems can also limit the curtailment of wind and solar, lower 

the need for transmission buildup, and reduce cycling of baseload plants and dispatching of peaking fossil fuel 

plants [5].  

Technologies for bulk electricity storage (BES), on the order of 10s of MW-hours, are of particular interest for 

integration of wind at grid-scale. This is because strong fluctuations in the power output of wind farms Ȃ even 

in the case of interconnected farms Ȃ occur over long time scales (on the order of hours to days) [6, 7]. Low 

energy-to-power capacity ratios and high capital costs disfavor most existing storage systems for bulk storage 

applications. Compressed air energy storage is a relatively mature technology with attractive economics 

compared to other BES systems that can potentially support integration of wind at scale [8-10]. Nevertheless, 

prospect of the conventional CAES technology may be poor if the grid is to be deeply decarbonized. This is 

due to the need of conventional CAES to combust a heating fuel (often natural gas) in order to heat the 

compressed air prior to expansion and power generation. Heating the air prevents freezing of the moisture 

present in the compressed air, which can damage the turbomachinery. Fuel combustion also boosts the work 

output of the air storage facility in contrast to solely harnessing the mechanical energy stored in the 

compressed air. A means to reduce or even eliminate the natural gas demand of CAES is recovering and 
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utilizing the compression heat generated during the air storage phase. This heat is rejected to the ambient 

environment in the conventional CAES configuration because of its low temperature.  

This thesis offers a series of engineering and economic analyses to assess the need for and the 

competitiveness of bulk storage of electricity to manage the intermittency of wind in low-carbon electricity 

systems. Chapters 2 through 4 focus on comparisons between selected advanced CAES designs that can 

potentially achieve a lower GHG emissions intensity and the conventional CAES system. Chapter 5 broadens 

the scope of the analysis and examines the cost-competitiveness of BES technologies in general, as well as in 

comparison to selected other decarbonization pathways such as gas turbines and nuclear. This dissertation is 

a compilation of four papers, three of which are published and one is under the peer-review process. Each 

chapter is based on one of the papers and begins with a preface, which serves two primary functions: (1) 

contextualize the chapter within the thesis; and (2) clarifies the key assumptions and resolves inconsistencies 

between papers as they developed over the course of study. 

Chapter 2 assesses the thermodynamics of three strategies, which utilize the heat of air compression to 

lower/eliminate the natural gas demand of the compressed air storage plants. An analytical model is 

developed to quantify key figures of merit such as roundtrip exergy efficiency and GHG emissions intensity of 

these advanced CAES systems and to compare them with the conventional CAES design.  

Export of the low-temperature heat of compression to supply an external load (e.g. space heating) is the core 

of Distributed CAES (D-CAES) system, the first advanced design analyzed in Chapter 2. The D-CAES facility is 

credited for the negated consumption of heating fuel to meet the external load; hence, the net (apparent) fuel 

consumption of D-CAES is lower than of the mainstream CAES. 

The heat of compression can alternatively be stored and utilized to heat the compressed air itself during the 

discharge process provided that temperature of the stored heat is high enough (e.g. 600 °C). Increasing the 

operating pressure of the compressors and limited or no use of intercooling (i.e. adiabatic compression) is the 

primary method for achieving such high temperatures. 

Physical storage of the high-temperature heat of compression is the core of the Adiabatic CAES (A-CAES) 

concept, the second low-carbon compressed air storage technology investigated in Chapter 2. Chemical 



5 
 

storage of the compression heat in the form of hydrogen and combustion of hydrogen later during the 

discharge phase is the third strategy analyzed in Chapter 2. Hydrogen can be produced via electrolysis at high 

temperatures (CAES-HTE) or at ambient (low) temperatures (CAES-LTE). The CAES-HTE concept relies on 

the fact that electricity demand of electrolysis decreases as the temperature of the reaction is raised. 

Therefore, utilizing the high-temperature heat of compression can reduce the electricity intensity of hydrogen 

production. These savings are achieved at the expense of higher electricity demand of the air compressors of 

the CAES-HTE plant, which now operate at higher pressures with limited or no cooling. The CAES-LTE 

concept is, however, comparable to the conventional CAES system (diabatic compression). The hydrogen 

produced by a low-temperature electrolyzer fuels the combustor of CAES-LTE, instead of natural gas in the 

conventional CAES configuration though. Chapter 2 finds that the D-CAES and A-CAES systems have a higher 

theoretical roundtrip efficiency (~80% and ~70%, respectively) compared to the conventional CAES (~50%), 

CAES-HTE (~35%), and CAES-LTE (~35%) designs.  

Chapter 3 focuses on GHG emissions and economic performance of D-CAES and evaluates its competitiveness 

with the conventional CAES and gas turbines to manage intermittency of wind at a systems level. On one 

hand, the D-CAES concept is more capital intensive compared to conventional CAES, primarily due to the need 

for a pipeline to transport the compressed air from the generation to the storage site. The compressor of 

D-CAES is relocated from the storage site (the case for conventional CAES) to the heating load site. On the 

other hand, the sales of the otherwise-wasted heat of compression bring in revenues for D-CAES, especially 

under emissions constraints. 

The trade-off between higher capital cost, higher revenues, and lower emissions of D-CAES in comparison to 

conventional CAES is evaluated in Chapter 3 from a systems-level point of view. A green-field analysis is 

performed in which the size and hourly operations of a hypothetical generation portfolio are optimized to 

meet a variable load at the minimum total cost. Wind, gas turbines (simple and combined cycle), and either 

conventional CAES or D-CAES compete for market share of electricity supply while a variable carbon tax is 

enforced. Results of the analysis suggest that gas turbines manage the intermittency of wind more cost-

effectively compared to both CAES and D-CAES below a carbon tax of $40/tCO2e (with a gas price of $5/GJ, a 

50 km pipeline, and with the specific wind profiles and electricity and heat loads used in Chapter 3). D-CAES 
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however, turns out to be more attractive than conventional CAES from both economic and emissions 

perspectives at higher emissions taxes. 

While Chapter 3 assesses the performance D-CAES at a systems level, Chapter 4 investigates a market niche 

for stand-alone D-CAES plants: performing energy arbitrage in deregulated electricity markets. Chapter 4 

addresses two key questions with respect to D-CAES: 

1. Can D-CAES be economically superior to conventional CAES for the arbitrage application? And what 

might be the effects of market conditions (price of electricity and gas) on its performance? 

2. How realistic it might be to site a suitable geologic formation in the vicinity of a large, concentrated 

heating load, which is the inherent requirement of D-CAES in the real world? 

The economic attractiveness of merchant D-CAES plants can stimulate research and development (R&D) 

efforts to prove the concept and improve its effectiveness for wind integration. 

Chapter 4 evaluates the economics and GHG emissions of two hypothetical D-CAES and conventional CAES 

facilities performing electricity arbitrage in the Alberta (Canada) wholesales market. Ten years of historical 

data for the price of electricity and natural gas are used to analyze the effects of market conditions. In 

addition, a geological screening of the gas reservoirs within a 100 km radius of the major cities in Alberta is 

presented to inform the question regarding the likelihood of finding an appropriate geologic formation for air 

storage and the most binding geological constraints. 

The analyses carried out in Chapters 2 through 4 suggest that the D-CAES concept could be both economically 

and environmentally preferable compared to the conventional CAES design. The core requirement of D-CAES 

for a suitable geologic formation in close proximity of a large heating load would, however, prevents D-CAES 

from acting as a scalable technology to support wind integration. 

Chapter 5 attempts the fundamental question of how cost-efficient bulk storage technologies are in general to 

support integration of intermittent renewables (especially wind) and to deeply decarbonize the electricity 

supply. It also examines the cost-competitiveness of specific bulk storage technologies in this context, both at 

their current costs and with drastic cost reductions. 



7 
 

The impacts of the capital cost of BES systems on the total cost of electricity supply and on the optimal 

penetration level of wind are evaluated in Chapter 5. A green-field approach is used to meet a variable electric 

load at the minimum total cost in a carbon-constraint world. A generation fleet made up of wind, gas turbine 

(simple and combined cycles), bulk storage, and a generic dispatchable-zero-carbon technology (e.g. biomass, 

nuclear) is sized and dispatched in this simulation. The GHG emissions intensity of the fleet is the key constraintǡ which is systematically reduced from the ǲbusiness as usualǳ scenario ȋno emissions limitȌ to a 
carbon-free case. The primary variables are the specific-energy ($/kWh) and specific-power ($/kW) capital 

cost of the bulk storage system. Parametric modeling, rather than adopting point estimates for the cost of 

storage, enables studying the effects of reducing the power- and energy-specific costs of various BES 

technologies. These parameters are varied significantly to investigate how drastic reductions in the cost of 

BES technologies might impact the final assessment. The simulation reveals cost-effectiveness of the A-CAES 

and pumped hydro storage (PHS) technologies for wind integration and bulk storage applications, compared 

to electrochemical batteries. The economics of conventional CAES turn out to be very poor due to its non-

negligible GHG emissions, despite the fact that it has one of the lowest capital cost figures among the BES 

technologies analyzed. 

Taken as a whole, this PhD dissertation uses a series of engineering and economic analyses to shed light on 

the need for bulk storage technologies to integrate wind energy at scale and substantially curb the emissions 

from the electricity sector. It also provides solutions to improve the emissions performance of compressed air 

storage technologies to become a more effective tool in our carbon mitigation toolbox. The results and 

conclusions of this thesis can inform R&D efforts as well as energy policy debates on the relative importance 

of various bulk storage systems for the cost-effective management of wind and solar intermittency. 
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Chapter 2: Thermodynamic analysis of four compressed air energy 

storage designs: Conventional CAES, D-CAES, A-CAES, and CAES-HTE1 

 

  

                                                                    
1 A condensed version of the thermodynamic analysis of conventional CAES and D-CAES described here is 
published as: Safaei, H. and M. J. Aziz. Thermodynamic analysis of a compressed air energy storage facility 
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Preface 

This chapter presents thermodynamic analysis of selected compressed air energy storage systems that have 

lower greenhouse gas emissions compared to the conventional CAES design. This analytical study quantifies 

several figures of merit of the conventional CAES, distributed CAES (D-CAES), adiabatic CAES (A-CAES), and 

CAES fueled by hydrogen produced via electrolysis (CAES-HTE and CAES-LTE systems).  

Although it is currently among the cheapest and most mature technologies for storage of electricity at utility 

scales, prospect of conventional CAES may be poor in low-carbon electricity systems. This shortcoming is due 

to the need of conventional CAES technology to combust natural gas during its discharge process (at levels of 

4 GJ/MWh, which leads to emissions intensities of ~260 kgCO2eȀMWhȌǤ Several ǲgreenerǳ compressed air 
storage designs have been proposed to reduce the fossil fuel dependence of this technology in order to 

increase its environmental and economic competitiveness for decarbonizing the electricity supply. 

While the next three chapters mainly concentrate on the economics of bulk energy storage systems, this 

chapter is solely concerned with the thermodynamic performance of selected low-carbon compressed air 

storage concepts. The systems analyzed include: 

 Conventional CAES: This is the basic (mainstream) CAES design and is modeled to benchmark the 

performance of the advanced CAES systems. The heat of compression is dissipated to the ambient 

environment during the charging period in the conventional CAES. The plant relies on combustion of 

fossil fuels (often natural gas) to heat the expanding air during the discharge phase. 

 Distributed CAES (D-CAES): A new design, which has lower net (apparent) fuel consumption than the 

conventional CAES system. The otherwise-wasted heat of compression is utilized for district heating 

applications. The D-CAES plant is credited for the negated consumption of heating fuel in the district 

heating system, hence, the net emissions intensity of D-CAES is lower than of conventional CAES. 

 Adiabatic CAES (A-CAES): The high-temperature heat of compression is physically stored onsite to 

heat the expanding air during the power generation phase in this zero-carbon CAES design. The need 

for fuel combustion is, therefore, eliminated. 
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 CAES fueled by hydrogen generated onsite via electrolysis of steam at high temperatures (CAES-HTE): 

Hydrogen can fuel the combustor of compressed air storage plants (instead of natural gas in the 

conventional CAES) to eliminate GHG emissions of the storage facility. In the CAES-HTE configuration, 

the high-temperature heat of compression is fed into an electrolyzer along with electricity to produce 

and store hydrogen at the same time as the compressed air production. CAES-HTE has negligible GHG 

emissions similar to A-CAES, in contrast to conventional CAES and D-CAES. A simpler version of the 

hydrogen-fueled CAES system can include generating hydrogen via electrolysis of water (instead of 

steam in the CAES-HTE system) at the ambient temperature (i.e. low-temperature electrolysis, LTE). 

Thermodynamics of this system are also studied. CAES-LTE has a higher electricity demand for the 

electrolysis process but lower compression requirements compared to CAES-HTE. 

The key parameters of interest Ȃ from a thermodynamic point-of-view Ȃ are the roundtrip exergy efficiency, 

work ratio, heat rate, GHG emissions intensity, and exergy density of the storage plant. Quantifying these 

parameters is integral for any comprehensive techno-economic study assessing the potential and importance 

of various compressed air storage technologies, as possible building blocks of prospective low-carbon grids. 

The thermodynamic modeling of CAES systems is presented in two sections. Section 3 of this chapter 

compares the D-CAES with conventional CAES. This is because D-CAES is a minor variation of conventional 

CAES and both systems have fossil fuel dependence and non-negligible GHG emissions. Section 4 of this 

chapter focuses on the zero-carbon configurations, i.e. A-CAES, CAES-HTE, and CAES-LTE.  

The analytical study presented in this chapter can provide the foundation for and inform a more thorough 

assessment of various CAES designs in future. Treating compressed air as an ideal gas with temperature-

independent specific heat is a shortcoming of the analysis undertaken. Additionally, heat transfer in the air 

storage, in the thermal storage units (applicable to A-CAES and D-CAES), and along the pipeline (for D-CAES) 

are not modeled. These simplifications overestimate the thermodynamic performance of compressed air 

energy storage systems. Using more complex analytical models or simulation software products can improve 

the robustness of the results regarding the engineering performance of low-carbon CAES systems. 
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1- Introduction 

The compressed air energy storage (CAES) technology rests on storing electricity in the form of the potential 

energy of compressed air. As shown in Figure 1, electricity is purchased from the grid during the charging 

phase to run the compressor of CAES. Compressed air is stored for later use Ȃ often in an underground cavern 

to keep the costs low. During the discharge phase, compressed air is withdrawn, combusted with a fuel, and 

expanded in a turbine (expander) to generate electricity. A CAES facility is very similar to a simple cycle gas 

turbine (SCGT) with the difference that its compressor is powered by electricity, instead of by the expander in 

SCGT. Additionally, the compression and expansion processes are decoupled in time in the CAES system while 

they occur simultaneously in gas turbines. A generic CAES plant may use ~4.2 GJ of natural gas during the 

discharge phase and ~0.75 MWh of electricity during the charge phase to generate 1 MWh of electricity [9]. 

This is while a generic SCGT consumes ~10 GJ of natural gas to generate 1 MWh of electricity (assuming an 

efficiency of 36%). There are currently two commercial CAES plants in operation (Huntorf facility in Germany 

and McIntosh plant in the USA). More details on the history of the CAES technology is given in Chapter 3. 

A major disadvantage of the conventional CAES concept, especially if to be used in the prospective low-carbon 

grids, is its fuel demand. Fuel combustion increases the power output of the plant, which would be 

prohibitively low if the storage facility solely harnessed the mechanical energy stored in the compressed air2. 

The compression heat is rejected to the ambient environment in the conventional CAES design, which results 

in the need to combust fuel and heat up the compressed air prior to expansion (see Figure 1). Moreover, 

heating of the compressed air is required to prevent freezing of its moisture content during expansion, which 

can damage the turbine.  

                                                                    
2 As a case in point, compressed air expanding from 25 °C and 7 MPa releases ~600 kJ of work per kg of air, 
assuming an isentropic efficiency of 85%. The work output, however, increases ~3.6 times (to 2170 kJ/kg) if 
air expands from 800 °C instead of 25 °C. 
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Figure 1: Schematic of a simplified conventional CAES system. Compressor work is supplied by the electricity 
grid during the charging phase. Natural gas fuels the combustor during the discharging period. The 
conventional CAES consumes both electricity and heating fuel.  

Several variations of compressed air storage have been proposed aiming to reduce its fuel demand. Two main 

categories are Adiabatic CAES (A-CAES) and Isothermal CAES (I-CAES). A-CAES focuses on physical storage of 

the compression heat during the charge phase in order to replace fuel combustion during the expansion 

period and to eliminate direct (i.e. inside-the-fence line) GHG emissions. A-CAES needs to compress air to 

higher pressures compared to the conventional CAES design to generate adequate quantities of heat at high-

enough temperatures to fully eliminate the need for fuel combustion. Generating and handling compressed 

air at such high pressures and temperatures cause various technical challenges. Although A-CAES is still in the 

R&D phase, it can potentially become an attractive storage technology in carbon-constrained grids. This is 

due to its zero GHG emissions, moderate roundtrip exergy efficiency (<75% [11-13]), and moderate 

economics (power-specific and energy-specific capital cost of 1100-1700 $/kW and 10-50 $/kWh, see 

chapter 5). Figure 2 illustrates a simplified schematic of A-CAES.  

 

Figure 2: Schematic of a simplified Adiabatic CAES (A-CAES) system. Compression heat is physically stored 
during the charge phase to later heat the expanding air. Utilization of the compression heat eliminates the 
need for burning fuel during the discharge phase.  

In the Isothermal CAES (I-CAES) design, however, air is compressed and expanded in quasi-isothermal 

processes (see Figure 3). Theoretically, an isothermal expansion process requires no fuel as long as the 
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system remains in thermal equilibrium with its surrounding. Additionally, an isothermal compression 

requires the least theoretical work to compress air. Maintaining thermal equilibrium with the surroundings is 

nonetheless, impractical at industrial scales as it requires very slow compression and expansion processes 

(i.e. low power rating) or unrealistically large heat transferring surfaces. General Compression Inc., a 

Massachusetts-based company, is developing this technology for a 10 MW pilot I-CAES facility. Although very 

little data is publically available, they claim a maximum roundtrip exergy efficiency of ̱ͺͲΨ for their ǲnearlyǳ 
isothermal technology [14].  

 

Figure 3: Simplified schematic of Isothermal CAES (I-CAES) system. The compression and expansion 
processes occur over several stages to maintain a quasi-thermal equilibrium with the ambient environment. 

This chapter introduces the concept and assesses the thermodynamics of two newer families of the CAES 

technology, which can help with reducing the fuel consumption of the compressed air energy storage plants. 

Thermodynamics of conventional CAES and A-CAES are also assessed here to benchmark the performance of 

the two proposed advanced CAES concepts. 

The first new compressed air storage design analyzed here is Distributed CAES (D-CAES). The otherwise-

wasted heat of compression is exported to supply an external low-temperature heating load and gain fuel 

credits for the compressed air storage facility (see Figure 4). Therefore, the net (apparent) fuel demand of 

D-CAES (i.e. once heating fuel credits from the export of compression heat are accounted for) is lower than of 

conventional CAES. The presence of a large, concentrated heating load in the vicinity of suitable air storage is 

essential to the viability of D-CAES in the real world. 
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Figure 4: Schematic of a simplified distributed CAES system (D-CAES). Compression heat supplies an external 
heating load to gain fuel credits equal to the saved heating fuel. 

The second new compressed air storage concept studied is CAES fueled by hydrogen produced onsite via 

electrolysis of steam at high temperatures (called CAES-HTE, see Figure 5). Such a system does not consume 

any fossil fuel, hence has no GHG emissions. During the charge phase, electricity powers its compressors to 

charge the air storage and produce high-temperature heat, similar to A-CAES. The compression heat along 

with electricity and water are supplied to an electrolyzer to produce hydrogen at high temperatures (above 

500 °C) from steam. Hydrogen is stored onsite to fuel the combustors and heat the expanding air. The 

advantage of CAES-HTE compared to A-CAES is elimination of the high-pressure and high-temperature 

thermal storage system and the associated heat losses. The downsides, however, include the need for a high-

temperature electrolyzer, hydrogen store, and hydrogen-compatible combustor.  

This chapter also presents the modeling results for a simpler version of CAES fueled by hydrogen. The 

primary difference of the low-temperature electrolysis design (CAES-LTE) with CAES-HTE is that the 

electrolysis process occurs at the low (ambient) temperatures; hence the need for handling high pressures 

and temperatures is eliminated in CAES-LTE. Reducing the temperature of the electrolyzer increases its 

electricity consumption, though. The rationale for modeling CAES-LTE is to study the effects of increasing the 

electrolysis temperature on the overall thermodynamic performance of the compressed air storage plant.  
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Figure 5: Simplified schematic of CAES coupled with high-temperature electrolyzer (CAES-HTE). Electricity 
powers both the compressor and electrolyzer. Compressed air and hydrogen are generated and stored during 
the charge phase. Hydrogen fuels the combustor to heat the expanding air during the discharge phase.  

This chapter is composed of three primary parts. Section 2 explains the general methodology and modeling 

assumptions applied to perform the analytical analysis. Section 3 provides details of the thermodynamic 

model synthesized to compare the performance of D-CAES with conventional CAES. Section 4 presents the 

thermodynamic analysis of A-CAES and CAES-HTE (as well as CAES-LTE). The scope of this chapter does not 

include any economic analysis. The goal is providing a first order analytical estimate of the roundtrip exergy 

efficiency and other thermodynamic parameters of interest for conventional CAES, D-CAES, A-CAES, and 

CAES-HTE designs.  

2- Methods 

The thermodynamics of conventional CAES and A-CAES have been extensively studied in the literature (for 

example see [12, 15-21]), nevertheless D-CAES and CAES-HTE are new concepts. The primary reason that the 

conventional CAES and A-CAES systems are modeled here as well is to make a ǲlike-for-likeǳ comparison with 
D-CAES and CAES-HTE (i.e. using similar assumptions and inputs).  

An analytical model is presented in this chapter to quantify and compare the thermodynamic performance of 

the studied compressed air storage systems (i.e. conventional CAES, D-CAES, A-CAES, CAES-HTE, and 

CAES-LTE). The general strategy here is applying the First and Second Laws of thermodynamics to individual 

system components using the ideal gas approximation for air in order to quantify the mass, energy and 

exergy flows into and out of the storage facility. 
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The energy storage literature commonly uses roundtrip efficiency in order to compare the performance of 

various technologies. This parameter quantifies the electrical energy delivered per unit of electrical energy 

taken in. Compressed air energy storage systems use both electrical energy (to power the compressor and 

possibly the electrolyzer) and heating energy (to fuel air combustion) though. Consequently, three key 

metrics are used in this chapter to fully express the thermodynamics performance of various CAES systems: 

heat rate, work ratio, and roundtrip exergy efficiency. Heat rate quantifies the heating fuel consumed per unit 

of electricity generated. This parameter becomes particularly important when the GHG emissions are 

constrained. This chapter reports heat rate in GJ (lower heating value, LHV) per MWh of electricity generated. 

Neither A-CAES, CAES-HTE, nor CAES-LTE uses an external fuel therefore; their heat rate and inside-the-fence 

emissions are zero. 

Work ratio expresses the electrical energy consumed by the compressor (and electrolyzer of CAES-HTE and 

CAES-LTE) per unit of electrical energy generated by the expander. Work ratio is particularly important when 

the charging electricity is constrained or carbon-intensive. 

Roundtrip exergy efficiency combines heat rate and work ratio and characterizes the exergy losses incurred 

over the full charge and discharge processes. This parameter is the ratio of the exergy delivered (expansion 

work) to the net exergy provided to the plant. The net exergy used by the plant is the summation of the 

compression work, the exergy of fuel burned in the combustors (applicable to conventional CAES and 

D-CAES), and electricity consumed by the electrolyzer (applicable to CAES-HTE and CAES-LTE), minus the 

exergy credits from sales of waste heat (applicable to D-CAES).  

Exergy density of the storage plant is another key variable of interest. One of the critiques against adoption of 

compressed air storage technologies at scale is the low exergy density of compressed air, especially if no 

heating fuel is burned to boost the work output of the storage facility (the case for A-CAES). Exergy density is 

defined as the ratio of the delivered exergy (i.e. expansion work) to the volume of the cavern, and is expressed 

in kWh/m3. Exergy density is especially important when availability of the storage medium is limited. 

This chapter defines GHG emissions intensity of the storage plant as ratio of the GHG emissions of the fuel 

used by the plant to the work generated by the expander. This parameter has units of kgCO2e/MWh and only 
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embraces ǲinside the fence lineǳ emissions3. The GHG emissions intensity of the electricity used to charge the 

storage plant is not included, unless stated otherwise. 

The general assumptions and simplifications used in the thermodynamic analysis are listed below. More 

specific assumptions are introduced later to model specific systems. 

One complete charge and discharge cycle is analyzed, without part-load operation. Air is modeled as an ideal 

gas with temperature-independent thermodynamic properties. The mass of fuel is assumed negligible 

compared to air and the mixture of air and fuel is treated as pure air. Equation 1 to Equation 5 list the general 

ideal gas formulae applied to model air. The ambient environment (subscript 0) is at standard conditions ሺ ଴ܲ ൌ ͳͲͳ    ǡ ଴ܶ ൌ ʹͻͺ  ሻ. This condition is also the reference state for internal energy, enthalpy, entropy, 

and exergy calculations. 

݉௔௜௥ǡ஼ே ൌ ஼ܲே ൈ ஼ܸேܴ௔௜௥ ൈ ஼ܶே  Mass of air in cavern Equation 1 

݄ ൌ ௣ǡ௔௜௥ܥ ൈ ሺܶ െ ଴ܶሻ Specific enthalpy of air Equation 2 

ݑ ൌ ൫ܥ௩ǡ௔௜௥ ൈ ܶ൯ െ ሺܥ௣ǡ௔௜௥ ൈ ଴ܶሻ Specific internal energy of air Equation 3 

ݏ ൌ ௣ǡ௔௜௥ܥ ൈ ݈݊ ൬ ܶܶ଴൰ െ ܴ௔௜௥ ൈ ݈݊ ൬ ܲܲ଴൰ Specific entropy of air Equation 4 

߰ ൌ ሺ݄ െ ݄଴ሻ െ ଴ܶ ൈ ሺݏ െ  ଴ሻ Specific stream exergy of air Equation 5ݏ

The cavern has a fixed volume and its pressure varies between the minimum pressure of ௘ܲ௠  and maximum 

pressure of ௙ܲ௟ . In order to maintain its mechanical integrity and to ensure high enough flow rates of 

withdrawn air, the cavern is not fully depleted. The air mass remaining in the storage at the end of the discharge phase when all the ǲworking airǳ has been withdrawn to generate electricity is called the ǲcushion 

airǳ. 

                                                                    
3 An alternative approach would be dividing GHG emissions associated with fuel used by the storage plant by 

the net electricity output of the plant, i.e. 
ுோൈீூிಿಸଵିௐோ  .  
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The cavern and thermal storage units are assumed adiabatic while the pipeline of D-CAES is modeled to be 

isothermal with the ambient. Raju et al. [15], Steta [22], and Xia et al. [23] studied heat transfer between the 

stored air and the cavern wall, which is not in the scope of the present work. 

Coolers of the compressors are assumed to have a fixed approach temperature, defined as the difference 

between temperature of the hot stream leaving the heat exchanger and temperature of the cooling fluid 

entering: ௔ܶ௖ ൌ ௢ܶ௨௧ǡ௛௢௧஼௅ െ ௜ܶ௡ǡ௖௢௟ௗ஼௅  (see Figure 6). This assumption implies the inlet temperature of the cavern 

and the output of all the compressorǯs coolers are fixed through the charging process ȋEquation 6). 

 ௜ܶ௡஼ே ൌ ௢ܶ௨௧ǡ௛௢௧஼௅ ൌ ௔ܶ௖ ൅ ௜ܶ௡ǡ௖௢௟ௗ஼௅ ൌ ௔ܶ௖ ൅ ଴ܶ Inlet temperature of cavern 
Equation 6 

 

 

Figure 6: Schematic of the compressor cooler. The hot stream is the exhaust of the preceding compression 
stage and inlet of the following stage (or the cavern). The cold stream represents an external cooling fluid 
taking the heat out of the system. The approach temperature is defined as: ௔ܶ௖ ൌ ௢ܶ௨௧ǡ௛௢௧ െ ௜ܶ௡ǡ௖௢௟ௗ . The 

cooling fluid is at the ambient temperature ( ௜ܶ௡ǡ௖௢௟ௗ ൌ ଴ܶሻ. 
The discharge temperature of the combustion chambers is maintained at a fixed value (through controlling 

fuel combustion). The expander (turbine) has two stages; high- (HP) and low-pressure (LP) stages have equal 

but variable expansion ratios to match the instantaneous cavern pressure (Equation 7). 

ܴܺு௉ ൌ ܴܺ௅௉ ൌ ඨ ଴ܲ஼ܲே ൌ ξܴܺ Instantaneous expansion ratio of the turbine Equation 7 

The temperature of the exhaust air stream leaving the storage plant ( ௘ܶ௧) is assumed to be fixed and constant. 

Following Osterle [21], an imaginary heat exchanger (HXF) is placed at the exhaust of the storage plant to 

account for the exergy loss of the exhaust stream to the ambient environment. This heat exchanger cools the 

air from ௘ܶ௧  down to the ambient temperature ( ଴ܶ) (see Figure 7). 

The heat flows (ܳ) are reckoned to be positive if they enter the system (e.g. heat added in the combustor, ܳ஼஼) 

and negative if they leave the system (e.g. heat dissipated in the coolers of compressor, ܳு஼). The work (ܹ) 
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done by the system on the surroundings has a positive sign (e.g. expansion work, ்ܹ஻) whereas the work 

done on the system has a negative sign (e.g. compression work, ஼ܹெ). 

3- Thermodynamic analysis of D-CAES and conventional CAES 

An analytical exergy study of conventional CAES and D-CAES is presented in this section with the aim of 

estimating several thermodynamic figures of merit as a function of selected design parameters (pipeline 

length, cavern pressure, and throttling the withdrawn air to a fixed pressure prior to power generation).  

Thermodynamic analysis of D-CAES in the literature is limited to a recent paper by Bagdanavicius and Jenkins 

[24]. They performed an energy and exergy simulation of a CAES system paired with a thermal storage (TS) 

and a district heating (DH) system, so called CAES-TS-DH. That system is similar to the D-CAES configuration 

studied in this chapter (Figure 8) with the primary difference that Bagdanavicius and Jenkins did not model 

an air pipeline between the compression train and the air storage. Additionally, they assumed that the 

withdrawn air was throttled to a fixed pressure prior to generating work. 

Bagdanavicius and Jenkins took into account the actual exergy of the recovered heat (not exergy of the 

heating fuel saved in the DH system) and reported an exergy storage efficiency of ~56%. Work ratio and heat 

rate of the CAES-TS-DH system were estimated at ~0.82 and 4.0 GJ/MWh (LHV), respectively. Assuming an 

energy efficiency of 80% for the boilers of the DH system, the net heat rate and roundtrip exergy efficiency of 

their CAES-TS-DH system would be ~0.6 GJ/MWh and ~100%. Such an optimistic performance is because 

93% of the compression work was recovered and supplied to the district heating system in their model.  

Bagdanavicius and Jenkins used Cycle-Tempo [25], a thermodynamic simulation software, for the analysis 

while modeling details of individual components were not discussed. Moreover, the system variables were reported independent of the cavernǯs instantaneous pressure ȋe.g. 112 MW for the compression power). This 

study did not justify how the power consumption could remain constant (i.e. steady-state operation) while a 

constant flow rate of air (a modeling assumption) was being injected into the cavern whose pressure was 

rising. 
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)n Bagdanavicius and Jenkinsǯ modelǡ a four-stage compressor charged a 300,000 m3 underground reservoir 

in the pressure range of 50-82 bar. The inlet temperature of the compression stages as well as the cavern was 

assumed 50 °C. The discharge temperature of the storage plant (i.e. exhaust of the recuperator) was kept at 

75 °C. Temperature of the thermal storage unit connected to the DH system varied in the range of 40-90 °C. 

Withdrawn air was throttled to 50 bar prior to combustion with natural gas and power generation in a two-

stage expansion. 

The following four paragraphs describe the conventional CAES and D-CAES systems studied in this chapter.  

In the conventional CAES system (Figure 7), air is compressed in a multi-stage compressor (CM) and stored in 

an underground reservoir (CN). Each compression stage is followed by a cooler (CL) to reduce the 

compression work of the succeeding stage and to reduce the volume required for air storage. The 

compression heat is rejected to the ambient environment.  

During the discharge phase, air is first preheated in a recuperator. It is then combusted with fuel (natural gas, 

NG) and generates work in the expanders (TB). A two-stage expansion train is considered throughout this 

chapter. The exhaust of the low-pressure (LP) turbine preheats the air entering the high-pressure (HP) 

combustor in the recuperator. The Huntorf and McIntosh compressed air energy storage plants use this CAES 

configuration except that the Huntorf facility is not equipped with a recuperator.  

 

Figure 7: Schematic of the conventional CAES system modeled to benchmark performance of D-CAES. The 
compression train (CM) is composed of three stages: low-, intermediate-, and high-pressure (LP, IP, and HP). 
The expansion train (TB) is made of high- and low-pressure stagesǤ ǲQǳ and ǲWǳ represent heat and work 
interactions between the system and the surroundingsǤ ǲͲǳ indicates ambient conditionǤ CLǡ CNǡ CCǡ RPǡ and 
FHX stand for cooler, cavern, combustor, recuperator, and exhaust heat exchanger (respectively). 
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Figure 8 illustrates the D-CAES system simulated. It recovers and exports the low-exergy compression heat 

for space and water heating Ȃ an application that does not require high-exergy heat, although fuel is often 

burned for it. The main idea here is to export the otherwise-wasted heat of compression to satisfy an external 

low-temperature heating load and to be credited for the negated consumption of heating fuel. Note that 

D-CAES still uses fuel (at levels similar to conventional CAES); nevertheless, it has a lower net heat rate once 

fuel credits are taken into account. 

D-CAES compressor is located within a municipal region to provide its compression heat to a district heating 

system. The expander is co-located with the cavern, similar to conventional CAES. A pipeline transports air 

from the compression facility to the storage site. Air needs to be compressed to higher pressures in order to 

compensate the losses along the pipeline. 

 

Figure 8: Schematic of the D-CAES system modeled. A portion of the compression heat is recovered by a heat 
recovery unit (HC) and utilized in a district heating (DH) system to meet an external heating load and to gain 
fuel credits for the D-CAES plant. Not all the compression heat is suitable for district heating. Heat recovered 
by the coolers (equal to total compression heat minus heat used by the district heating system) is rejected to 
the ambient environment due to its low temperature. A pipeline (PP) transports air from the compression to 
storage site.  

3-1- Modeling conventional CAES 

The compressor train of the conventional CAES system analyzed to benchmark the performance of D-CAES is 

assumed to have three stages: low- (LP), intermediate- (IP), and high-pressure (HP). All the stages have 

variable but equal compression ratios and fixed isentropic efficiencies throughout the charging process. The 

compression ratio (CR) varies to match the instantaneous pressure of the cavern (see Equation 8). 
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ு௉ܴܥ ൌ ூ௉ܴܥ ൌ ௅௉ܴܥ ൌ ඨ ஼ܲே଴ܲయ ൌ ξܴܥయ
 

Instantaneous compression ratio of 
three-stage compressor 

Equation 8 

3-1-1- Charge phase of conventional CAES 

At the beginning of each charging period, the initial temperature ሺ ௜ܶ௡௟஼ேሻ and pressure ሺ ௜ܲ௡௟஼ே ൌ ௘ܲ௠ሻ of the 

cavern are known from the previous cycle. Therefore, the mass of the cushion air is calculated by applying the 

ideal gas equation of state, as shown in Equation 9.  

݉௔௜௥ǡ௜௡௟ ൌ ௘ܲ௠ ൈ ஼ܸேܴ௔௜௥ ൈ ௜ܶ௡௟஼ே Initial mass of air present in the cavern Equation 9 

The relationship between changes in the mass of air present in the cavern and the instantaneous pressure of 

the cavern is found by applying the First Law to the control volume of the cavern: 

݀ܳ െ ܹ݀ ൌ ܷ݀஼௏ െ ݀݉௜௡ ൈ ݄௜௡  Equation 10 

Because the cavern is adiabatic and at constant volume, ݀ܳ ൌ ܹ݀ ൌ Ͳ. Using Equation 1, Equation 2, and 

Equation 3, the above equation is transformed into Equation 11. 

݀݉௔௜௥ǡ௖௛ ൌ ݀ ௖ܲ௛ ൈ  େ୒ܴ௔௜௥ ൈ ௔௜௥ߛ ൈ ௜ܶ௡஼ே 
Incremental change in mass of air in the cavern 
during charging 

Equation 11 

Because the inlet temperature of the cavern ( ௜ܶ௡஼ே) is known and fixed, Equation 11 is conveniently integrated 

to find the total mass of air injected (working air), as shown in Equation 12. Once the mass of air in the fully 

charged cavern is determined (Equation 13), its temperature is calculated by applying the ideal gas equation 

of state (see Equation 14). 

݉௔௜௥ǡ௖௛ ൌ ൫ ௙ܲ௟ െ ௘ܲ௠൯ ൈ ஼ܸேܴ௔௜௥ ൈ ௔௜௥ߛ ൈ ௜ܶ௡஼ே  Total mass of working air stored Equation 12 

݉௔௜௥ǡ௙௟ ൌ ݉௔௜௥ǡ௜௡௟ ൅݉௔௜௥ǡ௖௛ Mass of air in the full cavern Equation 13 

஼ܶேǡ௙௟ ൌ ௜ܶ௡௟஼ே ൈ ௙ܲ௟
௘ܲ௠ ൅ ሺ ௙ܲ௟ െ ௘ܲ௠ሻ ൈ ௜ܶ௡௟஼ேߛ௔௜௥ ൈ ௜ܶ௡஼ே

 Temperature of air at the end of 
charging 

Equation 14 

Compression work required to charge the cavern is quantified by applying the First Law to each compression 

stage and summing them up (Equation 15). Work of the LP compressor is formulated in Equation 16. A 
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similar equation is applicable to the IP and HP compressors. The inlet temperature of each stage is fixed and 

known while the exit temperature is a function of the instantaneous cavern pressure and is determined by 

applying the isentropic compression formulae (see Equation 17 for the LP compressor).  

஼ܹெ ൌ ௉೐೘௉೑೗൫݀׬ ஼ܹெǡ௅௉ ൅ ݀ ஼ܹெǡூ௉ ൅ ݀ ஼ܹெǡு௉൯ Total work needed to charge the 
cavern 

Equation 15 

݀ ஼ܹெǡ௅௉ ൌ ݀݉௔௜௥ǡ௖௛ ൈ ௣ǡ௔௜௥ܥ ൈ ሺ ௜ܶ௡஼ெǡ௅௉ െ ௢ܶ௨௧஼ெǡ௅௉ሻ Incremental work of LP compressor Equation 16 

௢ܶ௨௧஼ெǡ௅௉ ൌ ௜ܶ௡஼ெǡ௅௉ െ ௜ܶ௡஼ெǡ௅௉ െ ௢ܶ௨௧ǡ௜௦௧஼ெǡ௅௉ߟ௜௦௧஼ெǡ௅௉  
Instantaneous discharge 
temperature of LP compressor 

Equation 17 

௢ܶ௨௧ǡ௜௦௧஼ெǡ௅௉ ൌ ௜ܶ௡஼ெǡ௅௉ ൈ ܴܥ௅௉ሺఊିଵሻȀఊ  
Isentropic instantaneous discharge 
temperature of LP compressor 

 

Total heat dissipated by the intercoolers and the aftercooler is calculated by applying the First Law to each 

cooler (Equation 18). As a case in point, Equation 19 quantifies an increment of heat dissipated by the LP 

intercooler. Note the inlet temperature of each cooler equals the exit temperature of the preceding 

compression stage. The discharge temperature of the coolers is fixed (Equation 6). Compression heat of the 

conventional CAES system, which could have been recovered (ܳ஼ெ) is equal to the heat dissipated by the 

compressor coolers (ܳ஼௅). 

ܳ஼௅ ൌ ௉೐೘௉೑೗൫݀ܳ஼௅ǡ௅௉׬ ൅ ݀ܳ஼௅ǡூ௉ ൅ ݀ܳ஼௅ǡு௉൯ Heat rejected by the compressor 
coolers 

Equation 18 

݀ܳ஼௅ǡ௅௉ ൌ ݀݉௔௜௥ǡ௖௛ ൈ ௣ǡ௔௜௥ܥ ൈ ሺ ௢ܶ௨௧஼௅ǡ௅௉ െ ௜ܶ௡஼௅ǡ௅௉ሻ Incremental heat rejected by LP cooler Equation 19 

ܳ஼ெ ൌ ܳ஼௅  
Total compression heat of conventional 
CAES 

Equation 20 

Once the initial and final states of the cavern in addition to the compression work are known, the total exergy 

lost over the charge phase can be calculated by Equation 24. 

߂ ௖ܷ௛஼ே ൌ ݉௔௜௥ǡ௙௟ ൈ ஼ேǡ௙௟ݑ െ݉௔௜௥ǡ௜௡௟ ൈ ஼ேǡ௜௡௟ݑ  Change in internal energy of cavern over 
the charging process 

Equation 21 

௖௛஼ேܵ߂ ൌ ݉௔௜௥ǡ௙௟ ൈ ஼ேǡ௙௟ݏ െ݉௔௜௥ǡ௜௡௟ ൈ ஼ேǡ௜௡௟ݏ  Change in entropy of cavern over the 
charging phase 

Equation 22 

௖௛஼ேܺ߂ ൌ ߂ ௖ܷ௛஼ே െ ଴ܶ ൈ  ௖௛஼ேܵ߂
Change in exergy stored in cavern 
during the charging phase 

Equation 23 

௖௛ܺܫ ൌ െܺ߂௖௛஼ே െ ஼ܹெ ൅݉௔௜௥ǡ௖௛ ൈ ߰௔௜௥ǡ௖௛  
Total exergy lost over the charging 
phase 

Equation 24 
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Note that ߰௔௜௥ǡ௖௛ ൌ Ͳ since air entering the system is at ambient conditions (see Equation 5). 

3-1-2- Discharge phase of conventional CAES 

Similar to the charging process, the First Law is applied to the cavern to find the relationship between the 

instantaneous temperature and changes in the mass and pressure of the air present in the cavern (Equation 

25). 

݀݉௔௜௥ǡௗ௖௛ ൌ ݀ ஼ܲே ൈ ஼ܸேܴ௔௜௥ ൈ ௔௜௥ߛ ൈ ஼ܶே  
Incremental change in the mass of air in cavern 
during the discharge period 

Equation 25 

Using Equation 25 and the state equation for ideal gas, the mass of air left in the cavern by the end of the 

discharge process (cushion air) and total mass of air withdrawn (working air) are calculated as shown in 

Equation 26 and Equation 27. 

݀݉௔௜௥ǡௗ௖௛݉௔௜௥ǡௗ௖௛ ൌ ݀ ஼ܲேߛ௔௜௥ ൈ ஼ܲே  ՜   

݉௔௜௥ǡ௘௠ ൌ ݉௔௜௥ǡ௙௟ ൈ ቆ ௘ܲ௠௙ܲ௟ ቇଵఊ 
Mass of air left in the cavern by the 
end of discharge (i.e. cushion air) 

Equation 26 

݉௔௜௥ǡௗ௖௛ ൌ ݉௔௜௥ǡ௙௟ െ݉௔௜௥ǡ௘௠ ൌ 

 

஼ܸேܴ௔௜௥ ൈ ቆ ௘ܲ௠௜ܶ௡௧஼ே ൅ ൫ ௙ܲ௟ െ ௘ܲ௠൯ߛ௔௜௥ ൈ ௜ܶ௡஼ே ቇ ൈ ቌͳ െ ቆ ௘ܲ௠௙ܲ௟ ቇଵఊቍ 

Total mass of withdrawn air (i.e. 
working air) 

Equation 27 

Now that the mass of cushion air is known (Equation 26), the state equation for ideal gas is applied to 

calculate temperature of the discharging cavern (Equation 28 and Equation 29).  

஼ܶேǡௗ௖௛ ൌ ௙ܶ௟ ൈ ቆ ஼ܲ௏௙ܲ௟ ቇሺఊିଵሻȀఊ 
Instantaneous temperature of air in 
the cavern during discharge period 

Equation 28 

௘ܶ௠ ൌ ௙ܶ௟ ൈ ቆ ௘ܲ௠௙ܲ௟ ቇሺఊିଵሻȀఊ 
Temperature of air in the fully 
depleted cavern (cushion air) 

Equation 29 

The initial temperature of the fully discharged cavern is set to ଴ܶ (i.e. temperature of cavern at the beginning 

of cycle 1). This temperature eventually reaches asymptotic limits after many cycles, regardless of the initial 

temperature chosen. Simulation is run until this asymptotic limit is reached and all the results are reported 

then.  
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Inlet temperatures of both low- and high-pressure turbines ( ௜ܶ௡்஻ǡ௅௉ and ௜ܶ௡்஻ǡு௉) are fixed and constant in the 

analysis. However, their exit temperature depends on the instantaneous expansion ratio, which is itself a 

function of the instantaneous cavern pressure (Equation 7). The First Law is applied to each expander stage 

to find the work generated (Equation 30 and Equation 31). Discharge temperature of the high-pressure 

expander is quantified by Equation 32 based on the isentropic expansion formulae. A similar set of equations 

can be written for the low pressure turbine. 

்ܹ஻ ൌ ௉೑೗௉೐೘൫݀׬ ்ܹ஻ǡு௉ ൅ ݀ ்ܹ஻ǡ௅௉൯ Total expansion work Equation 30 ݀ ்ܹ஻ǡு௉ ൌ ݀݉௔௜௥ǡௗ௖௛ ൈ ௣ǡ௔௜௥ൈܥ ൫ ௜ܶ௡்஻ǡு௉ െ ௢ܶ௨௧்஻ǡு௉൯ Incremental work of the HP expander Equation 31 

௢ܶ௨௧்஻ǡு௉ ൌ ௜ܶ௡்஻ǡு௉ ൅ ௜௦௧்஻ǡு௉ሺߟ ௢ܶ௨௧ǡ௜௦்஻ǡு௉ െ ௜ܶ௡்஻ǡு௉ሻ Instantaneous exit temperature of HP 
expander 

Equation 32 

௢ܶ௨௧ǡ௜௦௧்஻ǡு௉ ൌ ௜ܶ௡்஻ǡு௉ ൈ ܴܺு௉ሺఊିଵሻȀఊ  
Isentropic instantaneous exit 
temperature of HP expander 

 

Once the instantaneous exit temperature of the HP expander is quantified, total heat added in the LP 

combustor can be determined by applying the First Law, as shown in Equation 33. Note that ௜ܶ௡஼஼ǡ௅௉ ൌ ௢ܶ௨௧்஻ǡு௉  

and ௢ܶ௨௧஼஼ǡ௅௉ ൌ ௜ܶ௡்஻ǡ௅௉ . 

ܳ஼஼ǡ௅௉ ൌ ௉೑೗௉೐೘݀݉௔௜௥ǡௗ௖௛׬ ൈ ௣ǡ௔௜௥ܥ ൈ ሺ ௢ܶ௨௧஼஼ǡ௅௉ െ ௜ܶ௡஼஼ǡ௅௉ሻ Heat added in the LP combustor Equation 33 

The instantaneous temperature of air entering the HP combustor from the recuperator can be expressed as a function of the cavernǯs pressure by applying the First Law to the recuperator (see Equation 34). Similar to 

the LP combustor, the heat added in the HP combustor is quantified by applying the First Law (see Equation 

35). Note that ௜ܶ௡஼஼ǡு௉ ൌ ௢ܶ௨௧ǡ௖௢௟ௗோ௉  and ௢ܶ௨௧஼஼ǡு௉ ൌ ௜ܶ௡்஻ǡு௉ . Tet is the fixed temperature of the exhaust stream of the 

plant, which is leaving the recuperator (RP) and entering the exhaust heat exchanger (FHX). 

௜ܶ௡஼஼ǡு௉ ൌ ஼ܶேǡௗ௖௛ ൅ ௢ܶ௨௧்஻ǡ௅௉ െ ௘ܶ௧  Instantaneous inlet temperature of HP 
combustor 

Equation 34 ܳ஼஼ǡு௉ ൌ ௉೑೗௉೐೘݀݉௔௜௥ǡௗ௖௛׬ ൈ ௣ǡ௔௜௥ܥ ൈ ሺ ௢ܶ௨௧஼஼ǡு௉െ ௜ܶ௡஼஼ǡு௉ሻ Heat added in the HP combustor Equation 35 

Once the heat added in each combustor is determined, the total mass and exergy of the fuel (natural gas here) 

consumed are quantified by applying Equation 36 and Equation 37, respectively.  
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݉ேீ஼஼ ൌ ܳ௅௉ǡ஼஼ ൅ ܳு௉ǡ஼஼ܪܮ ேܸீ  Mass of gas burned by conventional CAES Equation 36 

ܺேீ ൌ ݉ேீ஼஼ ൈ ேீݔ  Exergy of gas burned by conventional CEAS Equation 37 

The First Law is again applied to quantify the heat recovered in the recuperator and the heat dissipated in the 

exhaust heat exchanger, as shown in Equation 38 and Equation 39, respectively. 

ܳோ௉ ൌ ௉೑೗௉೐೘݀݉௔௜௥ǡௗ௖௛׬ ൈ ௣ǡ௔௜௥ܥ ൈ ሺ ௘ܶ௧ െ ௢ܶ௨௧்஻ǡ௅௉ሻ Heat recovered in the recuperator Equation 38 

ܳிு௑ ൌ ௉೑೗௉೐೘݀݉௔௜௥ǡௗ௖௛׬ ൈ ௣ǡ௔௜௥ܥ ൈ ሺ ଴ܶ െ ௘ܶ௧ሻ Heat rejected to the ambient 
environment in the exhaust heat 
exchanger 

Equation 39 

Finally, the exergy lost over the discharge process is determined by applying Equation 43. The exergy of air 

stream leaving the storage plant (߰௔௜௥ǡௗ௖௛ሻ is zero similar to the exergy of air entering the plant (߰௔௜௥ǡ௖௛). This 

is because both air streams are at ambient conditions. 

ௗ௖௛஼ேܷ߂ ൌ ݉௔௜௥ǡ௘௠ ൈ ஼ேǡ௘௠ݑ െ݉௔௜௥ǡ௙௟ ൈ ஼ேǡ௙௟ݑ  Change in internal energy of cavern 
during discharge 

Equation 40 

ௗ௖௛஼ேܵ߂ ൌ ݉௔௜௥ǡ௘௠ ൈ ஼ேǡ௘௠ݏ െ݉௔௜௥ǡ௙௟ ൈ ஼ேǡ௙௟ݏ  Change in entropy of cavern over 
discharge process 

Equation 41 

ௗ௖஼ேܺ߂ ൌ ௗ௖஼ேܷ߂ െ ଴ܶ ൈ  ௗ௖஼ேܵ߂
Change in exergy store of cavern during 
discharge 

Equation 42 ܺܫௗ௖௛ ൌ െܺ߂ௗ௖௛஼ே െ ்ܹ஻ ൅ ܺேீ஼஼ െ݉௔௜௥ǡௗ௖௛ൈ ߰௔௜௥ǡௗ௖௛  
Total exergy lost over the discharge 
period 

Equation 43 

3-1-3- Roundtrip analysis of conventional CAES 

Once the work, heat, and exergy fluxes during the charge and discharge processes are quantified, the 

roundtrip exergy efficiency, work ratio and heat rate of conventional CAES are calculated by applying 

Equation 44 to Equation 46. The GHG emissions intensity and cavern exergy density are determined by 

Equation 47 and Equation 48. 

௑ǡ஼஺ாௌߟ ൌ ்ܹ஻െ ஼ܹெ ൅ ܺேீ஼஼  Roundtrip exergy efficiency of conventional CAES Equation 44 

ܹܴ஼஺ாௌ ൌ െ ஼ܹெ்ܹ஻  Work ratio of conventional CAES Equation 45 

஼஺ாௌܴܪ ൌ ݉௙௨௘௟஼஼ ൈ ܪܮ ேܸீ்ܹ஻ ൈ ͵Ǥ͸ Heat rate of conventional CAES Equation 46 
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஼஺ாௌܫܩ ൌ ஼஺ாௌܴܪ ൈ ேீܨܫܩ  GHG emissions intensity of conventional CAES Equation 47 

ߩܺ ൌ ்ܹ஻஼ܸே  Exergy density of conventional CAES Equation 48 

3-2- Modeling D-CAES 

As illustrated in Figure 8, the discharge process of the D-CAES facility is identical to that of the conventional 

CAES system (analyzed in Section 3-1-2). The distinction of these two systems is that a portion of the 

compression heat is recovered, via three heat recovery units, and utilized in a district heating system in 

D-CAES. This otherwise-wasted heat of compression brings in fuel credits for the D-CAES plant equal to the 

heating fuel saved. Therefore, the net (apparent) fuel consumption of D-CAES Ȃ defined as fuel directly 

consumed by the combustors of D-CAES (i.e. raw fuel demand) minus fuel saved in the district heating system 

due to recovery of compression heat Ȃ is less than the fuel demand of a similar conventional CAES system. 

Following are the specific simplifications made to model D-CAES. 

Each compressor stage is followed by a heat recovery unit (HC) and a Cooler (CL), as illustrated in Figure 9 for the )P compressorǤ The heat recovery units cool the compressorǯs exhaust to a fixed temperature ( ௢ܶ௨௧ு஼ ). 

The absorbed heat is utilized by the district heating plant (DH). Compressed air then passes through an 

intercooler (or aftercooler) to further dissipate its heat. Similar to the conventional CAES model, the exit 

temperature of the coolers is fixed (Equation 6). 

A pipeline transports the compressed air to the storage site. Note that the compression facility and the 

storage site are located at some distance apart, ܮ௉௉  while the expansion train and cavern are co-located. The 

compressor pressurizes air enough to compensate pipeline losses so that the cavern pressure can vary 

between ௘ܲ௠  and ௙ܲ௟ , similar to conventional CAES. The pipeline is assumed to be isothermal ( ௉ܶ௉ǡ௨௣ ൌ
௉ܶ௉ǡௗ௡ ൌ ௢ܶ௨௧஼௅ǡு௉ ൌ ௜ܶ௡஼ே). 
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Figure 9: Configuration of the heat recovery unit (HC, on the left) and cooler (CL, on the right) following the 
low-pressure (LP) compressor. Heat recovered in the HC is utilized in the district heating (DH) system and 
earns fuel credits. Heat absorbed in the CL is wasted to the ambienet due to its low temperature. 

3-2-1- Charge phase of D-CAES 

The compressor of D-CAES needs to compensate for the pressure drop along the pipeline ( ௉ܲ௉ǡௗ௣ ൌ ௉ܲ௉ǡ௨௣ െ
௉ܲ௉ǡௗ௡) to reach the same cavern pressure as of conventional CAES. ௉ܲ௉ǡ௨௣ is the upstream pipeline pressure 

(equal to discharge pressure of the high-pressure compressor, ௢ܲ௨௧஼ெǡு௉) and ௉ܲ௉ǡௗ௡ is the downstream pipeline 

pressure, which is equal to the instantaneous pressure of cavern ( ஼ܲே). Note that in the conventional CAES 

system, ௢ܲ௨௧஼ெǡு௉ is equal to ஼ܲே  (i.e. no pressure losses between discharge of the high-pressure compressor and 

inlet of the cavern). 

Equation 49 relates the pressure drop to the important pipeline characteristics [26]. The pressure drop 

( ௉ܲ௉ǡ௨௣ െ ௉ܲ௉ǡௗ௡) has a nonlinear relationship with the pipeline flowrate, which itself is a function of power 

consumption of the compressor and the instantaneous compression ratio (see Equation 50). Note that ሶܹ ஼ெ  

and ܨ௉௉ have units of MW and m3/day (respectively) in these equations. 

௉ܲ௉ǡ௨௣ଶ െ ௉ܲ௉ǡௗ௡ଶ ൌ ͻǤͶ ൈ ͳͲସൈ ௉ܶ௉ ൈ ௉௉ܮ ൈ ௉݂௉ ൈ ௉௉ହܦ௉௉ଶܨ  
Pressure loss along the air pipeline Equation 49 

ሶܹ ஼ெ ൌ ൬ͶǤͲ͸ͶͳͲଽ ൰ ൈ ൬ ߛߛ െ ͳ൰ ൈ ௜ܶ௡஼ெߟ௜௦௧஼ெ ൈ ௉௉ൈܨ ൬ͳ െ ఊିଵఊܴܥ ൰ 

Power consumption of compressor Equation 50 

ܴܥ ൌ ௉ܲ௉ǡ௨௣଴ܲ  
Instantaneous compression ratio of 
D-CAES 

Equation 51 

The approach used here to calculate the compression work is based on using Equation 49 and Equation 50 to 

determine the upstream pressure of the pipeline, ௉ܲ௉ǡ௨௣ (equal to ௢ܲ௨௧஼ெǡு௉), over a range of instantaneous 
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cavern pressures ( ஼ܲே). The instantaneous compression ratio is given by Equation 51. Similar to the 

conventional CAES system, Equation 15 to Equation 17 are then applied to determine the compression work.  

For a fixed compressor size ( ሶܹ ஼ெ), a series of calculations is performed to find the flow rate (ܨ௉௉) and 

discharge pressure ( ௨ܲ௣) of the compressor that lead to the desired downstream pressure ( ௗܲ௡), which is 

equal to the cavern pressure and varies between ௘ܲ௠  and ௙ܲ௟ .  
Equation 6 and Equation 11 remain valid to quantify temperature of the air stream entering the cavern and 

the incremental change in mass of the stored air, respectively. Equation 12 to Equation 14 are also used to 

determine changes in the mass and temperature of the stored air. Equation 15 to Equation 17 calculate the 

total compression work.  

In the D-CAES configuration, compressors are followed by three heat recovery units (HC) and intercoolers/ 

aftercoolers (CL), which cool the compressed air prior to entering the next stage (or pipeline), as shown in 

Figure 8 and Figure 9. Heat transferred in the coolers (ܳ஼௅) is quantified by applying the First Law. Equation 

52 illustrates this for the low-pressure cooler. Equation 53 expresses the total heat released to the 

environment by the three coolers cumulatively. 

݀ܳ஼௅ǡ௅௉ ൌ ݀݉௖௛ ൈ ௣ǡ௔௜௥ܥ ൈ ሺ ௢ܶ௨௧஼௅ǡ௅௉ െ ௢ܶ௨௧ு஼ǡ௅௉ሻ Incremental heat rejected by LP cooler Equation 52 ܳ஼௅ ൌ ௉೐೘௉೑೗൫݀ܳ஼௅ǡ௅௉׬ ൅ ݀ܳ஼௅ǡூ௉ ൅ ݀ܳ஼௅ǡு௉൯ Heat dumped to the ambient 
environment 

Equation 53 

Similarly, the heat absorbed by the heat recovery units is calculated by applying the First Law, as shown in 

Equation 54 for the LP heat recovery unit. Equation 55 expresses the total recovered heat that is offered to 

the district heating system. The mass and exergy of the fuel credits are calculated by Equation 56 and 

Equation 57, respectively. The parameter ߟு஼  expresses the percentage of the recovered heat that is 

consumed by the DH system (i.e. utilization factor of the recovered compression heat). The parameter ߟ஻௅ is 

the efficiency of the boiler of the DH system, which now uses less fuel due to importing waste heat. 

݀ܳு஼ǡ௅௉ ൌ ݀݉௖௛ ൈ ௣ǡ௔௜௥ܥ ൈ ሺ ௢ܶ௨௧ு஼ǡ௅௉ െ ௢ܶ௨௧஼ெǡ௅௉ሻ Incremental heat recovered by LP heat 
recovery unit 

Equation 54 

ܳு஼ ൌ ௉೐೘௉೑೗൫݀ܳு஼ǡ௅௉׬ ൅ ݀ܳு஼ǡூ௉ ൅ ݀ܳு஼ǡு௉൯ Total heat recovered by the heat 
recovery units of D-CAES 

Equation 55 
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݉ேீ௖௧ ൌ ܳு஼ܪܮ ேܸீ ൈ ஻௅ߟு஼ߟ  Mass of fuel credit to D-CAES Equation 56 ܺேீ௖௧ ൌ ݉ேீ௖௧ ൈ ேீݔ  Exergy of fuel credited to D-CAES Equation 57 ܳ஼ெ ൌ ܳ஼௅ ൅ ܳு஼  
Total compression heat available for 
recovery in D-CAES system 

Equation 58 

Equation 21 to Equation 24 remain applicable to evaluate the changes in internal energy, entropy, and exergy 

of the cavern and the total exergy loss over the charging period.  

3-2-2- Discharge phase of D-CAES 

The discharge process of D-CAES is identical to of the conventional CAES system studied in Section 3-1-2. 

3-2-3- Roundtrip analysis of D-CAES 

The raw (i.e. ignoring fuel credits) roundtrip exergy efficiency, work ratio, and raw heat rate of the D-CAES 

facility are quantified by Equation 59, Equation 60, and Equation 61, respectively. However, once the fuel 

credits from heat recovery are taken into account, the adjusted values for the net roundtrip exergy efficiency 

and net heat rate are determined by Equation 62 and Equation 63, respectively. Heat recovery lowers the net 

fuel consumption of the D-CAES plant (reduced heat rate), while the pipeline losses increase the compression 

work (elevated work ratio). Therefore, the net change in the roundtrip exergy efficiency of D-CAES depends 

on the balance between these two opposing factors. Exergy density of the plant is calculated by Equation 48. 

The net GHG emissions intensity of D-CAES is expressed by Equation 64. 

௑ǡ஽ି஼஺ாௌǡ௥௔௪ߟ ൌ ்ܹ஻െ ஼ܹெ ൅ ܺேீ஼஼  
Raw roundtrip exergy efficiency of 
D-CAES 

Equation 59 

ܹܴ஽ି஼஺ாௌ ൌ െ ஼ܹெ்ܹ஻  Work ratio of D-CAES Equation 60 

஽ି஼஺ாௌǡ௥௔௪ܴܪ ൌ ݉ேீ஼஼ ൈ ܪܮ ேܸீ்ܹ஻ ൈ ͵Ǥ͸ Raw heat rate of D-CAES Equation 61 

௑ǡ஽ି஼஺ாௌǡ௡௘௧ߟ ൌ ்ܹ஻െ ஼ܹெ ൅ ܺேீ஼஼ െ ܺேீ௖௧  
Net roundtrip exergy efficiency of 
D-CAES 

Equation 62 

஽ି஼஺ாௌǡ௡௘௧ܴܪ ൌ ሺ݉ேீ஼஼ െ݉ேீ௖௧ ሻ ൈ ܪܮ ேܸீ்ܹ஻ ൈ ͵Ǥ͸ Net heat rate of D-CAES Equation 63 

஽ି஼஺ாௌǡ௡௘௧ܫܩ ൌ ஽ି஼஺ாௌǡ௡௘௧ܴܪ ൈ ேீܨܫܩ  Net GHG emissions intensity of D-CAES Equation 64 



31 
 

The utilization factor of the available compression heat (ܷܳܨ஼ெ) is also calculated to quantify the portion of 

the available compression heat (ܳ஼ெ , Equation 58), which is recovered and utilized (see Equation 65). 

஼ெܨܷ ൌ ܳு஼ ൈ ு஼ܳ஼ெߟ  Portion of available compression heat that is utilized Equation 65 

3-3- Numerical example: D-CAES and conventional CAES models 

A case study based on the simplified model of the conventional CAES and D-CAES is presented in this section. 

As discussed earlier, a comprehensive thermodynamic analysis of these systems is beyond the scope of this 

thesis since the results will be design-specific and the use of sophisticated simulation software such as Aspen 

Plus would be required to develop a more accurate model.  

3-3-1- Base case simulation of D-CAES 

Table 1 lists the inputs used in the base case scenario to compare the thermodynamics of conventional CAES 

and D-CAES. Equation 66 shows the relationship between the cavern pressure ( ஼ܲே) and the upstream 

pressure of the pipeline ( ௉ܲ௉ǡ௨௣, equal to discharge pressure of the high-pressure compressor), using the 

values from Table 1 and the methodology discussed in Section 3-2-1.  

௉ܲ௉ǡ௨௣ ൌ ͲǤ͹͸Ͷ ൈ ஼ܲே ൅ ʹǡʹʹͷ ܴଶ ൌ ͲǤͻͻ 

Numerical relationship between pipelineǯs upstream pressure and cavernǯs pressure of D-CAES 
Equation 66 

The key thermodynamic outputs of the conventional CAES and D-CAES simulation are listed in Table 2. As 

expected, compression work of D-CAES is higher than of CAES, for the same storage pressure. It is of note that 

not all the compression heat is useful to the district heating system due to its too low temperature. This 

analysis has assumed that the heat recovery unit (HC) has an approach temperature of 30 °C and the hot 

compressed air is cooled down to ௢ܶ௨௧ǡ௛௢௧ு஼ = 100 °C (corresponding to an inlet temperature of 70 °C for the cold 

stream of the heat recovery unit, HC). 
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Table 1: Input parameters for the numerical example comparing thermodynamics of conventional CAES and 
D-CAES in the base case scenario. 

Parameter Value Parameter Value Parameter Value ߛ௔௜௥  ͳǤͶ ஼ܸே ͲǤͷ͸ Mm3
௉௉ܮ   ͷͲ km ܥ௣ǡ௔௜௥  1.006 ௞௃௞௚ൈ௄ ܴ௔௜௥  ͲǤʹͺ͹ 

௞௃௞௚ൈ௄ ௘ܶ௧  ͳ͵Ͳ ι  

௙ܲ௟  ͹ MPa ߟு஼  ͳͲͲΨ ߟ௜௦்஻  ͺͷΨ 

௘ܲ௠  ͷ MPa ߟ஻௅ ͺͲΨ ݔேீ  ͷͲ MJ/kg ߟ௜௦஼ெ  ͺͷΨ ௢ܶ௨௧ǡ௛௢௧ு஼  ͳͲͲ °C ܨܫܩேீ  ͸͸ kg/GJ 

௔ܶ௖  ͵Ͳ °C ௉ܶ௉  ͷͷ °C ܪܮ ேܸீ  ͷͲ MJ/kg 

௜ܶ௡்஻ǡு௉ ͷ͵Ͳ °C ሶܹ ஼ெ  ͳͲͷ MW ௜ܶ௡ǡ௖௢௟ௗ஼௅  ʹͷ °C 

௜ܶ௡்஻ǡ௅௉ ͺͷͲ °C ܦ௉௉  ͲǤ͹ͷ m ௉݂௉ ͲǤͲͳ 

 

The fuel exergy credit (4,155 GJ) is higher than the recovered heat (3,321 GJ) because of an assumed ͺͲΨ 

boiler efficiency of the district heating plant (ߟ஻௅). Higher compression requirements of D-CAES compared to 

conventional CAES result in 11% higher exergy losses over the charging process. Nevertheless, the exergy 

credit from heat recovery (4,155 GJ) is 21 times as large as the additional exergy losses endured to charge the 

cavern of D-CAES (1,775 GJ) compared to CAES (1,580 GJ). The discharge phases of conventional CAES and 

D-CAES have the same characteristics. 

The simulated D-CAES plant has a higher work ratio (~0.77 versus 0.74) due to pressure losses in the 

pipeline. It consumes three more units of electrical energy compared to the conventional CAES system to 

generate 100 units of electricity. Both the conventional CAES and D-CAES plants have moderate values of the 

raw exergy efficiency (54% and 53%, respectively), which are in the lower spectrum of bulk energy storage 

technologies. Pumped hydro storage, for example, has a roundtrip storage efficiency of 70-85% [27].  

Nevertheless, D-CAES looks substantially more attractive once the fuel credits are taken into account. It 

reaches a net roundtrip exergy efficiency of 84% and a net heat rate of 1.6 GJ/MWh. This occurs because 

approximately 70% of the energy consumed by the compressor ( ஼ܹெ=4,730 GJ) is recovered and utilized by 
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the district heating system (ܳு஼=3,320 GJ). The GHG emissions intensity of D-CAES (103 kgCO2e/MWh) is 

40% of the conventional CAES.  

It is of note that this analysis provides an optimistic view of D-CAES performance. This analysis has assumed 

that all the recovered heat is consumed by the district heating system (i.e. ߟு஼=100%). In case of excess 

recovered heat beyond the instantaneous demand, it may be wasted to the ambient environment or stored in 

a thermal energy storage system for later use (i.e. ߟு஼<100%), both of which lower the storage efficiency of 

D-CAES. 

Table 2: Results of the base case thermodynamics analysis of conventional CAES and D-CAES. 

Variable CAES D-CAES  Variable CAES D-CAES  

஼ܹெ  (GJ) -4,560 -4,730 ்ܹ஻ (GJ) 6,180 ܳ஼ெ  (GJ) -4,300 -4,480 ܳ஼஼  (GJ) 6,820 ܳு஼  (GJ) 0 -3,320 ܺ௢௨௧  (GJ) 6,180 ܺேீ௖௧  (GJ) 0 4,160 ܺܫௗ௖௛  (GJ) 3,620 

௜ܺ௡ǡ௡௘௧  (GJ) 11,380 7,400 ܷܨ஼ெ ௖௛ܺܫ 74% 0   (GJ) 1,580 1,760 ܹܴ 0.74 0.77 ߟ௑ǡ௥௔௪ ௑ǡ௡௘௧ߟ 53.4% 54.3%  ௥௔௪ܴܪ 83.5% 54.3%   (GJ/MWh) 4.0 ܴܪ௡௘௧  (GJ/MWh) 4.0 1.6 ܺߩ (kWh/m3) 3.1 ܫܩ௡௘௧  (kgCO2/MWh) 262 103 

3-3-2- Sensitivity to length of pipeline 

A key parameter in economic viability of D-CAES is the distance between the compressor and the cavern, i.e. 

the length of pipeline (ܮ௉௉). This distance impacts the thermodynamics of D-CAES as well, due to the 

dependence of the pressure losses on the pipeline length (see Equation 49). Robustness of the results to the 

pipeline length is provided in Table 3. A longer pipeline requires more compression work (resulting in higher 

values for work ratio). At the same time, it provides more heat recovery opportunities (higher ܳு஼). The work 

ratio varies from 0.75 to 0.79 when the pipeline length increases from 25 to 100 km, as compared to a value 

of 0.74 in the conventional CAES model. The net effect of higher compression work (higher work ratio) and 

higher recovered heat (lower heat rate) is negligible on the roundtrip exergy efficiency of D-CAES. 
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Table 3: Sensitivity of performance metrics of D-CAES to pipeline length. 

Pipeline length (km) CAES 25 50 75 100 

஼ܹெ  (GJ) -4,560 -4,650 -4,730 -4,800 -4,860 ܺேீ௖௧  (GJ) 0 4,060 4,160 4,240 4,320 ܹܴ 0.74 0.75 0.77 0.78 0.79 ߟ௑ǡ௡௘௧ ௡௘௧ܴܪ 83.8 83.7 83.5 83.2 54.3 (%)   (kJ/kWh) 4.0 1.6 1.6 1.5 1.5 

3-3-3- Sensitivity to storage pressure 

Another key design parameter is the pressure at which compressed air is stored. To evaluate its effect, the 

maximum cavern pressure is varied from 7 to 11 MPa while its minimum pressure was fixed at 5 MPa (see 

Table 4). The work ratio of both conventional CAES and D-CAES systems increases with the storage pressure 

as the compression losses get larger at higher compression ratios. Nevertheless, the work ratio of D-CAES is 

less sensitive to increases in the storage pressure. This is because pipeline losses ( ௨ܲ௣ െ ௗܲ௡ in Equation 49) 

are lower at higher pipeline pressures and also because of the decreased flow rates in the pipeline (the size of 

the compressor is fixed in this simulation; therefore, the flow rate is lower at higher pipeline pressures). 

Higher compression losses incurred at elevated storage pressures lower the roundtrip exergy efficiency of 

conventional CAES compared to the base case ( ௙ܲ௟=7 MPa and ߟ௑=54%). The net exergy efficiency of D-CAES, 

however, improves at elevated cavern pressures compared to the base case ( ௙ܲ௟=7 MPa and ߟ௑ǡ௡௘௧=84%), 

because the additional heat recovery opportunities and lower pipeline losses outweigh increases in the 

compression losses. The net effect of increasing the storage pressure is to slightly reduce the heat rate of the 

D-CAES. The heat rate of conventional CAES is not sensitive to this change.  

Despite penalties in the roundtrip exergy efficiency, higher storage pressures may be attractive as they 

increase the exergy density of the storage plant. Raising the maximum cavern pressure from 7 to 11 MPa 

approximately triples the exergy density. It is of note that higher compression ratios reduce the isentropic 

efficiency of compressor [28]. Similarly, a wider range for the operating pressure of the expander will likely 

reduce its efficiency [10]. None of these two negative effects are included in the model. These factors will 

increase the work ratio of both conventional CAES and D-CAES systems in the real world. 
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Table 4: Sensitivity of D-CAES thermodynamics to the maximum storage pressure ( ௙ܲ௟). All other input 

parameters are the same as Table 1. 

 MPa 11 =࢒ࢌࡼ MPa 9 =࢒ࢌࡼ MPa 7 =࢒ࢌࡼ 

Variable CAES D-CAES CAES D-CAES CAES D-CAES ܹܴ 0.74 0.77 0.75 0.77 0.76 0.78 ߟ௑ǡ௡௘௧(%) 54.3 83.6 54.0 84.2 53.7 84.8 ܴܪ௡௘௧(GJ/MWh)  4.0 1.6 4.0 1.5 4.0 1.4 ܺߩ (kWh/m3) 3.1 6.3 9.6 

3-3-4 Sensitivity to expander design and throttling 

The base case analysis presented in Section 3-3-1 assumes that the inlet pressures of expanders and 

consequently, their expansion ratios vary as air is withdrawn from the cavern. An alternative strategy is, 

however, to throttle the compressed air to a fixed pressure before expanding it the turbines and generating 

work. Despite the exergy losses associated with throttling and a lower exergy density of the cavern, both the 

Huntorf and the McIntosh plants utilize this design due to the higher efficiencies of turbines with fixed 

expansion ratios [10] and in order to keep the power output of the CAES plant constant [29]. The Huntorf 

plant throttles air to 46 bar (storage pressure of 48-66 bar) whereas the McIntosh plant throttles air to 45 bar 

(storage pressure of 45-74 bar) [10].  

It is reasonable to assume that future compressed air storage plants will avoid throttling losses (to increase 

the exergy density and to reduce the work ratio) and to assume that this will be facilitated by technological 

improvements in expander design. 

In order to assess the effects of throttling, the simulation is repeated but with constant expansion ratios. 

Compressed air is throttled to ௘ܲ௠  prior to entering the recuperator in this case. The throttling process is 

isenthalpic (constant enthalpy) because it involves no work or heat transfer. Since air is modeled as an ideal 

gas, an isenthalpic process does not change its temperature (in practice, the temperature of air drops). 

Therefore, all the previous formulae are still applicable with the difference that a fixed expansion ratio 

(Equation 67 instead of Equation 7) is now used to determine the work of the expanders. 
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ܴܺு௉ ൌ ܴܺ௅௉ ൌ ඨ ଴ܲ௘ܲ௠ ൌ ξܴܺ 
Expander ratio if withdrawn air is throttled prior 
to work generation 

Equation 67 

Table 5 reports key thermodynamic parameters of conventional CAES and D-CAES with and without 

throttling, using values of ௘ܲ௠= 5MPa, ௙ܲ௟= 7MPa, and 50 =ܮ km (see Table 1). Throttling of compressed air 

reduces the expansion work of both conventional CAES and D-CAES by 3% (5,980 GJ compared to 6,180 GJ in 

the base case scenario). The exergy density of the cavern is also decreased by ~3% (3.0 compared to 3.1 

kWh/m3). Throttling lowers the fuel consumption of both storage plants by approximately 3% (6,620 GJ from 

the base value of 6,820 GJ) because the expansion ratio is lower now (hence, the inlet temperature of the LP 

combustor is higher). Throttling increases the work ratio of conventional CAES to 0.76 compared to the base 

case value of 0.74. A similar effect is observed for D-CAES: throttling increases the work ratio from 0.77 to 

0.79. The net effect of lower expansion work and fuel consumption is negligible on the heat rate of CAES, 

whereas it improves the net heat rate of D-CAES by approximately 6% (1.5 compared to 1.6 GJ/MWh). The 

conventional CAES and D-CAES plants modeled here have roundtrip exergy efficiencies of ~53% and 83%, 

respectively, when air is throttled to yield a constant inlet pressure for the expanders. These values are 

marginally lower compared to the scenario without throttling (~54% and 84%). The negative impacts of 

throttling are likely to be more substantial in the real world as throttling is an exothermic process. Small 

sensitivity of the results to the pressure of the expanding air also highlights a key shortcoming of CAES: 

exergy of compressed air is extremely low. Expanding 1 kg of air from 7 MPa and 600 °C generates ~1765 kJ 

of work, when expanded in a one stage turbine with an isentropic efficiency of 85%. This value is reduced 

only by 13% (down to ~1535 kJ) when the pressure of expanding air is reduced from 7MPa to 5MPa. To put 

these numbers in perspective, each kg of natural gas produces ~17.5 GJ of work when combusted in a typical 

gas turbine with an efficiency of 35%. 
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Table 5: Effect of throttling on the performance of conventional CAES and D-CAESǤ ǲVarǤ Pǳ represents the turbine design with a variable expansion ratio while ǲThrottleǳ indicates that air is throttled to yield a 
constant expansion ratio for the turbine. 

 
CAES D-CAES 

Var. P Throttle Var. P Throttle 

஼ܹெ(GJ) -4,560 -4,730 ܺேீ௖௧ (GJ) 0 4,160 

்ܹ஻ (GJ) 6,180 5,980 6,180 5,980 ܳ஼஼  (GJ) 6,820 6,620 6,820 6,620 ܹܴ 0.74 0.76 0.77 0.79 ߟ௑ǡ௡௘௧(%) 54.3 53.5 83.5 83.0 ܴܪ௡௘௧(GJ/MWh) 4.0 4.0 1.6 1.5 ܺߩ (kWh/m3) 3.1 3.0 3.1 3.0 

3-4- Remarks on thermodynamics of D-CAES 

The simulation suggested that utilizing the compression heat to supply an external low-temperature heating 

need might substantially improve the thermodynamic and GHG emissions of the compressed air energy 

storage technology. The results revealed that waste heat recovery enhances the storage efficiency from 

approximately 54% to 84%. In addition, increasing the maximum cavern pressure slightly lowered the 

roundtrip exergy efficiency of conventional CAES (due to higher compression losses) whereas it improves the 

D-CAES exergy efficiency (due to increased waste heat recovery in addition to lower pipeline losses).  

Despite its attractive thermodynamics, the application of the D-CAES design is limited in the real world due to 

need for the presence of a suitable air storage cavern in close proximity to a large heat load. Additionally, 

achieving high storage efficiencies (~80%) calculated here for D-CAES would require storage of the excess 

recovered heat. Both the capital cost and heat losses from these thermal storage systems would work against 

the feasibility of D-CAES. 

Moreover, the D-CAES design does not solve the fundamental problem that a fossil fuel must be burned 

during its discharge period. Space and water heating systems will move away from combustion of fossil fuels 

under emissions constraints (e.g. heat pump or solar heating) while the market opportunity for D-CAES is 
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pairing with a district heating system, which combusts a fossil fuel. Consequently, while D-CAES may become 

economical and also reduce GHG emissions under certain circumstances, it will not be scalable to 

substantially help in decarbonizing the electricity grid. The next section of this chapter concentrates on 

thermodynamics of two zero-carbon compressed air storage technologies that can potentially be adopted at 

scale.  
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4- Thermodynamic analysis of A-CAES and CAES-HTE 

Despite its higher technical maturity and affordability compared to most other bulk energy storage (BES) 

systems, prospects of conventional CAES are poor under tight emissions restrictions. This is driven by its fuel 

demand (heat rate of ~4 GJ/MWh) and the associated GHG emissions (~260 kgCO2e/MWh). Conventional 

CAES may not be able to compete with more capital-intensive but less polluting technologies such as pumped 

hydro storage (PHS) and flow batteries, under strict emissions constraints. Some newer designs have aimed 

to address this issue through replacing the fossil heating fuel of CAES with its compression heat and 

consequently eliminating its GHG emissions. This section provides thermodynamic analysis of two of these 

advanced CAES designs: Adiabatic CAES (A-CAES) and CAES fueled by hydrogen produced via electrolysis of 

steam (CAES-HTE). Thermodynamics of CAES fueled by hydrogen generated via electrolysis of water at the 

ambient (low) temperature (called CAES-LTE) is also modeled to put the performance of CAES-HTE in 

perspective. 

As shown in Figure 2, the A-CAES system relies on the physical storage of the compression heat, which is later 

used to heat the expanding air. If enough heat is stored, A-CAES would not require combustion of fuel and 

could reach a heat rate and GHG emissions rate of zero. Nevertheless, the A-CAES technology calls for 

generation and storage of high-temperature (exergy) heat in order to increase the temperature of expanding 

air to around 600 °C. Such high temperatures are desired to boost the power output of the plant (hence 

higher exergy density) and to prevent freezing of vapor present in the expanding air. This design constraint 

translates to higher compression ratios and limited intercooling and consequently, higher compression work. 

General Electric (GE) and five other partners have been collaborating on an A-CAES pilot project called ǲADELEǳ in Germany since ʹͲͳͲǤ The targeted roundtrip exergy efficiency of this plant is 70% [30]. 

Thermodynamics of A-CAES has been studied widely in the literature. For example, Steta [22] performed an 

analytical simulation of the Huntorf plant if it was hypothetically operated in an adiabatic mode. He estimated 

an exergy efficiency of 57%. Zhang et al. [12] also studied the thermodynamics of A-CAES and reported 

efficiency figures around 75%. 
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To overcome the technical challenges of high-temperature storage of heat, some researchers have also 

evaluated A-CAES designs with multi-stage expanders and compressors operating at lower temperatures. 

Such systems are in fact a combination of the traditional A-CAES (physical storage of heat) and isothermal 

(several stages of compression and expansion). As a case in point, Buffa et al. [17] performed exergy analysis 

of a seven stage compression and six stage expansion aboveground A-CAES system. The thermal storage 

system in their model utilized water at the ambient pressure as the working fluid (thus operating below 100 

°C). They reported a roundtrip exergy efficiency of ~52%. Similarly, Wolf and Budt [19] analyzed an A-CAES 

system with a storage temperature of 90-200 °C and estimated an overall exergy efficiency of 52-60%. 

An alternative approach to direct storage of heat (A-CAES) is to use it for hydrogen production. In the 

CAES-HTE configuration, electricity and the high-temperature compression heat are fed into a high-

temperature electrolyzer (HTE) to generate carbon-free hydrogen (see Figure 5). Hydrogen is stored onsite to 

later fuel combustors to heat the expanding air. Basically, CAES-HTE focuses on chemical rather than physical 

storage of the compression heat. 

The CAES-HTE system has few advantages over A-CAES. The thermal storage system is eliminated whose high 

pressure and high temperature requirements pose various operational and maintenance challenges for 

A-CAES [11]. Moreover, long idling periods do not degrade the storage efficiency since chemical storage 

(CAES-HTE) is not prone to energy losses in contrast to physical storage of thermal energy at high 

temperatures (A-CAES). In addition, CAES-HTE has a higher exergy density since its work output is boosted 

through hydrogen combustion. 

A simpler approach compared to CAES-HTE is to generate hydrogen via electrolysis of water at the low 

(ambient) temperature (LTE). The CAES-LTE system uses more electricity to generate hydrogen via 

electrolysis compared to the CAES-HTE configuration. The compression work of CAES-LTE is, however, lower 

because the need for producing high-temperature compression heat is eliminated (electrolysis of water at 

ambient temperature instead of the electrolysis of steam at elevated temperatures). 

Hydrogen-fueled CAES has its own engineering challenges too. It requires special combustors capable of 

handling higher flame temperatures and increased NOx emissions [31, 32]. For instance, integrated 
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gasification combined cycle (IGCC) designs using syngas with hydrogen contents of 25-40% use diffusion 

burners and massive inert gas (steam or nitrogen) to dilute the fuel in order to limit NOx emissions [33]. 

Therefore, hydrogen combustors need to handle higher flow rates. Moreover, combustion of hydrogen 

instead of natural gas results in roughly 1.7 more water mass per unit of energy. Higher operating pressures 

in the CAES-HTE design also impose design and reliability challenges for the combustors compared to gas 

turbines or conventional CAES [34].  

Note that hydrogen can be produced through a variety of pathways: chemical, biological, electrolytic, 

photolytic and thermo-chemical. Currently, the primary feedstock for hydrogen production is fossil fuels, 

especially natural gas. Almost all large-scale hydrogen production facilities use steam reforming of methane 

(SMR) [35]. As shown in Equation 68, methane and steam are converted to hydrogen and carbon monoxide in 

an endothermic process (700-850 °C and 3-25 bar) [36]. The water-gas shift reaction (Equation 69) is used to 

convert carbon monoxide to carbon dioxide and hydrogen. 

ସܪܥ ൅ ଶܱܪ ՜ ܱܥ ൅ ܱܥ ଶ Steam reforming reaction (endothermic) Equation 68ܪ͵ ൅ ଶܱܪ ՜ ଶܱܥ ൅ܪଶ Water-gas shift reaction (exothermic) Equation 69 

Two particular pathways are of special interest for producing low-carbon hydrogen. The first one is 

electrolysis of steam at high temperatures powered by low-carbon electricity. The second pathway is thermo-

chemical splitting of water at high temperatures, such as the Iodine-Sulfur (IS) process. These processes are 

of particular interest of the high-temperature gas-cooled reactor (HTGR) industry because of the availability 

of very high-temperature heat (~800 °C) [37].  

The first process considered by the HTGR industry is electrolysis of steam at high temperatures (HTE) instead 

of electrolysis of water at low temperatures (LTE). Electrolysis at higher temperatures requires more thermal 

energy but less electricity per unit of hydrogen produced. Figure 10 illustrates the theoretical energy 

requirements as a function of the temperature of water/steam being electrolyzed. The HTGR industry is 

interested in utilizing the HTE technology for hydrogen production due to the availability of high-

temperature (~850 °C) and high-pressure (>1 MPa) steam from the Rankine cycle of the nuclear plant [37]. 

Feeding the high-pressure steam into the HTE generates high-pressure hydrogen, which is desired for 
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storage. Moreover, high reaction temperatures improve the activity of the electrodes and lower the cathodic 

and anodic over-voltages. These effects allow for increasing the current density of the electrode and reducing 

the polarization losses [38]. Therefore, combining HTE with high-temperature reactors is appealing from 

thermodynamic (reducing electric load and utilizing waste heat), kinetic (lowering polarization losses), and 

mechanical (producing high-pressure hydrogen for storage) standpoints. 

 

Figure 10: Theoretical energy requirements for electrolysis as a function of the reaction temperature. 
Electrolysis of steam at higher temperatures requires less electrical work (ȟܩ, Gibbs free energy) but more 
heating energy (equal to product of the electrolysis temperature, ு்ܶா , and entropy change, ܵ߂). The total 
energy requirements (ܪ߂) slightly rises as the electrolysis temperature increases. Formulation is given in 
Section 4-2-2. 

The HTE process is the reverse of the solid oxide fuel cell (SOFC), which normally takes place in the 

temperature range of 700-1000 °C [36]. In a high-temperature electrolyzer, steam is disassociated in the 

cathode to produce H2 and O2- while O2- gets oxidized in the anode to produce oxygen (Equation 70 to 

Equation 72). The theoretical energy demand of electrolysis (ȟܪ) is equal to the change in the Gibbs free 

energy (ȟܩ) plus the heat demand of the reaction (ܵ߂ ൈ ு்ܶா). The electricity demand (ȟܩ) has a negative 

slope with the reaction temperature (-0.05 kJ/mole of H2 in the 100-1000 °C range). The savings in electricity 

consumption comes at the expense of higher heat loads (slope of +0.06 kJ/mole of H2). Therefore, HTE can be 

a promising option to produce hydrogen when the electricity supply is constrained and high-temperature 

heat is available.  
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ଶܱܪ ൅ ʹ݁ ՜ ଶܪ  ൅ ܱଶି Reduction in cathode of electrolyzer Equation 70 

ܱଶି ՜ ͳʹܱଶ ൅ ʹ݁ 
Oxidization in anode of electrolyzer 

Equation 71 

ଶܱܪ ՜ ଶܪ ൅ ͳʹܱଶ 
Net electrolysis equation 

Equation 72 

Energy efficiency of the electrolysis process itself (ߟ௘௟௦) is a key performance metric of HTE. It is defined as 

the ratio of theoretical electricity requirement of the cell (ȟܩ) to the actual power consumed (Equation 73). ܧ 

and ܫ are the actual voltage and current of the electrolyzer. No commercial large-scale HTE facility currently 

exists, but the laboratory-scale systems have energy efficiencies of ~50% at operating temperatures around 

850 °C [37]. 

௘௟௦ߟ ൌ ȟܧܩ ൈ  Energy efficiency of the electrolysis cell Equation 73 ܫ

The second promising pathway to produce hydrogen with the aim of high-temperature heat is thermo-

chemical decomposition of sulfuric and hydriodic acids. Sulfuric acid can be broken through two endothermic 

processes in the temperature range of ~300-500 and ~800-900 °C (Equation 74). The temperature of helium 

gas in the HTGR varies in the range of ~400-900 °C, which makes HTGR a proper candidate for implementing 

this technology to produce hydrogen. 

ଶܵܪ  ସܱሺܽݍሻ ՜ ଶܱሺ݃ሻܪ ൅ ܱܵଷሺ݃ሻ  300-500 °C, endothermic  ܱܵଷሺ݃ሻ ՜ ܱܵଶሺ݃ሻ ൅ ͲǤͷܱଶሺ݃ሻ  800-900 °C, endothermic  ܪଶܵ ସܱሺܽݍሻ ՜ ଶܱሺ݃ሻܪ ൅ ܱܵଶሺ݃ሻ ൅ ͲǤͷܱଶሺ݃ሻ Net reaction of thermo-chemical 
decomposition of sulfuric acid 

Equation 74 

The reaction shown in Equation 74 can be paired with the Bunsen reaction (Equation 75) and decomposition 

of hydriodic acid (Equation 76) to produce hydrogen and oxygen from water (Equation 77), so called the 

Iodine-Sulfur (IS) cycle.  
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ଶܱܪʹ ൅ ଶܫ ൅ ܱܵଶ ՜ ܫܪʹ ൅ ଶܵܪ ସܱ Bunsen reaction, 120 °C, exothermic Equation 75 ʹܫܪ ՜ ଶܪ ൅  ଶܫ
Thermo-chemical decomposition of hydriodic 
acid, 450 °C, endothermic 

Equation 76 

ଶܱܪ ՜ ଶܪ ൅ ͳʹܱଶ 
Net reaction for thermo-chemical hydrogen 
production via IS cycle 

Equation 77 

The Bunsen reaction (Equation 75) occurs at lower temperatures (~120 °C) and is exothermic while 

decomposition of hydriodic acid (Equation 76) is endothermic and takes place at ~450 °C. Decomposition of 

hydrogen iodide can be carried out either in gas phase or in liquid phase with the help of a catalyst [39].  

Figure 11 illustrates a conceptual design of the IS cycle producing carbon-free hydrogen and oxygen. The 

overall thermal-to-hydrogen efficiency of this process is estimated around 50% (HHV) [37, 38].  

 

Figure 11: Schematic of the iodine/sulfur thermo-chemical process (IS) to generate hydrogen and oxygen via 
high-temperature heat. The IS process itself does not consume electricity, heat is the only input. © OECD/IEA 
[2006], Hydrogen production and storage: R&D priorities and gaps, IEA Publishing [36] (permission granted). 

Since the IS cycle requires very high-temperature heat (> 800 °C), which is not readily affordable by the 

compressed air storage plants, this chapter focuses on combining the high-temperature-electrolysis (HTE) 

concept with conventional CAES as an alternative to A-CAES (physical storage of heat). This process can be 

done at moderate temperatures (500 °C) [38]. Electricity in addition to the recovered heat of compression is 

fed to a high temperature electrolyzer to produce hydrogen in the CAES-HTE design (Figure 5). The stored 

compressed air and hydrogen are used to fuel combustors and generate electricity during the discharge 

period. Major distinctions of the CAES-HTE design from A-CAES are the elimination of the thermal storage 

systems (TS) and addition of the HTE unit, hydrogen storage tank, and hydrogen-fueled combustors. 
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While thermodynamics of hydrogen-fueled (instead of gas-fueled) CAES has been studied earlier (e.g. [31]), 

the concept of CAES supplied by hydrogen generated onsite via HTE is new. This section performs an 

analytical modeling of CAES-HTE and A-CAES to compare the thermodynamic performance of these two 

carbon-free advanced CAES designs. The underlying question is whether chemical storage of compression 

heat in the form of hydrogen produced by a high-temperature electrolyzer (i.e. CAES-HTE) is 

thermodynamically more attractive than the physical storage of heat (A-CAES) or not. A comparable 

conventional CAES system (i.e. with the same number of compression and expansion stages and cavern 

pressure and volume) is also modeled to benchmark the performance of A-CAES and CAES-HTE. A CAES 

system paired with a low temperature electrolyzer (CAES-LTE) is also studied in this section to shed light on 

the pros and cons of producing high-temperature compression heat to generate hydrogen and improve the 

performance of compressed air storage systems. 

Figure 12 illustrates schematics of the A-CAES system simulated here. The compression heat is stored in two 

thermal energy store units (TS1 and TS2). Intercoolers are eliminated in order to increase the exit 

temperature of the succeeding compressor stage. A two-stage (LP and HP) compressor is modeled. An 

aftercooler cools the compressed air prior to storage (between TS2 and cavern). 

The expansion train of A-CAES is made up of two stages as well (HP and LP). Withdrawn air is heated by TS1 

and TS2 before expansion and power generation (combustors are eliminated in A-CAES). No recuperator is 

considered here. This is due to the low exit temperature of the LP expander (see Table 10 and Table 11). The 

exhaust heat exchanger (FHX) cools the discharge stream of the LP expander to the ambient temperature. TS1 

absorbs heat from air leaving the low-pressure (LP) compressor and provides heat to air entering the high-

pressure (HP) expander. TS2 interacts with the HP compressor and the LP expander. 



46 
 

 

Figure 12: Schematic of the A-CAES system simulated. All of the low-pressure (LP) and a portion of the high-
pressure (HP) compression heat are stored in two thermal energy storage facilities (TS1 and TS2). The HP 
cooler (CL,HP) provides a stream of compressed air at a constant temperature to the cavern (CN). During the 
discharge phase, TS1 and TS2 heat the compressed air prior to generating work in the high-pressure and low-
pressure expanders (TB,HP and TB,LP). No recuperator, intercooler, and combustor are utilized in the 
A-CAES design. FHX represent the exhaust heat exchanger, which cools the exhaust stream of the LP turbine 
to the ambient temperature ( ଴ܶ). 

The compressor of CAES-HTE is made up of two stages (Figure 13). An intercooler cools the exhaust of the 

low-pressure (LP) compressor to a fixed temperature before entering the high-pressure (HP) compressor. 

Discharge of the HP compressor is fed into a high-temperature electrolyzer to provide the heating energy 

required for production of steam from water and its electrolysis. Air then passes through the aftercooler 

before entering the cavern at a constant temperature. The electrolyzer consumes electricity (supplied by the 

grid) in addition to the thermal energy provided by the hot compressed air leaving the HP compressor. The 

produced hydrogen and compressed air are stored onsite. The discharge phase of CAES-HTE is identical to 

that of the conventional CAES system with the difference that the stored hydrogen, instead of natural gas, 

fuels the combustors. The simulated CAES-LTE system has a similar configuration to CAES-HTE (shown in 

Figure 13), with the difference that a low-temperature electrolyzer (LTE) is used instead of HTE. Moreover, a 

three-stage compression train is used since there is no need for producing high-temperature heat in the 

CAES-LTE system. 
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Figure 13: Schematic of the CAES-HTE system. Compression heat lowers electricity demand of the high-
temperature electrolyzer (HTE). Heat of the HP compressor (CM, HP) provides both the thermal energy for 
generating steam (from water supplied at the ambient temperature) and its electrolysis. CL, CN, RP, CC, TB, and F(X stand for compressorǯs coolerǡ cavernǡ recuperatorǡ combustorǡ expanderǡ and the exhaust heat 
exchanger. Refer to the nomenclature for the full list of abbreviations.  

Finally, Figure 14 shows a conventional CAES system with two stages of compression, instead of the three-

stage system shown in Figure 7 and analyzed in Section 3. A two-stage compressor is modeled here so that 

the performance of A-CAES and CAES-HTE can be benchmarked against conventional CAES. 

Increasing the number of compression and cooling stages improves the thermodynamics of compressed air 

storage plants operating within a specific pressure range. The trade-off analysis between improved 

thermodynamics, lower operational costs, and higher capital cost of compression and expansion trains made 

up of several stages is not in the scope of this chapter. 

 

Figure 14: Schematic of the conventional CAES plant modeled to benchmark the performance of A-CAES and 
CAES-HTE systems shown in Figure 12 and Figure 13. This system is identical to the conventional CAES 
configuration illustrated in Figure 7 with the distinction that the intermediate-pressure compressor (CM-IP) 
is eliminated here. Refer to the nomenclature for the full list of the symbols. 

The same general assumptions and simplifications listed in Section 2 are applicable to the A-CAES, CAES-HTE, 

and CAES-LTE models. The compressors have two stages instead of the three stages modeled in Section 3 for 
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conventional CAES and D-CAES, though. The low- and high-pressure (LP and HP) stages have variable but 

equal compression ratios. The instantaneous compression ratio is therefore, given by Equation 78 for the 

simulated two-stage compressors. The compression ratio in the CAES-LTE system is, however, given by 

Equation 8 since it is assumed to have three stages. 

ு௉ܴܥ ൌ ௅௉ܴܥ ൌ ඨ ஼ܲே଴ܲమ ൌ ξܴܥమ
 

Instantaneous compression ratio of two-
stage compressor 

Equation 78 

4-1- Modeling A-CAES 

This section provides the specific assumptions made to analyze the A-CAES system shown in Figure 12. The 

following subsections present the details of the thermodynamic model of A-CAES. 

No intercooling is performed in the A-CAES design. The aftercooler of A-CAES is similar to that of 

conventional CAES; it has a fixed approach temperature ( ௔ܶ௖ , see Figure 6). Therefore, temperature of the 

compressed air stream entering the cavern is constant (Equation 6). 

The intake temperatures of the expanders (i.e. exhaust of TS1 and TS2 during the discharge period) are also 

assumed constant. However, their values are determined based on the amount of heat stored over the 

charging phase. Note that the inlet temperatures of expander in the conventional CAES system modeled in 

Section 3-1 were constant as well but their values were a design parameter (i.e. preset). The thermal energy 

storage units (TS1 and TS2) are modeled isobaric and adiabatic. TS1 absorbs heat from air leaving the low-

pressure (LP) compressor and provides heat to air entering the high-pressure (HP) expander. TS2 interacts 

with the HP compressor and the LP expander.  

4-1-1- Charge phase of A-CAES 

Equation 6 and Equation 11 are applicable to determine the temperature and mass of compressed air 

entering the cavern during the charging period. Similarly, Equation 12 to Equation 14 are valid to quantify 

changes in the mass and temperature of compressed air in the cavern. 

The compression work of A-CAES is quantified by applying the First Law to the LP and HP compressors and 

summing them up (Equation 79). The compression work and discharge temperature of the LP compressor 
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are quantified by Equation 80 and Equation 81, respectively. Similar formulae can be written for the HP 

compressor. 

஼ܹெ ൌ ௉೐೘௉೑೗൫݀׬ ஼ܹெǡ௅௉ ൅ ݀ ஼ܹெǡு௉൯ Total compression work of A-CAES Equation 79 

݀ ஼ܹெǡ௅௉ ൌ ݀݉௖௛ ൈ ௣ǡ௔௜௥ܥ ൈ ൫ ௜ܶ௡஼ெǡ௅௉ െ ௢ܶ௨௧஼ெǡ௅௉൯ Incremental work of LP compressor Equation 80 

௢ܶ௨௧஼ெǡ௅௉ ൌ ௜ܶ௡஼ெǡ௅௉ െ ௜ܶ௡஼ெǡ௅௉ െ ௢ܶ௨௧ǡ௜௦௧஼ெǡ௅௉ߟ௜௦௧஼ெǡ௅௉  
Instantaneous exit temperature of LP 
compressor 

Equation 81 

௢ܶ௨௧ǡ௜௦௧஼ெǡ௅௉ ൌ ௜ܶ௡஼ெǡ௅௉ ൈ ܴܥ௅௉ሺఊିଵሻȀఊ 
Isentropic instantaneous exit 
temperature of LP compressor 

 

The maximum exit temperature of the HP compressor ( ௢ܶ௨௧஼ெǡு௉ǡெ௔௫) is a preset parameter. The rationale for 

this design constraint is the following. The exit temperature of the compressor is a key parameter for 

determining the exergy supplied to and stored in thermal storage (TS), which consequently impacts the 

temperature of the air entering the expanders. Moreover, there are technical constraints such as the stress on 

and the fatigue of compressor blades driven by the maximum exit temperature of the compressor. 

Thermal storage units (TS1 and TS2) are assumed to have a constant exit temperature during the charging 

period. The constant exit temperature of TS2 (succeeding the HP compressor) is preset ( ௢ܶ௨௧்ௌଶǡ௖௛). The 

constant exit temperature of TS1 (preceding the HP compressor) is, however, dictated by the value chosen for 

maximum discharge temperature of the HP compressor ( ௢ܶ௨௧஼ெǡு௉ǡெ௔௫). Solving the system of equations 

composed of Equation 82, Equation 83, and Equation 84 finds the fixed inlet temperature of the HP 

compressor ( ௜ܶ௡஼ெǡு௉) that limits the maximum of its exit temperature to the preset value of ௢ܶ௨௧஼ெǡு௉ǡெ௔௫ . Note 

that ௜ܶ௡஼ெǡு௉ is equal to ௢ܶ௨௧்ௌଵǡ௖௛ . 

ு௉ǡெ௔௫ܴܥ ൌ ඨ ௙ܲ௟଴ܲమ ൌ ඥܴܥெ௔௫మ  
Max compression ratio of the two-stage 
compressor 

Equation 82 

௢ܶ௨௧஼ெǡு௉ǡெ௔௫ ൌ ௜ܶ௡஼ெǡு௉ ൅ ௢ܶ௨௧ǡ௜௦௧஼ெǡு௉ǡெ௔௫ െ ௜ܶ௡஼ெǡு௉ߟ௜௦௧஼ெǡு௉  
Relationship between the inlet and exit 
temperature of HP compressor 

Equation 83 

௢ܶ௨௧ǡ௜௦௧஼ெǡு௉ǡெ௔௫ ൌ ௜ܶ௡஼ெǡு௉ ൈ ൫ܴܥு௉ǡெ௔௫൯ఊିଵఊ   Relationship between isentropic exit 
temperature of HP compressor and its 
inlet temperature 

Equation 84 
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Equation 85 gives the heat stored in TS2 during the charge phase. The inlet temperature of TS2 is equal to the 

exit temperature of the high-pressure compressor and is a function of the instantaneous compression ratio 

(see Equation 86 and Equation 87). The exit temperature of TS2 ( ௢ܶ௨௧்ௌଶǡ௖௛) is assumed to be constant 

throughout the charging process. Equation 88 to Equation 90 show similar formulae for TS1 absorbing heat 

from compressed air leaving the low-pressure compressor.  

்ܳௌଶǡ௖௛ ൌ ௉೐೘௉೑೗݀݉௔௜௥ǡ௖௛׬ ൈ ௣ǡ௔௜௥ൈܥ ൫ ௢ܶ௨௧்ௌଶǡ௖௛ െ ௢ܶ௨௧஼ெǡு௉൯ Heat stored in TS2 during charging period Equation 85 

௢ܶ௨௧஼ெǡு௉ ൌ ௜ܶ௡஼ெǡு௉ െ ௜ܶ௡஼ெǡு௉ െ ௢ܶ௨௧ǡ௜௦௧஼ெǡு௉ߟ௜௦௧஼ெǡு௉  
Instantaneous exit temperature of HP 
compressor 

Equation 86 

௢ܶ௨௧ǡ௜௦௧஼ெǡு௉ ൌ ௜ܶ௡஼ெǡு௉ ൈ ሺܴܥு௉ሻఊିଵఊ  
Isentropic instantaneous exit temperature 
of HP compressor 

Equation 87 

்ܳௌଵǡ௖௛ ൌ ௉೐೘௉೑೗݀݉௔௜௥ǡ௖௛׬ ൈ ௣ǡ௔௜௥ൈܥ ൫ ௢ܶ௨௧்ௌଵǡ௖௛ െ ௢ܶ௨௧஼ெǡ௅௉൯ Heat stored in TS1 during charging Equation 88 

௢ܶ௨௧஼ெǡ௅௉ ൌ ௜ܶ௡஼ெǡ௅௉ െ ௜ܶ௡஼ெǡ௅௉ െ ௢ܶ௨௧ǡ௜௦௧஼ெǡ௅௉ߟ௜௦௧஼ெǡ௅௉  
Instantaneous exit temperature of LP 
compressor 

Equation 89 

௢ܶ௨௧ǡ௜௦௧஼ெǡ௅௉ ൌ ௜ܶ௡஼ெǡ௅௉ ൈ ሺܴܥ௅௉ሻఊିଵఊ  
Isentropic instantaneous exit temperature 
of LP compressor 

Equation 90 

The exergy of the stored heat in TS1 and TS2 can be similarly quantified. The exergy of the air stream (ɗ) is 

calculated according to Equation 2, Equation 4, and Equation 5 since the inlet and outlet temperature and 

pressure of TS1 and TS2 are all now known. 

ௌଵǡ௖௛்ܺ߂ ൌ ௉೐೘௉೑೗݀݉௔௜௥ǡ௖௛׬ ൈ ൫߰௢௨௧்ௌଵǡ௖௛ െ ߰௢௨௧஼ெǡ௅௉൯ Exergy stored in TS2 during charge Equation 91 ்ܺ߂ௌଶǡ௖௛ ൌ ௉೐೘௉೑೗݀݉௔௜௥ǡ௖௛׬ ൈ ൫߰௢௨௧்ௌଶǡ௖௛ െ ߰௢௨௧஼ெǡு௉൯ Exergy stored in TS2 during charge Equation 92 

Air stream leaving TS2 is cooled in the aftercooler prior to entering the cavern. Equation 93 quantifies the 

heat rejected in the aftercooler. Equation 94 expresses the total heat that is dissipated by the compressor. 

This parameter is equal to the heat stored in TS1 and TS2 plus the heat rejected to the ambient environment 

in the aftercooler of A-CAES. 

ܳ஼௅ ൌ ௉೐೘௉೑೗݀݉௔௜௥ǡ௖௛׬ ൈ ௣ǡ௔௜௥ܥ ൈ ൫ ௜ܶ௡஼ே െ ௢ܶ௨௧்ௌଶǡ௖௛൯ Heat dissipated by HP aftercooler Equation 93 

ܳ஼ெ ൌ ܳ஼௅ ൅ ்ܳௌଵǡ௖௛ ൅ ்ܳௌଶǡ௖௛ 
Total heat dissipated by the 
compression train of A-CAES 

Equation 94 
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Equation 21 to Equation 23 remain applicable for quantifying the changes in the internal energy, entropy, and 

exergy of the air stored in the cavern of A-CAES. Exergy destroyed over the charging period is shown in 

Equation 95. 

௖௛ܺܫ ൌ െȟܺ௖௛஼ே െ ஼ܹெ ൅݉௖௛ ൈ ߰଴ െ ȟ்ܺௌଵǡ௖௛െ ȟ்ܺௌଵǡ௖௛  
Exergy lost during charging phase of 
A-CAES 

Equation 95 

4-1-2- Discharge phase of A-CAES 

Changes in the mass and temperature of compressed air present in the cavern of A-CAES during the discharge 

period are expressed by Equation 25 to Equation 29, similar to the conventional CAES model presented in 

Section 3-1-2.  

The analysis assumes perfect storage of heat, i.e. all the thermal energy stored during the charging phase is 

released back to the expanding air. The exit temperature of TS1 and TS2 is assumed to remain constant over 

the discharge period. 

The First Law is applied to perform a series of trials and errors in order to find the fixed (but unknown) exit 

temperature of TS1 so that the heat released by TS1 during the discharge period becomes equal to the heat 

previously stored during the charge period (Equation 96 and Equation 97). 

்ܳௌଵǡௗ௖௛ ൌ ௉೑೗௉೐೘݀݉௔௜௥ǡௗ௖௛׬ ൈ ௣ǡ௔௜௥ൈܥ ൫ ௢ܶ௨௧்ௌଵǡௗ௖௛ െ ஼ܶேǡௗ௖௛൯ Heat released by TS1 during discharge phase Equation 96 

௢ܶ௨௧்ௌଵǡௗ௖௛ ǫ֞ ்ܳௌଵǡௗ௖௛ ൌ ்ܳௌଵǡ௖௛  
Finding the exit temperature of TS1 so that 
the stored and released heats are equal 

Equation 97 

஼ܶேǡௗ௖  is the instantaneous temperature of air leaving the cavern (Equation 28). Heat stored in TS1 during the 

charge phase (்ܳௌଵǡ௖௛) is already known (Equation 88). Therefore, the exit temperature of ST1 during 

discharge phase ( ௢ܶ௨௧்ௌଵǡௗ௖௛) can be determined. 

Once the exit temperature of TS1 is calculated, work and discharge temperature of the HP expander are found 

through applying the First Law to the HP expander (Equation 98 and Equation 99). The instantaneous 

expansion ratio is expressed by Equation 7. 
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்ܹ஻ǡு௉ ൌ ௉೑೗௉೐೘݀݉௔௜௥ǡௗ௖௛׬ ൈ ௣ǡ௔௜௥ൈܥ ൫ ௢ܶ௨௧்ௌଵǡௗ௖௛ െ ௢ܶ௨௧்஻ǡு௉൯ Work generated by HP expander of 
A-CAES 

Equation 98 

௢ܶ௨௧்஻ǡு௉ ൌ ௢ܶ௨௧்ௌଵǡௗ௖௛ ൅ ௜௦௧்஻ǡு௉ሺߟ ௢ܶ௨௧ǡ௜௦்஻ǡு௉ െ ௢ܶ௨௧்ௌଵǡௗ௖௛ሻ Instantaneous discharge temperature of 
HP expander 

Equation 99 

௢ܶ௨௧ǡ௜௦௧்஻ǡு௉ ൌ ௢ܶ௨௧்ௌଵǡௗ௖௛ ൈ ܴܺு௉ሺఊିଵሻȀఊ  
Isentropic instantaneous discharge 
temperature of HP expander 

 

Upon determining the inlet temperature of TS2 (equal to ௢ܶ௨௧்஻ǡு௉), the First Law is applied to find the exit 

temperature of TS2 (Equation 100 and Equation 101). The same trial and error procedure explained for TS1 

(Equation 96 and Equation 97) is used to pursue this goal.  

்ܳௌଶǡௗ௖௛ ൌ ௉೑೗௉೐೘݀݉௔௜௥ǡௗ௖௛׬ ൈ ௣ǡ௔௜௥ൈܥ ൫ ௢ܶ௨௧்ௌଶǡௗ௖௛ െ ௢ܶ௨௧்஻ǡு௉൯ Total heat released by TS2 during discharge 
period of A-CAES 

Equation 100 

௢ܶ௨௧்ௌଶǡௗ௖௛ ǫ֞ ்ܳௌଶǡௗ௖௛ ൌ ்ܳௌଶǡ௖௛  
Finding exit temperature of TS2 so that 
stored and released heats are equal 

Equation 101 

Similar to the charging phase, the changes in the exergy stock of TS1 and TS2 are quantified with Equation 

102 and Equation 103. Since thermal storage systems are modeled as ideal, the exergy released by TS1 and 

TS2 is equal to exergy previously stored in them during charging. 

ௌଵǡௗ௖௛்ܺ߂ ൌ ௉೐೘௉೑೗݀݉௔௜௥ǡௗ௖௛ൈ׬ ൫߰௢௨௧்ௌଵǡௗ௖௛ െ߰ௗ௖௛஼ே ൯ Exergy released in TS1 during discharge 
phase of A-CAES 

Equation 102 

ௌଶǡௗ௖௛்ܺ߂ ൌ ௉೐೘௉೑೗݀݉௔௜௥ǡௗ௖௛ൈ׬ ൫߰௢௨௧்ௌଶǡௗ௖௛ െ߰௢௨௧்஻ǡு௉൯ Exergy released in TS2 during discharge 
period of A-CAES 

Equation 103 

Now that the inlet temperature of the low-pressure turbine is determined (equal to discharge temperature of 

TS2), the First Law is used to determine the work generated by the LP turbine (Equation 104) and its exit 

temperature (Equation 105). 

்ܹ஻ǡ௅௉ ൌ ௉೑೗௉೐೘݀݉௔௜௥ǡௗ௖௛׬ ൈ ௣ǡ௔௜௥ൈܥ ൫ ௢ܶ௨௧்ௌଶǡௗ௖௛ െ ௢ܶ௨௧்஻ǡ௅௉൯ Total work of LP expander of A-CAES Equation 104 

௢ܶ௨௧்஻ǡ௅௉ ൌ ௢ܶ௨௧்ௌଶǡௗ௖௛ ൅ ௜௦௧்஻ǡ௅௉ሺߟ ௢ܶ௨௧ǡ௜௦௧்஻ǡ௅௉ െ ௢ܶ௨௧்ௌଶǡௗ௖௛ሻ Instantaneous discharge temperature of 
LP expander 

Equation 105 

௢ܶ௨௧ǡ௜௦௧்஻ǡ௅௉ ൌ ௢ܶ௨௧்ௌଶǡௗ௖௛ ൈ ܴܺ௅௉ሺఊିଵሻȀఊ  
Isentropic instantaneous discharge 
temperature of LP expander 

 

Finally, heat dissipated in the exhaust heat exchanger is quantified by Equation 106. 
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ܳிு௑ ൌ ௉೑೗௉೐೘݀݉௔௜௥ǡௗ௖௛׬ ൈ ௣ǡ௔௜௥ܥ ൈ ሺ ଴ܶ െ ௢ܶ௨௧்஻ǡ௅௉ሻ Heat wasted in the exhaust heat 
exchanger 

Equation 106 

Equation 40, Equation 41, and Equation 42 remain applicable for calculating changes in the internal energy, 

entropy, and exergy of cavern over the discharge phase. Equation 107 quantifies the total exergy lost during 

the discharge phase of A-CAES. 

ௗ௖௛ܺܫ ൌ െܺ߂ௗ௖௛஼ே െ ்ܹ஻ െ݉௔௜௥ǡௗ௖௛ ൈ ߰௔௜௥ǡௗ௖௛െ ௌଵǡௗ௖௛்ܺ߂ െ ௌଵǡௗ௖௛்ܺ߂  

Exergy lost during discharge of 
A-CAES 

Equation 107 

4-1-3- Roundtrip analysis of A-CAES 

Once the complete charge and discharge processes of A-CAES are modeled, its overall performance can be 

evaluated. Equation 45 and Equation 48 remain applicable for expressing the work ratio and exergy density 

of the plant. Roundtrip exergy efficiency is quantified by Equation 108 (equal to the inverse of work ratio). 

Since no fuel is consumed, the heat rate and GHG emissions intensity of A-CAES are zero (Equation 109 and 

Equation 110). 

௑ǡ஺஺ି஼஺ாௌߟ ൌ ்ܹ஻െ ஼ܹெ  Roundtrip exergy efficiency of A-CAES Equation 108 

஺஺ି஼஺ாௌܴܪ ൌ ݉ேீ஼஼ ൈ ܪܮ ேܸீ்ܹ஻ ൈ ͵Ǥ͸ ൌ Ͳ Heat rate of A-CAES Equation 109 

஺஺ି஼஺ாௌܫܩ ൌ ஺஺ି஼஺ாௌܴܪ ൈ ேீܨܫܩ ൌ Ͳ GHG emissions intensity of A-CAES Equation 110 

4-2- Modeling CAES-HTE 

In addition to the simplifications and assumptions listed in Section 2, which are applicable to all CAES 

configurations studied in this chapter, the following specific assumptions are used to simulate the CAES-HTE 

system illustrated in Figure 13. 

An intercooler cools the exhaust stream of the LP compressor to a constant temperature before entering the 

HP compressor. The maximum discharge temperature of the HP compressor is a design parameter and is 

preset, similar to the A-CAES model. The exhaust stream of the HP compressor is used to boil water, to heat 

up the generated steam to the constant temperature of the electrolyzer ( ு்ܶா), and to provide the heating 

energy required for the electrolysis process itself. An aftercooler follows the electrolyzer to lower the 
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temperature of compressed air to a fixed value ( ஼ܶேǡ௜௡) before storage. The generated hydrogen is stored 

onsite to heat the air during the discharge phase. No physical storage of heat is performed, in contrast to the 

A-CAES design.  

The discharge phase of CAES-HTE is identical to that of the conventional CAES with the distinction that 

hydrogen (produced during charging) fuels the combustors instead of natural gas (an external fuel for 

conventional CAES).  

4-2-1- Discharge phase of CAES-HTE 

Since the heating loads of the low- and high-pressure combustors determine the amount of hydrogen fuel 

needed and consequently the energy demand of the electrolyzer during the charge phase, the discharge phase 

of CAES-HTE is analyzed first. 

Equation 25 to Equation 29 remain applicable for quantifying the changes in the mass and temperature of the 

compressed air present in the cavern during discharge. Similar to the conventional CAES system, the inlet 

temperatures of the low-pressure and high-pressure turbines ( ௜ܶ௡்஻ǡ௅௉ and ௜ܶ௡்஻ǡு௉) are preset. Therefore, 

Equation 30 to Equation 32 quantify the expansion work and the instantaneous exit temperature of HP and 

LP turbines. The heat load of the LP and HP combustors are determined by applying Equation 33 and 

Equation 35. Finally, the mass, and exergy of the hydrogen fuel needed are calculated via Equation 112 and 

Equation 113.  

ܳ஼஼ ൌ ܳ௅௉ǡ஼஼ ൅ ܳு௉ǡ஼஼  Heat load of combustors of CAES-HTE Equation 111 

݉ுଶ஼஼ ൌ ܳ஼஼ܪܮ ுܸଶ Mass of hydrogen fuel needed Equation 112 

ܺுଶ஼஼ ൌ ݉ுଶ஼஼ ൈ  ுଶ Exergy of hydrogen fuel needed Equation 113ݔ

Equation 40 to Equation 42 remain valid to quantify the changes in the internal energy, entropy, and exergy 

of the compressed air present in the cavern. The exergy lost during the discharge phase is quantified by 

Equation 114. Note that the exergy of air stream leaving the plant for the ambient environment (߰௔௜௥ǡௗ௖௛) is 

zero since the discharge stream of the exhaust heat exchanger is at the ambient conditions.  
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ௗ௖௛ܫ ൌ െȟܺௗ௖௛஼ே െ ୘୆ ൅ ܺுଶ஼஼ െ݉௔௜௥ǡௗ௖௛ൈ ߰௔௜௥ǡௗ௖௛  
Exergy loss of the discharge phase of 
CAES-HTE 

Equation 114 

4-2-2- Charge phase of CAES-HTE 

Charging process of CAES-HTE (Figure 13) is similar to that of the conventional CAES (Figure 14) with the key 

difference that exhaust stream of the HP compressor first transfers some of its heat to an electrolyzer and the 

rest to the aftercooler. As with the A-CAES simulation, the maximum exit temperature of the high-pressure 

compressor is preset. This parameter dictates the exit temperature of the low-pressure intercooler (a 

constant but unknown parameter). Note that discharge temperature of the LP intercooler was a preset 

parameter in the conventional CAES model presented in Section 3-1-1.  

Equation 9 to Equation 14 remain applicable to quantify changes in the mass and temperature of compressed 

air in the cavern during the charge period. Work of the low-pressure compressor and its exit temperature are 

calculated by applying the First Law to the LP compressor (Equation 115 and Equation 116). 

஼ܹெǡ௅௉ ൌ ௉೐೘௉೑೗݀݉௔௜௥ǡ௖௛׬ ൈ ௣ǡ௔௜௥ܥ ൈ ሺ ௜ܶ௡஼ெǡ௅௉െ ௢ܶ௨௧஼ெǡ௅௉ሻ Total work of LP compressor Equation 115 

௢ܶ௨௧஼ெǡ௅௉ ൌ ௜ܶ௡஼ெǡ௅௉ െ ௜ܶ௡஼ெǡ௅௉ െ ௢ܶ௨௧ǡ௜௦௧஼ெǡ௅௉ߟ௜௦௧஼ெǡ௅௉  
Instantaneous discharge temperature of LP 
compressor 

Equation 116 

௢ܶ௨௧ǡ௜௦௧஼ெǡ௅௉ ൌ ௜ܶ௡஼ெǡ௅௉ ൈ ܴܥ௅௉ሺఊିଵሻȀఊ  
Isentropic instantaneous discharge 
temperature of LP compressor 

 

The next step after quantifying the inlet temperature of the low-pressure cooler (equal to exit temperature of 

the low-pressure compressor, Equation 116) is calculating its discharge temperature, which is equal to the 

inlet temperature of the high-pressure compressor. This temperature is assumed to remain constant during 

the charging period. Its value, however, is dictated by another design parameter: the maximum exit 

temperature of the high-pressure compressor. Similar to A-CAES model, solving the system of equations 

made up of Equation 82, Equation 83, and Equation 84 determines the inlet temperature of the high-pressure 

compressor ( ௜ܶ௡஼ெǡு௉ , which is equal to ௢ܶ௨௧஼௅ǡ௅௉). 

Once the inlet temperature of the high-pressure compressor is known, its work and instantaneous exit 

temperature can be determined by applying Equation 117 and Equation 118. 
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஼ܹெǡு௉ ൌ ௉೐೘௉೑೗݀݉௔௜௥ǡ௖௛׬ ൈ ௣ǡ௔௜௥ܥ ൈ ሺ ௜ܶ௡஼ெǡு௉െ ௢ܶ௨௧஼ெǡு௉ሻ Total work of HP compressor Equation 117 

௢ܶ௨௧஼ெǡு௉ ൌ ௜ܶ௡஼ெǡு௉ െ ௜ܶ௡஼ெǡு௉ െ ௢ܶ௨௧ǡ௜௦௧஼ெǡு௉ߟ௜௦௧஼ெǡு௉  
Instantaneous discharge temperature of HP 
compressor 

Equation 118 

௢ܶ௨௧ǡ௜௦௧஼ெǡு௉ ൌ ௜ܶ௡஼ெǡு௉ ൈ ܴܥு௉ሺఊିଵሻȀఊ  
Isentropic instantaneous discharge 
temperature of HP compressor 

 

As illustrated in Figure 10, the energy demand of the electrolyzer depends on the reaction temperature. For 

the sake of simplicity, this analysis assumes a fixed electrolysis temperature, equal to the average exit 

temperature of the HP compressor during the charging period (see Equation 123). 

ு௉ǡெ௜௡ܴܥ ൌ ඨ ௘ܲ௠ܲ଴మ ൌ ඥܴܥெ௜௡మ  
Minimum compression ratio of the 
two-stage compressor 

Equation 119 

ு௉ǡெ௔௫ܴܥ ൌ ඨ ௙ܲ௟଴ܲమ ൌ ඥܴܥெ௔௫మ  
Maximum compression ratio of the 
two-stage compressor 

Equation 120 

௢ܶ௨௧஼ெǡு௉ǡெ௜௡ ൌ ௜ܶ௡஼ெǡு௉ െ ௜ܶ௡஼ெǡு௉ െ ௢ܶ௨௧ǡ௜௦௧஼ெǡு௉ǡெ௜௡ߟ௜௦௧஼ெǡு௉  
Minimum instantaneous exit 
temperature of HP compressor 

Equation 121 

௢ܶ௨௧ǡ௜௦௧஼ெǡு௉ǡெ௜௡ ൌ ௜ܶ௡஼ெǡு௉ ൈ ܴܥு௉ǡெ௜௡ሺఊିଵሻȀఊ    

௢ܶ௨௧஼ெǡு௉ǡெ௔௫ ൌ ௜ܶ௡஼ெǡு௉ െ ௜ܶ௡஼ெǡு௉ െ ௢ܶ௨௧ǡ௜௦௧஼ெǡு௉ǡெ௔௫ߟ௜௦௧஼ெǡு௉  
Maximum instantaneous exit 
temperature of HP compressor 

Equation 122 

௢ܶ௨௧ǡ௜௦௧஼ெǡு௉ǡெ௔௫ ൌ ௜ܶ௡஼ெǡு௉ ൈ ܴܥு௉ǡெ௔௫ሺఊିଵሻȀఊ   

ு்ܶா ൌ ͲǤͷ ൈ ሺ ௢ܶ௨௧஼ெǡு௉ǡெ௔௫ ൅ ௢ܶ௨௧஼ெǡு௉ǡெ௜௡ሻ Reaction temperature of electrolysis Equation 123 

Since the instantaneous inlet temperature of the electrolyzer is known as a function of the compression ratio 

(equal to ௢ܶ௨௧஼ெǡு௉ , Equation 118), one can apply the First Law to the electrolyzer to find its constant exit 

temperature ( ௢ܶ௨௧ு்ா), which results in the desired heat load of the electrolyzer (ܳு்ாǡ௧௢௧௔௟ , quantified in the 

next paragraph). The trial-and-error process is again used to find ௢ܶ௨௧ு்ா  as shown in Equation 124 and 

Equation 125. 



57 
 

ܳு்ா ൌ ௉೐೘௉೑೗݀݉௔௜௥ǡ௖௛׬ ൈ ௣ǡ௔௜௥ൈܥ ሺ ௢ܶ௨௧ு்ா െ ௜ܶ௡ு்ாሻ Total heat absorbed by HTE from the 
exhaust of HP compressor 

Equation 124 

௢ܶ௨௧ு்ா ǫ֞ ܳு்ாǡ௧௢௧௔௟ ൌ ܳு்ா  
Applying trial-and-error to find exit 
temperature of HTE 

Equation 125 

Total heat demand of the electrolyzer (ܳு்ாǡ௧௢௧௔௟) is based on mass of hydrogen needed to fuel the 

combustors during the discharge process (Equation 112). This heating load is made up of four components: 

sensible heat load to bring water fed to the electrolyzer at the ambient temperature to 100 °C (ܳௌ௡௦ǡ௪௔௧௘௥), 

latent heat load to boil water (ܳ௅௡௧ǡ௪௔௧௘௥), sensible heat load to bring steam from 100 °C to the electrolysis 

temperature (ܳௌ௡௦ǡ௦௧௘௔௠), and finally the heat required for the electrolysis of steam itself (ܳு்ாǡ௦௧௘௔௠).  

As shown in the electrolysis reaction (Equation 72), one mole of hydrogen (2 g) and half a mole of oxygen (16 

g) are generated per mole of water (18 g) electrolyzed. The relationship between mass of hydrogen and water 

can therefore, be expressed by Equation 126 

݉ுమைு்ா ൌ ݉ுଶ஼஼ ൈܯுమைܯுమ ൈ ݊ுమை݊ுమ  
Mass of water electrolyzed per mole of 
hydrogen generated 

Equation 126 

The sensible heat load of water and steam and the latent heat are quantified based on Equation 127, Equation 

128, and Equation 129.  

ܳௌ௡௦ǡ௪௔௧௘௥ ൌ ݉ுమைு்ா ൈ ௣ǡ௪௔௧௘௥ܥ ൈ ሺ ௕ܶ௢௜௟ െ ଴ܶሻ Sensible heat load of HTE to heat up 
water to boiling temperature 

Equation 127 ܳௌ௡௦ǡ௦௧௘௔௠ ൌ ݉ுమைு்ா ൈ ௣ǡ௦௧௘௔௠ܥ ൈ ሺ ு்ܶாെ ௕ܶ௢௜௟ሻ Sensible heat load of HTE to heat up 
steam to the electrolysis temperature 

Equation 128 

ܳ௅௧௡ǡ௪௔௧௘௥ ൌ ݉ுమைு்ா ൈ ௅௡௧ǡ௪௔௧௘௥ܥ  
Latent heat load of HTE to produce 
steam 

Equation 129 

For the electrolysis process itself, the total energy requirement (ȟܪ), the change in entropy (ȟܵ), and the 

electricity demand (change in the Gibbs free energy, ȟ ) are determined according to Equation 130 to 

Equation 132. 
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ு்ாሺܶሻܪ߂ ൌ ݊ுమ ൈ ுమሺܶሻ݄߂ ൅ ݊ைమ ൈ ைమሺܶሻെ݄߂ ݊ுమை ൈ  ுమைሺܶሻ Energy demand of HTE process Equation 130݄߂

ு்ாሺܶሻܵ߂ ൌ ݊ுమ ൈ ுమሺܶሻݏ߂ ൅ ݊ைమ ൈ ைమሺܶሻെݏ߂ ݊ுమை ൈ  ுమைሺܶሻ Entropy change of the HTE process Equation 131ݏ߂

ு்ாሺܶሻܩ߂ ൌ ு்ாሺܶሻܪ߂ െ ு்ܶா ൈ  ு்ாሺܶሻ Electric (work) load of HTE process Equation 132ܵ߂

The changes in specific enthalpy (ȟ݄) and entropy (ȟݏ) of the reactant and products are expressed by 

Equation 133 and Equation 134, respectively. Symbols ȟ݄௙଴ and ݏ଴ represent the standard specific enthalpy of 

formation and the standard specific entropy. Specific heat (ܿ௣ǡ) is itself a function of temperature. The values 

for the standard enthalpy of formation, standard entropy, and specific heat of water and steam are tabulated 

in Table 6. 

ሺܶሻ݄߂ ൌ ௙଴݄߂ ൅න ௣ሺܶሻܥ ൈ ்݀ܶಹ೅ಶ
బ்  Change in specific enthalpy Equation 133 

ሺܶሻݏ߂ ൌ ଴ݏ ൅න ௣ሺܶሻܶܥ ൈ ்݀ܶಹ೅ಶ
బ்  Change in specific entropy Equation 134 

Therefore, Table 6 and Equation 130 to Equation 134 can be used to quantify the heat and work load of the 
electrolysis process, as shown in Equation 135 and Equation 136. 

ܳு்ாǡ௦௧௘௔௠ ൌ ு்ܶா ൈ ȟܵு்ாሺ̷ ு்ܶாሻ Heat load to electrolysis steam at ு்ܶா  Equation 135 

ு்ܹா ൌ ȟܩு்ாሺ̷ ு்ܶாሻߟ௙ௗ  Work load of the electrolyzer Equation 136 

 

Table 6: Thermodynamic properties used to quantify energy demand of electrolysis [40, 41]. 

 ઢࢌࢎ૙(kJ/mol) ࢙૙(kJ/kmol/K) ࢖࡯(kJ/kmol/K) ࢚࢔ࡸ࡯(kJ/mol) ܪ ࢔ଶሺ݃ሻ Ͳ ͳ͵ͳ 
ʹ͹Ǥʹͺ ൅ ͲǤͲͲ͵ʹ͸ ൈ ܶ൅ ͷͲͲͲͲ ܶଶΤ  

NA 1 

ܱଶሺ݃ሻ Ͳ ʹͲͷ 
ʹͻǤͻ͸ ൅ ͲǤͲͲͶͳͺ ൈ ܶെ ͳ͸͹ͲͲͲ ܶଶΤ  

NA 0.5 ܪଶܱሺ݈ሻ െʹͺͷǤͺ͵ 70 ͹ͷǤͶͶ ͶͲǤ͹ 1 ܪଶܱሺ݃ሻ െʹͶͳǤͺʹ ͳͺͻ 
͵Ͳ ൅ ͲǤͲͳͲ͹ͳ ൈ ܶ൅ ͵͵ͲͲͲ ܶଶΤ  

NA 1 
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Finally, the total heat load of the electrolyzer (ܳு்ாǡ௧௢௧௔௟) is expressed by Equation 137. As discussed earlier, 

this variable is plugged into Equation 124 and Equation 125 to find the discharge temperature of the 

electrolyzer. 

ܳு்ாǡ௧௢௧௔௟ ൌ ܳௌ௡௦ǡ௪௔௧௘௥ ൅ ܳ௅௡௧ǡ௪௔௧௘௥ ൅ܳௌ௡௦ǡ௦௧௘௔௠ ൅ ܳு்ாǡ௦௧௘௔௠   
Total heat load of the electrolyzer Equation 137 

The First Law is applied to each cooler to determine the heat removed by the LP intercooler and HP 

aftercooler (Equation 138 to Equation 140). Note that the discharge temperature of the aftercooler is preset 

to the approach temperature plus the ambient temperature ( ௔ܶ௖ ൅ ଴ܶ), same as the conventional CAES model. 

The intake temperature of the HP compressor ( ௜ܶ௡஼ெǡு௉) is equal to the exit temperature of the LP intercooler. 

The total compression heat available for recovery is equal to the heat dissipated in the coolers (Equation 138) 

plus the heat load of the electrolyzer (Equation 137), as shown in Equation 141. 

ܳ஼௅ ൌ ௉೐೘௉೑೗൫݀ܳ஼௅ǡ௅௉׬ ൅ ݀ܳ஼௅ǡு௉൯ Heat dissipated in the compressor 
coolers 

Equation 138 

݀ܳ஼௅ǡ௅௉ ൌ ݀݉௔௜௥ǡ௖௛ ൈ ௣ǡ௔௜௥ܥ ൈ ሺ ௜ܶ௡஼ெǡு௉ െ ௢ܶ௨௧஼ெǡ௅௉ሻ Incremental heat of LP cooler Equation 139 

݀ܳ஼௅ǡு௉ ൌ ݀݉௔௜௥ǡ௖௛ ൈ ௣ǡ௔௜௥ܥ ൈ ሺ ஼ܶேǡ௜௡ െ ௢ܶ௨௧ு்ாሻ Incremental heat of HP cooler Equation 140 

ܳ஼ெ ൌ ܳ஼௅ ൅ ܳு்ாǡ௧௢௧௔௟  Total compression heat available for 
recovery in CAES-HTE 

Equation 141 

Equation 21 to Equation 23 remain valid for quantifying the changes in the internal energy, entropy, and 

exergy of the compressed air in the cavern. The exergy lost over the charging process of CAES-HTE is 

calculated by Equation 142. 

௖௛ܺܫ ൌ െȟܺ௖௛஼ே െ ஼ܹெ െ ு்ܹா ൅݉௖௛ ൈ ߰଴ ൅ ܺுଶ஼஼  
Exergy lost during charging phase of 
CAES-HTE 

Equation 142 

4-2-3- Roundtrip analysis of CAES-HTE 

The CAES-HTE system does not use any fossil fuel; therefore, its heat rate and GHG emissions are zero while 

its roundtrip exergy efficiency is quantified by Equation 143. Work ratio of CAES-HTE is determined by 

Equation 144. CAES-HTE has a higher work ratio compared to a similar conventional CAES system because of 
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the work load of the electrolyzer ( ு்ܹா). Equation 48 remains applicable to calculate the exergy density of 

the plant.  

௑ǡ஼஺ாௌିு்ாߟ ൌ ்ܹ஻െ ஼ܹெ െ ு்ܹா Roundtrip exergy efficiency of CAES-HTE Equation 143 

ܹܴ஼஺ாௌିு்ா ൌ െ ஼ܹெ െ ு்ܹா்ܹ஻  Work ratio of CAES-HTE Equation 144 ܴܪ஼஺ாௌିு்ா ൌ Ͳ Heat rate of CAES-HTE Equation 145 ܫܩ஼஺ாௌିு்ா ൌ ஼஺ாௌିு்ாܴܪ ൈ ுమܨܫܩ ൌ Ͳ GHG emissions intensity of CAES-HTE Equation 146 

The analysis of CAES-LTE system is similar to of the CAES-HTE plant with the difference that the compression 

heat is fed to a low-temperature electrolyzer (LTE) to produce hydrogen and no constraint is imposed on the 

maximum discharge temperature of the high-pressure compressor ( ௢ܶ௨௧஼ெǡு௉ǡெ௔௫). Moreover, the exit 

temperature of the low-pressure cooler ( ௢ܶ௨௧ǡ௛௢௧஼௅ ) is constant and preset to the ambient temperature plus the 

approach temperature ( ଴ܶ ൅ ௔ܶ௖), similar to the conventional CAES model (see Figure 6 and Equation 6). 

4-3- Modeling conventional CAES 

A comparable conventional CAES system to the modeled A-CAES and CAES-HTE systems is also considered to 

benchmark the performance of these two advanced CAES systems. This conventional CAES system is identical 

to the system analyzed in Section 3-1, with the exception that its compressor has two stages (Figure 14) 

instead of three stages (Figure 7).  

Since the compressor is made up of two stages, Equation 78 is used instead of Equation 8 to quantify the 

instantaneous compression ratio. The compression work and heat of the intermediate-pressure compressor 

stage are zero in Equation 15 and Equation 18, as the compression train is composed of only low- and high-

pressure stages.  

4-4- Numerical example: A-CAES and CAES-HTE models 

This section provides a series of numerical examples to compare the thermodynamics of conventional CAES, 

A-CAES, and CAES-HTE.  
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The two key design parameters of interest are the storage pressure (5-10 MPa) and the allowable maximum 

exit temperature of the HP compressor ( ௢ܶ௨௧஼ெǡு௉ǡெ௔௫=600 °C, applicable to CAES-HTE and A-CAES only). The 

operating pressure of the cavern in the real world is constrained by the geomechanics of the reservoir and 

mechanical design of the compressor and turbines. The pressure range impacts the exergy density of the 

storage plant. One of the critiques against adoption of compressed air storage technologies, particularly 

A-CAES, at scale is their low exergy density and hence the need for large air storage units. Increasing the 

storage pressure of compressed air will help in relaxing this limitation. 

The discharge temperature of the HP compressor determines the exergy available to directly (A-CAES) or 

indirectly (CAES-HTE) heat the expanding air. Nevertheless, high operating temperatures of the compressor 

pose technical challenges for their design and also operations of the thermal storage units (e.g. higher rates of 

heat loss). Therefore, the maximum discharge temperature of the HP compressor is treated as the second 

primary design parameter of interest.  

4-4-1- Base case simulation of CAES-HTE and A-CAES 

 Table 7, Table 8, and Table 9 list the input parameters for thermodynamic analysis of A-CAES, CAES-HTE, and 

conventional CAES (respectively) performed in the base case. Note that two key optimistic assumptions are 

included in these simulations. First, the heat losses from TS1 and TS2 are negligible, all the thermal energy 

and exergy stored are released back to the expanding air. Moreover, energy efficiency of the HTE cell is 

assumed 100%; therefore, the theoretical and actual work load of the electrolyzer are equal (see Equation 

73). Table 10 gives the key simulation results for CAES, A-CAES, and CAES-HTE, based on the input 

parameters shown in Table 7, Table 8, and Table 9 (i.e. base case scenario).  

The compression work of A-CAES and CAES-HTE (15,220 GJ) is higher than of conventional CAES (12,110 GJ). 

This 25% increase is driven by limited intercooling during the charging process; therefore, the work of the HP 

compressor in A-CAES and CAES-HTE is higher than of conventional CAES. Work load of the LP compressor is 

equal for the three systems. Elevated compression work can be a potential drawback for A-CAES and 

CAES-HTE if the electricity used to charge the cavern is scarce or carbon intensive.  
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Table 7: Input parameters to study the performance of A-CAES system. 

Parameter Value Parameter Value Parameter Value ߛ௔௜௥  ͳǤͶ ஼ܸே ͲǤͷ͸   ଷ ௜ܶ௡ǡ௖௢௟ௗ஼௅  ʹͷ ιܥ ܥ௣ǡ௔௜௥  
Ȁሺ݇݃Ǥܬ݇ 1.006  ሻܭ

௜௦்஻ߟ  ͺͷΨ ܴ௔௜௥  
ͲǤʹͺ͹ ݇ܬȀሺ݇݃Ǥ  ሻܭ

஼ܲேǡ௙௟  ͳͲ     ௢ܶ௨௧஼ெǡு௉ǡெ௔௫  ͸ͲͲ ι݁݃ܽݐܵ ܥ஼ெ  ʹ 

஼ܲேǡ௘௠ ͷ     ௔ܶ௖  ͵Ͳ ιܥ ஻்݁݃ܽݐܵ  ௜௦஼ெߟ ʹ   ͺͷΨ ௢ܶ௨௧்ௌଶǡ௖௛  ͳͲͲ ιܥ   

 

Table 8: Input parameters to analyze the CAES-HTE configuration. 

Parameter Value Parameter Value Parameter Value ߛ௔௜௥  ͳǤͶ ஼ܸே ͲǤͷ͸   ଷ ݔுଶ 114 
ெ௃௞௚  ܥ௣ǡ௔௜௥  1.006 

௞௃௞௚ൈ௄ ܴ௔௜௥  0.287
௞௃௞௚ൈ௄ ܪܮ ுܸଶ 120 

ெ௃௞௚  

஼ܲேǡ௙௟  ͳͲ     ௢ܶ௨௧஼ெǡு௉ǡெ௔௫  ͸ͲͲ ιܨܫܩ ܥுଶ Ͳ 

஼ܲேǡ௘௠ ͷ     ߟ௜௦்஻  ͺͷΨ ܵ݁݃ܽݐ஼ெ ௜௦஼ெߟ ʹ   ͺͷΨ ௜ܶ௡்஻ǡ௅௉ ͺͷͲ ι்݁݃ܽݐܵ ܥ஻  ʹ 

௔ܶ௖  ͵Ͳ ιܥ ௘ܶ௧  ͳ͵Ͳ ιܥ ௜ܶ௡ǡ௖௢௟ௗ஼௅  ʹͷ ιܥ 

௜ܶ௡்஻ǡு௉ ͷ͵Ͳ ιߟ ܥ௙ௗ ͳͲͲΨ   

 

The A-CAES system is the most efficient configuration (ܷܨ஼ெ= 96%) with respect to utilizing the available 

compression heat compared to CAES-HTE (55%) and conventional CAES (zero). Its expander, however, 

generates 34% less work (10,580 GJ) compared to CAES and CAES-HTE (15,990 GJ), with the same storage 

pressure and volume. This is because the inlet temperatures of the expanders of A-CAES are lower (no fuel 

combustion).  

A-CAES has the highest storage efficiency (70%) compared to CAES-HTE (53%) and conventional CAES 

(54%). A-CAES has a moderate work ratio (~1.44) compared to that of CAES-HTE (1.88). Conventional CAES 

has the lowest work ratio (~0.76) since it burns natural gas at a rate of 4.0 GJ per MWh of electricity 

generated. 
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Assessing the competitiveness of these storage technologies in low GHG-intensive grids requires a 

comprehensive thermodynamic and economic analysis, which is beyond the scope of this chapter. 

Nevertheless, the simple thermodynamic analysis presented here indicates that prospects of CAES-HTE are 

lower compared to A-CAES due to its low exergy efficiency and high work ratio, let alone the technical and 

economic complications of high-temperature electrolyzers, hydrogen storage, and hydrogen-fueled 

combustors. 

Table 9: Input parameters to evaluate the thermodynamics of the conventional CAES used to benchmark 
performance of A-CAES and CAES-HTE. 

Parameter Value Parameter Value Parameter Value ߛ௔௜௥  ͳǤͶ ஼ܸே ͲǤͷ͸   ଷ ܪܮ ேܸீ  50 
ெ௃௞௚ ௣ǡ௔௜௥ܥ   1.006 

௞௃௞௚ൈ௄ ܴ௔௜௥  0.287
௞௃௞௚ൈ௄ ܨܫܩேீ  66 

௞௚ீ௃  

஼ܲேǡ௙௟  ͳͲ     ௢ܶ௨௧஼ெǡு௉ǡெ௔௫  ͸ͲͲ ιݔ ܥேீ  50 
ெ௃௞௚  

஼ܲேǡ௘௠ ͷ     ௜ܶ௡்஻ǡு௉ ͷ͵Ͳ ιܥ ௔ܶ௖  ͵Ͳ ιߟ ܥ௜௦஼ெ  ͺͷΨ ௜ܶ௡்஻ǡ௅௉ ͺͷͲ ιܥ ௘ܶ௧  ͳ͵Ͳ ιߟ ܥ௜௦்஻  ͺͷΨ ௜ܶ௡ǡ௖௢௟ௗ஼௅  ʹͷ ιܥ    

 

This analysis also highlights some shortcomings of A-CAES. Exergy density of A-CAES (~5.2 kWh/m3) is about 

65% of that of comparable conventional CAES and CAES-HTE systems (~7.9 kWh/m3). In other words, 

A-CAES would require ~50% more cavern volume to generate the same amount of work, everything else 

being equal. Another shortcoming of A-CAES is the low discharge temperature of its low-pressure turbine. In 

the base case simulation of A-CAES system, the minimum exit temperature of the LP turbine reaches ~180 °C, 

which is much less compared to of conventional CAES and CAES-HTE systems (~390 °C). If this temperature 

reaches below the freezing point, the moisture in the air can freeze and damage the turbine. 

The simulation results presented in Table 10 are based on an ideal electrolysis process (with an energy 

efficiency of 100%) while the experimental literature reports efficiencies around 50% [37]. Moreover, the 

energy requirements to compress hydrogen for storage purposes are ignored, which will degrade the storage 
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efficiency of CAES-HTE system even more. Figure 15 illustrates the dependence of the overall exergy 

efficiency of the storage plant to the energy efficiency of the electrolyzer cell. An energy efficiency of 50% 

corresponds to a roundtrip exergy efficiency of 36% compared to a storage efficiency of 53% when assuming 

an ideal electrolyzer for the CAES-HTE system. 

The total heat and work load of the high-temperature electrolyzer (HTE) are 7,960 and 14,825 GJ, 

respectively. Note that only ~40% of this heating load (3,260 GJ) is used for the electrolysis process itself, the rest is consumed to generate steam at the electrolyzerǯs temperature. The total heat and work load of the HTE 

are ~125% higher and 15% lower compared to the heat load (3,565 GJ) and work demand (17,395 GJ) if the 

electrolysis was performed at the ambient conditions ( ଴ܶ ൌ ʹͷ ιܥ) instead of at the elevated temperature 

( ு்ܶா ൌ ͷͷͷ ܥ). Total energy requirements of HTE (22,785 GJ) is roughly 10% higher than of electrolysis at 

the ambient temperature (20,960 GJ).  

If hydrogen produced via electrolysis of water at the ambient temperature (low-temperature electrolysis, 

LTE) is used to power the combustors of CAES, the roundtrip exergy efficiency of such a LTE-CAES system 

would be ~54% (with a pressure range of 5-7 MPa for the cavern). This value is very similar to that of the 

CAES-HTE system (~53%, assuming an energy efficiency of 100% for the electrolyzer). This indicates that 

lower electricity demand of the high-temperature electrolyzer is balanced by the higher compression work of 

CAES-HTE. Therefore, roundtrip exergy efficiency of CAES-LTE is comparable to of CAES-HTE. Electricity 

demand of HTE is lower than of LTE; therefore, the storage efficiency of CAES-HTE is less sensitive to the 

energy efficiency of the electrolyzer compared to CAES-LTE (Figure 15). 
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Table 10: Simulation results for the thermodynamic analysis of AA-CAE and CAES-HTE in the base case 
scenario (inputs tabulated in Table 7, Table 8, and Table 9). NA stands for Not Applicable. 

 CAES A-CAES  CAES-HTE 

஼ܹெ  (GJ) 12,110 15,220 15,220 ܳு்ாǡ௧௢௧௔௟  (GJ) NA NA 7,960 ܳு்ாǡ௦௧௘௔௠  (GJ) NA NA 3,260 

ு்ܹா  (GJ) NA NA 14,825 

ு்ܶா  (GJ) NA NA 555 ்ܳௌ (GJ) NA 13,615 NA ்ܺௌ (GJ) NA 6,250 NA ܳ஼௅  (GJ) 11,465 962 6,620 ܷܨ஼ெ  (%) 0 96 55 

்ܹ஻ (GJ) 15,990 10,580 15,990 ܳ஼஼  (GJ) 17,590 0 17,590 ߟ௑  (%) 53.8 69.5 53.2 ܹܴ 0.76 1.44 1.88 ܴܪ (GJ/MWh) 4.0 0 0 ܺߩ (kWh/m3) 7.9 5.2 7.9 ܫܩ (kgCO2/MWh) 261 0 0 

௜ܺ௡௣௨௧  (GJ) 29,715 15,220 30,040 ܺܫ௖௛  (GJ) 4,295 1,154 5,460 ܺ௢௨௧௣௨௧ (GJ) 15,990 10,580 15,990 ܺܫௗ௖௛  (GJ) 9,430 3,490 8,590 

௢ܶ௨௧்஻ǡ୐௉ǡெ௜௡ (°C) 391 181 391 ݉௙௨௘௟  (kg) 3.52ൈ105 0 1.47ൈ105 ݉௔௜௥  (kg) 2.12ൈ107 
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Figure 15: Effect of energy efficiency of the electrolyzer on the roundtrip exergy efficiency of CAES-HTE and 
CAES-LTE. The electrolysis temperature for the HTE and LTE processes is 555 °C and 25 °C, respectively. 
Electrolysis efficiencies of 100% and 50% correspond to overall storage efficiencies of 53% and 36%, for the 
CAES-HTE plant. The corresponding values for the LTE-CAES facility are 55% and 34%. 

The economics of A-CAES and CAES-HTE are less attractive compared to conventional CAES unless some 

emissions restrictions are in place. As shown in Table 10, the inside-the-fence emissions intensity of 

conventional CAES is ~260 kgCO2e/MWh while A-CAES and CAES-HTE emit no GHG. The inside-the-fence 

emissions can be misleading though as the GHG emissions of the electricity consumed to charge these plants 

are not included. Figure 16 illustrates the adjusted (total) emissions of these three plants, as functions of the 

GHG emissions intensity of the electricity consumed by the compressor. The emissions intensity of the 

conventional CAES facility is less sensitive to the emissions intensity of the charging electricity because of its 

lower work ratio (driven by combustion of natural gas). The breakeven point for CAES and CAES-HTE, 

defined where the GHG emissions intensity of CAES-HTE exceeds of CAES is ~230 kgCO2/MWh while this 

value is ~380 for A-CAES.  
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Figure 16: Total GHG emissions of the conventional CAES, A-CAES, and CAES-HTE plants adjusted for the 
emissions intensity of the electricity used to charge the cavern. Two CAES-HTE systems are modeled: ideal 
(electrolysis efficiency of 100% for the high-temperature electrolyzer, ǲCAES-HTE, Idealǳ) and an electrolyzer 
with an energy efficiency of 50% (ǲCAES-HTE, 50%ǳ). All other input parameters are the same as Table 7, 
Table 8, and Table 9. Performance of the CAES-LTE is similar to of CAES-HTE. 

4-4-2- Sensitivity to exit temperature of HP compressor 

The maximum allowable exit temperature of the high-pressure compressor ( ௢ܶ௨௧஼ெǡு௉ǡெ௔௫) was chosen as a key 

design parameter in the simulation of A-CAES and CAES-HTE. Table 11 and Table 12 present the sensitivity of 

the CAES-HTE and A-CAES performance to this parameter while all other parameters are the same as the base 

case scenario (provided in Table 8 and Table 7, respectively). 

Setting a higher exit temperature for the high-pressure compressor translates to a higher inlet temperature 

for the HP compressor and to less cooling in the LP intercooler (since the compression ratio is constant). This 

provides more thermal energy for the electrolysis process and reduces its electricity demand because the 

electrolysis process takes place at higher temperatures (see Figure 10). Nevertheless, less intercooling 

increases the work load of the HP compressor, which has a negative impact on the work ratio of the storage 

plant. As shown in Table 11, the net effect of a higher compression work and a lower electrolysis work is an 

increase in the exergy consumption of the CAES-HTE to charge the cavern. The total input exergy increases 

from ~29.4 TJ to 31.9 TJ as the maximum exit temperature of the high-pressure compressor increases from 
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500 °C to 890 °C. Thermodynamics of the discharge phase is insensitive to these changes (the exergy released 

by the plant remains ~16.0 TJ).  

Storage efficiency of the CAES-HTE system drops from 54% to 50% as the maximum allowable exit 

temperature of the high-pressure compressor is raised from 500 to 890 °C. Work ratio follows the reverse 

trend of efficiency; it increases from 1.84 to 1.99. In summary, the simulation results indicate that increasing 

the maximum discharge temperature of the HP compressor negatively impacts the roundtrip exergy 

efficiency of CAES-HTE. 

As shown in Table 12, raising the exit temperature of the high-pressure compressor ( ௢ܶ௨௧஼ெǡு௉ǡெ௔௫) increases 

the compression work of the A-CAES system, similar to CAES-HTE. This is because less intercooling is 

performed and consequently, the inlet temperature to the high-pressure compressor is elevated. At the same 

time, more heat can be stored and utilized to heat the expanding airǤ The turbineǯs total work increases 
slightly (from ~10.4 to 10.9 TJ) as ௢ܶ௨௧஼ெǡு௉ǡெ௔௫  is raised from 500 to 890 °C. This small increase (5%) in the 

expansion work despite much higher (~30%) increase in the thermal energy stored (்ܳௌ) is because the 

thermal energy recovered and stored in TS1 (்ܳௌଵ), and consequently the work generated by the HP turbine 

ought to decrease to facilitate higher exit temperatures for the HP compressor. Note that TS1 precedes the HP 

compressor and HP expander. 

The net effect of increasing the exit temperature of the high-pressure compressor ( ௢ܶ௨௧஼ெǡு௉ǡெ௔௫) is lowering the 

storage efficiency of A-CAES. The roundtrip exergy efficiency degrades from 73% to 60% when the maximum 

discharge temperature of the HP compressor rises from 500 to 890 °C. Exergy density of the cavern improves 

slightly (by ~5%), which is due to small increases in the work generated by the expanders. 

Comparing Table 11 and Table 12 suggests that the storage efficiency of A-CAES is more sensitive to the 

temperature of air stream leaving the compressor. Raising the maximum exit temperature of the HP 

compressor from 500 to 890 °C changes efficiency of A-CAES and CAES-HTE in the range of 73-60% and 54-

50%, respectively. Increasing the discharge temperature of the HP compressor while keeping the storage 

pressure the same will degrade the storage efficiency of the plants, especially for A-CAES, while it slightly 

improves the exergy density. 
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Table 11: Sensitivity of the thermodynamics of CAES-HTE to the maximum allowable discharge temperature 

of the high-pressure compressor ( ௢ܶ௨௧஼ெǡு௉ǡெ௔௫). All other input parameters of the simulation are the same as of 

Table 8. 

 (C°) ࢞ࢇࡹǡࡼࡴǡࡹ࡯࢚࢛࢕ࢀ 

 500 600 700 800 890 

஼ܹெ  (GJ) 14,200 15,220 16,235 17,250 18,165 ܳு்ா  (GJ) 7,235 7,960 8,700 9,450 10,145 

ு்ܹா  (GJ) 15,190 14,825 14,445 14,065 13,720 

ு்ܶா  (°C) 460 555 650 745 831 

்ܹ஻ (GJ) 15,990 ܳ஼஼  (GJ) 17,595 ܹܴ 1.84 1.88 1.92 1.96 1.99 ߟ௑ (%) 54.4 53.2 52.1 51.1 50.1 ܺߩ஼ே (kWh/m3) 7.9 

௜ܺ௡௣௨௧  (GJ) 29,395 30,040 30,680 31,315 31,885 ܺ௢௨௧௣௨௧ (GJ) 15,990 

 

A key design constraint in this modeling exercise was the discharge temperature of the expanders. This 

parameter is desired to remain above the freezing point to avoid damaging the integrity of the expanders. 

Referring to Table 12, the exit temperature of the HP turbine drops as the maximum exit temperature of the 

HP compressor ( ௢ܶ௨௧஼ெǡு௉ǡெ௔௫) increases because less heat can be stored in TS1 and then released to the 

compressed air entering the HP expander. This temperature even drops below the freezing point when the 

maximum exit temperature of the HP compressor is raised above 700 °C. Designing A-CAES in the real world 

would need to include a detailed model to optimize the performance of the plant and eliminate freezing 

concerns. For instance, the HP expander may be designed to have a lower expansion ratio compared to the LP 

expander. This change will raise and decrease the exit temperature of the HP and LP expanders, respectively.  
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Table 12: Sensitivity of thermodynamics of A-CAES to the maximum exit temperature of the high-pressure 

compressor ( ௢ܶ௨௧஼ெǡு௉ǡெ௔௫). All other input parameters are the same as of Table 7. 

 (C°) ࢞ࢇࡹǡࡼࡴǡࡹ࡯࢚࢛࢕ࢀ 

 500 600 700 800 890 

஼ܹெ  (GJ) 14,200 15,220 16,235 17,250 18,165 ்ܳௌ (GJ) 12,600 13,615 14,630 15,650 16,565 ்ܳௌଵ (GJ) 4,810 3,790 2,765 1,745 825 ்ܳௌଶ (GJ) 7,790 9,825 11,865 13,905 15,740 ்ܺௌ (GJ) 5,235 6,250 7,270 8,285 9,200 

்ܹ஻ (GJ) 10,425 10,575 10,610 10,880 10,915 

்ܹ஻ǡு௉ (GJ) 4,590 4,195 3,725 3,400 2,980 

்ܹ஻ǡ௅௉ (GJ) 5,830 6,380 6,885 7,480 7,935 ܹܴ 1.36 1.44 1.53 1.59 1.67 ߟ௑  (%) 73.4% 69.5% 65.4% 63.1% 60.1% ܺߩ (kWh/m3) 5.2 5.2 5.3 5.4 5.4 

௜ܺ௡௣௨௧  (GJ) 14,200 15,220 16,235 17,250 18,165 ܺ௢௨௧௣௨௧ (GJ) 10,425 10,575 10,610 10,880 10,915 

௢ܶ௨௧்஻ǡு௉ǡெ௜௡ (°C) 54 26 -8 -31 -61 

௢ܶ௨௧்஻ǡ௅௉ǡெ௜௡ (°C) 142 181 217 259 295 

4-4-3- Sensitivity to storage pressure 

Storage pressure is the second key design parameter whose effects on the thermodynamics of conventional 

CAES, A-CAES, and CAES-HTE are analyzed here. Table 13 provides the sensitivity of the CAES-HTE model to 

the maximum storage pressure. All parameters are the same as of Table 8, except the maximum pressure of 

the cavern, which is varied in the range of 7-12 MPa, compared to 10MPa in the base case. The compression 

work and hydrogen demand (and consequently, heat and electricity load of the electrolyzer) increase at 

elevated storage pressures because more air needs to be stored and heated. The operating temperature of the 

electrolyzer slightly decreases at higher cavern pressures in the CAES-HTE model presented here. This is 

because the maximum allowable temperature of the HP compressor is assumed to remain constant. Higher 

cavern pressures translate to higher compression ratios. Keeping the maximum discharge temperature of the 
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HP compressor ( ௢ܶ௨௧஼ெǡு௉ǡெ௔௫) fixed requires a lower inlet temperature for the HP compressor, hence more heat 

needs to be absorbed and stored in TS1 (preceding the HP compressor). Therefore, lower discharge 

temperatures of the HP compressor bring down the average temperature of air entering the electrolyzer, 

which impacts the reaction temperature of electrolysis ( ு்ܶா , see Equation 123). This temperature drops 

from 578 to 544C as the maximum storage pressure of air ( ஼ܲேǡ௙௟) is raised from 7 to 12 MPa. 

The expansion work also increases at higher cavern pressures since more compressed air is being handled. 

The net impact of higher cavern pressures on the roundtrip exergy efficiency and work ratio is negligible 

(slightly negative) though. This behavior indicates that higher compression work and HTE energy 

requirements cancel out higher values of expansion work. The exergy density of cavern increases ~2.7 times 

as the maximum storage pressure varies from 7 to 12 MPa. Therefore, increasing the cavern pressure 

substantially improves the exergy density of the plant while it marginally degrades its storage efficiency. In 

the real world, however, the storage efficiency is likely to degrade more compared to the scenario pictured 

here. For example, this analysis has assumed a fixed isentropic efficiency for the compressors while their 

efficiency will decrease at very high compression ratios [28]. 

Increasing the storage pressure has a positive impact on the thermodynamics of A-CAES, as presented in 

Table 14. Higher cavern pressures translate to higher compression requirements, at the same time more 

waste heat recovery opportunities become available. The expansion work also increases as a larger mass of 

air and at a higher pressure is expanded. The net effect of higher compression work, recovered heat, and 

expansion work is positive on the storage efficiency. It rises from 66% to 71% as the maximum cavern 

pressure ( ஼ܲேǡ௙௟) is lifted from 7 to 12 MPa. The work ratio of A-CAES improves from 1.51 to 1.42. Exergy 

density of the cavern at 12 MPa is almost 4 times larger compared to 7 MPa (due to the increased expansion 

work). Finally, the exit temperature of the high-pressure expander is also raised at higher cavern pressures 

(more stored heat despite higher expansion ratios). This is beneficial in addressing the concerns with freezing 

of vapor in the expanding air.  
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Table 13: Sensitivity of the CAES-HTE model to the maximum storage pressure ( ஼ܲேǡ௙௟). All other input 

parameters are the same as of Table 8. 

 (MPa) ࢒ࢌࡼ 

 7 8 10 12 

஼ܹெ  (GJ) 5,880 8,930 15,220 21,725 ܳு்ா  (GJ) 3,150 4,745 7,960 21,150 

ு்ܹா  (GJ) 5,715 8,690 14,820 22,785 

ு்ܶா  (°C) 578 569 555 544 

்ܹ஻ (GJ) 6,180 9,390 15,990 22,785 ܳ஼஼  (GJ) 6,820 10,350 17,595 25,030 ܹܴ 1.88 1.88 1.88 1.88 ߟ௑  (%) 53.3 53.3 53.2 53.1 ܺߩ (kWh/m3) 3.1 4.7 7.9 11.3 

 

Table 14: Sensitivity of the A-CAES model to the maximum storage pressure ( ஼ܲேǡ௙௟). All other input 

parameters are the same as of Table 7.  

 (MPa) ࢒ࢌࡼ 

 7 8 10 12 

஼ܹெ  (GJ) 5,880 8,930 15,220 21,725 ்ܳௌ (GJ) 5,240 7,970 13,615 19,480 

்ܹ஻ (GJ) 3,900 6,000 10,575 15,355 ܹܴ 1.51 1.49 1.44 1.41 ߟ௑  (%) 66.3 67.2 69.5 70.7 ܺߩ (kWh/m3) 1.9 3.0 5.2 7.6 

௢ܶ௨௧்஻ǡு௉ǡெ௜௡  (°C) 5 11 26 33 

௢ܶ௨௧்஻ǡ௅௉ǡெ௜௡  (°C) 195 188 181 173 
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Table 15 shows the robustness of the conventional CAES model to the air storage pressure. As the maximum 

cavern pressure ( ஼ܲேǡ௙௟) increases from 7 to 12 MPa, the work ratio of conventional CAES increases from 0.74 

to 0.77. The impacts on the heat rate and emissions intensity are negligible. The roundtrip exergy efficiency is 

almost insensitive to changes in the cavern pressure (decreasing from ~54% to 53%). Similar to A-CAES and 

CAES-HTE models, the exergy density of the cavern increases (by a factor of ~3.5 for conventional CAES).  

Table 15: Sensitivity of the thermodynamics of conventional CAES (two-stage compression and expansion 
design) to the maximum storage pressure of air ( ஼ܲேǡ௙௟). All other parameters are the same as of Table 9. 

 (MPa) ࢒ࢌࡼ 

 7 8 10 12 

஼ܹெ  (GJ) 4,555 6,990 12,110 17,510 

்ܹ஻ (GJ) 6,180 9,390 15,990 22,785 ܳ஼஼  (GJ) 6,820 10,350 17,595 25,030 ߟ௑  (%) 54.3 54.1 53.8 53.5 ܹܴ 0.74 0.75 0.76 0.77 ܴܪ (GJ/MWh) 4.0 4.0 4.0 4.0 ܺߩ (kWh/m3) 3.1 4.7 7.9 11.3 

4-5- Remarks on thermodynamics of A-CAES and CAES-HTE 

The simulation results suggest that the A-CAES system has a higher storage efficiency (~70%) compared to 

conventional CAES (~54%), CAES-LTE (~54%) and CAES-HTE (~53%) (in the base case scenario and 

assuming an ideal electrolyzer). Using more realistic values for the energy efficiency of the electrolyzer makes 

CAES-HTE and CAES-LTE even less competitive. An electrolysis efficiency of 50% leads to a roundtrip exergy 

efficiency of only ~35% for the CAES-HTE and CAES-LTE systems.  

Electrolyzing water Ȃ instead of steam Ȃ to produce hydrogen to fuel the combustors results in similar figures 

for the roundtrip storage efficiency of a CAES plant paired with an electrolyzer (i.e. CAES-HTE and CAES-LTE). 

The lower electricity demand of the high-temperature electrolysis process (HTE) is offset by higher 

compression requirements of the CAES plant paired with HTE. Considering the complexity of high-
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temperature electrolyzers, the prospect of CAES-HTE seems unattractive compared to A-CAES and even to 

CAES-LTE. 

The design and operation of A-CAES are complicated by the need for high-pressure and high-temperature 

compressors as well as thermal stores and the need for high-pressure turbines [11]. Additionally, thermal 

losses degrade the attractiveness of A-CAES. Roundtrip efficiency of hydrogen-based technologies is not 

impacted by heat losses over long storage periods. Furthermore, CAES-LTE can operate at pressures and 

temperatures of conventional CAES; thus, its design and operation would be simpler in that perspective. None 

of these design considerations are included in the thermodynamic analysis presented in this chapter. 

Table 16 compares the performance of the CAES, A-CAES, and CAES-HTE systems when the maximum storage 

pressure is raised from 7 to 12 MPa. Similar to the base case scenario (maximum cavern pressure of 10 MPa), 

the A-CAES design remains the most attractive. Its efficiency slightly improves (from 66% to 71%) as the 

storage pressure is raised from 7 to 12 MPa. Roundtrip exergy efficiency of the conventional CAES (~54%) 

and CAES-HTE (~53%) systems are similar and relatively insensitive to the storage pressure. Despite higher 

storage efficiencies, the exergy density of A-CAES remain lower (63%-67%) compared to conventional CAES 

and CAES-HTE systems. Therefore, only emission constraints (in order to beat conventional CAES) and 

shortage of storage volume (to beat A-CAES) may justify adopting the CAES-HTE system. 

Roundtrip exergy efficiency of both A-CAES and CAES-HTE systems degrades as the maximum allowable exit 

temperature of the high-pressure compressor ( ௢ܶ௨௧஼ெǡு௉ǡெ௔௫) increases, but A-CAES is more sensitive to this 

change. Work ratio reaches 1.99 for CAES-HTE and 1.67 for A-CAES when ௢ܶ௨௧஼ெǡு௉ǡெ௔௫= 890 °C compared to the 

values of 1.36 and 1.84 (respectively) at ௢ܶ௨௧஼ெǡு௉ǡெ௔௫= 500 °C. The general understanding that neither A-CAES 

nor CAES-HTE can compete economically with conventional CAES in the absence of high emission constraints 

is confirmed by the much lower work ratio (0.76) of conventional CAES and its moderate heat rate (~4 

GJ/MWh). 
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Table 16: Effects of increasing the maximum storage pressure ( ஼ܲேǡ௙௟) on the thermodynamics of CAES, 

A-CAES, and CAES-HTE. All other input parameters are the same as Table 7, Table 8, and Table 9. 

࢒ࢌǡࡺ࡯ࡼ  ൌ ૠ ࡺ࡯ࡼ ࢇࡼࡹǡ࢒ࢌ ൌ ૚૛ ࢇࡼࡹ 

 CAES A-CAES  CAES-HTE CAES A-CAES  CAES-HTE ߟ௑  (%) 54.3 66.3 53.3 53.5 70.7 53.1 

WR 0.74 1.51 1.88 0.77 1.42 1.88 ܴܪ (GJ/MWh) 4.0 0 0 4.0 0 0 ܺߩ (kWh/m3) 3.1 1.9 3.1 11.3 7.6 11.3 

 

Table 17: Sensitivity of the thermodynamics of conventional CAES, A-CAES, and CAES-HTE to the maximum 

discharge temperature of the high-pressure compressor ( ௢ܶ௨௧஼ெǡு௉ǡெ௔௫). All other input parameters are the 

same as Table 7, Table 8, and Table 9. 

࢞ࢇࡹǡࡼࡴǡࡹ࡯࢚࢛࢕ࢀ   ൌ ૞૙૙ࡹ࡯࢚࢛࢕ࢀ ࡯ǡࡼࡴǡ࢞ࢇࡹ ൌ ૡૢ૙࡯ 

 CAES A-CAES  CAES-HTE A-CAES  CAES-HTE ߟ௑  (%) 53.8 73.4 54.4 60.1 50.1 ܹܴ 0.76 1.36 1.84 1.67 1.99 ܴܪ (GJ/MWh) 4.0 0 0 0 0 ܺߩ (kWh/m3) 7.9 5.2 7.9 5.4 7.9 

 

In summary, this chapter developed and presented a series of analytical models to estimate and compare the 

thermodynamic performance of four families of compressed air energy storage technologies. Adiabatic CAES 

(A-CAES) showed the most attractive prospects considering various figures of merit, including roundtrip 

exergy efficiency (~70%). In comparison, the exergy efficiency of the conventional CAES system was 

estimated at ~54%. It also had a GHG emissions intensity of ~260 kgCO2e/MWh, and a heat rate of ~4.0 

GJ/MWh. The hydrogen-fueled (instead of natural gas) CAES category had the lowest storage efficiency 

(~35%), partly due to the low exergy efficiency of the electrolyzer cell (assumed 50%). However, none of the 

hydrogen-based storage systems studied (CAES-HTE and CAES-LTE) generate GHG emissions, which might 

make them more attractive under tight emissions constraints. The fourth compressed air storage system 

studied was Distributed CAES (D-CAES). The natural gas credits from export of the heat of compression 

boosts the net roundtrip exergy efficiency of D-CAES to above 80%. Nevertheless, D-CAES would be practical 
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only under specific circumstances in the real world; therefore, it cannot be deployed at scale (in contrast to 

other CAES systems). A closing comment that the analysis presented here was concerned with only 

thermodynamics and emissions performance. The overall economics (particularly capital cost) and not just 

storage efficiency will ultimately determine the potential of bulk storage systems. The following three 

chapters focus on studying the cost-effectiveness of storage technologies to support integration of 

renewables and curb emissions from the electricity sector.  
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Chapter 3: Compressed air energy storage (CAES) with compressors 

distributed at heat loads to enable waste heat utilization4 

 

  

                                                                    
4 This paper is published as Safaei, H., D.W. Keith, and R.J. Hugo, Compressed air energy storage (CAES) with 
compressors distributed at heat loads to enable waste heat utilization. Applied Energy, 2013. 103: p. 165-179. 
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Preface 

This chapter examines the prospects of a niche application for D-CAES: reducing the cost and greenhouse gas 

emissions associated with supplying electricity to a municipal region through integrating its electricity and 

heating infrastructure. While the thermodynamic analysis presented in Chapter 2 revealed a high roundtrip 

exergy efficiency for D-CAES (~80%) compared to conventional CAES (~50%), this chapter concentrates on 

the cost and GHG emissions performance of D-CAES in comparison to conventional CAES as well as gas 

turbines at a systems level. 

Capacity and dispatch order of a hypothetical district heating system and an electricity generation portfolio 

(gas turbine, wind farm, and either D-CAES or conventional CAES) are optimized in a green-field setup to 

meet time-varying heating and electricity loads of a municipal region at the least cost. Since the compressed 

air energy storage technology is too capital-intensive to compete with gas turbines at the current low gas 

prices and emissions regulations, a variable emissions tax (0-80 $/tCO2e) is added to a base gas price of 

$5.0/GJ. Economics and GHG emissions of the generation fleet equipped with conventional CAES or D-CAES 

are compared at various emissions taxes and distances between the heat load and the air storage site (i.e. 

length of the air pipeline in the D-CAES configuration). 

The results suggest that neither D-CAES (with a 50 km pipeline) nor conventional CAES can outcompete gas 

turbines in managing the variability of wind below an emissions tax of $40/tCO2e (equivalent to an effective 

fuel cost of $7.6/GJ). Beyond this threshold, the generation fleet equipped with D-CAES can meet the load at a 

lower cost and also achieve a lower emissions intensity. The break-even gas price for attractiveness of 

D-CAES over conventional CAES would depend on the distance between the heat load and air storage site: 

$7.0 and $8.3/GJ with pipeline lengths of 25 and 100 km, respectively. 

The findings of this chapter are based on few simplifying assumptions and limited modeling capabilities. The 

main simplifications include absence of thermal energy storage for D-CAES, performing a copper-plate 

analysis, and ignoring forecast errors and the intra-hour and inter-annual variations in the heat and 

electricity loads as well as wind availability. Future work could build on the existing model to strengthen the 
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conclusions with respect to the niche markets for D-CAES to cost-effectively contribute to the efforts for GHG 

emissions mitigation in the electricity sector. 

The first modeling simplification is that the heat of compression can supply only the instantaneous heating 

load. Storage of excess recovered heat could improve the economics of D-CAES provided that sales of the 

stored heat outcompete the capital and operation cost of the thermal storage system. 

The second major simplification is the copper-plate modeling, which ignores capital costs of transmission 

lines and congestions in the grid. Since the compressor of D-CAES would be located closer to the electric load 

(inside the municipal region), grid congestions would likely limit the ability of the D-CAES plant to store 

electricity less compared to a conventional CAES system. Additionally, if the expander of D-CAES is moved 

from the air storage site to the compression site (i.e. compression and expansion trains co-located inside the 

city), the need for a transmission line between these two locations would be eliminated, which could bring in 

large cost savings for the D-CAES system. 

Another modeling simplification is ignoring forecast errors in wind availability and the electric and heating 

loads. In other words, an ex-post (perfect foresight) rather than an ax-ante analysis is performed. This 

modeling approach overestimates the economic value of both D-CAES and conventional CAES. Heat load 

forecasts are, however, more certain compared to electric load and wind profiles. Therefore, performing an 

ex-post analysis is unlikely to exaggerate the relative economic value of D-CAES compared to that of 

conventional CAES. A temporal resolution of one hour over a simulation period of one year is used for the 

sake of simplicity. The analysis is also based on the load profile of and wind availability in Alberta (Canada). 

Incorporating the intra-hourly and inter-annual variations in load and wind profiles and forecast errors 

would enhance robustness of the results and conclusions. Expanding the simulation to other geographical 

locations could be other areas for future work. 

The results suggest attractiveness of D-CAES compared to conventional CAES for reducing both the cost (to a 

lower extent though) and GHG emissions of supplying electricity and heating loads at a systems level. 

Nonetheless, D-CAES cannot become a major player in the real-world electricity systems. Its inherent need for 

a suitable geologic formation (for air storage) in proximity to a large, low-temperature, concentrated heating 
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load, which is supplied by a district heating system, limits the feasibility of D-CAES projects. Other 

compressed air storage systems (e.g. adiabatic CAES) and most other electricity storage technologies (e.g. 

electrochemical batteries) benefit from a much higher siting flexibility.   
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1- Introduction 

Electricity demand has substantial hourly, daily, and seasonal variations, resulting in the need for peaking 

plants that operate only during peak-demand periods, and base load power plants that operate below their 

optimum output during low-demand periods. These effects lead to a reduction in overall system efficiency, 

shortened plant lifespans, greater requirements of financial investment, and higher greenhouse gas (GHG) 

emissions.  

Renewable energies, especially solar and wind have the potential to provide substantial fractions of 

electricity supply and to reduce GHG emissions and air pollution from the electricity sector at large scale. 

Although GHG emissions of nuclear plants and hydroelectric dams are also low, large-scale expansion of these 

energies is facing difficulty. USA and Canada haven't built a new nuclear plant for more than fifteen years [42, 

43] and hydroelectric dams are challenged by environmental and siting concerns [44]. Renewable energies in 

general, and wind energy in particular, have experienced significant expansion in the past decade. The 

installed wind capacity in the USA by the end of 2010 (40.2 GW) was approximately 15 times higher than its 

value at the beginning of the year 2000 [45]. Similarly, the installed wind capacity in Canada has increased 

more than 30 fold at the end of 2010 (4.0 GW) compared to its levels at the beginning of the year 2000 [46]. 

In spite of this impressive growth, wind energy still composes a small portion of the total installed capacity in 

these countries. Integration of wind energy into the electricity grid is complicated by the additional costs 

raised by its intermittent nature, the challenge that periods of high production do not necessarily coincide 

with periods of high demand, and sometimes the far distances between sites with good wind resources and 

high electric loads that mandate construction of capital-intensive transmission lines. As a case in point, 

Denmark can generate up to 30% of its electric power by offshore wind farms; nevertheless, almost all of its 

excess wind-based electricity is sold to its neighboring countries with hydroelectric capacities for virtual 

storage as a means to cope with wind intermittency [44, 47]. Even if periods of peak production and demand 

coincide, grid congestion may prevent delivery of wind-based electricity to the customers of the grid. In fact, 

the uncertain production of wind-based electricity has the potential to create or worsen grid congestion 

problems and grid stability issues [48]. 
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The grid operator can choose any of the following approaches to deal with the intermittency of wind energy 

and to provide reliable and dispatchable wind-based electricity and thus facilitate higher wind penetration 

into the grid. These include utilization of fast-response thermal plants, geographically dispersed production 

sites, and energy storage5.  

a) Fast-ramping thermal plants: These plants, such as gas turbines and diesel generators, can engage as 

necessary to fill the gap between the generation and demand of electricity. They can quickly ramp up and 

down to accommodate changes in electricity production and consumption; however, their intermittent (as 

needed) operation causes them to have low capacity factors. Therefore, their capital, maintenance, and 

operation costs should be compensated by their limited operational period leading to an increase in the 

overall cost of wind-based electricity. The transient and partial-load operation of these plants also leads to 

lower thermal efficiencies and higher emissions of pollutants. In recent years, some new gas turbine designs 

have been introduced to the market that are claimed to be able to "chase-wind" without significant 

performance degradation when operated at partial load (e.g. Langage CCGT plant in the UK by Alstom [49]). 

Therefore, compensating inherent fluctuations in wind-based electricity through fast-response thermal plants 

involves the associated cost of cycling fast ramping thermal plants and/or building specially-designed fast 

ramping thermal plants. 

b) Spatial distribution of generation sites: Another option to cope with intermittency of wind energy is to 

geographically disperse wind farms over a large area, overcoming localized wind patterns and resulting in 

smoother overall energy production [50]. However, this arrangement has the disadvantage of increased 

overall capital cost due to the need for longer transmission lines between distributed production centers and 

the load and it may not be feasible for some wind projects. Furthermore, this approach may necessitate large-

scale planning over a large area, which may include different utility owners and electricity markets, further 

complicating the market dynamics of wind-based electricity. 

                                                                    
5 Utilizing demand response (interruptible load) and curtailing wind (if transmission resources are 
insufficient) are among other strategies to achieve reliable operation of the grid. 
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c) Energy storage: These systems can partially mitigate fluctuations in supply and demand of electricity 

through storing the excess energy generated during low-demand or high-congestion periods for later use 

(energy arbitrage application). Storage systems can improve the performance of power plants, e.g., coal and 

nuclear, by allowing them to operate closer to their optimal design points. More importantly, energy storage 

systems can convert an intermittent wind farm into a firm capacity that can be dispatched based on the 

market price of electricity and reliability requirements of the grid (firming application). Strategically sited 

storage facilities can also prevent or delay the need for new transmission lines through relaxing grid 

congestions. Storage plants can also provide a variety of other ancillary services (e.g. frequency control and 

black start) essential for ensuring reliability of the grid [51]. Electricity storage systems can be characterized 

based on their discharge duration and power production capacity. Only compressed air energy storage 

(CAES), pumped hydro storage (PHS), and emerging flow batteries can presently provide utility-scale storage 

capacities (hundreds of MW-hours, bulk energy storage application) that may be required for large-scale 

integration of wind energy into the electricity grid. Although PHS has approximately 40 and 20 GW of 

installed capacity in Europe and USA respectively [44], development of PHS projects is geographically limited 

due to the necessity for two large natural or artificial water reservoirs with sufficient elevation difference. 

Environmental licensing and long construction time (in 10 years scale) are among other factors limiting large 

expansion of PHS capacities [10, 51].  

CAES facilities can use a variety of both underground and aboveground storage facilities and can be 

constructed in a relatively short time (around three years). CAES systems use inexpensive off-peak electricity 

to compress air into underground or aboveground storage reservoirs, which are later used to power modified 

gas turbines and generate electricity. CAES technology was extensively investigated in the 1970s to provide 

load following services and to gain a high capacity factor for base load power plants (especially nuclear) by 

storing off-peak electricity. The first CAES plant was commissioned in Huntorf, Germany in 1978 to provide 

black-start services to nuclear plants as well as provide relatively inexpensive peak power [52]. The Huntorf 

plant, which is still in operation, stores up to 310,000 m3 of compressed air at a pressure range of 48-66 bar 

in two salt caverns and can produce up to 290 MW of electricity at full capacity for 4 hours at an air discharge 

flow rate of 417 kg/sec [10].  
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The second utility-scale CAES plant was commissioned in 1991 in McIntosh, Alabama. The McIntosh plant can 

generate 110 MW of electricity at full capacity for 26 hours at an air discharge rate of 154 kg/sec. It stores up 

to 540,000 m3 of compressed air at the pressure range of 45-74 bar in a salt cavern [5]. The Alabama plant 

consumes up to 25% less fuel than the Huntorf plant as waste heat from the exhaust of the low pressure 

expander is recuperated to preheat discharge air from the cavern prior to entering the high pressure 

combustor [5]. 

Despite the successful operation of these two CAES plants, a series of events slowed down the development of 

CAES technology in the late 1980s and the 1990s. These events included the loss of momentum in the nuclear 

industry, the development of efficient and low capital-intensive single and combined cycle gas turbines, drop 

in natural gas prices, and an overbuilt generation capacity [10, 44]. However, the desire for higher 

penetration of clean but intermittent wind and solar energy sources into the electricity grid has renewed 

interest in CAES as a method to overcome their intermittency and thus lower the GHG emissions from 

electricity generation [10].  

Conventional CAES plants are not pure energy storage facilities since their operation requires combustion of 

fuel during the generation phase. Compressed air is heated during the generation phase (to prevent water 

vapor from freezing) and then electricity is generated through expansion of heated compressed air in 

expanders. The Huntorf plant for instance, uses ~5.8 GJ of natural gas per kWh of peak electricity that it 

generates6 [5].  

A variety of newer CAES designs have been proposed to improve the storage efficiency of conventional CAES 

plants. One design introduced by Energy Storage and Power Corporation in the 1990s is based on pairing 

CAES plants with conventional gas turbines. The main idea of this approach is eliminating the combustor in 

the CAES facility and utilizing the exhaust stream from the gas turbine instead of the combustor of CAES to 

heat the compressed air and thus improving the overall efficiency [51, 53]. 

                                                                    
6 Each kWh of energy equals to 3.6 GJ. Therefore, the thermal efficiency of the Huntorf plant would be 62% 
solely based on its "inside-the-fence" fuel consumption. This CAES plant also uses 0.82 kWh of electricity 
during the compression phase for each kWh of electricity that it delivers during the generation phase (work 
ratio of 0.82). 
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In contrast to this approach, which focuses on waste heat recovery during the discharging process, the 

adiabatic CAES (A-CAES) design is based on storing the heat of compression in a thermal energy storage 

facility. This stored heat then heats compressed air during the generation process and thus lowers (or even 

eliminates) the fuel consumption of the CAES plant [54]. This concept was introduced in the 1980s and the 

interest in this concept is recently renewed both in Europe and the United States [11, 51]. However, the 

A-CAES concept is still in the research and development phase and its development is challenged by few 

major technical issues including design of high pressure, high temperature, large scale and economically 

attractive thermal energy storage systems, high pressure and high temperature compressors, and high 

pressure expanders [20, 55]. 

This paper introduces and evaluates a different approach to improve the efficiency of conventional CAES 

plants. This approach focuses on utilizing the otherwise-wasted heat of compression for heating needs and 

thus improving the overall thermal efficiency of the CAES plant. This new configuration, which is called 

Distributed CAES (D-CAES), is realized by distributing air-compression stations near heat loads such as 

district heating facilities instead of siting the compression train at the storage facility (as the case for 

conventional CAES). An integrated compressed air pipeline network, supplied by these distributed 

compressors located near high heat-load facilities (e.g. hospitals and office towers), would use off-peak 

electricity to compress air. The heat produced by air-compression would then be utilized or stored for 

heating needs, and thus lower the overall cost of the D-CAES system by negating the demand for heating fuel 

usage within these high heat-load regions. The compressed air from this system would be pipelined to 

favorable geological sites for underground storage. The expander of the D-CAES system located at the storage 

site would generate electricity via combustion and expansion of stored compressed air, similar to the 

conventional CAES designs. Further details on different variations of the D-CAES concept may be found in 

Hugo et al. [56].  

The D-CAES concept is based on improving the economics of the conventional CAES facilities through the use 

of the low quality (exergy) heat of compression for space and water heating demands. Waste heat recovery 

from industrial compressors is a mature technology and therefore introduces less technical complexity 

compared to the A-CAES design, which requires heat recovery and storage at high pressures and 
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temperatures. Nevertheless, D-CAES requires a pipeline between the compression site (in a region with high 

density of heat load) and the storage site (e.g. cavern). In the admittedly unrealistic case where the heat load 

and the CAES storage facility are co-located, then D-CAES would always be preferred to CAES since it provides heat ǲfor freeǳǤ The essence of our analysis is to explore how the relative competitiveness of CAES and D-CAES 

depends on pipeline length. The trade-off between the increased capital cost of the D-CAES system compared 

to conventional CAES (mainly due to the air pipeline) and savings on fuel (used for heating purposes) can 

make the D-CAES system cheaper compared to the conventional CAES in certain situations.  

The intensity and fluctuations of the heat load, size and fluctuations of the electric load, distance between the 

heat load and storage facility, and the fuel and construction costs are the major players in this trade-off. As 

mentioned earlier, ambitious plans for higher penetration of wind energy into the electricity grid is one of the 

main drivers for the renewed interest in the CAES systems in the twenty first century. Therefore, this paper 

focuses on economic evaluation of D-CAES concept, as an alternative to conventional CAES systems, to 

provide economic and dispatchable wind-based electricity. To the knowledge of the authors this idea has not 

been discussed in literature before and this paper is the first to investigate the opportunities in enhancing the 

economics of CAES through recovery of the otherwise-wasted heat of compression from CAES plants to 

satisfy heating loads (instead of wasting the heat to the ambient in conventional CAES plants or storing it to 

later heat the compressed air during the power generation phase as proposed in the A-CAES design). The 

primary contribution of this paper is providing insight into the potential financial gains through waste heat 

recovery from the compression trains of CAES for municipal heating applications in order to facilitate R&D 

work on detailed engineering design of such plants.  

It bears mentioning that a different concept of distributed (decentralized) compressed air energy storage has 

been introduced and discussed in the literature, which is based on replacing the generator of individual wind 

turbines with compressors to directly store mechanical energy of wind in the form of potential energy of 

compressed air [57, 58]. The main advantage of this concept is eliminating the energy losses during the 

process of converting mechanical energy of wind to electricity and then to potential energy of compressed air. 

Nevertheless, distributing the compressors near heat loads to enable the use of compression heat for space 

and water heating applications, as proposed in the D-CAES configuration, has not been studied before.  
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2- Methodology 

Although the economic performance of CAES depends on the nature of the electricity market and grid that 

they participate in, some recent studies have concluded that conventional CAES plants may not be able to 

compete economically with other alternatives, especially conventional gas turbines, to support of wind-based 

electricity [52, 59, 60]. This phenomenon is driven by relatively high capital cost of CAES in comparison to gas 

turbines. However, at elevated fuel prices or in the case of high emissions taxes, CAES technology would 

become more attractive because of its better fuel economy. In a carbon-constrained world, technologies with 

high carbon footprints would be phased out and the electricity generation mix would move towards cleaner 

technologies, which would make the already complicated market dynamics more difficult and uncertain to 

model. Moreover, compressed air energy storage plants should ideally be designed and operated as 

independent entities in the electricity market to maximize their economic performance [61]. These plants 

would buy and store off-peak electricity from a variety of sources and sell electricity back to the grid during 

periods of peak demand and also provide ancillary services to the grid to maximize their competitiveness and 

profit in the electricity market.  

Because of the complexities associated with forecasting and modeling this real world scenario with higher 

fuel costs, we study a simplified system to investigate the economics of D-CAES and CAES plants in supporting 

wind-based electricity. In order to avoid the complex dynamics of the electricity market but at the same time 

provide insight into the performance of the D-CAES configuration in a close-to-real world scenario, a 

hypothetical scenario which represents a high-level policy making approach was used in this study. This 

hypothetical scenario represents a planning firm designing the electricity and heating infrastructure of a 

portion of a city in a carbon-constrained world. It is assumed that good wind resources are available; 

therefore the planning firm is considering harnessing this clean energy resource to satisfy a portion of the 

electric load. Natural gas-based power plants (simple cycle gas turbine, SCGT, and combined cycle gas 

turbine, CCGT) and natural gas-based compressed air energy storage plants (either conventional CAES or 

D-CAES) are also considered as candidates for electricity generation because of their relatively low GHG 

emissions. In addition, the firm plans to utilize district heating technology to satisfy the heat load of a portion 

of the city with a high load intensity (e.g. downtown core) because of the potential of the district heating 
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technology in supplying cleaner and more efficient heating energy compared to individual heating facilities. 

The heating energy of this district heating facility could be supplied through either direct combustion of 

natural gas in heat-only-boilers (HB) or heat recovery from the D-CAES plant. The overall objective of the 

planner is to satisfy both the electric and heat load at the lowest levelized cost (or maximizing the net social 

welfare). It is also assumed that the electric load of the city has to be satisfied by its own generation fleet and 

import and export of electricity are ignored. One should note that in the real world, cities are not normally 

isolated from the electricity grid and can buy/sell electricity from/to other grids. The authors acknowledge 

this simplification in the model presented but decide to use this assumption for the sake of simplicity and to 

evaluate the conditions under which the D-CAES design might be economically preferable to CAES at a high 

level policy making approach. 

The operational performance (i.e. revenues) of D-CAES depends most strongly on the size and diurnal and 

seasonal fluctuations of the heat load profile. In other words, if the heat load is too small then the economic 

gains from waste heat recovery would not be sufficient to justify the D-CAES system (mainly due to the 

requirement for capital-intensive air pipelines and the effect of economy of scale on this cost). However, in 

the real world the magnitude of heat load supplied by district heating networks is limited by increased heat 

losses in geographically-dispersed networks. In order to build a close to real world scenario, the size of the 

heat load connected to the district heating network was chosen so that it represented a concentrated 

municipal heat demand center. The D-CAES system might be chosen over the conventional CAES 

configuration only when it can be paired with a district heating network. Therefore, instead of modeling the 

heat demand of an entire city, the authors only focused on satisfying a concentrated heat load (a portion of 

the city) supplied by a district heating network. 

2-1- System of study 

As mentioned, two different configurations can be considered to evaluate the performance of conventional 

CAES and D-CAES systems in meeting the electric and heat loads. 
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2-1-1- System with a conventional CAES plant 

As shown in Figure 17, a wind farm, a conventional CAES plant located outside a city at a favorable geological 

storage site, and conventional gas turbine plants (SCGT and CCGT) could be utilized to meet the electric 

demand. The heat load would be satisfied by large scale boilers connected to district heating networks. Since 

this study focuses on providing reliable and dispatchable wind-based electricity, it is assumed that the CAES 

facility can only be charged by the wind farm while SCGT and CCGT can provide electricity only for 

instantaneous use and not for compression in the CAES plant.  

2-1-2- System with a D-CAES plant 

The major difference between this configuration (Figure 18) and the CAES system (Figure 17) is that the 

compressor of the compressed air storage facility is located within the city and close to a concentrated heat 

load. A heat recovery unit (HC) recovers the heat of compression, thereby negating the fuel consumption of 

the heat-only-boiler (HB) of the district heating system. The generated compressed air is transported via a 

pipeline network to a suitable geological storage site outside of the city for storage. The expander of the 

compressed air storage plant is located at this site similar to the conventional system. A low pressure, low 

temperature thermal energy storage (TS) unit could also be used to store the excess compression heat for 

later use. This additional component is, however, not considered in this paper for the sake of simplicity. 
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Figure 17: Schematic of the CAES system. Conventional CAES, wind farm, and combined and simple cycle gas 
turbines (GT) are utilized to meet the electricity demand. Natural gas-based boilers are utilized to satisfy the 
heat load of a district heating network. Wind-based electricity is the sole energy source to charge the 
underground compressed air storage facility. Comp and Turb stand for compression and expansion trains of 
the compressed air energy storage plant. 

 

Figure 18: Schematic of the D-CAES system. The compression train (Comp) of the compressed air energy 
storage facility is located within the city. The generated compressed air is pipelined to the storage facility 
outside the city where both the underground storage (Cavern) and expansion train (Turb) are located. The 
heat of compression is recovered by a heat recovery unit (HC) to satisfy the concentrated heat load in 
conjunction with the boilers of the district heating network.  
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2-2- Inputs and simulation model 

We model a planner who aims to minimize the total (capital and fuel) cost of satisfying a variable electric and 

heat load over the period of one full year. Following is a description of various inputs and assumptions made 

to establish this optimization problem. 

2-2-1- Simulation resolution and period 

High penetration of intermittent wind energy affects the electricity grid in three different time scales: minute-

to-minute, intra-hour, and hour- to day-ahead [59]. Since the primary application of compressed air energy 

storage plants is bulk energy storage (arbitrage and load leveling applications), an hourly resolution was 

chosen for this study. This approach is in agreement with some of other studies in the field of economic 

assessment of compressed air energy storage systems to support wind energy [52, 59, 60]. One should note 

that CAES plants can provide a range of ancillary services in electricity markets in addition to the primary 

duty of energy arbitrage and load leveling. CAES plants can provide frequency and voltage control services (in 

seconds time scale) and ramping services (in minutes time scale) in addition to the load following application 

considered in this study [62]. However, the economic value of these services highly depends on the market in 

which they are offered; therefore, these services were not included in this study and only energy arbitrage 

was considered as the primary role of energy storage plants.  

In order to capture the diurnal, weekly, and seasonal changes in wind energy, electric load, and heat load, the 

system was modeled over a period of one full year. Both the heat and electric loads are to be satisfied at each 

hour over the entire simulation period. 

2-2-2- Heat load 

District heating networks have the ability to supply heat to different types of heat loads (single houses, office 

towers, hospitals, etc.). However, an ideal heat load for district heating networks would be a concentrated 

load (e.g. a university) because of the higher capital costs associated with heating pipelines in district heating 

systems with low heat intensity. Therefore, a large concentrated heat load (three times as the heat load of the 

University of Calgary, Alberta, Canada) was chosen for this study. The heat load of this university experienced 

a peak and average hourly value of 48.4 and 21.4 MW thermal in the year 2011. Since the heat load of the 
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University of Calgary is currently satisfied with a district heating network, this load can be a good 

representation of a municipal heat load supplied by a district heating network. 

2-2-3- Electric load 

The electric load profile used in this study is based on the peak electric load profile of the province of Alberta 

in the year 2011 reported by the Alberta Electric System Operator (AESO) [63]. Albertaǯs hourly peak load 
was scaled down to simulate a large electric load with an hourly peak and average load of 1000 MW and 516 

MW, respectively. The size of the electric load was chosen arbitrary to represent a real world load. One should 

note that system of study was assumed to be "congestion free" (copper plate assumption) and the only 

geographical constraint in the model was the distance between the heat load and the geologic formation for 

air storage. 

2-2-4- Wind profile 

Hourly generation data from existing wind farms in Alberta reported by AESO [63] for the period of 2008 to 

2011 were used in this study. The hourly capacity factor of wind (ratio of the hourly generation to the name 

plate capacity of the wind farm) was calculated to represent the quality of wind resources to be exploited for 

electricity generation during the simulation period.  

2-2-5- Compressed air pipeline 

A pipeline is required to transport the generated compressed air from the compressor/heat-load site to the 

underground storage facility. The economics of D-CAES are strongly dependent on the capital cost of the 

pipeline. A pipeline length of 50 km was used in the base case system and the sensitivity of the results to this 

value was then assessed through running the simulation with 25 and 100 km long pipelines. Furthermore, an 

unrealistic scenario with a pipeline length of 0 km is considered to provide better insight into the trade-off 

between the capital cost of the pipeline and revenues of waste heat recovery. One should note that this study 

focuses on Calgary, Alberta as a case study. Calgary is in close proximity to depleted gas reservoirs that could 

be used for underground storage of compressed air. 

Due to the relatively short length of the pipeline (50 km) and to maximize waste heat recovery benefits in the 

D-CAES configuration, no boosting compression stations were considered. In other words, the maximum 
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downstream pressure of the pipeline was fixed (equal to the maximum cavern pressure, 74 bar) and the 

upstream compression facility was sized to be able to compensate for the pressure drop along the pipeline. 

Equation 147 relates the flow rate of the compressed air to the pipe diameter and length and the upstream 

and downstream pressures (see nomenclature for definition of symbols) [26]. 

௉ܲ௉ǡ௨௣ଶ െ ௉ܲ௉ǡௗ௡ଶ ൌ ͻǤͶ ൈ ͳͲସ ൈ ௉ܶ௉ ൈ ௉௉ܮ ൈ ௉݂௉ ൈ ௉௉ହܦ௉௉ଶܨ  
Equation 147 

 

The maximum allowable pressure drop along the compressed air pipeline was set to 35 kPa per km, a typical 

value for natural gas pipelines [64]. By fixing downstream pressure ( ௗܲ௡) and knowing the maximum air flow 

rate in the pipeline given compressor size, Equation 147 was used to calculate the pipe diameter. Once the 

pipe diameter was determined, its length and diameter were used to estimate the capital cost of the pipeline 

based on a regression model developed for industrial gas pipelines by Sean McCoy [65]. 

2-2-6- Storage facility 

Compressed air energy storage facilities can use both above- and underground storage [15, 66, 67]. Both high 

pressure storage tanks and pipelines can be utilized in aboveground CAES systems; however, aboveground 

CAES systems are not economically feasible for utility-scale (bulk) storage due to the significantly higher 

capital costs of aboveground storage [51]. Underground CAES can utilize a variety of geologic formations (salt 

caverns, hard rock and porous rock formations, and depleted gas reservoirs) to store compressed air in large 

quantities [10]. The selection of the proper formation is subject to various factors such as its availability, 

geological characteristics, and development costs. Porous rock formations were considered as the storage for 

this study since Calgary is in the proximity to porous rock geologic formations. As explained in the previous 

section, this formation was assumed to be located at a distance of 50 km from the heat load (equal to the 

length of the air pipeline) in the base case analysis. 

2-2-7- Operation of CAES and D-CAES 

A compressed air storage facility is very similar to a conventional gas turbine power plant with the major 

difference that the air compression and expansion processes do not happen at the same time. However, in 

principle a CAES plant can run as a simple cycle gas turbine during the periods that the cavern is short on 
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stored air [52]. This capability was considered in the optimization model such that the expander could 

receive compressed air required for its operation from both the cavern (running as a pure CAES) and the 

compressor (running as a pure SCGT). 

2-2-8- Fuel price 

A series of recent studies [52, 59, 60] have shown that conventional CAES facilities are too capital-intensive to 

be economically favorable over conventional gas turbines to support wind-based electricity under the current 

low natural gas prices (as the primary fuel for CAES and gas turbine plants). However, CAES may become 

attractive in a carbon-constrained world due to its lower emissions compared to conventional gas turbines. 

Therefore, a variable emissions tax (ܶܽݔ) is added to in the market price of natural gas price (ߨேெீ௔௥௞௘௧) here. 

The effective fuel price (ߨேீா௙௙ , combination of market price of the natural gas, fixed at $5.0/GJ7, and emissions 

taxes) is calculated based on Equation 148. The effective fuel price concept incorporates both the fluctuations 

in the market price of fuel and the emissions taxes due to the GHG emissions from the combustion of the fuel. 

A value of 66 kg CO2e8/GJ was considered as GHG emissions associated with burning natural gas, ߨேெீ௔௥௞௘௧ , 
(including the typical9 upstream emissions) [60]. As a case in point, a market price of $5.0/GJ for natural gas 

and an emissions tax of $30/tCO2e10 would translate to an effective natural gas price of $7.0/GJ. At low levels 

of tax, neither a CAES nor a D-CAES system is expected to be superior to gas turbines. However, as the 

effective fuel price increases, CAES becomes more favorable and at some higher fuel prices D-CAES will 

outcompete both conventional CAES and gas turbines.  

ேீா௙௙ߨ ൌ ேெீ௔௥௞௘௧ߨ ൅ ݔܽܶ ൈ ேெீ௔௥௞௘௧ߨ  Equation 148 

                                                                    
7 All heating values in this paper are expressed in terms of lower heating value (LHV). The higher heating 
value (HHV) energy content of natural gas is about 11% higher than its LHV. Therefore, a natural gas price of 
$5.0/GJ (LHV) corresponds to approximately $4.5/GJ (HHV). 

8 GHG emissions are expressed in equivalent amounts of carbon dioxide (CO2e) in this paper. 

9
 GHG emissions associated with manufacturing of the components were not included. 

10 One t indicates one metric ton (1000 kg).  
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2-2-9- Capital cost inputs 

Table 18 provides the inputs used in evaluating the cost of various components of the two systems. All costs 

were converted to 2009 inflation adjusted US dollars according to the Chemical Engineering Plant Cost Index 

[68, 69]. The capital cost of the heat recovery unit was assumed negligible since this heat has to be removed 

during inter-stage cooling between compression stages and from the compressed air prior to storage 

anyways (whether it is utilized for heating applications or dumped to the ambient). Similarly, the capital costs 

of the district heating network (excluding the boilers) were ignored in the analysis since this network would 

exist in both CAES and D-CAES configurations. In other words, the district heating system would be utilized to 

satisfy the heat load, regardless the source of the heating energy (HB or HC). Recovering the heat of 

compression would shave the peak heating load and a smaller boiler could supply the same heat load. 

Marginal capital cost of boiler was therefore, included in the objective function to take into account cost 

savings associated with reduced boiler capacity in the D-CAES configuration. In addition, all fixed and variable 

operation costs were ignored because of the fact that at the high carbon prices, which would be necessary to 

justify building capital-intensive CAES and D-CAES plants, these operation costs would be negligible 

compared to the much higher fuel costs11. Therefore, only the capital and fuel costs of various system 

components were considered in the economic analysis. 

Another simplification in this study is capital cost of the transmission lines. These lines are required to 

transmit electricity from the wind farm to the electric load and to the compression train, and from the 

expansion train to the electric load. Since our scope was to only model electric load of a portion of a city 

instead of an entire city, it was rational to assume that large transmission lines would already be built 

between the wind farm, municipal region, and the geologic formation to integrate the valuable wind energy 

into the electricity grid for the entire city. Therefore, it is assumed that these lines would exist anyway 

regardless of the specific CAES and D-CAES facilities modeled. We acknowledge the possible inaccuracies 

                                                                    
11 As a case in point, VOM and FOM costs for a CCGT plant is $1.3/MWh and $10.8/kW/year as reported by 
Greenblatt et al. [23]. Assuming a capacity factor of 80%, heat rate of 7.17 GJ/MWh and a gas price of $5.0/GJ, 
the levelized VOM, FOM and fuel costs of this plant would be $1.30, $1.54 and $35.85 per MWh of electricity 
generated, respectively. The VOM and FOM costs of the plant would not vary with the price of gas while the 
fuel cost would. Therefore, the authors do not expect excluding the VOM and FOM costs would introduce 
major inaccuracies in the results, especially at high fuel prices required for economic attractiveness of CAES 
and D-CAES plants over gas turbines.  



96 
 

associated with this intentional simplification. The alternative to this approach was including capital cost of 

the transmission lines; however, we believe the former approach would be a closer and more accurate 

approximation of the real world case. Costs of the transmission lines of the gas turbine plants were also 

ignored since these facilities are normally built in close proximities to the load. 

Table 18: Economic inputs for optimization of CAES and D-CAES systems. 

Parameter Base value Reference ݔܧ݌ܽܥௐ௜௡ௗ  ($/MW) 1.67ൈ106 [70] ݔܧ݌ܽܥௌ஼ீ்  ($/MW) 5.92ൈ105 [70] ݔܧ݌ܽܥ஼஼ீ்  ($/MW) 8.50ൈ ͳ05 [70] ்ݔܧ݌ܽܥ஻  ($/MW) 5.15ൈ105 [62]12 ݔܧ݌ܽܥ஼ெ  ($/MW) 4.76ൈ105 [62]12 ݔܧ݌ܽܥ஼ேெ௔௥௚  ($/MWh) 1.5ൈ102 [5] ݔܧ݌ܽܥ஼ே஻௔௦௘  ($)13 12.22ൈ106 [9]  ݔܧ݌ܽܥு஻ெ௔௥௚  ($/MW) 5.0ൈ104 [71] ݔܧ݌ܽܥ [60] 10 (%) ܥܤ௉௉  (k$/mm) (with ܮ௉௉=50 km and 250<ܦ௉௉<700 
mm 

ͶͳǤͶ͸ ൈ ௉௉ܦ െ ͳǡͶͶͻ [65]14 

VOM cost of all components negligible  

FOM cost of all components negligible  

 

                                                                    
12 Estimates for the specific capital cost of the compressor and the expander are based on the estimates for 
the total capital cost of the McIntosh CAES plant published by the Electric Power Research Institute (EPRI) 
[25]. This capital cost was adjusted for the capital cost of the salt cavern utilized in McIntosh plant [13] and 
the ratio of the capital cost of the expander and the compressor to estimate the specific costs of the expander 
and the compressor separately. The ratio of the specific capital cost of the expander to compressor is 
assumed 1.08, the average of the values used by Fertig and Apt [12] and Greenblatt et al. [23].  

13 The base case of cavern is for a depleted natural gas reservoir capable of storing enough air for 12 hours of 
continuous electricity generation at a rate of 131 MW as estimated by Electric Power Research Institute [38].  

14 The capital costs of the pipelines are based on the regression analyses developed by Sean McCoy [29] for 
263 on-shore natural gas pipeline projects in US. The values used in this study is for a 25, 50, and 100 km 
pipeline built in Central Region of the United States, as classified by the US Energy Information 
Administration for natural gas pipeline regions.  
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2-2-10- Performance characteristics 

Table 19 shows the inputs used to characterize the technical performance of various components in the 

simulation. The roundtrip storage efficiency of compressed air storage facilities can be expressed through 

using two parameters: work ratio and heat rate. Work ratio indicates the amount of work (off-peak 

electricity) that the compressor of the plant consumes per unit of electricity that the expander delivers. Heat 

rate expresses the amount of fuel burned per unit of electricity generated by the expander. The values used 

for heat rate and work ratio are for a typical CAES facility as reported by the Electric Power Research Institute 

(EPRI) [5]. It is of note that these parameters may vary based on the design and operation of the storage 

facility in the real world. Heat rate of compressed air storage facilities is much lower compared to SCGT and 

CCGT since all the energy generated by the expander is converted to electricity in a CAES plant while up to 

two thirds of this energy is consumed by the compressor in conventional gas turbines.  

It was assumed that up to 70% of the input energy into the compressor of the D-CAES plant could be 

recovered and utilized to satisfy the heat load. The authors acknowledge that this value might change the 

capital cost of the heat recovery system; the higher this value, the more sophisticated HC required and the 

higher the capital cost. Therefore, a conservative value of 70% was used as the heat recovery efficiency of the 

HC. In addition, the economics of D-CAES might be enhanced if a thermal energy storage facility is utilized to 

store the excess waste heat for later use. This option is not considered in this study for the sake of simplicity. 

A value of 80% (higher heating value) was used for the thermal efficiency of the boilers of the district energy 

system. 

Table 19: Performance characteristics of various components of the CAES and D-CAES systems. 

Parameter Value Reference ܴܪ஼஼ீ்  (GJ/MWh) 7.17 [70] ܴܪௌ஼ீ்  (GJ/MWh) 11.02 [70] ்ܴܪ஻  (GJ/MWh) 4.19 [5] ܹܴ 0.75 [5] ߟு஻  80%  ߟு஼  70%  
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2-2-11- Optimization model 

A mixed integer linear optimization code was developed in MATLAB to minimize the total cost of satisfying 

the hourly electric and heat loads over the one year simulation period. Size and dispatch of the various 

system components (wind farm, compressor, expander, cavern, SCGT, CCGT, compressed air pipeline, HC, and 

HB) were optimized to minimize the value of the objective function shown in Equation 149. This equation 

shows the total cost to satisfy the annual electric and heat loads at an hourly resolution. The terms in the first 

set of curly brackets show the amortized capital cost of various system components while the terms in the 

second set of curly brackets show the total fuel cost. The savings in fuel and capital costs of the heating boiler 

(HB) are included in the objective function. At each effective fuel price (ߨேீா௙௙ሻ, capacity (ݐ݌ܽܥ) and dispatch of 

various components are optimized to satisfy the electric and heat load at the minimal cost over the one year 

period of simulation. Then the capital and fuel costs are used to calculate the annual levelized cost of 

electricity supply (LCOE) in $ per MWh of electricity. The capital and fuel costs of the boiler would be lower in 

the D-CAES system compared to CAES (due to waste heat recovery). The difference between these values is 

treated as a negative cost (savings) in calculation of LCOE of the D-CAES system. The carbon intensity of 

natural gas (66 kg CO2e/GJ) was used to calculate the average carbon intensity of electricity generation (kg 

CO2e/MWh electricityȌ in the two systemsǤ The index ǲtǳ presents each dispatching period, i.e. one hour. 

 ݁ݖ݅݉݅݊݅ܯ

ܥܤ ൈ ൛ሺݐ݌ܽܥ஼஼ீ் ൈ ஼஼ீ்ሻݔܧ݌ܽܥ ൅ ሺݐ݌ܽܥௌ஼ீ் ൈ ௌ஼ீ்ሻ൅ݔܧ݌ܽܥ ሺ்ݐ݌ܽܥ஻ ൈ ஻ሻ்ݔܧ݌ܽܥ ൅ ሺݐ݌ܽܥ஼ெ ൈ ஼ெሻ൅ݔܧ݌ܽܥ ሺݐ݌ܽܥௐ௜௡ௗ ൈ ௐ௜௡ௗሻݔܧ݌ܽܥ ൅ ൫ݐ݌ܽܥ஼ே ൈ ஼ேெ௔௥௚൯൅ݔܧ݌ܽܥ ሺܦ௉௉ ൈ ௉௉ሻݔܧ݌ܽܥ െ ு஻ெ௔௥௚ݔܧ݌ܽܥ ൈ ሺܮܪெ௔௫ െ ஻௅ሻൟ൅෍ݐ݌ܽܥ ேீா௙௙ଷ଺ହൈଶସ௧ୀଵൈߨ ൜ሺܮܧ஼஼ீ்௧ ൈ ஼஼ீ்ሻܴܪ ൅ ሺܮܧௌ஼ீ்௧ ൈ ௌ஼ீ்ሻ൅ܴܪ ሺ்ܮܧ஻௧ ൈ ஻ሻ்ܴܪ െ ൬ܮܪு஼௧ ൈ ͵Ǥ͸ߟ஻௅൰ൠ 
Equation 149 

The major optimization constraints include: 

 Hourly electricity generated by the wind farm, simple and combined cycle gas turbines and the 

expander of the storage facility should be equal to the hourly electric load. 
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 Heat provided by the boiler (HB) and heat recovery system (HC) at each hour should be equal to the 

hourly heat load. 

 Hourly generation of each component should be less than or equal to its optimal size. 

 Hourly heat provided by the HC should be less than or equal to the compression energy at that hour 

multiplied by the efficiency of the HC. 

 Summation of the hourly wind-based electricity provided to the electric load and to the compressor 

of the energy storage plant should be less than or equal to the optimal size of the wind farm 

multiplied by its capacity factor at that hour. 

 Conservation of energy should be honored for the energy storage plant at each hour; change in 

energy level of the cavern should be equal to the difference between energy stored and released 

during that hour. 

 The minimum size of SSCGT, CCGT, compressor, expander, and wind farm is set to either 10 MW or 0 

MW to simulate a close to real world scenario. This constraint is imposed to avoid too small optimal 

sizes for the system components (e.g. a 0.2 MW gas turbine), which would have a high specific cost 

($/kW) due to economies of scale. 

 The air storage facility is sized for a week-long storage period and it is assumed to be depleted by 

midnight Friday each week. Since the electric load and thus its price would be lower during 

weekends compared to weekdays, the cavern would most probably be generating during the 

weekdays and storing electricity during weekends.  

3- Results and discussion 

In order to compare the performance of the D-CAES with the CAES system, a base fuel price of $5.0/GJ was 

assumed while the emissions tax was varied from 0 to 80 $/tCO2e at $10/tCO2e intervals. Each $10/tCO2e 

increase in the emissions tax corresponds to approximately $0.7 increase in the effective fuel price. At each 

effective fuel price, the optimal size and dispatch strategy of various components were determined by the 

mixed integer linear optimization code developed in MATLAB. 
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Prior to detailed presentation of results at various emissions taxes and pipeline lengths, it is beneficial to 

better understand how the objective function and constraints of the optimization impact the simulation. As a 

case in point, Figure 19 illustrates the distribution of electricity supply, distribution of available wind energy, 

distribution of energy supplied to compressor for storage, distribution of heat supply, and the energy level of 

the cavern over a seven day period at an emissions tax of $60/tCO2e in the D-CAES scenario. The time frame 

is arbitrary chosen as the 48th week of the year (Saturday, November 26 to Friday, December 2, 2011) and as 

expected, electric load is lower over the weekend. Most of the available wind energy is directly used by the 

electric load and expander of D-CAES is mainly dispatched during hours with low availability of wind. Not 

surprisingly, less efficient SCGT is poorly competitive with other three types of generators at such a high 

emissions tax and is dispatched only for very few hours. Furthermore, waste heat of compression supplies a 

high portion of the heat load during hours with high availability of wind energy (charging period of cavern). 

Wind energy is curtailed only when it exceeds the electric load and the storage of this energy is limited by the 

capacity of the compressor. Finally, the cavern is depleted at the end of week to simulate a weekly cycle of 

energy storage. 

 

Figure 19: Performance of various components of the D-CAES system over an arbitrary period of one week at 
an emissions tax of $60/tCO2e. Horizontal axis shows the period between Saturday, November 26 and Friday, 
December 2, 2011. "Used" and "Stored" in subfigure b represent the amount of wind energy that is used by 
the electric load and by the compressor of D-CAES, respectively. Note wind energy is curtailed only when it 
exceeds the electric load and its storage is constrained by the capacity of the compressor (94 MW). "MW, e" 
and "MW, th" stand for MW electric and MW thermal respectively. 
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3-1- Optimal size of components 

An important aspect in determining the cost of electricity supply is the size of various system components. 

Figure 20 illustrates the optimal size of the single and combined cycle gas turbines, expander, compressor 

and wind farm as well as the maximum hourly electric load (for comparison) at various values of emissions 

tax for the CAES configuration. As shown, the generation fleet is composed of only gas turbines in the absence 

of any emissions tax (i.e. an effective fuel price of $5.0/GJ). The optimal size of wind farm increases as 

emissions tax is introduced while the optimal size of the CAES facility remains zero until a tax of $40/tCO2e. 

This observation implies that better environmental performance and fuel economy of CAES are not strong 

enough to justify investing in this capital-intensive technology at low emissions penalties. As the tax (and thus 

effective fuel price) increases from zero, the size of SCGT (with higher fuel costs but a lower specific capital 

cost) decreases while the size of the more efficient but more expensive CCGT increases at a mild rate. Once 

CAES enters the picture at $40/tCO2e, the optimal size of gas turbines declines at a sharp rate while the 

optimal size of wind farm increases rapidly. Therefore, relatively high emissions taxes would be required for 

economic competitiveness of the more expensive but less polluting wind farms and CAES facilities with 

conventional gas turbines. Another interesting observation is the relatively large size of the combined cycle 

gas turbines even at high emissions tax levels. As a case in point, the size of CCGT is 409 MW while the size of 

the wind farm and expander reach 1,160 and 397 MW at a high emissions tax of $80/tCO2e. This behavior can 

be explained by the good thermal efficiency of CCGT technology and low GHG intensity of natural gas as its 

fuel. The CCGT and SCGT simulated here emit 473 and 727 kgCO2e/MWh. This is while the GHG emissions 

intensity of the CAES plant is 277 kgCO2e/MWh.  

Not surprisingly, the size of the energy storage facility remains zero at tax levels below $40/tCO2e in the 

D-CAES scenario as well (Figure 21). Utilizing less efficient gas turbines would result in a lower levelized cost 

of electricity at these low tax levels compared to building more efficient but capital-intensive D-CAES plants. 

The overall trend is similar to the CAES configuration: rapid increase in the size of the wind farm and 

expander of D-CAES and decline in the size of the gas turbines at emissions tax of $40/tCO2 and higher. 

Nevertheless, comparing Figure 20 and Figure 21 leads to an interesting observation: the size of the wind 

farm, expander, compressor, and simple cycle gas turbines are larger in the D-CAES system compared to the 
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CAES configuration at the same emissions tax. On the other hand, the optimal size of the combined cycle gas 

turbine is smaller in the D-CAES system. As a case in point, Table 20 compares these values for the two 

systems at an emissions tax of $60/tCO2e. The larger sizes of the wind farm and energy storage plant 

(compressor, expander, and cavern) in the D-CAES configuration can be explained by the revenues associated 

with heat recovery, especially at high emissions taxes. However, the larger size of the less efficient SCGT and 

smaller size of the more efficient CCGT fleet in the D-CAES system may look strange at the first glance. As will 

be discusses later in Section 3-2, SCGT has a low capacity factor (dispatched infrequently) at high emissions 

taxes; therefore, its lower capital cost would favor it over more efficient but more capital-intensive CCGT. 

 

Figure 20: Maximum electric load and the optimal size of electricity generation fleet in the CAES scenario at 
various levels of emissions tax. Wind and CAES do not enter the electricity market until emissions tax of $10 
and $40/tCO2e, respectively. Base price of gas is $5/GJ. Each $10 increase in the emissions tax translates to 
~$0.7 increase in the effective price of fuel. 
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Figure 21: Maximum electric load and the optimal size of electricity generation fleet in the D-CAES scenario at 
various levels of emissions tax. Similar to the CAES system (Figure 20), wind and D-CAES do not enter the 
electricity market until emissions tax of $10 and $40/tCO2e, respectively. Base price of gas is $5/GJ. 

 

Table 20: Optimal size of various system components for the CAES and D-CAES configurations at an emissions 
tax of $60/tCO2e. All values are in MW. 

 CCGT SCGT Wind farm Expander Compressor 

CAES scenario 456 47 965 351 76 

D-CAES scenario 377 95 1,023 375 94 

3-2- Distribution of electricity generation 

Figure 22 and Figure 23 respectively show the share of the generation fleet of supplying electricity at 

different values of emissions tax for the CAES and D-CAES configurations.  

In the absence of any emissions tax, the entire electric load is supplied by the combined and simple cycle gas 

turbines (98.0% and 2.0%, respectively). As emissions tax increase to $30/tCO2e, wind share increases to 

12.1% while the share of CCGT and SCGT decrease to 86.4% and 1.5% in both systems. This level of tax is still 

not high enough to justify building capital-intensive compressed air energy storage plants and large wind 

farms. Nevertheless, as more aggressive emissions taxes are enforced, the share of gas turbines sharply 

decreases because of their less efficient operation and consequently higher emissions intensity compared to 

CAES, D-CAES and wind. Interestingly, the share of wind energy of the annual electricity generation increases 
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very fast, the share of CAES remains relatively small, and the share of the CCGT remains intermediate 

(although declining) at higher emissions taxes. These results reveal that even high emissions taxes 

($80/tCO2e at fuel cost of $5/GJ in our case) would not significantly increase the market share of the CAES 

facilities and most of the wind energy would be directly supplied to the grid rather than stored in the CAES 

facility due to its high capital costs and the requirement for burning fuel (heat rate of 4.19 GJ/MWh in this 

study). 

 

Figure 22: Distribution of annual electricity generation in the CAES configuration at various levels of 
emissions tax. 

Table 21: Share of electricity generation of various components in the CAES and D-CAES configurations at a 
tax level of $60/tCO2e. All values are expressed as percentage of the annual electric load. 

 CCGT SCGT Wind farm Expander 

CAES 39.8 0.2 55.5 4.4 

D-CAES 35.3 0.6 56.9 7.2 

 

Similar results are observed for the D-CAES system as electric load is supplied solely by gas turbines and 

wind farm at emissions tax below $40/tCO2e. Nevertheless, a major difference between the D-CAES system 

and the CAES system is the lower share of CCGT and higher share of wind, expander and SCGT of the annual 

electricity supply. As tabulated in Table 21, the expander of D-CAES supplies 7.2% of the annual electric load 
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while this value is 4.4% in the CAES configuration at an emissions tax of $60/tCO2e. In addition, the CCGT 

share is 35.3% in this configuration while it is 39.8% for the CAES system. This observation is in agreement 

with the trend of equipment size in Figure 20 and Figure 21 with wind farm and expander replacing a larger 

market share of the CCGT in the D-CAES system due to revenues from heat recovery. Another observation is 

the small share of the SSGT of the annual electricity generation. Only 0.6% of the annual load is supplied by 

the simple cycle gas turbine because of its low thermal efficiency and high fuel costs at high emissions taxes. 

As discussed in Section 3-1, the size of the SCGT plant is larger in the D-CAES system compared to the CAES 

system in spite of its low thermal efficiency. However, SCGT has a very low capacity factor (realized annual 

electricity generation/ maximum possible annual electricity generation) of 3.3% in the D-CAES system; 

therefore, its lower specific capital cost would justify building a larger SCGT plant in the D-CAES system 

despite its higher fuel cost per MWh of electricity generated. 

 

Figure 23: Distribution of annual electricity generation in the D-CAES configuration at various levels of 
emissions tax. 

3-3- Distribution of wind energy 

Although higher emissions taxes justify building larger wind farms, the fact that periods with large 

availability of wind do not necessarily coincide with periods of high electric load necessitates existence of gas 

turbines and/or storage facilities to fill the gap between the electric load and wind-based electricity 

generation. Despite the fact that compressed air energy storage plants have a lower heat rate compared to gas 
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turbines, they still burn fuel during the generation phase, which translates to high fuel costs. To further 

investigate the role of wind energy in meeting the electric demand, the distribution of the available wind 

energy (sold to the grid for instantaneous use, stored by the compressed air energy storage plant, or 

curtailed) at various levels of emissions taxes in the CAES and D-CAES scenarios are illustrated in Figure 24 

and Figure 25.  

Presence of wind energy is very limited in both systems below emissions taxes of $40/tCO2e. Interestingly, 

only a small portion of the available wind energy is stored while a much higher portion is supplied to the grid 

for instantaneous consumption. This observation is in agreement with the small size of the compressor in 

both systems as shown in Figure 20 and Figure 21 and is due to the high fuel costs of the storage facilities at 

high emissions tax. Another observation is the higher availability of wind energy and the portion of it that is 

stored in the D-CAES scenario, which is driven by revenues gained through waste heat recovery. 

 

Figure 24: Distribution of available wind energy in the CAES configuration. Sold category represents the 
portion of available wind that supplies instantaneous electric load. A much smaller portion of the available 
wind energy is stored for later use (Stored category).  
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Figure 25: Distribution of available wind energy in the D-CAES configuration at various levels of emissions 
tax. Note higher penetration of wind energy in this scenario compared to the CAES scenario. 

3-4- Distribution of heat supply 

The entire heat load is supplied by the conventional boilers at tax levels below $40/tCO2e since the size of the 

compressor and heat recovery unit of D-CAES remains zero. As illustrated in Figure 26, waste heat recovery 

from the compressor of the D-CAES system negates fuel consumption of the boilers (HB) past this point and 

consequently reduces their share of annual heat supply so that 16.4% and 35.5% of the annual heat load is 

supplied by heat recovery (HC) at an emissions tax of $40 and $80/tCO2e, respectively. This figure also 

illustrates the percentage of available compression heat that is utilized by the heat load (called utilization 

factor of compression heat). Recovery of waste heat negates consumption of fuel for heating purposes and 

gains revenues for D-CAES. The utilization factor of waste heat remains very high (above 80%) as the size of 

compressor increases at higher emissions taxes (see Figure 21 and Figure 26). 

One should note that the contribution of the heat recovery system to the heat supply is subjected to the 

magnitude and fluctuations of both the electric and heat loads. In the system analyzed, the size of the electric 

load (maximum load of 1000 MW and average annual load of 516 MW electric) is relatively large compared to 

the heat load (maximum and average hourly heat load of 145.2 and 64.1 MW thermal, respectively). These 

values inherently make heat recovery from the D-CAES system more economic due to the much larger size of 

the electric load. This setting is in agreement with real world systems in which the typical size of power 
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plants are in the range of a few hundred MWs while the size of centralized municipal heat loads are usually in 

the range of a few tens of MWs. Moreover, a thermal energy storage facility (short- and long-term) might 

increase the share of heat recovery unit of the annual heat supply (or at least lead to a smaller HC and better 

economics for the D-CAES system), which is not studied in this paper.  

 

Figure 26: Fraction of the annual heat load supplied by the heat recovery unit (right axis) and percentage of 
recoverable heat of compression that is utilized by the heat load (left axis) in the D-CAES system. Utilization 
factor of compression heat decreases at higher emissions taxes since the size of the compressor (and 
therefore, the available waste heat) increases while the size of heat load is fixed. 

3-5- Cost of electricity 

Knowing the size and the hourly dispatch of the system components, the average cost of electricity at each 

effective fuel price was calculated for the two generation fleets considered in this study (one with the 

conventional CAES and one with the proposed D-CAES system). This cost can be used to determine the cross-

over point of emissions tax: the tax level above which the D-CAES system is economically superior to the 

conventional CAES configuration. The LCOE of the D-CAES system becomes less than the cost of the CAES 

system ($73.7 and $73.8 /MWh, respectively) at an emissions tax of $40/tCO2e (cross-over point with a 

pipeline length of 50 km) while the generation fleet is solely composed of wind farm and gas turbine prior to 

this point in both CAES and D-CAES scenarios. The cost of electricity in the D-CAES system remains lower 

than the CAES system past this level of emissions tax while their difference grows as the share of wind and 
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energy storage facilities of the annual electricity supply increases. The annual cost of electricity in D-CAES 

and CAES scenarios respectively reaches $81.7 and $82.6 /MWh at emissions tax of $80/tCO2e. 

The primary drivers in the trade-off analysis between a D-CAES and a CAES plant are the capital cost of the 

pipeline and the revenues gained from heat recovery. Furthermore, the heat recovery unit of the D-CAES 

system would replace some capacity of the boilers of the district heating plant. In order to obtain better 

insight to this trade-off analysis, the size and capital and fuel costs of various components of the D-CAES 

system are given at the cross-over carbon price of $40/tCO2e in Table 22. The capital and fuel cost of the heat 

recovery unit are negative since they represent the savings in the capital cost (shaving of peak load of the 

boilers due to the existence of the HC) as well as the fuel cost of the boilers of the heating system. The capital 

cost of the air pipeline is approximately 8.5% of the total capital cost of the D-CAES plant (expander, 

compressor, cavern, and pipeline). However, the annual fuel savings from the heat recovery unit is $2.86 

million per year, more than 50% of the annual fuel consumption of the expander. 

Table 22: Optimal size, fuel consumption and the amortized capital cost and fuel cost of the D-CAES plant at a 
tax of $40/tCO2e (the cross-over tax for the scenario with a 50 km long pipeline). 

 Size 
Fuel consumption 
(TJ/year) 

Capital cost ($ 
million/year) 

Fuel cost ($ 
million/year) 

Expander 284 (MW) 734.7 14.62 5.61 

Compressor 41 (MW) NA 1.94 NA 

Cavern 4,106 (MWh) NA 1.26 NA 

Pipeline 0.44 m (dia) NA 1.65 NA 

Heat recovery unit 29 (MW) -374.1 -0.04 -2.86 

 

The exact location of the cross-over point would depend on various system parameters such as the nature of 

the heat and electricity markets (composition of the generation fleet, value of ancillary services, etc.). The 

main contribution of this paper is to introduce and investigate the opportunity of the D-CAES system to 

economically compensate for fluctuations of wind-based electricity in niche markets. Recovery of the low-

quality waste heat of compression form a compressed air energy storage facility for heating applications 

instead of using it to lower fuel consumption of the plant itself (i.e. A-CAES design) is a new approach that 
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could be valuable in a carbon-constrained economy. The authors emphasize that this system does require 

further evaluation prior to industrial development; however, believe that this model illustrates the potential 

benefits of D-CAES over conventional CAES technology. 

3-6- Sensitivity analysis on the length of pipeline 

The cross-over point is sensitive to the inputs and assumptions made in the simulation. Since the major 

difference between the conventional CAES and D-CAES systems is the air pipeline, the possible effects of the 

length of the pipeline on the cross-over point and thus the minimum fuel price required for economic 

competitiveness of D-CAES with CAES is evaluated in this section. In order to investigate the effect of the 

capital cost of the pipeline in this trade-off analysis, the simulations were repeated with two different pipeline 

lengths of 100 and 25 km.  

D-CAES system with a pipeline length of 100 km: this increased length would not have any impact on the 

optimal configuration of the CAES system. However, it is expected to increase the LCOE for the D-CAES 

system (more expensive pipeline). The cross-over emissions tax in this scenario is $50/tCO2e as compared to 

the base case with a threshold tax of $40/tCO2e. The optimal values of the system components for the two 

D-CAES systems with 50 and 100 km pipelines are compared in Table 23. Increasing the length of the pipeline 

makes wind energy and compressed air storage less favorable and results in lower sizes for the wind farm, 

expander, compressor, cavern and air pipeline. Since a smaller compressor and wind farm are used, there are 

fewer opportunities for waste heat recovery and a smaller heat recovery system (HC) and a larger boiler (HB) 

are required. A longer pipeline, smaller wind farm, smaller HC, and thus higher demand for fuel to meet the 

electric and heat load would cause an increase of $0.3/ MWh in the average annual cost of electricity in the 

D-CAES scenario with a 100 km long pipeline (a value of $76.6/ MWh). Although this change in LCOE may not 

seem very high, it indicates that D-CAES systems could compete with conventional CAES systems effectively 

only under certain circumstances (niche markets) and highlights the importance of custom designing these 

facilities in accordance to the local parameters and local energy market conditions.  
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Table 23: Effect of pipeline length on the optimal size of system components and cost of electricity in the 
D-CAES configuration at an emissions tax of $50/tCO2e (cross-over point for the D-CAES system with 100 km 
long pipeline). ࡼࡼࡸ (km) 50 100 ݐ݌ܽܥ஼஼ீ்(MW) 411 416 ݐ݌ܽܥௌ஼ீ்  (MW) 97 107 ݐ݌ܽܥௐ௜௡ௗ  (MW) 899 887 ்ݐ݌ܽܥ஻  (MW) 353 339 ݐ݌ܽܥ஼ெ  (MW) 81 70 ݐ݌ܽܥ஼ே  (MWh) 7,316 6,362 ܦ௉௉  (mm) 575 520 ݐ݌ܽܥு஼  (MW) 56 49 ݐ݌ܽܥ஻௅  (MW) 138 138 

 

Simulation with 25 km pipeline: the cross-over emissions tax for the system with a shorter pipeline length of 

25 km is $30/tCO2e corresponding to an effective fuel price of $7.0/GJ (at a base natural gas price of $5.0/GJ). 

These values are $40/tCO2e and $7.6/GJ in the base-case system with a pipeline length of 50 km. The optimal 

capacity of various components of the two D-CAES systems at the carbon price of $30/tCO2e is tabulated in 

Table 24. The high capital cost of the 50 km pipeline leads to the superiority of conventional gas turbines so 

that the optimal system configuration only includes gas turbines and wind farms in this scenario. In other 

words, revenues from waste heat recovery would not be high enough to justify building a 50 km pipeline 

between the compression unit (heat load) and the cavern of the energy storage plant at low emissions taxes. 

However, these revenues are high enough to justify building a 25 km pipeline. The optimal design of the 

system with a 25 km pipeline includes a D-CAES facility with a 193 MW expander and a 23 MW compressor. 

Size of the energy storage plant and wind farms sharply increase past this point and the cost of electricity 

remains lower in this system compared to the configuration with the pipeline length of 50 km. 
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Table 24: Effect of pipeline length on the optimal size of system components and cost of electricity in the 
D-CAES configuration at an emissions tax of $30/tCO2e (cross-over point for D-CAES with 25 km long 
pipeline). ࡼࡼࡸ (km) 50 25 ݐ݌ܽܥ஼஼ீ்(MW) 684 618 ݐ݌ܽܥௌ஼ீ்  (MW) 249 114 ݐ݌ܽܥௐ௜௡ௗ  (MW) 192 273 ்ݐ݌ܽܥ஻  (MW) 0 193 ݐ݌ܽܥ஼ெ  (MW) 0 23 ݐ݌ܽܥ஼ே  (MWh) 0 2,314 ܦ௉௉  (mm) 0 357 ݐ݌ܽܥு஼  (MW) 0 16 ݐ݌ܽܥ஻௅  (MW) 145 134 

3-7- Emissions tax and emissions reduction  

This study optimizes both the size and the dispatch of the gas turbines, wind farm, and CAES and D-CAES 

facilities supplying a variable electric load at various emissions taxes. This approach provides insight into the 

opportunity of reducing the carbon intensity of electricity generation, a major contributor to GHG emissions. 

The interesting question is how much of an emissions tax would be required to justify investing in more 

capital-intensive but cleaner technologies (wind and energy storage in this case) and drive the overall 

emissions of electricity supply below a certain level. The carbon intensity of electricity supply in this model at 

the natural gas price of $5.0/GJ (and no emissions tax) is 507 kg CO2e/MWh and the generation fleet is 

composed of only gas turbines. As higher emissions taxes are introduced and the effective price of natural gas 

increases accordingly, this value declines while the average cost of electricity increases.  

Figure 27 illustrates the minimum emissions tax (vertical axis on the left) required to lower the emissions 

intensity from the base case value of 507 kg CO2e/MWh in the conventional CAES scenario as well as D-CAES 

scenario with 25, 50, and 100 km long pipelines. This graph also shows an unrealistic scenario of co-located 

underground storage facility and heat load for the D-CAES system (0 km pipeline), as the most favorable 

scenario ("free heat" due to the possibility of waste heat recovery at no additional costs compared to the 
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CAES system). This scenario is presented for the sake of argument and to show the ultimate benefits from 

heat recovery. The effective price of fuel at each level of emissions tax (based on a fixed market fuel price of 

$5.0/GJ) is demonstrated on the right-hand side vertical axis. These values are calculated according to 

Equation 148 and show the total price paid by the plant for each GJ of natural gas consumed (i.e. summation 

of actual market price and emissions taxes). 

The GHG intensity of all systems is the same at emissions tax of $0 and $10/tCO2e (absolute values of 507 and 

503 kg CO2e/MWh, respectively) since fuel costs are not high enough to justify investing in either CAES or 

D-CAES. However, at an emissions tax of $20/tCO2e, D-CAES with 0 km pipeline enters the generation fleet 

and consequently lowers the GHG intensity of electricity supply (a value of 468 compared to a value of 491 kg 

CO2e/MWh for all other scenarios). Similarly, D-CAES with 25 km pipeline, CAES, D-CAES with 50 km pipeline, 

and D-CAES with 100 km pipeline enter the electricity market at an emissions tax of $30, $40, $40, and 

$50/tCO2e, respectively. As expected, the D-CAES system with a longer pipeline has a higher emissions 

intensity compared to the D-CAES system with a shorter pipeline but still lower compared to the CAES 

scenario. In other words, the same level of emissions reduction would be achieved at a lower emissions tax 

for the system with a shorter pipeline compared to a system with a longer pipeline (or CAES system). 

Interestingly, the emissions intensity of all D-CAES systems become similar at very aggressive emissions tax 

measures so that the difference between GHG intensity of D-CAES systems with 0 km and 100 km pipeline 

becomes less than 2 kg CO2e/MWh at an emissions tax of $80/tCO2e (values of 149 and 151 kg CO2e/MWh, 

respectively). This can be explained by the fact that the capital costs of the wind farm, expander, compressor, 

and cavern become much higher compared to the capital cost of the pipeline at such high emissions taxes, 

hence the total cost and emissions intensities are similar for different pipeline lengths. In other words, the 

optimal configuration and dispatch of the generation fleet with the D-CAES system for 0, 25, 50, and 100 km 

pipelines are less affected by the capital cost of the pipelines at aggressive taxes on GHG emissions.  
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Figure 27: Emissions taxes and corresponding effective fuel prices required to reduce the carbon intensity of 
the electricity generation fleet compared to the base case of no emissions tax ($5.0/GJ effective fuel price and 
an average emissions intensity of 507 kg CO2e/MWh).  

4- Conclusions 

The potential financial and GHG emissions savings through waste heat recovery in CAES plants to meet 

heating loads were evaluated in this study. The major additions to the compressed air energy storage facility 

equipped with waste heat recovery (a D-CAES plant) compared to a conventional CAES plant are a heat 

recovery unit and a pipeline to transport the generated compressed air from the heat load site to the storage 

site. A series of hypothetical scenarios with an electricity generation fleet composed of conventional gas 

turbines (CCGT and SCGT), a wind farm, a conventional CAES or a new D-CAES plant were analyzed. The 

electricity generation fleet was optimally sized and dispatched at minimum total cost over a period of one 

year at an hourly resolution. A district heating network equipped with conventional boilers and the heat 

recovery unit of the D-CAES plant was used to meet a concentrated heat load over the same one year period. 

The distance between the heat load (compression unit of the D-CAES system) and the underground air 

storage facility was set as 50 km in the base case. 

At emissions tax levels below 40 $/tCO2e, the optimal size of the wind farm and compressed air storage 

facility were small compared to the size of conventional gas turbines in both CAES and D-CAES configurations. 
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However, both their size and share of annual electricity generation rapidly increased as more aggressive 

emissions taxes were introduced. This behavior shows that relatively high taxes on GHG emissions would be 

required for compressed air energy storage plants (both CAES and D-CAES) to be competitive with 

conventional gas turbines to be used to compensate for fluctuating output of wind farms. Both the size and 

share of the wind farm and storage facility were larger in the D-CAES configuration compared to the CAES 

system revealing the economic gains from the use of otherwise-wasted heat of compression for heating 

applications. In other words, fuel savings gained from waste heat recovery in the D-CAES system could justify 

building larger capital-intensive but cleaner wind farms and storage facilities to support wind-based 

electricity. As a result, the emissions intensity of the generation fleet equipped with D-CAES instead of 

conventional CAES plant would be lower. The financial gains from heat recovery outweighed the increased 

capital cost of the D-CAES system past the cross-over point of $40/tCO2e. The fact that the average cost of 

electricity in both systems remained close revealed that a D-CAES system could compete economically with 

conventional CAES plants in certain niche markets but the exact performance would depend on the nature of 

the electricity market under investigation. It bears mentioning the wide development of D-CAES systems is 

likely to be firstly limited by the availability of suitable geologic formations in proximity to concentrated heat 

loads. Considering the size of the electric load (peak of 1 GW), size of simulated heat load (three times the size 

of University of Calgary), and optimal size of the expander of D-CAES (28% of the peak electric load at an 

emissions tax of $40/tCO2e), the size of electric load rather than heat load is expected to be the second 

limiting factor. 

We also evaluated the sensitivity of the results to pipeline length. The cross-over emissions tax price for 

economic superiority of the D-CAES system with a 100 km pipeline instead of the base-case length of 50 km 

was increased to the value of $50/tCO2e. This $10/tCO2e increase translates to an increase of $0.7/GJ of 

natural gas price. However, the D-CAES system becomes more competitive with the conventional CAES at 

shorter distances between the heat load (compression facility of the D-CAES plant) and the storage site. The 

cross-over emissions tax in a system with a shorter pipeline length of 25 km is $30/tCO2e, corresponding to 

an effective natural gas price of $7.0/GJ at a base natural gas price of $5.0/GJ. 
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Although the complex dynamics of the real world electricity markets were ignored in this study, we believe 

this assessment provides a high level insight into the possible economic gains from waste heat recovery for 

heating applications from compressed air storage plants. Due to the higher capital cost intensity of these 

facilities compared to conventional gas turbines, CAES and D-CAES would not be able to compete 

economically with gas turbines under normal conditions in the real world. Aggressive GHG taxes or other 

economic incentives are required to compensate their higher capital costs, which would affect the already 

complicated market dynamics. Therefore, this simplified approach is not expected to cause significantly 

higher errors compared to the case in which future market dynamics were forecasted. A macro level 

approach was chosen in this paper, as the first study to introduce and evaluate D-CAES design, to inform the 

policy makers and assess the potential of D-CAES in supporting higher penetration of wind energy into the 

electricity grid in a carbon constraint world. We emphasize the importance of detail engineering and design 

of D-CAES plants based on the local policies and nature of electricity market to maximize the profit of the 

plant. In addition, a thermal energy storage unit was not considered in the D-CAES configuration for the sake 

of simplicity. As a result, the heat of compression could only be used to satisfy the instantaneous heat load. 

The economics of heat recovery from compressed air energy storage facilities may improve if such thermal 

energy storage facilities are considered, especially for seasonal storage of waste heat15. Finally, a generation 

fleet with lower pollution levels (e.g. NOx emissions) would benefit the neighboring communities through 

improved air quality, another benefit of the D-CAES plants that could enhance their competitiveness with 

conventional CAES systems.  

  

                                                                    
15 As a case in point, the Drake Landing solar Community in Okotoks, Alberta, Canada utilizes a borehole 
thermal energy storage facility to store thermal energy collected during the summer months for consumption 
during the winter months.  



117 
 

Chapter 4: Compressed air energy storage with waste heat export: An 

Alberta case study16 

 

  

                                                                    
16 This paper is published as Safaei, H. and D.W. Keith, Compressed air energy storage with waste heat export: 
An Alberta case study. Energy Conversion and Management, 2014. 78: p. 114-124. 
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Preface 

While Chapter 3 explored the economics and emissions performance of D-CAES at a systems level, this 

chapter concentrates on individual (merchant) D-CAES plants interacting with electricity markets. The core of 

the analysis presented here addresses the question of how market conditions (price of electricity and gas) 

and engineering parameters (e.g. capacity of air store) may impact the profitability of D-CAES compared to 

conventional CAES for the electricity arbitrage application. Studying the economic viability of stand-alone 

D-CAES plants can stimulate R&D on this low-carbon technology to prove the concept and improve its 

technical characteristics, such as heat exchangers for waste heat recovery and thermal storage systems. 

The analysis in Chapter 3 suggested that D-CAES could outperform conventional CAES when sized and 

operated as a part of the electricity and heating infrastructure. This chapter extends the economic and 

emissions analysis of D-CAES to deregulated electricity markets, i.e. maximizing profitability of the storage 

plant itself rather than minimizing the total cost of electricity and heat supply. A case study of two 

hypothetical CAES and D-CAES facilities performing energy arbitrage in the Alberta deregulated electricity 

market is presented here. A series of sensitivity analyses are performed to evaluate robustness of the results 

to the key design parameters: distance between cavern and heat load, capacity of cavern, capacity of 

compressor and turbine, and size of heat load. Moreover, a period of ten years with a variety of electricity and 

natural gas prices is simulated to assess the relative importance of these two key market factors.  

Leaving the thermodynamics, emissions, and economic performance of D-CAES aside, one may ask how 

realistic it is to find a suitable geologic formation in the vicinity of a large heating load (the inherent 

requirement of D-CAES). A geological screening of natural gas reservoirs within 100 km radius of the two 

major cities in Alberta is also performed to shed light into this question. 

The results of this chapter are based on a number of modeling assumptions and simplifications. Only one 

electricity market (Alberta) and one application of storage (arbitrage) are studied. Uncertainties in the price 

of electricity and natural gas are ignored. The D-CAES plant modeled is incapable of storing any excess 

recovered heat for future use. Moreover, the operation of the storage plants is assumed not to change the 

dynamics of the electricity market (i.e. price-taker assumption). 
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The economic performance of any storage facility depends on the dynamics of the electricity market that it 

operates in. The goal of this chapter is not to single out all possible markets, but to explore the role of two key 

market factors (i.e. wholesale price of electricity and natural gas). Performing the simulation over a ten-year 

period enables covering a large variety of electricity and gas prices. Moreover, wide spreads in electricity 

prices, abundance of geologic formations for air storage, and long winter climate make Alberta an appealing 

candidate for deployment of D-CAES. Since offering energy arbitrage is a primary role of bulk energy storage 

technologies, this chapter only studies this application of CAES and D-CAES. Including other ancillary services 

such as load following and firming capacity would strengthen the analysis. 

Assuming perfect foresight of electricity and gas prices in the model is not expected to favor D-CAES over 

CAES in a substantial manner. This is because forecasts of heating loads and gas prices are far more accurate 

compared to electricity prices over the time scales (few days) that the operations of bulk storage facilities are 

planned. While the base case scenario presented here allows the recovered heat of compression to be utilized 

only for instantaneous heating demands, one scenario considers daily storage of thermal energy. The optimal 

size of the heating load is halved in this case. Performing a more comprehensive thermodynamic analysis of 

thermal storage could make a stronger case for competitiveness of D-CAES. In addition, D-CAES could offer 

cooling services (e.g. absorption chilling). Incorporating this service in future research can paint a more 

accurate picture for the economics of heat recovery from compressed air storage plants. 

The conclusion that D-CAES may outcompete conventional CAES in the real world electricity markets is 

promising. The D-CAES plant would earn ~$1.3 million/year more on average compared to the conventional 

CAES in the 10-year study period (with a relative standard deviation of 119%). Additionally, the GHG 

emissions intensity of the D-CAES is about half of the CAES facility. Favorable economic as well as emissions 

performance would lead to a negative abatement cost of -$40 per ton of CO2e avoided in the base case 

scenario. 

While D-CAES may be more attractive compared to conventional CAES for energy arbitrage applications in 

certain markets and especially under GHG emissions restrictions, its potential as a cost-effective carbon 

mitigation tool should not be overstated. Availability of a large heating (or cooling) demand, which is supplied 
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by a GHG-intensive source and availability of an inexpensive air storage in close proximity are essential for 

the feasibility of D-CAES projects. These requiems leave limited opportunities for D-CAES compared to CAES, 

other bulk storage technologies, and low-carbon electricity sources such as biomass.  
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1- Introduction 

Electric system operators dispatch the generation fleet in response to fluctuations in the load and to ensure 

grid reliability. Baseload power plants are characterized by low marginal costs, low ramp rates and high start 

up costs. Such inherent properties can lead to their part-load and less efficient operation and also depressed 

electricity prices during periods of low demand. On the other hand, peaking plants have low start up costs, 

fast dispatch, and high fuel costs. The variations in load and technical characteristics of the generation fleet 

cause fluctuations in electricity prices as well as inefficient and more polluting operation of the electricity 

sector. Penetration of intermittent renewable energies into the electricity grid could worsen the volatility of 

prices. Low marginal cost of wind and solar-based electricity would depress price of off-peak electricity [72]. 

At the same time, forecast errors and rapid changes in the output of these plants could increase the price of 

peak electricity [73, 74].  

Price volatility of electricity is a business opportunity for energy arbitrage by energy storage plants. In 

addition to direct financial gains for the plant itself, an energy storage unit may benefit the electric system 

(positive externalities) in numerous ways such as increasing the capacity factor of baseload plants and 

intermittent renewables [10, 60, 67] and reducing grid congestion [5, 61]. Pumped hydro storage (PHS) and 

compressed air energy storage (CAES) are the two primary technologies for bulk storage of electric energy 

(hundreds of MW-hours) [59]. Development of PHS is constrained by factors such as the need for sufficient 

elevation difference between the two reservoirs, large land footprint, relatively high capital costs, and 

environmental licensing [10, 51]. 

CAES facilities buy electricity when prices are (relatively) low to run large compressors and store electricity 

in the form of compressed air, which later is combusted to power modified gas turbines (air expanders) when 

prices are high. CAES plants can store air in both underground (e.g. salt caverns) and aboveground reservoirs 

(pressure vessels) and thus have more siting flexibility [10]. Furthermore, they have shorter construction 

time (around 3 years) and are less capital intensive compared to PHS projects [62]. There are currently two 

operating utility-scale CAES plants in the world. The first one is in Huntorf, Germany with an output of 290 
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MW over four hours, while the second plant is in McIntosh, Alabama and can generate 110 MW of electricity 

for 26 hours [10]. 

Efficiency and economics of CAES have been improved since the commissioning of the Huntorf plant in 1978. 

Recuperating heat from exhaust of the air expander in order to preheat air prior to entering the combustor 

reduced fuel demand of the McIntosh plant by 25% [5]. Among various CAES designs, Adiabatic and 

Distributed CAES are of special interest. They both aim to address energy losses associated with waste heat of 

the compressor. In adiabatic CAES, air is adiabatically compressed to high pressures and temperatures while 

its heat is recovered prior to storage. The compression heat is stored in a thermal energy storage facility to 

reheat compressed air over the discharge phase. Utilization of the compression heat can negate and even 

eliminate the need for combustion of fuel and consequently increase efficiency of the plant [5]. However, this 

design is still in the research and development phase as its technical and economic feasibility is challenged by 

the need for high pressure and high temperature compressors and thermal energy storage facilities as well as 

high pressure expanders [11, 55].  

Distributed compressed air energy storage (D-CAES) aims to enhance efficiency and economics of CAES by 

utilizing the compression heat for space and water heating applications. The D-CAES concept was first 

proposed by the authors in an another paper [75] and a patent [56] . Energy used for municipal heating 

applications could be of low exergy content (low temperature) in contrast to the heating energy required for 

Adiabatic CAES, which imposes technical difficulties to and cost burdens for this technology. The compressor 

of D-CAES is located near high heat load centers, such as a hospital. This configuration is different from the 

conventional CAES in which the compressor is co-located with the expander and air storage. Compression 

heat would be recovered through a heat recovery unit (HC) and sold to supply a space and water heating load 

with the aim of supplying a district heating network. Therefore, D-CAES benefits from an additional revenue 

source compared to CAES. The downside of D-CAES is the need for a pipeline to transport air from the 

compression facility (co-located with heat load) to the storage site located at favorable geologic formations. 

Therefore, the capital cost of D-CAES is higher compared to conventional CAES. D-CAES can be only 

economically feasible where the air storage site is in the vicinity of the heat load, otherwise the cost of 

pipeline would outweigh revenues from heat recovery. In some markets, the carbon emission reductions that 
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occur when waste heat displaces heating fuel may have a separate economic value such as a carbon credit, 

reduction in tax, or other instruments.  

Our previous paper [75] evaluated the competitiveness of D-CAES with conventional CAES, simple cycle, and 

combined cycle gas turbines at a systems level (i.e. minimizing the entire cost of electricity supply or 

maximizing the net social welfare) in a carbon-constrained world. Here we extend our earlier work to 

examine the performance of D-CAES under real-world market conditions. This paper compares the economics 

of CAES and D-CAES in a deregulated electricity market based on historical data. Both facilities are dispatched 

as stand-alone merchant plants performing energy arbitrage to maximize their own profit. They are equipped 

with a 131 MW expander, a 105 MW compressor and a depleted gas reservoir with 1,572 MWh of generation 

capacity (enough for discharging at full load for 12 hours) in the base case scenario. The air storage site is 

located 50 km away from a concentrated heat load (five times larger than the University of Calgary, Canada). 

Price of natural gas, as a primary fuel for municipal heating would directly impact revenues from waste heat 

recovery. On the other hand, it can affect the price of electricity and thus the revenues of energy arbitrage. 

The main contribution of this paper is evaluating the effect of market conditions (gas and electricity prices) 

and design parameters (e.g. length of pipeline) on the economic competitiveness of D-CAES with conventional 

CAES system in energy arbitrage applications. 

The underlying assumption in this paper is that both facilities are priceȂtakers. This implies the storage 

plants are not sufficiently large so that their operation could affect the dynamics of the market and change the 

price of electricity or gas. If the capacity of the compressor becomes comparable to the system load, then the 

price of off-peak electricity would likely rise (due to higher demand). This would be beneficial to the 

suppliers (higher sales and less cycling) while unfavorable to the consumers (including the storage plant 

itself due to higher prices). On the other hand, the ability of a large expander to deliver significant volumes 

would depress the price of peak electricity. This situation would indeed benefit the consumers (lower 

charges) and the grid (less need to dispatch inefficient plants). However, this would hurt the profitability of 

the peaking plants, including the storage facility itself. Studying such possible effects is not in the scope of this 

paper. On the grounds that the size of the modeled compressor and expander are approximately 1% of the 



124 
 

minimum annual load and the total installed generation capacity respectively, we have assumed that 

operation of the studied storage plants would not impact the dynamics of the market. 

2- Methodology 

This paper investigates potential financial gains associated with heat recovery for space and water heating 

applications from the compression train of a CAES plant performing energy arbitrage. The Alberta electricity 

market is chosen as the market in which energy arbitrage is performed. The dispatch of two hypothetical 

CAES systems, with and without heat recovery ability, is optimized in various scenarios to maximize the 

profit of energy arbitrage and heat recovery. We use linear programming in MATLAB to optimize dispatch of 

the plants at an hourly resolution. A suite of sensitivity analyses is performed to evaluate the robustness of 

the results to a variety of factors: size of heat load, capacity of air storage, capacity of CAES turbo-machinery, 

distance between heat load and air storage site, and variations in price of electricity and gas over a period of 

ten years in Alberta. The size of system components are fixed in each scenario while dispatch of the plants is 

optimized. 

2-1- System of study 

CAES can use a variety of geologic formations for air storage. Both Huntorf and McIntosh plants store air in 

solution-mined salt caverns while Norton facility is to use an abandoned limestone mine [5] and the Iowa 

Stored Energy Park (ISEP) project was to store air in an aquifer [76]. Depleted gas reservoirs are also 

attractive for air storage because of their relatively low development costs [5, 10]. 

A large concentrated heat load over a long time and at a short distance from the air storage site would be 

ideal for economic attractiveness of D-CAES. This is due to the trade-off between revenues of heat recovery 

and capital cost of the air pipeline. Because of the relatively cold winter climate of Calgary, Alberta, Canada 

[77] and abundance of gas reservoirs in its proximity [78], we assess the economics of CAES and D-CAES 

using depleted gas reservoirs in the vicinity of Calgary, as a case study. Both CAES and D-CAES plants would 

perform energy arbitrage in the Alberta electricity market while D-CAES would gain extra revenues through 

sales of its compression heat to a concentrated heat load in Calgary. We do not include capital cost of the base 

CAES plant and take into account only the cost of additional components required for waste heat recovery (i.e. 
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air pipeline and heat recovery unit). This is because the main goal of this study is quantifying the net value of 

exporting the otherwise wasted heat of compression from CAES plants. This approach also allows us to avoid 

the current uncertainties in the true capital cost of conventional CAES technology as only two plants are so far 

deployed on a commercial scale. The underlying assumption in this paper is that building a merchant 

conventional CAES facility for energy arbitrage is already justified and our focus is evaluating various 

circumstances under which heat recovery improves the economics of electric energy storage.  

2-2- Electricity market of Alberta 

Alberta's deregulated electricity market is managed by the Alberta Electric System Operator (AESO). The 

Alberta Power Pool is the spot (real time) market of wholesale electricity and there is no day-ahead market. 

Electricity price is capped at 999.99 $/MWh and negative prices are not allowed [79]. The generation units 

can voluntary modify their offers up to two hours before the delivery time. After this deadlineǡ ǲMust 
OfferȀMust Complyǳ (MOMC) rule is applied to all generators (except wind) implying that they will be 

penalized if cannot fulfill their commitment. Market participants are dispatched in real time by AESO. The 

price of the last dispatched unit sets the electricity price, known as system marginal price (SMP). The time-

weighted average of SMP determines the wholesale settlement price for each hour, known as the pool price. 

One distinct characteristic of the Alberta market is lack of a capacity market; it is an "energy only" market. In 

other words, generators only get paid if they are dispatched. Another important characteristic is the relatively 

high ratio of average load to peak (load factor of approximately 80%), which is caused by the large share of 

industrial customers and consequently large market share of baseload plants. The fact that wholesale prices 

are set in real time, absence of a capacity market, and large market share of baseload plants inherently 

contribute to the high price of peak electricity in this market. In other words, price of peak electricity needs to 

be high enough so that the peaking plants (with low capacity factors) are able to recover both their operation 

and capital costs. Furthermore, wind farms are currently exempted from the MOMC rule and are treated as 

price takers. The fluctuations in the output of wind farms are managed through the power pool and the 

balancing services because of their low penetration level into this market (865 MW, 6% of installed capacity 

in 2011 [80]) without direct cost burdens on wind farms.  
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The dynamics of this electricity market and relatively high price fluctuations create favorable conditions for 

energy arbitrage. Therefore, the hypothetical CAES and D-CAES plants are assumed to directly buy and sell 

electricity from and to the Alberta Power Pool17. Natural gas is assumed as the fuel of both storage plants and 

boilers (BL) of the district heating system. Our model uses historical wholesale electricity price reported by 

AESO [81] and the weighted average of gas prices traded on the Natural Gas Exchange (NGX) [82].  

2-3- Heat load 

Compression heat of D-CAES would be supplied to a municipal heat load through a district heating system. 

While a variety of heat loads can be serviced by district heating networks (single houses, office towers, etc.), a 

concentrated load would be the ideal candidate due to the relatively high initial and operation costs of long 

distribution systems. Examples of such ideal loads are downtown core, universities, and shopping malls. Since 

both the hot water and space heating demands of the University of Calgary are currently supplied through a 

district heating network, this load is used to represent a typical concentrated municipal heat load that would 

purchase waste heat from D-CAES. Thermal efficiency and hourly fuel consumption of the heating plant of this 

university in the year 2011 is used to determine its hourly heat load. This profile has a maximum and average 

value of 48.4 and 21.4 MW thermal, respectively. Analysis of the profile revealed strong correlation between 

the average hourly outside temperature and heat load (R2=0.88). Therefore, we used the historical data for 

hourly temperature of Calgary reported by Environment Canada [83] to approximate the hourly load of the 

University of Calgary over the 10 year simulation period. D-CAES plant is assumed to sell its waste heat to a 

load with the same profile as the University of Calgary but five times larger in the base case system. The effect 

of heat load size on the economics of D-CAES is examined through sensitivity analysis. The waste heat of 

D-CAES may satisfy a portion or the entire heat load, depending on its availability. Revenues from heat 

recovery are assumed equal to the market value of the fuel savings.  

A thermal energy storage (TS) unit could store the excess waste heat recovered during periods of low 

demand for use at a later time with high heating needs, improving the revenues of waste heat recovery. This 

is because periods of relatively inexpensive electricity price (when the compressor is likely operating) could 

                                                                    
17 Electricity can also be traded in forward markets or through bilateral agreements, which are not in the 
scope of this work.  
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coincide with periods of relatively low heating demands. TS systems can store heat over daily, weekly, and 

even seasonal time scales. In spite of potential economics gains through storage of thermal energy, no such a 

storage unit is considered in the base case scenario while the impact of daily storage of recovered heat is 

discussed in Section 3-2.  

2-4 Compressed air pipeline 

A pipeline would transport compressed air from the compressor to the storage site in the D-CAES 

configuration. Length of this pipeline is the key factor in economic viability of D-CAES as it impacts initial cost 

of the pipeline. Where the length of pipeline is zero (heat load and air storage are co-located), D-CAES would 

always be preferred over conventional CAES. 

Although locating a suitable geologic formation for air storage is not in the scope of this paper, we performed 

a preliminary screening of natural gas reservoirs to investigate the possible availability of such a geologic 

formation in the vicinity of municipal heating loads in Alberta. We applied a set of geological screening 

criteria (Table 25) to a database compiled by an engineering firm for gas reservoirs within 100 km radius of 

Calgary and Edmonton, the two largest cities in Alberta. These criteria are pore volume, porosity, initial 

pressure, and pay thickness. Although permeability is an important geological characteristic too, it is not 

included in this screening practice due to the limited availability of rigorous data in the public domain. We 

recognize that these criteria are only for high level screening and detailed core sampling, reservoir modeling, 

and air injection tests are required for final selection of a suitable reservoir. The minimum pore volume is set 

so that enough compressed air (known as cycled air) can be stored to support 12 hours of electricity 

generation at a rate of 131 MW (capacity of the expander in the base case system), assuming a ratio of 5 for 

the volume of total stored to cycled air. 

The number of gas reservoirs within 100 km radius of Edmonton and Calgary that meet these geological 

criteria is tabulated in Table 26. As shown, pay thickness is the most limiting factor followed by storage 

capacity (pore volume), pressure, and porosity of the reservoir and a total of 32 reservoirs met all the criteria. 

Although the injection and withdrawal rates in CAES facilities are generally higher compared to the rates seen 

in the natural gas industry, advanced techniques such as horizontal drilling and hydraulic fracturing could 
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relax the possible constraints imposed by low permeability of gas reservoirs [76, 84]. Therefore, there is a 

chance that at least one of these 32 identified reservoirs is suitable for storage of compressed air. Based on 

these results, we assumed a distance of 50 km between the compression and storage site in the base case 

analysis. The pipeline length is varied between 0 and 100 km in Section 3-5 to evaluate its impact on the 

economics of D-CAES. 

Table 25: Geological criteria for screening of natural gas reservoirs for air storage. 

Criterion Threshold Notes Reference 

Storage volume >900,000 m3 
Based on a volumetric ratio of 0.2 for 
cycled to total stored air 

[85, 86] 

Porosity >10%  [87] 

Initial pressure >5,700 kPa Inlet pressure of expander [86] 

Pay thickness >15 m  [86] 

 

Table 26: Number of natural gas pools within 100 km radius of Calgary and Edmonton that meet the 
geological requirements used in this study for air storage. 

City Total 
pools 

Pay 
thickness 

Storage 
volume 

Initial 
pressure 

Porosity All 
criteria 

Calgary 6,726 187 1,027 3,788 3,793 26 

Edmonton 10,039 47 1,625 4,056 7,273 8 

 

The compression unit (located at the heat load site) would pressurize air enough to compensate the pressure 

losses along the pipeline. Equation 150 is used to estimate the pipeline pressure drop (see nomenclature for 

definition of symbols) [26]. 

௉ܲ௉ǡ௨௣ଶ െ ௉ܲ௉ǡௗ௡ଶ ൌ ͻǤͶ ൈ ͳͲସ ൈ ௉ܶ௉ ൈ ௉௉ܮ ൈ ௉݂௉ ൈ ௉௉ହܦ௉௉ଶܨ  
Equation 150 

 

Through fixing the downstream pressure ( ௗܲ௡), maximum pressure drop per unit length of pipeline, and 

maximum flow rate of pipeline, Equation 150 can be used to calculate the minimum diameter at each pipeline 

length. The downstream pressure (and hence the storage pressure) is set as 7400 kPa, the average storage 
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pressure of the ISEP CAES project. The maximum pressure drop is set 25 kPa per km length of pipeline, a 

typical value for natural gas pipelines [64]. Maximum flow rate of pipeline is calculated based on the capacity 

of the compressor (105 MW) and storage pressure of 7,400 kPa. The calculated values for the pipeline 

diameter are shown in Table 27.  

Table 27: Diameter and capital cost of the pipeline and work ratio of D-CAES. 

Length (km) 
Diameter 
(m) 

Capital cost ($ 
million) 

D-CAES work 
ratio 

25 0.74 17.0 0.76 

50 0.74 30.6 0.77 

75 0.74 43.3 0.77 

100 0.74 55.4 0.78 

2-5- Performance parameters 

Turbo-machinery of CAES is composed of a compressor, expander, and combustor; similar to conventional 

gas turbines. While about half of energy generated by the expander is used to power the compressor of gas 

turbine, a CAES compressor is normally powered by electricity. CAES plants use both mechanical energy 

(electricity to power compressors) and heating energy (fuel to combust air) while gas turbines consume only 

fuel. Therefore, both the input fuel and electricity must be taken into account to quantify efficiency of a CAES 

plant. Heat rate represents the amount of fuel consumed per unit of electricity generated and sold. Because no 

energy is consumed by compressor during the discharge phase, heat rate of CAES is much lower (half to one 

third) of that for a similar sized gas turbine [5]. Work ratio is the second performance metric of CAES, which 

expresses amount of electricity purchased to charge the cavern per unit of electricity sold back to the grid. 

See Table 28 for heat rate and work ratio values used in this study. Work ratio of D-CAES is higher compared 

to conventional CAES because of the pressure losses in the air pipeline. Table 27 shows values used for work 

ratio of D-CAES. This parameter is modified for each pipeline length to take into account energy losses in the 

pipeline according to Equation 150. 

It is of note that a CAES plant can operate as a gas turbine when it runs short of stored air [52]. The 

compressor would consume a portion of the work generated by expander in this case. Therefore, fuel 
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consumption of CAES would increase from the optimal design point; close or even higher than values seen in 

gas turbines. A CAES plant is not likely to operate at these elevated heat rates unless high prices of peak 

electricity outweigh the increase in the fuel costs. Both plants are assumed to have such operational 

flexibility.  

A thermal efficiency of 80% (higher heating value, HHV) is considered for the boilers and distribution pipes of 

the district heating network. This value is used along with the price of natural gas to estimate the financial 

revenues of heat recovery for D-CAES. We also used a heat recovery coefficient of 70% indicating that up to 

70% of the compression energy can be recovered and supplied to the heat load. 

Table 28: Performance characteristics of components of the CAES and D-CAES systems. 

Parameter Symbol Value Notes 

Expander heat rate   ୘୆ 4.2 (GJ/MWh) [9] 

CAES work ratio    0.75 [9] 

Boiler efficiency Ʉ୆୐ 80% High heating value 

Heat recovery coefficient Ʉୌୡ 70%  

2-6- Costing inputs 

The underlying assumption in this study is that building a merchant CAES plant is already justified from 

technical and financial perspectives and the primary question addressed here is whether to build a D-CAES or 

a conventional CAES facility. Therefore, the capital cost (CapEx) and fixed operation and maintenance costs 

(FOM) of the base CAES plant are not included in our analysis. The CAES facility is composed of a 131 MW 

expander, 105 MW compressor and a depleted gas reservoir with 1,572 MWh of storage capacity (equivalent 

to 12 hours of generation at full capacity), in accordance with a recent study on the design and costing of 

CAES plants by the Electric Power Research Institute (EPRI) [9]. The major additional equipments in the 

D-CAES system are the air pipeline and heat recovery unit (HC). Capital cost of the pipeline is estimated for 

each pipeline length and diameter with the aim of a regression model developed by Sean McCoy [65] (see 

Table 27). Capital cost of HC is assumed negligible since air has to be cooled down prior to storage anyways, 

even if the heat is not to be used for heating applications. In other words, the capital cost of the heat 
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exchanger is already included in the cost of the base CAES plant and no major additional costs are expected 

for the D-CAES facility18. 

Costs associated with transmission lines to move electricity to/from the plants as well as cost of the gas 

pipeline required to deliver fuel to the expander are ignored since these components would be common 

between the two plants. One D-CAES configuration originally proposed by the authors in [56] considers 

moving both the compression and expansion trains from the storage site to the proximity to heat load. A 

single pipeline would transport air to the storage site and back to the expander for electricity generation. The 

advantage of this configuration is eliminating the need for gas pipelines and transmission lines at the storage 

site. Despite potential cost savings in this scenario, this paper assumes that expander of D-CAES is co-located 

with the air storage at some distance from the heat load. 

Although CapEx and FOM of the base CAES system are excluded from our analysis, marginal capital and FOM 

cost of the expander, compressor, and air storage are considered in the sensitivity analysis section. These 

costs are used to evaluate how a different set of equipment size would alter economics of CAES and D-CAES 

compared to the base case scenario. Marginal costs are derived from a recent report on the design and costing 

of CAES by EPRI [9] and are shown in Table 29. All CapEx and FOM values are expressed in 2009 inflation 

adjusted US dollars according to the Chemical Engineering Plant Cost Index [68, 69]. VOM and revenues of 

energy arbitrage and heat recovery are adjusted for inflation based on Customer Price Indices (CPI) of 

Alberta reported by Statistics Canada [88] and are reported in 2009 US dollars. 

 

 

 

                                                                    
18 Recovery of the compression heat might reduce the size (and consequently CapEx and FOM cost) of the 
boilers of the district heating system. A smaller boiler can be utilized since a portion of the heat load 
is supplied by heat recovery unit (HC) of D-CAES.  
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Table 29: Costing inputs for assessing the economics of CAES and D-CAES. Capital cost and VOM of the heat 
recovery unit are negligible. 

Parameter Symbol Value Reference 

Marginal CapEx of expander ்ݔܧ݌ܽܥ஻ெ௔௥௚  440 ($/kW) [9, 60] 

Marginal FOM of expander ்ܯܱܨ஻ெ௔௥௚  8.0 ($/kW/year) [9] 

VOM of expander ்ܸܱܯ஻  0.87 ($/kWh) [9] 

Marginal CapEx of compressor ݔܧ݌ܽܥ஼ெெ௔௥௚  415 ($/kW) [9, 60] 

Marginal FOM of compressor ܯܱܨ஼ெெ௔௥௚  8.0 ($/kW/year) [9] 

VOM of compressor ܸܱܯ஼ெ  0.87 ($/kWh) [9] 

Marginal CapEx of air storage ݔܧ݌ܽܥ஼ேெ௔௥௚  0.15 ($/kWh) [5] 

FOM of pipeline ܯܱܨ௉௉  3,820 ($/km/year) [89] 

Blended cost of capital 10 ܥܤ%  

2-7- Optimization model 

A linear programming model is developed in MATLAB to determine the optimal dispatch of the CAES and 

D-CAES plants. The optimal dispatch is defined as the operational strategy which maximizes the annual profit 

of the energy storage plant through energy arbitrage and heat recovery. The objective function is shown in 

Equation 151. The first term expresses the financial gains through sales of electricity; the difference between 

payments from the electricity market and operation cost of the expander (fuel and VOM). The second and 

third terms represent the costs of running the compressor. The second term shows the cost of powering the 

compressor by the expander; the fuel consumed by the expander and VOM cost of expander and compressor. 

The third term calculates the cost of powering the compressor with electricity. The profits of waste heat 

recovery are calculated in the fourth term. Terms (ܮܧௌ௢௟ௗ) and (ܮܧ௉௨௥) indicate electricity (MWh) sold to and 

purchased from the grid during time t, respectively. Term (்ܮܧ஻̴஼ெ) expresses electricity (MWh) supplied by 

the turbine of the storage plant to its compressor during time t.  
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݁ݖ݅݉݅ݔܽܯ ෍ ൜ሾܮܧௌ௢௟ௗ ൈ ሺߨா௅ െ ܴܪ ൈ ேீߨ െ ஻ሻሿଶସൈ଼்ܯܱܸ
௧ୀଵ െ ஻̴஼ெ்ܮܧൣ ൈ ሺܴܪ ൈ ேீߨ ൅ ஻்ܯܱܸ ൅ ஼ெሻ൧െܯܱܸ ሾܮܧ௉௨௥ ൈ ሺߨா௅ ൅ ஼ெሻሿ൅ܯܱܸ ൤ܮܪு஼ ൈ ൬ߨேீ ൈ ͵Ǥ͸ߟ஻௅ െ  ு஼൰൨ൠܯܱܸ

Equation 151 

An hourly resolution is chosen for this study since energy arbitrage is the main application of the plants 

simulated. This approach is in agreement with other studies in the field of economic assessment of CAES 

systems dispatched for arbitrage of electric energy [52, 59-61, 90]. A bulk energy storage plant is normally 

dispatched based on its marginal operation cost and current and expected future price of electricity. This 

approach requires the plant operator to forecast future price of fuel and electricity. Sioshansi et al. [90] 

evaluated the arbitrage profit of a hypothetical CAES facility in the PJM market with two different planning 

strategies. In both cases, the operational schedule for the following two weeks was set at the beginning of that 

period. Arbitrage profits were then summed to estimate the annual profits. The first planning strategy 

assumed that perfect foresight of market prices over the two week planning horizon was available. This case 

corresponds to the maximum theoretical profit because of perfect knowledge over future prices. On the 

contrary, the storage plant was dispatched solely based on the historical prices of the past two weeks in the 

second case (backcasting method). The simulation results over a period of 6 years revealed that the 

backcasting method was able to capture about 85% or more of the maximum theoretical value obtained in 

the first case. This phenomenon is mainly driven by the fact that the diurnal and weekly changes in the 

electricity prices are relatively predictable and repeated over time. The two scenarios modeled by Sioshansi 

et al. represent two extreme cases for dispatching energy storage plants in the real world. The arbitrage 

profits of real plants would be in between these extreme cases and sophisticated forecasting models and 

dispatch algorithms would reduce the gap between actual and the maximum theoretical profits. This paper; 

therefore, assumes perfect knowledge of electricity and gas prices in each planning period. 

We choose a period of eight days as the planning horizon in order to take advantage of fluctuations in 

electricity prices driven by the diurnal (intra-day) and weekly (weekday and weekend effect) cycles in the 

demand and prices. This planning horizon is in accordance with sizing of the air storage and operational 
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strategy of real world CAES plants. As a case in point, the geologic formation of the ISEP CAES project could 

hold enough air to support 36 hours of electricity generation (week-long storage of energy). Furthermore, 

each planning period is overlapped one day with the next one to ensure smooth transition (rolling window 

optimization). This approach ensures that market signals over the next period are taken into account while 

the dispatch of the energy storage is optimized individually in each period. It is of note that our estimates for 

arbitrage revenues are more conservative (lower) compared to Sioshansi et al. since they used a two week 

planning horizon versus our 8 day period.  

Maximizing profit of the energy storage plants in each eight-day planning horizon is subjected to the 

following constraints: 

 Maximum heat recovered during each hour in the D-CAES configuration is equal to the product of 

heat recovery coefficient and the compression energy consumed during that hour. 

 Heat supplied to the load during each hour is equal to or less than the hourly heat load.  

 Output of the expander is less than or equal to its capacity. 

 Energy stored in the air storage is less than or equal to its capacity. 

 Energy consumption of the compressor in each hour cannot exceed its capacity. 

 Conservation of energy is honored for the air storage. The net energy injected in each hour should be 

equal to the increase in energy level of the cavern during that hour. 

 Energy level of air storage at the beginning of each planning period is set based on plant's dispatch in 

the previous planning period. 

Five parameters are determined by the optimization code for each hour: energy level of air storage, electricity 

purchased from the grid, electricity sold to the market, portion of expander output that is used by the 

compressor, and finally the amount of compression heat recovered. Figure 28 illustrates a snapshot of 

optimized dispatch of D-CAES. 

Arbitrage profits are calculated over a period of one full year to reflect seasonal changes in the price of 

electricity and gas as well as the heating load. In order to take the annual fluctuations into account as well, the 

profits are computed over a period of ten years (2002 to 2011). As illustrated in Figure 29, this period 
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embraces a wide range of market conditions. Mild prices in early years, significantly higher prices between 

years 2004 to 2008 (economic boom), depressed prices during the recent economic recession (years 2009 

and 2010), and finally high electricity price and very low gas price in 2011 are observed in this decade. This 

figure also illustrates average of daily standard deviation of electricity prices for each year. As will be shown 

in next section, the daily fluctuations of electricity prices strongly impact the revenues of electricity arbitrage.  

 

Figure 28: Optimized dispatch of D-CAES system over an arbitrary time period (Saturday, October 29 to 
Friday, November 4, 2011). "Charge" and "Discharge" in subfigure b represent energy purchased from and 
sold to the electricity market, respectively. 

3- Results and discussions 

3-1- Base case scenario 

Annual operating (gross) profits of the CAES plant and the additional profits gained by the D-CAES system 

(profit of D-CAES minus profit of CAES, called "Additional profit of D-CAES" throughout the paper) are 

presented in Figure 30 . Only the operation costs (electricity, fuel, and VOM) are subtracted from the 

arbitrage revenues to estimate the operating profit of CAES. Amortized capital and FOM cost of the pipeline 

are also considered in calculating profits of D-CAES.  

The operating profit of conventional CAES experiences large fluctuations with an annual average value of 

$28.2 million over the decade and a relative standard deviation of 36%. The D-CAES plant earns $1.3 

million/year more than CAES on average, with a relative standard deviation of 119%. It is important to note 

this profit is after taking a 10% blended cost of capital into account to reflect the cost of capital to the owner 

of the D-CAES plant. In next step, we look into the drivers for such annual fluctuations in profit. 
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Figure 29: Annual average of gas prices (left axis), electricity prices (right axis) and daily standard deviation 
of electricity prices (right axis) between 2002 and 2011 in Alberta. 

 

Figure 30: Annual operating profit of the CAES plant (right-hand axis) and the additional profit of D-CAES 
(defined as profit of D-CAES minus profit of CAES, left-hand axis). Note large variations throughout the ten-
year period. 

In a perfectly competitive market, all participants should offer electricity at their marginal cost of generation. 

This may not; however, be the case for real world electricity markets, especially for the Alberta market with a 

relatively small size (average load of 8.4 GW in 2011). Coal is the price setter for approximately 54% of the 

year while gas plants are marginal for almost the rest of the time. However, high electricity prices (when sales 

of stored energy is highly profitable) are weakly impacted by gas prices in this market (R2= 0.03 for 

correlation between daily price of electricity and gas over the study period). Periods with high electricity 

prices might be driven by various factors such as physical constraints or outage of generators and 
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transmission lines as well as weather conditions. Lack of a capacity market and the ability of market 

participants to voluntarily modify their offers up to two hours before the delivery time may also contribute to 

high price of peak electricity. On the other hand, price of gas has a direct impact on the operation cost of the 

CAES and D-CAES plants and revenues of waste heat recovery. Therefore, variations in price of gas will not 

change the value of electricity arbitrage while it would directly affect operation cost of both plants and value 

of heat recovery. 

Figure 31 explores the impact of gas prices and fluctuations in electricity prices on the operating profit of 

CAES over the ten years of simulation. Since compressed air storage plants are sized and dispatched for short-

term cycles, we use daily standard deviation of electricity prices, averaged over each year, to quantify 

volatility in electricity prices. The CAES profits are essentially uncorrelated with gas prices (R2=0.04), but 

they have a strong correlation with fluctuation in electricity prices (R2=0.95). The relative importance of 

electricity and gas prices on economics of CAES can be further explored through studying their annual 

fluctuations (see Figure 29). As a case in point, years 2010 and 2011 experienced similar gas prices ($3.8 and 

$3.4/GJ, respectively) while daily standard deviation of electricity prices was 130% higher in 2011. The 

arbitrage profit of D-CAES is 140% higher in 2011. Years 2004 and 2010 are good examples of two years with 

similar daily volatility in electricity prices but wide spreads in gas prices. Gas prices were 64% higher in 2004 

while CAES plant has similar arbitrage profits in those two years. 

 

Figure 31: Correlation of CAES operating profit with price of gas and volatility of electricity prices over the 
ten year simulation period. Profit of CAES is strongly correlated with standard deviation of electricity prices.  
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While a poor correlation between price of gas and arbitrage profits is observed, gas prices have a strong 

impact on the revenues of heat recovery. Figure 32 shows the changes in profit difference of D-CAES and 

CAES with respect to the gas prices and fluctuations of electricity prices. The additional profit of D-CAES is 

strongly impacted by gas prices (R2=0.91) and there is no notable dependence on electricity prices (R2=0.02). 

Year 2005 experienced the highest profit difference (14%) between D-CAES and CAES, highest price of gas, a 

moderate volatility in electricity prices and an intermediate profit for CAES. On the contrary, year 2011 with 

the least additional D-CAES profit experienced the lowest gas price, the most volatile electricity prices, and 

the highest arbitrage profit for CAES.  

 

Figure 32: Annual price of gas, price volatility of electricity, and additional profit of D-CAES (with respect to 
CAES) over the ten-year study period. Note the strong correlation between profit of D-CAES and gas prices. 

D-CAES plant purchases 33% more electricity from the market each year on average indicating that revenues 

from waste heat recovery significantly alter the dispatch of the energy storage plant. The fact that compressor 

and consequently expander of D-CAES operate more often implies that D-CAES would consume more gas 

compared to CAES. At the same time, heat recovery negates fuel consumption of the district heating system. 

To quantify these two opposite effects on the net fuel consumption and emissions, the GHG emissions 

intensity of both plants are calculated. GHG emissions intensity is defined as the net amount of greenhouse 

gases emitted per megawatt-hour of electricity sold. A value of 66 kg CO2e19/GJ (lower heating value) is used 

                                                                    
19 GHG emissions are expressed in equivalent amounts of carbon dioxide (CO2e) in this paper. 
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for carbon content of natural gas (including the typical20 upstream emissions) [60]. The fuel savings of the 

district heating system as a result of recovery of the compression heat is subtracted from the fuel 

consumption of the D-CAES plant to determine the net fuel consumption and GHG emissions intensity of the 

D-CAES plant. The annual average emissions intensity of D-CAES turned out 48% lower than CAES (144 and 

273 kg CO2e/MWh, respectively). Compressed air energy storage plants are considered as promising 

alternatives to gas turbines in providing cleaner peak electricity, especially if the off-peak electricity has a low 

GHG emissions intensity, such as wind or nuclear. GHG intensity of a gas turbine with an efficiency of 35% 

would be 680 kg CO2e/MWh, a much higher value compared to CAES and D-CAES21. The superior 

environmental performance of D-CAES compared to conventional CAES and gas turbines could make this 

technology more attractive if aggressive measures for emissions reduction are incorporated into the 

electricity market.  

Carbon abatement cost is often used to inform policy making in identifying the most economic ways to reduce 

GHG emissions among alternative technologies. The fact that the D-CAES facility has stronger economics and 

at the same time a lower GHG emissions intensity, results in a negative abatement cost of -$40 /t22CO2e over 

the study period. In other words, recovery of the otherwise wasted heat of compression would not only lower 

GHG intensity of the conventional CAES systems, but it also would provide a profit of $40 per ton of avoided 

CO2e in our model. 

Finally, it is important to note that the energy storage plants modeled in this study are both stand-alone 

merchant facilities. This mode of ownership involves some positive externalities, which could be captured by 

the plants themselves (especially D-CAES) if a utility co-owns such a storage facility with other generators. 

Following is two examples of scenarios where co-ownership might improve economics of energy storage:  

                                                                    
20 Indirect GHG emissions (e.g. from manufacturing of equipments) are not included. 

21 One should note that net GHG intensity of energy storage plants will depend on the source of electricity 
used for charging if the life-cycle GHG intensity is to be determined. Only "inside-the-fence" emissions are 
considered in this paper. The grid-wide GHG emissions intensity of Alberta was ~750 kgCO2e/MWh in 2011. 

22 One ǲtǳ indicates one metric ton ȋͳͲͲͲ kgȌǤ 
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 A utility could utilize either a conventional CAES or D-CAES facility to lower the cycling cost of its 

baseload assets. The energy storage plants would have almost the same effect on the operation of 

baseload units if they were individually operated; however, none of the financial benefits would be 

collected by the storage plants themselves. As the compressor of D-CAES has a higher capacity factor, 

the positive externalities would be higher for this plant. 

 A utility can provide firming capacity for its wind assets through co-operating a compressed air 

energy storage plant with its wind farms23. If the MOMC rule is to be applied to wind farms, an 

independent wind farm would be penalized for shortage of delivery and would lose potential 

revenues if more wind becomes available. A D-CAES facility would have a higher desire to store the 

otherwise curtailed wind due to the revenues of heat recovery. From a public-policy perspective, 

wind energy currently has some negative externalities on the electricity market of Alberta since it is 

exempted from the MOMC rule. Co-operation of wind farms with CAES/D-CAES facilities can partially 

address this issue. 

3-2- Optimal size of heat load 

Higher needs for thermal energy would improve the economics of waste heat recovery. The heat load used in 

this study experiences large variations (relative standard deviation of 42%). Therefore, revenues of heat 

recovery would fluctuate significantly unless the size of heat load is relatively large compared to the size of 

compressor and heat recovery unit (HC). In other words, not all the available compression heat would earn 

revenue for D-CAES unless the size of HC is comparable to the base (minimum) heating load. The size of heat 

recovery unit is set as 73.5 MW (70% of the size of compressor) while the minimum heating load is 35.8 MW 

thermal in the base case.  

In order to evaluate the impact of heat load size on economics of D-CAES, we varied its value from 0.5 to 10 

times the size of the University of Calgary's load. This ratio is set at 5 in the base case scenario24. The profit 

                                                                    
23 Wind farms are currently exempted from the MOMC rule in the Alberta market, mainly due to the low 
penetration of wind. 

24 Note that a heating load scale of 5 in our model corresponds to a value of 2.3 and 1 for the ratio of the peak 
and average heating load (in year 2011) to the size of compressor, respectively. 
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difference between D-CAES and CAES systems is averaged over the ten year simulation period for each load 

size and it varies between -$2.6 million and $1.6 million, as shown in Figure 33. A minimum value of 2.5 for 

the size of the load yields in positive net profits from heat recovery. A marginal increase in heat load has a 

significant impact on the profits of heat recovery at load sizes below 5. Figure 33 also shows the percentage of 

available compression heat that is curtailed. This value is very high (73%) at a load size of 0.5 while it drops 

to 4% at a size of 5. One should note that a larger heat load generally translates to longer heating pipelines for 

the district heating network and consequently higher pressure and heat losses (higher operation costs). 

Therefore, the optimal size of the heat load paired with a D-CAES plant is project-specific and is determined 

based on the trade-off between revenues of waste heat recovery and capital and operation costs of the district 

heating network. 

 

Figure 33: Effect of size of heat load and storage of waste heat (day-long) on profit of D-CAES (left) and 
curtailment of compression waste heat (right). Size of heat load is expressed in relative terms compared to 
the University of Calgary (annual average of 21.4 MW thermal). 

As discussed earlier, storing the surplus heat of compression for later use could improve both economic and 

environmental performance of D-CAES. In addition to the base case, we consider a scenario in which hot 

water tanks can store the excess recovered heat for the same day use. We use a value of $3.37 million for 

capital cost of such a thermal energy storage (TS) system in consultation with an engineering firm. The hot water tanks are sized to store heat of compression at the heat recovery unitǯs ȋ(CȌ full capacity for ͳʹ hoursǤ 
Figure 33 illustrates the impact of utilizing such a TS system on the profit of D-CAES as well as portion of the 
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available compression heat that is sold. As observed, the ability of storing the excess heat significantly 

improves profits of heat recovery up to a load size of 2.5. Cost-effectiveness of TS weakens as the size of load 

increases and consequently there is a higher instantaneous need for the heat of compression.  

3-3- Optimal size of air storage 

As discussed in Section 3-1, revenues of heat recovery incentivize D-CAES plant to store more electricity. A 

larger reservoir would enable storing more energy during periods of high heating demand and low electricity 

price. A larger storage would also increase the arbitrage revenues of both plants as more electricity could be 

sold. On the other hand, a storage facility would be more capital intensive. In order to investigate this 

trade-off, the profit of CAES and D-CAES plants are compared in a range of storage capacities. The lower 

bound is a plant with a generation capacity of 4 hours (524 MWh) while the upper bound assumes 60 hours 

of energy discharge. The size of compressor and expander are fixed in all cases at 105 and 131 MW, 

respectively. It is important to note that our analysis presumes the marginal capital cost of the air storage 

linearly increases with its size (at a slope of $0.15/kWh, see Table 29). 

Figure 34 shows the operating profits of CAES and D-CAES at various cavern capacities. Similar trends are 

observed for both plants: an incremental increase in the size of reservoir sharply enhances their profits up to 

a capacity of 12 hours while the rate of change is minimal past this point. Increasing the capacity of the air 

storage has a stronger impact on the profits of D-CAES since it improves revenues of both energy arbitrage 

and heat recovery. An increase in the storage size beyond 48 hours has even a negative impact on economics 

of D-CAES and CAES. This behavior implies that increase in the initial cost of the reservoir overweighs the 

incremental revenues of energy arbitrage and heat recovery. It is of note that a larger cavern also translates 

to larger capital cost requirements and higher investment risks, especially due to the small financial gains at 

storage sizes larger than 12 hours. Therefore, a smaller reservoir might be chosen in the real world projects 

compared to the optimal sizes shown in Figure 34.  
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Figure 34: Effect of the size of air storage on operating profits of CAES and D-CAES plants, averaged over the 
simulation period. Arrows indicate the optimal size of the storage facility. 

3-4- Optimal size of turbo-machinery  

Capacity (size) of compressor constraints the rate of electricity storage as well as the revenues of heat 

recovery. Similarly, size of the expander limits sales of stored electricity to the grid. Therefore, compressor 

and expander should ideally be sized for each electricity market. We vary ratio of the expander to compressor 

size in a wide range and calculate the profit of CAES and D-CAES plants (see Figure 35). Capacity of the 

compressor, air storage, and heat load are kept same as the base case system. Capacity of the expander is 

changed between 52.5 MW and 1,050 MW, half and ten times the size of compressor, respectively.  

Increasing the size ratio significantly improves economics of CAES and D-CAES at low ratios and profits of 

both plants peak at a size ratio of 5.5. As discussed in the methodology section, high market share of baseload 

plants and infrequent high prices are inherent characteristics of the Alberta electricity market. As a case in 

point, Figure 36 shows the price duration curves for three arbitrary years during the simulation period. A 

general observation is depressed prices for most of the time year. Therefore, a larger expander would enable 

the plant operator to take more advantage of limited periods with high prices. On the other hand, a larger 

expander would result in faster depletion of air storage and calls for increased capacity factor of compressor. 

Consequently, the revenues of waste heat recovery would also increase (profit of D-CAES rises faster 

compared to CAES in Figure 35). Increasing this size ratio past 5.5 has a negative impact for both plants 

revealing that increased capital costs overweigh marginal revenues of arbitrage and heat recovery. Therefore, 
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a ratio of approximately 5.5 for the size of expander to compressor would be the optimal ratio for the Alberta 

electricity market. 

 

Figure 35: Effect of size ratio of expander to compressor on profits of CAES and D-CAES, averaged over the ten 
years of study. Arrows indicate the optimal values. Capacity of compressor (105 MW) and air storage (1,572 
MWh) are fixed in all case.  

It bears mentioning that the optimal size ratio might be lower in the real world caused by other factors not 

included in this study. As a case in point, a larger expander would necessitate a larger transmission line, 

which may face technical or siting constraints. Higher initial cost of a larger plant might also present a higher 

investment risk. Moreover, adding too much peaking capacity would depress the price of peak electricity. A 

final note is that these results are very market specific and depend on the application of the storage facility. 

For instance, a CAES facility that is to provide firming capacity or energy arbitrage for a wind farm would 

likely have a larger compressor so that it can store as much wind energy when it becomes available.  

3-5- Effect of pipeline length 

While aboveground vessels can also be used for air storage, a utility-scale facility needs to store air in a 

geological reservoir due to their significantly lower capital cost. Availability of a suitable geologic formation 

in vicinity of the heat load is crucial for economic viability of D-CAES. Figure 37 shows the result of a 

sensitivity analysis on the distance between the air storage site and the heat load, as the main parameter 

impacting the capital cost of the D-CAES pipeline. The pipeline length is varied between 25 km and 100 km 

and the annual profit difference of D-CAES is calculated in each case. Besides, an unrealistic scenario in which 
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the air storage and heat load are co-located (pipeline length of 0 km) is considered to further illustrate the 

effect of pipeline cost on economics of D-CAES. 

 

Figure 36: Percentage of hours in various years during which the Alberta electricity prices were higher than a 
certain value (price duration curves). 

 

Figure 37: Profit difference between D-CAES and CAES plants at various distances between heat load and air 
storage site (pipeline length). Note the relatively wide spread of annual profits over the 10 years of study at 
each pipeline length. 

Although the regression model used in this study takes into account the cost of material, labor, right of way, 

and some miscellaneous costs (e.g. surveying, and engineering), the exact cost of the air pipeline to a D-CAES 

plant would be affected by local parameters, which are unique to each project. However, results of our 

simulation reveal promising economics of D-CAES with a break-even point of 75 km for pipeline length so 

that profits of CAES and D-CAES would become equal. Figure 37 illustrates both the additional profit of 
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D-CAES in each year and the average values over the ten-year simulation period at each pipeline length. The 

cost of very short pipelines might be higher in the real world due to the fixed project costs (e.g. engineering, 

right of the way). Nevertheless, we are confident in the approximate location of the break-even point since it 

occurs at a relatively long length of 75 km. In other words, Figure 37 might over estimate the economics of 

heat recovery at very short distances between heat load and air storage. However, D-CAES is very likely to be 

economically justified over conventional CAES in the current Alberta market, providing a suitable depleted 

gas reservoir exists within 75 km of the heat load. 

4- Conclusions 

We evaluated the possibility of enhancing the economic and environmental performance of CAES through 

recovery of compression heat for municipal heating applications. The compressor of the D-CAES system is co-

located with a concentrated heat load inside the city in contrast to the conventional CAES configuration in 

which both compressor and expander are at the air storage site. We optimized the profit of two hypothetical 

merchant CAES and D-CAES plants performing energy arbitrage using ten years of historical data from the 

Alberta electricity market. Compression heat was recovered to supply a concentrated heat load with an 

annual average of 107 MW thermal. Capacity of expander and compressor were fixed at 131 and 105 MW in 

the base case scenario, respectively. 

The D-CAES plant earned an additional profit of $1.3 million/year on average, after taking into account a 10% 

cost of capital. The profit difference of D-CAES and CAES varied between -$0.8 million and $3.9 million, with 

negative values in only 3 out of the ten years of simulation. Profits of D-CAES showed a strong correlation 

with gas prices (R2=0.91) because the economic advantage of D-CAES comes from reduction in gas demand 

for heating applications. Lower GHG intensity as well as higher profits led to a negative abatement cost of 

-$40/tCO2e for the D-CAES compared to a CAES plant. Superior emissions performance of D-CAES could 

further improve its viability if a policy frame is in place to support cleaner technologies. Larger capacity factor 

of the D-CAES compressor, motivated by revenues of heat recovery might also improve D-CAES attractiveness 

if the energy storage plant is to provide other services in addition to energy arbitrage, such as firming 

capacity for intermittent renewable energies. 
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Economics of both plants showed high sensitivity to the size of cavern at capacities below 12 hours of 

electricity generation with minor effects afterwards. The optimal turbo-machinery composition had a 

significantly larger (5.5 times) expander compared to the compressor for both plants. We highlight that this 

optimal size largely depends on the application and the market environment in which the plants are 

operating. In electricity markets like Alberta with high share of baseload electricity (load factor of 80%), a 

merchant stand-alone plant dispatched for energy arbitrage would have a very limited window to sell high 

value electricity and recover its capital and operation costs. Having a larger expander; therefore, facilitates 

sales of larger quantities of peak electricity during those short windows.  

An essential requirement for economic attractiveness of D-CAES over CAES is availability of suitable geologic 

formation in the vicinity of a concentrated heat load. Our case study for Alberta, with high heating loads and 

high price volatility, revealed that revenues from export of waste heat would breakeven with increased 

capital requirements at a pipeline length of 75 km. D-CAES can also be superior to conventional CAES in 

electricity markets with high peak prices and cooling loads in summer. Waste heat of compression can supply 

cooling energy with the aim of technologies such as absorption chilling, adding to financial and environmental 

profits of energy arbitrage. An example of such a location in North America could be Texas with outstanding 

wind resources, availability of aquifers and salt formations, and political support for wind energy.  

A final remark that although our analysis revealed export of waste heat could be profitable, CAES technology 

is very unlikely to be economically viable unless the electricity market is carbon constrained [52, 60, 67]. We 

caution that waste heat recovery will not radically change this situation and some levels of emissions policy 

will still be required for large-scale deployment of this technology.  
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Chapter 5: How much bulk energy storage is needed to decarbonize 

electricity?25 

 

  

                                                                    
25 A condensed version of this chapter was submitted in October 2014 for publication in Proceeding of the 
National Academy of Sciences (PNAS) as Safaei, H. and Keith, D. How much bulk energy storage is needed to 
decarbonize electricity? 
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Preface 

The previous three chapters focused on the engineering and economic analyses of selected compressed air 

energy storage (CAES) designs, which could reduce the carbon emissions intensity of the electricity supply. 

This chapter examines a broader research question about energy storage: How significant are the role of and 

the need for bulk electricity storage (BES) systems, as a tool in our carbon mitigation toolbox? 

The conviction that cheap and mature bulk storage is a prerequisite to integrate intermittent renewables at 

scale is commonplace. This chapter investigates this claim through quantifying the significance (importance) 

of bulk electricity storage technologies in a deeply-decarbonized electricity system in future. The importance 

of storage is measured by two criteria: 

1. How much can BES lower the decarbonization costs Ȃ the overall cost of supplying the electric load 

under stringent emissions constraints?  

2. What is the optimal deployment of BES relative to the intermittent renewables (wind here) and other 

clean generators (e.g. nuclear and gas turbines)? 

Rather than using a point estimate for the capital cost of bulk storage systems, a parametric approach is used. 

BES is treated as a black box with fixed technical characteristics but a variable capital cost, which is split into 

power-specific ($/kW) and energy-specific ($/kWh) costs. This strategy allows concentrating on the capital 

cost of storage, the single most important parameter impacting its economic viability. Varying the cost of bulk 

storage systems in a wide range and mapping the existing and emerging BES technologies in this range enable 

identifying the more cost-efficient bulk storage technologies for electricity decarbonization. This approach 

also guides R&D efforts and informs carbon mitigation policies regarding the role of BES technologies to cost-

effectively integrate the intermittent renewables and curb emissions from the electricity sector, even if costs 

are drastically reduced. 

The economics of various BES technologies and their optimal deployment level in carbon-constrained grids 

have particular implications for the future of compressed air storage systems. Two main critiques of the CAES 

technology are: non-negligible GHG emissions and the low exergy intensity, despite its low capital cost 

compared to most BES technologies. A generic CAES plant emits ~280 kgCO2e per MWh of electricity 
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generated (assuming a heat rate of 4.2 GJ/MWh). The Adiabatic CAES concept aims to address this 

shortcoming through eliminating the need for combusting natural gas prior to expansion of air and power 

generation. Compressed air storage facilities, particularly A-CAES need large air store units due to the very 

low exergy density of compressed air. For instance, the McIntosh CAES plant uses ~200 m3 of storage volume 

per MWh of capacity. Scarcity of suitable geologic formations in desired geographical locations can 

undermine the viability of this technology if large amounts of BES are required in low-carbon electricity 

systems. 

An important improvement to the model presented here would be to include a more diverse set of 

renewables, particularly solar, in the generation portfolio. The capital cost of solar-based electricity is 

currently higher than of wind; however, it has been declining steeply over the past few years. Since this 

chapter envisions a future electricity system with drastic emissions cuts, solar energy may become more 

economical compared to wind in that world. Including solar energy at various cost estimates would, therefore 

be of high priority to expand the current model in order to inform the electricity decarbonization debate. 

Performing the simulation for different and wider geographical areas and over finer time resolutions could 

also strengthen the analysis. The wind and load data in this chapter are from ERCOT at a 15-minute 

resolution over one year. Different correlations between the electricity load and availability of intermittent 

renewables could change the need for storage. Moreover, renewable resources, especially wind, can face large 

inter-annual variations. Incorporating the reliability requirements and transmission constraints could 

improve the robustness of the conclusions. 

Refining the current study to more realistically model the dispatch of various generators could also be an area 

of future work. All generators are assumed to have a fixed efficiency regardless of their loading. Operational 

constraints, such as minimum up and down time, are not modeled here for the sake of simplicity. Table 39 at 

the end of this chapter provides a comprehensive list of the key modeling simplifications and discusses their 

likely impact of the key conclusions. 
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1- Introduction 

Availability of low cost and scalable bulk electricity storage (BES) technologies is often considered a 

prerequisite for use of wind and solar energies as a means to gain deep reductions in Greenhouse Gas (GHG) 

emissions from the electricity sector [53, 91-93]. Examples of such systems are pumped hydroelectric storage 

(PHS), compressed air energy storage (CAES), and vanadium redox flow batteries (VRB). In current electricity 

markets with low penetration of renewables and low natural gas prices, BES is not economical, and its 

technical and economic characteristics are uncertain due to its limited deployment. 

Our question is: how important are the emerging BES technologies in enabling the integration of intermittent 

renewables? We tackle this question by analyzing the optimal deployment of electricity supply and BES 

technologies that meet specified GHG emissions constraints. We operationalize the importance of BES as the 

amount that it lowers the cost of electricity as the stringency of carbon constraints is increased, or almost 

equivalently, the amount by which it increases the penetration of renewables under the same constraints. Our 

analysis aims to inform policy for decarbonizing the electricity supply, and in particular for developing R&D 

incentives and market support for BES. 

We assess the economically desired amount of BES using a simple linear-constrained optimization model that 

optimizes the size and dispatch of a hypothetical generation fleet under deep carbon reduction mandates (e.g. 

emissions cuts of greater than 50%). Rather than using a point estimate of future BES costs, we work 

parametrically, exploring how storage capital costs determine the grid-average cost and emissions intensity 

of electricity. Electricity storage can provide a variety of services such as frequency regulation to support 

integration of intermittent renewables, but here we limit our analysis to bulk (multi-hour) storage of 

electricity.  

Our primary contribution is to assess the economics of BES as a function of its power- and energy-specific 

capital cost when it is used to achieve deep decarbonization of electricity supply. Applying a simple model 

enables us to parametrically evaluate the role of the capital cost which is the single most important 

determinants of the economic viability of BES. Previous work has examined the economics of specific BES 

technologies in comparison to gas turbines in low carbon grids [60, 75, 94]. The rationale for focusing on gas 
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as a rival for BES is low carbon emissions compared to coal, high operational flexibility, and low capital costs. 

Several studies have examined the competitiveness of a wide array of storage technologies at the grid level. 

These systems-level assessments use complex utility-grade models (e.g. incorporating security-constrained 

unit commitment) to take into account the specifics of the modeled grid and its reliability requirements. An example is the Pacific Northwest National Laboratoryǯs ȋPNNLȌ report on the intra-hour balancing 

requirements to facilitate a 20% penetration level for wind [94]. But existing literature does not cover the parametric ǲwhat ifǳ question we address hereǣ what are the price and performance parameters required for 

BES to play a significant role in enabling intermittent renewables to achieve deep emissions cuts in the 

electricity sector. 

Our modeling approach allows us to estimate the economically optimal amount of bulk storageȄboth energy 

storage and peaking capacity. Estimating storage requirements is a complicated task. An important factor 

here is the cost of storage, which the literature often underestimates. Barnhart and Benson [95] picked a 

storage scale equal to 4-12 hours of the average electricity demand in order to evaluate the energetic and 

material implications of large-scale deployment of storage systems. In a different study however, Pickard [93] 

used a storage size roughly 5.5 times larger than the average daily primary energy demand, while neither of 

these authors justified their selection from an economic point of view. Denholm and Hand [96] applied a 

dispatch model to the ERCOT grid and concluded that wind and solar penetration levels as high as 80% while 

keeping the curtailment rates below 10% would require a combination of load shifting and storage of one day 

of demand. Similarly, Denholm and Handǯs analysis is not based on any economic metrics such as cost of 
storage or even wind and solar plants themselves. In another study, Solomon et al. [91] estimated the ǲappropriateǳ amount of storage to support solar PV in )sraelǡ defined as ǲneither too small to increase grid 

penetration of PV in a significant manner nor wastefully largeǳ without any economic considerations. 

Parametric modeling of the BES capital cost allows us to explore its impact on the overall cost of electricity 

supply and to assess the economically optimal deployment of BES over a wide range of estimates for the BES 

capital cost. 
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2- Data and methods 

We use real world wind and load data to build our electricity system model. We optimize the size and 

dispatch order of the generation fleet to minimize the cost of electricity supply under a range of BES costs and 

GHG emissions constraints. Our analysis is based on the following key simplifying assumptions. First, since 

our focus is on deep emissions reductions under which essentially all coal power plants have to retire (or 

have carbon capture and sequestration, CCS retrofits) and because deep reductions will likely not occur until 

the existing fleet nears the end of its economic life, we ignore the existing capacity and perform a green-field 

analysis. Second, transmission costs and constraints are ignored. Third, since we are studying BES, we use a 

temporal resolution of 15 minutes and ignore short-period reliability requirements. Fourth, we ignore 

forecast errors in the load and wind profiles. Finally, we limit our time horizon to one year, ignoring inter-

annual variations in load and wind. We examine the impact of these assumptions on our policy-relevant 

conclusions in Section 3-5 to Section 3-7 and in Table 39.  

2-1- Modeling energy storage 

Variations in the engineering and economic parameters of BES technologies obviously affect their cost 

effectiveness in supporting renewables. No BES technology, except PHS has been deployed at large scale so 

far (PHS accounts for 99% of the existing 141 GW global electricity storage capacity [27]). Limited experience 

and the emergence of new technologies make assessing the importance of BES in low emission grids difficult. 

As Table 30 illustrates, current literature uses widely different assumptions about the capital cost (CapEx) 

and efficiency of BES systems. 

Elzinga et al. [27], Hittinger et al. [97], as well as Sundararagavan and Baker [98] studied the significance of 

selected economic and technical parameters and concluded that CapEx was consistently the single most 

important parameter undermining the economic feasibility of electricity storage systems. We therefore, focus 

on CapEx as the main variable of BES throughout our analysis. We first draw general conclusions by treating 

BES as a black box with fixed technical characteristics but variable CapEx (see Table 32). This approach 

allows us to perform a systems level analysis to provide a first order estimate of the market share of BES in 
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low carbon economies. We then study specific BES technologies in a wide range of CapEx estimates to assess 

their significance in lowering the cost of cutting carbon emissions. 

We assume that the total CapEx of a BES facility is the sum of two components, one proportional to the peak 

power capacity and the other proportional to the stored energy capacity. We further assume that any 

combination of power and energy capacities is technically feasible. Power-specific capital cost (XP) has units 

of $/kW, and the energy-specific capital cost (XE) has units of $/kWh. In the case of PHS for example, XP and XE 

primarily represent the CapEx of turbomachinery and water reservoir, respectively.  

We explore the balance between XP and XE in determining the economics of BES and as a means to guide R&D 

in prioritizing its cost reduction targets. This strategy also helps in assessing the economically optimal ratio of 

power to energy capacity over a wide range of XP and XE. This optimal ratio has implications for the technical 

feasibility of large-scale adoption of some BES technologies, such as availability of minerals and chemicals for 

electrodes (power capacity) and electrolytes (energy capacity) of flow batteries. 

We map cost estimates for selected BES technologies on the XE and XP coordinate system in Figure 38. The 

basis of our estimates is provided in Table 30. Two distinct regions are observed. Region 1 represents 

mechanical systems (PHS and CAES) distinguished with low energy capital cost (XE) but very high values for 

power cost (XP). Region 2 embraces electrochemical systems with intermediate values for XE and XP. We refer 

to BES systems situated in regions 1 and 2 as mechanical and electrochemical hereafter.  
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Figure 38: Mapping of selected BES technologies on the XE and XP plane. Each box represents a BES 
technology and its location corresponds to the ranges shown in bold in Table 30 for the energy-specific (XE) 
and power-specific (XP) capital cost of BES. Estimates for the storage efficiency (ߟ), heat rate (HR), and work 
ratio (WR)26 are included. Regions 1 and 2 represent mechanical and electrochemical technologies, 
respectively. 

Table 30: Economic and technical characteristics of selected BES technologies. Values in bold represent the authorsǯ best estimates and are used in Figure 38. 

BES technology XP ($/kW) XE ($/kWh) Efficiency (%) 

Pumped 
hydroelectric 
storage (PHS) 

2300 [94], 1500-2000 [99], 
1200 [100], 600-200027 [101], 
1500-2300 [94], 2000 [98], 
1500-2000 

10 [94], 100-200 [99], 75 
[100], 0-20 [101], 12 
(plus $2/kWh for BOP28) 
[98], 10-100 

70-85 [27, 101, 102], 
80 [98], 85 [100], 50-
85 [103], 75-80 

Underground 
diabatic 
compressed air 
energy storage 
(CAES) 

655 [53], 850-1140 [94], 740-
830 [99], 700 [100], 425-480 
[101], 750-120029 [9], 83530 
[104], 450 (plus $160/kW for 
BOP) [98], 850-1200 

7 [53], 3 [94], 5 [100], 3-
10 (+$50/kWh for 
balance of plant 
equipment, BOP) [101], 
5-2531 [9], 1-2 [99], 20 
[104], 10 [98], 5-25 

4.2 and 0.8 [53], 4.2 
and 0.75 [9], 4.2 and 
0.67 [60], 0.7-0.8 and 
4.2 

(Values present heat 
rate in GJ/ MWh and 
work ratio) 

  

                                                                    
26 Heat rate (HR) and work ratio (WR) of a compressed air energy storage facility express the heating fuel (GJ) 
and electricity (MWh) consumed by the plant per unit of electrical energy (MWh) generated, respectively. 
Heat rate and gas price are expressed based on the lower heating value (LHV) of fuel in this chapter, unless 
otherwise is stated. 

27 In our opinion, storage costs reported by this source are too optimistic. 

28 BOP: Balance of the plant equipment.  

29 We calculated this range based on the estimates for two different CAES facilities (135 MW and 405 MW with 
12 hours of storage). 
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Table 30 (Continued) 

Aboveground 
diabatic CAES 
(AD-CAES) 

800-900 [99], 517 [101], 835 
[104], 850-120032 

200-240 [99], 50 
(+$40/kWh for BOP) 
[101], 220-26033 [104], 
200-250 

0.7-0.8 and 4.234 

(heat rate in GJ/ MWh 
and work ratio) 

Underground 
adiabatic CAES 
(A-CAES) 

92035 [53],1100-1700 8 [53],10-5036 77 [53], 50-75 [22], 55-
70 

Lead acid battery 
(Pb-A) 

450 (+$100/kW for BOP) [98], 
420-660 [99], 400 [100], 200-
580 [101], 450-650 

200-400 [98], 330-480 
[99], 175-250 
(+$50/kWh for BOP) 
[101], 330 [100], 300-
450 

65-85 [27], 75 [98], 75-
80 [100], 85 [101], 85-
90 [104], 75-90 [105], 
60-95 [106], 70-90 
[107], 75-86 [101], 75-
90 

Sodium sulfur 
battery (NaS) 

3000 (+$100/kW for BOP) [98], 
350 [100], 260-810 [101], 350-
800 

534 [98], 350 [100], 245 
(+$40/kWh for BOP) 
[101], 250-400 

75-85 [27, 101], 85 
[98], 75 [100, 105], 75-
80 [104, 108], 75-90 
[107], 75-85 

Zinc bromine 
battery (ZnBr) 

2000 (+$100/kW for BOP) [98], 
400 [100], 640-1500 [101], 
500-1500 

400 [98, 100], 200-400 
[101], 200-400 

75 [98, 101, 106, 107], 
70 [100], 65-70 [104], 
60-65 [105, 108], 60-
75 

Vanadium redox 
battery (VRB) 

3200 (+$100/kW for BOP) [98], 
942-1280 [94], 400 [100], 
1250-1800 [101], 1000-1500 

630 [98], 600 [100], 175-
1000 [101], 173-257 
[94], 200-600 

65-85 [27], 80 [98], 70-
85 [101], 65-75 [104], 
65 [100], 75 [94], 75-
78 [108], 65-70 [105], 
85 [106], 65-80 

 

                                                                                                                                                                                                                          
30 Values are based on cost estimates for two different CAES facilities (135 MW with 8 and 20 hours of 
storage).  

31 Lower and upper bounds represent depleted gas reservoirs and domal salt caverns. 

32 We assume that underground and aboveground CAES have similar specific power capital costs. 

33 We estimated the energy-specific cost (XE) of aboveground CAES based on the total costs cited for 
underground and aboveground CAES, assuming comparable values for their power-specific CapEx (XE). 

34 We assumed underground and aboveground CAES have comparable thermodynamic performance. 

35 We adjusted the limited-publically available cost estimates for A-CAES based on their and our estimates for 
diabatic CAES.  

36 Energy density of cavern of A-CAES is roughly half of CAES. We therefore, doubled our estimates for CAES to 
calculate energy-specific cost (XE) of A-CAES.  
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2-2- Load and wind data 

Wind and load profiles are based on historical data from the Electric Reliability Council of Texas (ERCOT) 

between May 2012 and April 2013. Load is normalized to its peak and wind is normalized to installed 

capacity. We choose a temporal resolution of 15 minutes. Power spectrum analysis of wind farms indicates 

that the majority of high amplitude variations in their output occur at low frequencies (hourly and daily 

timescales) [109], so a 15-minute resolution over one full year captures requirements for bulk energy 

storage. Performing the analysis over one full year also enables assessing the need for long duration storage 

of energy (e.g. hydrogen-based BES systems).  

Correlations between wind availability and electric load obviously impact storage requirements. ERCOT is a 

large electricity grid (peak load of 66.5 GW and wind capacity of 10.0 GW in 2012), so the chosen profiles 

represent an important real world case. The load factor defined as ratio of the average to peak load is 56% for 

our load profile. There is a slight anti-correlation (coefficient of -0.15) between our load and wind profiles. 

Cumulative duration curves for load and wind are shown in Figure 39. Note that there are periods with 

insignificant wind availability while the load does not ever fall below 34% of its peak. Even if wind capacity is 

1.6 times of the peak loadȂ the point at which annual average wind production matches the annual average 

loadȂ wind will still be incapable of supplying all of the load 53% of the time ȋmarked by point ǲBǳ on the 
graph). This value is still non-negligible (17%) even when wind capacity is 5 times larger than peak load ȋpoint ǲCǳ on ǲnαͷǳ lineȌǤ  
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Figure 39: Temporal distribution of wind and load profiles used for the simulation. The top figure illustrates 
percentage of time (on horizontal axis) during which wind availability or electric load is higher than a certain 
value shown on the vertical axis (a.k.a. duration curve). Wind and load profiles are normalized to peak load 
and installed wind capacity, respectively. The lower plot shows percentage of time during which wind shortfall in supplying the load is higher than a certain value shown on the vertical axisǤ Parameter ǲnǳ is the 
ratio of wind capacity to peak loadǤ Point ǲAǳ for exampleǡ shows that in ͶͲΨ of the year shortage in wind 
supply is at least 30% of the annual peak load, when the installed wind capacity is equal to the annual peak 
load (n=1).  

2-3- Electricity system model  

We simultaneously optimize installed capacity and dispatch during operation of a generation fleet to meet the 

load at the minimum cost. We use a set of scenarios defined by a series of imposed constraints on the annual 

average GHG intensity of electricity ranging from 300 to 0 kgCO2e/MWh (CO2e equivalents are used to 

account for methane emissions as discussed in details below). The power- and energy-specific CapEx of BES 

are varied to sample the two-dimensional (XE and XP) space within each emissions intensity scenario. The 

system-average levelized cost of electricity (LCOE, $/MWh) is minimized at each emissions intensity and at 

the sampled values of XE and XP. The LCOE includes fixed and variable operating and maintenance costs (FOM 
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and VOM), fuel costs, and amortized CapEx. The objective function is shown in Equation 152, given the 

definitions in Table 31.  

෍൥൛ݐ݌ܽܥ௬ ൈ ൫ܥܤ ൈ ௬ݔܧ݌ܽܥ ൅ ௬൯ൟܯܱܨ ൅ ൝෍ሺܮܧ௬ǡ௭ ൅ ܵ ௬ܶǡ௭ሻ ൈ ൫ܴܪ௬ ൈ ேீߨ ൅ ௬൯௭ܯܱܸ ൡ൩௬  Equation 152 

Where ݕ א ܻ ൌ ሼܵܶܩܥǡ ǡܹ݅݊݀ǡܶܩܥܥ ǡܵܧܤ ݖ ሽ andܥܼܦ א ܼ ൌ ሼͳǡʹǡ͵ǡ ǥ ǡ ͵͸ͷ ൈ ʹͶ ൈ Ͷሽ  

Table 31: List of parameters and variables of the objective function. See Table 32 for the numerical values of 
the parameters. ݔܧ݌ܽܥ Specific capital cost ($/MW or MWh) ݐ݌ܽܥ Installed capacity (MW or MWh) ܥܤ Blended cost of capital (%) ܮܧ Electricity delivered to load (MWh) ܯܱܨ Fixed operation and maintenance cost 

($/MW or MWh/year) 
 Variable operation and maintenance ܯܱܸ

cost ($/MWh) ܻǡ  Set ܻ includes the electricity supply ݕ
technologies, i.e. gas turbines, wind, BES, 
and DZC (index ݕ) 

ܼǡ  includes the planning periods ܬ Set ݖ
over the entire year at a 15-minute 
resolution (index ݆) ߨேீ  Price of gas ($/GJ) ܵܶ Electricity stored in BES (MWh) ܴܪ Heat rate (GJ/MWh)   

 

This objective function calculates the total annual cost of electricity supply and has two parts (shown in curly 

brackets). The first section takes into account the amortized capital cost and the fixed operations and 

maintenance cost of the generation and storage fleet. The second part of the objective function considers the 

fuel cost and the variable operation and maintenance cost associated with electricity generation (both 

directly provided to the load and stored in BES) and by the generation fleet. Note that we simultaneously 

optimize the capacity and dispatch of the generation fleet. We develop a simplified utility planning model, 

which minimizes the system-wide cost of electricity supply in a green-field setup.  

The decision variables include installed capacity (size) of the generation fleet and their dispatch in each 

15-minute period over the simulation period (one year). The key constraints include: 

 The electricity load must be satisfied in each 15-minute time interval.  

 The annual average GHG emissions (kgCO2e/MWh) should be less than a preset value (e.g. 0 in the 

carbon free scenario), except in the BAU scenario. 
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 Output of each system component cannot exceed its capacity. 

 Conservation of energy must hold for BES; the change in the stock of energy in each 15-minute period 

should be equal to the difference between energy injected and withdrawn, after taking into account 

the storage efficiency. 

This optimization problem is solved in MATLAB using linear programming with the interior-points algorithm. 

It takes about 500 seconds on a 2012 vintage CPU for each of 320 sample points in the XE and XP plane.  

We assume that any combinations of simple and combined cycle gas turbines (SCGT and CCGT), wind farms, 

and BES can be utilized to meet the load. Our model also includes a generic generation source called 

dispatchable-zero-carbon, DZC. This category represents the (near) zero carbon but dispatchable 

technologies that are currently too costly but are likely to emerge as more cost effective in a carbon-

constrained world. Examples can be gas turbines integrated with CCS, concentrated solar power (CSP) 

equipped with thermal storage (TS), and nuclear power plants. 

We vary XE and XP of BES in the range of 5-700 $/kWh and 100-2000 $/kW, respectively to cover 320 sample 

points. All BES technologies are assumed to have the same efficiency within a given scenario except for 

diabatic CAES which is modeled separately (because it consumes fuel during the discharging phase). Charge 

and discharge rates of BES are assumed to be equal. 

We consider four scenarios for emissions intensity of the grid; business as usual (BAU) and caps of 300, 150, 

and 0 kgCO2e/MWh. Note that these values, even BAU (this scenario leads to an emissions intensity of ~448 

kgCO2e/MWh) represent sharp emissions reductions compared to the existing grids, mainly because coal is 

not included in our model. For instance, the average carbon intensity of the entire USA grid and the global 

average in 2010 were 503 and 536 kgCO2/MWh [110]. 

Table 32 summarizes various inputs of our model. Roundtrip efficiency of storage is set at 75%, an average 

value based on BES technologies in Table 30. The price of gas is fixed at $5/GJ (sensitivity analysis is provided 

in Section 3-6). Operational considerations such as minimum up and down times, ramp rates, and part-load 

performance are not included in this modeled.  
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Our cost estimates for gas turbines and wind farms are based on values reported by the United Statesǯ 
Department of Energy (DoE) [111] and Energy Information Administration (EIA) [112], National Renewable 

Energy Laboratory (NREL) [113], and Lazard Ltd [114]. We use a value of $9000/kW for DZC. Each specific 

DZC technology will face some geographical constraints (e.g. CSP requires high solar irradiance or CCS needs 

a suitable geologic formation). DZC, however, represents the least capital-intensive, dispatchable 

technologyȄ whether CSP, nuclear, CCS, biomass or geothermalȄthat can be utilized in a given location. Our 

judgment is that 9000 $/kW is mostly likely an overestimate of this best-case DZC cost (see Section 3-5 for 

our rationale and the sensitivity analysis on DZC cost). 

Table 32: Technical and economic inputs of the model in the base case. 

Parameter Value Notes 

CapEx of Wind, SCGT, 
CCGT, DZC 

2000, 800, 1100, 
and 9000 $/kW 

Wind and gas turbine data are 
based on references [111-114].  

FOM and VOM of DZC are based on 
nuclear and CSP [112, 114] 

FOM of Wind, SCGT, 
CCGT, DZC 

35, 10, 12, and 100 
$/kW/yr 

VOM of Wind, SCGT, 
CCGT, DZC 

0, 10, 3, and 0 
$/MWh 

Heat rate of SCGT, 
CCGT, and CAES 

9.8, 6.7, and 4.2 
GJ/MWh (LHV) 

Work ratio of CAES 0.75 CAES data from Table 30  

Storage efficiency 75% An average based on Table 30  

Price of gas 5 $/GJ (LHV)  

Blended cost of capital 10% Equivalent to a discount rate of 
~8% for 20 years 

XP and XE of BES 100-2000 $/kW 
and 5-700 $/kWh 

Range used in simulation that cover 
320 points in XP, XE space 

 

We use a GHG intensity of 66 kgCO2e/GJ (lower heating value, LHV) [60] for natural gas to account for 

upstream emissions in addition to combustion emissions37. This value leads to a GHG intensity of 647 and 442 

kgCO2e/ MWh for the SCGT and CCGT plants in our model. Although estimating life-cycle GHG emissions of 

                                                                    
37 This value exclude emissions associated with building the power plants. In other words, it only concerns 
with emissions of natural gas itself. 
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natural gas-based electricity is uncertain (partly due to fugitive methane emissions), our values fit well within the current estimatesǤ For instanceǡ in a ʹͲͳͶ studyǡ OǯDonoughue et al. [115] applied a meta-analytical 

process on 250 published references to harmonize estimates of the life-cycle GHG emissions of the electricity 

fueled by conventionally produced gas. They reported an interquartile range (IQR) of 570-750 with a median 

of 670 kgCO2e/MWh for SCGT. The IQR and median values reported for CCGT are 420-480 and 450 

kgCO2e/MWh, respectively. 

3- Results and Discussions 

3-1- Cost of electricity 

In our BAU scenario, wind and DZC are not economically viable and gas turbines and storage supply the 

electric load. CCGT dominates the electricity supply because of the high operating and fuel costs of SCGT 

compared to CCGT (see Table 32). Even without an emissions constraint, cheap BES reduces the need for 

peaking plants (SCGT) by increasing utilization of CCGT and thus lowering the cost of electricity. Emissions 

intensity, however, is insensitive to the storage cost because BES supplies at most 3% of the annual load. 

CCGT supplies almost all (>97%) of total electricity. Note that the 15-minute resolution may slightly 

overestimate the share of CCGT as it understates the advantage SCGT should get from its faster ramp rate. 

Our central research question is how the capital cost of storage impacts the overall cost of electricity supply 

under tight carbon constrains. Figure 40 illustrates LCOE at various emission caps over a wide range of XE and 

XP. The most general result is that energy capital cost (XE) has a stronger influence on LCOE that does power 

cost (XP) under all emission scenarios. Comparing Figure 38 and Figure 40, we can see that the existing 

mechanical BES systems are more likely to cost effectively curb emissions due to their significantly lower XE 

compared to electrochemical technologies, despite higher XP of the mechanical systems. 

A second result is that inexpensive BES has a small impact on the LCOE in all scenarios except for the carbon 

free grid. LCOE differs only 6% (56.6 and 60.3 $/MWh) between the cheapest and most expensive BES system 

that we model in BAU. As expected, the impact of BES on LCOE rises when a tight cap of 150 kgCO2e/MWh is 
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imposed. But even then, BES cuts the costs by only 17% (81.2 versus 97.8 $/MWh) even though emissions are 

cut by 67% compared to BAU, an even deeper cut when compared with current emissions which include coal.  

LCOE is more sensitive to storage cost when emissions are constrained to zero at which point there is a 27% 

difference between LCOE of the carbon free grid utilizing the cheapest BES system (XE=5 and XP=100, 

LCOE=$143.9/MWh) and the most expensive BES system (XE=700 and XP=2000, LCOE=$195.9/MWh).  

  

  

Figure 40: Impact of XE and XP and emissions constraints on LCOE. Horizontal and vertical axes show XE 
($/kWh) and XP ($/kW), respectively. Values on the graphs present LCOE ($/MWh). Subfigures from top left 
in counter clockwise order correspond to BAU (no emissions constraint), and caps of 300, 150, and 0 
kgCO2e/MWh. In all the contour plots, 320 sample points are simulated to cover the range of 5-700 and 100-
2000 for XE and XP. Contour spacing is constant in each plot; therefore, absence of contour lines in an area 
indicates no changes larger than the contour spacing. 

The strong impact of storage cost on the LCOE in the completely decarbonized system is driven by the 

absence of gas turbines. Even under the low 150 kgCO2e/MWh scenario, gas can cost-effectively manage the 

variability of wind, as explored in Section 3-2. Despite their higher fuel and operational cost, the relatively 

low CapEx of gas turbines allows them to out-compete BES in managing the variability of wind. 

3-2- Storage cost and wind penetration 

Since emission constraints and availability of affordable BES are often considered as requirements for large-

scale adoption of intermittent renewables, we explore effect of these parameters on the economically 
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optimum level of wind penetration in our model. Because our focus is on deep decarbonization targets, we 

discuss the results for the 150 kgCO2e/MWh scenario (~33% of BAU emissions).  

The distinct impact of mechanical and electrochemical BES technologies is evident in Figure 41. While 

electricity cost is almost the same (<5% difference), optimal size of the wind fleet using electrochemical BES 

is only 60% of the wind fleet using mechanical systems. This indicates that BES systems with low energy 

capital cost (XE) facilitate higher penetration of wind energy. If electrochemical rather than mechanical BES 

systems are utilized, the optimal sizes of the SCGT and DZC fleet get larger to compensate for the smaller 

wind fleet. The optimal size of CCGT is almost insensitive to the storage cost (approximately 53% for both 

BES categories).  

Note that all power capacity values are expressed as percentage of the peak load (1000 MW) in the contour 

plots presented in this chapter. The energy capacity of BES is expressed as hours of the average load (556 

MW), i.e. ratio of the energy capacity (MWh) of the storage fleet to the average load (MW). 

These results lead to the conclusion that the optimal wind capacity is very sensitive to the CapEx of BES, 

especially to its energy capacity cost (XE). Therefore, mechanical BES systems (region 1 in Figure 38) are 

better suited for large-scale integration of intermittent renewables, at their current costs.  

While lower-cost storage increases windǯs share of annual generation, it does little to change the overall 

electricity cost because it just sifts the balance between wind and DZC. This does not answer a related energy 

policy question: how important is bulk storage to manage high penetration of intermittent renewables? We 

explore this by removing DZC from the generation fleetȄso intermittent renewables (wind in this case) are 

the only way to decarbonizeȄand then enforce a 150 kgCO2e/MWh emissions cap. We then operationalize the ǲhow importantǳ question by comparing the optimal wind capacity to the capacities of BES and gasǤ 
Table 33 presents the key system parameters when DZC is eliminated from the generation fleet and the same 

emissions constraint of 150 kgCO2e/MWh is enforced. A sample BES system from each category (i.e. 

mechanical and electrochemical) was modeled. The energy- and power-specific costs of the mechanical BES 

system were XE=30 $/kWh and XP=1500 $/kW while these values were XE=375 $/kWh and XP=550 $/kW for 



165 
 

the sample electrochemical BES system. We also evaluated the sensitivity of the results to a drastic 50% 

reduction in both XE and XP of these two BES systems.  

  

  

  

Figure 41: Electricity system characteristics at an emissions cap of 150 kgCO2e/MWh. Subfigures from top left 
illustrate LCOE, normalized power capacity of wind, DZC, SCGT, BES, and GT (SCGT and CCGT combined). All 
capacity values are expressed as percentage of the peak electric load. Horizontal and vertical axes show XE 
($/kWh) and XP ($/kW), respectively. 

The required amount of storage remained relatively small (ζʹʹΨ of peak loadǡ except when the energy and 

power costs of the mechanical BES system were halved). In contrast, capacity of the gas turbine fleet 

(aggregate of SCGT and CCGT) remained above 75% of the peak load with the current storage costs of both 

BES systems and still above ~50% when the costs of the mechanical BES were halved. Moreover, less than 

10% of the annual electricity load was supplied by BES in the best case (50% reduced energy and power costs 

of the mechanical system). Also note the low sensitivity of the overall cost of electricity (LOCE) to reductions 
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in the capital cost of BES. Halving both the power and energy cost of the mechanical and electrochemical 

systems reduced LOCE by 7% and 4%, respectively.  

Using the example of the mechanical BES system shown in Table 33 (with energy and power costs of 

XE=$30/kWh and XP=$1500/kW), we see that capacity of BES and gas are ~20% and 60% (respectively) of 

the capacity of wind. So one could say that BES is three times less important than gas in providing peaking 

power under this tight emissions constraint and with current capital cost estimates. Under these conditions, 

about a third of annual load comes from gas, 6% from BES and the rest from wind.  

Table 33: Key characteristics of the generation fleet when DZC is eliminated from the model at an emissions 
cap of 150 kgCO2e/MWh and gas price of $5/GJ. The ǲReduced CapExǳ columns refer to ͷͲΨ reduction in both 
the energy (XE) and power (XP) capital cost of storage, compared to the current cost estimates. Region 1 and 2 
represent a generic mechanical and electrochemical BES system, respectively (see Figure 38). GT refers to the 
combination of SCGT and CCGT. All other parameters are the same as of Table 32. 

 Current CapEx Reduced CapEx 

Storage system Region 1 Region 2 Region 1 Region 2 

Energy-specific CapEx ($/kWh) $30 $375 $15 $188 

Power-specific CapEx ($/kW) $1500 $550 $750 $275 

LCOE ($/MWh) $97.6 $103.0 $90.7 $98.9 

BES power capacity (% of peak load) 22 8 42 22 

BES energy capacity (hrs of average load) 9 1 18 3 

BES market share (% of annual load) 6 1 9 4 

GT capacity (% of peak load) 75 88 54 74 

GT generation share (% of annual electricity 
generation) 

34 34 34 34 

Wind capacity (% of peak load) 120 138 115 127 

Ratio of BES power to wind capacity 0.18 0.06 0.37 0.18 

Ratio of GT to wind capacity 0.62 0.64 0.47 0.58 

Ratio of GT to BES capacity 3.4 10.7 1.3 3.2 

 

The relative importance of BES and GT depends on stringency of the emissions cap too. Here we presented 

the results at an emissions cap of 150 kgCO2e/MWh Ȃ ~70% reduction compared to the current emissions 
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levels in the United States. With zero or near-zero emissions and no use of DZC, larger storage capacities will be needed to manage windǯs intermittency as GT gets too polluting for such extremely low-carbon grids.  

Price of gas is another important factor in determining the importance of bulk storage. To explore its effect, 

we repeat the simulation with a much higher gas price of $20/GJ (Table 34) instead of $5/GJ (Table 33). The 

optimal ratios of BES and GT to wind capacity do not vary in a substantial manner with $20/GJ gas, except 

when the cost of the mechanical system is cut by 50%. This indicates that the low capital cost of the gas 

turbine fleet (Table 32) out-competes its higher operation and fuel costs, hence the GT still supplies one third 

of the load with $20/GJ gas.  

Table 34: Key characteristics of the generation fleet when DZC is eliminated and at an emissions cap of 150 
kgCO2e/MWh and gas price of $20/GJ. The ǲReduced CapExǳ columns refer to ͷͲΨ reduction in both the 
energy (XE) and power (XP) capital cost of storage. Region 1 and 2 represent a generic mechanical and 
electrochemical BES system (see Figure 38). All other parameters are the same as of Table 32. 

 Current CapEx Reduced CapEx 

Storage system Region 1 Region 2 Region 1 Region 2 

Energy-specific CapEx ($/kWh) $30 $375 $15 $188 

Power-specific CapEx ($/kW) $1500 $550 $750 $275 

LCOE ($/MWh) $131.7 137.1 124.1 133.0 

BES power capacity (% of peak load) 22 8 46 22 

BES energy capacity (hrs of average load) 9 1 23 3 

BES market share (% of annual load) 6 1 11 4 

GT capacity (% of peak load) 75 88 50 74 

GT generation share (% of annual electricity 
generation) 

34 34 27 34 

Wind capacity (% of peak load) 120 138 130 127 

Ratio of BES power to wind capacity 0.18 0.06 0.36 0.18 

Ratio of GT to wind capacity 0.62 0.64 0.39 0.58 

Ratio of GT to BES capacity 3.4 10.7 1.1 3.2 
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3-3- Economically optimal deployment of storage 

The amount of BES that is technically required for decarbonization with intermittent renewables is 

(somewhat) independent of the impact of storage on electricity costs. Figure 42 illustrates the power and 

energy capacity of BES as well as the percentage of annual load supplied by the energy stored in BES (i.e. 

market share of BES), in the 150kgCO2e/MWh scenario. The portions of the annual generation that comes 

from wind and DZC are also plotted (called generation share). The generation share of GT (aggregate of 

SSCGT and CCGT) is ~33% and is insensitive to the storage cost. 

Based on the 150 kgCO2e/MWh scenario, we can make the following comments on the economically efficient 

penetration level of BES. The power capacity of BES remains below 30% and 10% of the peak load for the 

mechanical and electrochemical BES systems with their current costs, respectively. Although mechanical 

technologies have higher XP, their optimal power capacity is noticeably higher compared to electrochemical 

systems. This observation again highlights the significance of the energy-specific cost (XE) in the overall 

economic viability of BES systems Ȅa major disadvantage of the existing battery systems. 

The optimal energy capacity of BES turns out to be small in general, even when we impose ~70% emission 

reductions compared to BAU. The mechanical storage fleet was sized to supply the average electric load for 

one full day on its own. This value sharply drops as the energy cost (XE) increases while the power cost (XP) 

simultaneously drops; i.e. moving to electrochemical systems.  

These relatively low energy capacities signal the unimportance of large-scale storage of electricity over long 

time horizons (e.g. seasonal storage) from an economic point of view. This is driven by the lower 

competitiveness of BES systems coupled with wind in comparison to low carbon and dispatchable generation 

facilities, like CCGT and DZC modeled here. Even when we consider the cheapest BES system simulated (XE=5 

and XP=100, the lower left corner of Figure 38), the BES fleet would be sized to store enough energy to meet 

the average load for ~40 hours. 

The BES share of the total supply of electricity is also small compared to of the rest of the generation fleet. 

Approximately 6% of the demand is met by the electricity stored in mechanical BES systems (very sensitive 

to XE) while this figure becomes marginal for battery technologies with their current capital costs. Even using 
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the cheapest storage assumptions given above, the contribution of BES remains about 10%. The drop in the 

share of storage (and consequently the wind fleet) of the electricity supply at elevated storage costs is 

compensated by DZC.  

    

  

 

 

Figure 42: Effect of the cost of storage on its market share at an emissions cap of 150 kgCO2e/MWh. 
Subfigures from top left in counter clockwise order illustrate normalized power capacity and energy capacity 
of BES, percentage of annual load supplied by the energy stored in BES, and the portion of the annual 
electricity generated by DZC and wind. The generation share of GT (~33%) is insensitive to the storage cost. 
Horizontal and vertical axes show XE ($/kWh) and XP ($/kW). Power capacity of BES is normalized to the 
annual peak load. The energy capacity of BES is expressed in hours and is normalized based on the annual 
average load (556 MW). 

3-4- Implications for specific BES technologies 

Which BES technologies are closer to having an impact under carbon constraints and thus would merit a 

higher priority in R&D efforts directed at decarbonizing the electricity supply? We explore this question 

through a scenario in which energy- and power-specific costs of each BES technology are cut in half. As a 
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measure of impact, we use share of the annual load supplied by BES (market share) and the levelized cost of 

electricity supply. Figure 43 shows results for an emissions cap of 150 kgCO2e/MWh. 

None of the existing technologies gain noticeable market share, but when costs are halved PHS and A-CAES 

make larger gains in market share (7% and 9%, respectively) and make a corresponding impact in reducing 

the electricity cost. The simulated battery technologies remain prohibitively expensive even when their costs 

are halved compared to the current estimates.  

 

 

Figure 43: Market share of BES (top, % of load supply) and LCOE (bottom, $/MWh) with a carbon cap of 150 
kgCO2e/MWh. Horizontal and vertical axes indicate XE ($/kWh) and XP ($/kW). Arrows start from the current 
cost estimates (average of the range shown for each technology in Figure 38 and Table 30) and end at points 
with 50% reduction in both XE and XP. 

We analyzed diabatic CAES separately since unlike all other BES technologies it has non-negligible emissions. 

The heat rate and work ratio of CAES were set at 4.2 GJ/MWh and 0.75 in our model, respectively. Therefore, 

the simulated CAES facility emitted 277 kgCO2 per MWh of electricity generated (inside-the-fence lines 

emissions). We varied XE and XP of diabatic underground CAES in the range of 5-25 $/kWh and 850-1200 

$/kW, based on the estimates from Table 30. Aboveground CAES was not modeled due to its obvious weaker 

performance (caused by much higher energy-specific capital cost of >200 $/kWh, refer to Table 30 for 

details).  
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We present results from the 150 kgCO2e/MWh cap scenario in Table 35. Availability of diabatic CAES made 

negligible differences in LCOE. The cheapest CAES system modeled (XE=5 $/kWh and XP=850 $/kW) could 

only store enough electricity to meet the average load for ~1 hour and its power capacity is 7% of the peak 

load. A higher gas price of $10/GJ instead of $5/GJ did not improve the competitiveness of CAES, as illustrated 

in Table 35. 

For the sake of comparison, we also modeled A-CAES system (heat rate of zero and efficiency of 63%) with 

the same emissions cap and gas prices. We used the range of 1100-1700 $/kW and 10-50 $/kWh for the 

power and energy capital cost of A-CAES (refer to Table 30). As seen in Table 35, the role of A-CAES turned 

out more significant compared to diabatic CAES despite its much higher capital cost. LCOE of the system 

equipped with A-CAES instead of diabatic CAES was lower (~4% in the base case). Moreover, both the power 

and energy capacity of A-CAES were much higher compared to of diabatic CAES. The GHG emissions of 

diabatic CAES severely limit its competitiveness as a BES system under emissions constraints. Note that the 

significance of diabatic CAES (measured by its impact on LCOE and by its optimal installed capacity) turned 

out to be even smaller under no emissions constraints (BAU scenario). These results lead to the conclusion 

that diabatic CAES is too capital intensive for todayǯs grids ȋno major G(G emissions restrictionsȌ and too 
polluting for the future low-carbon grids.  

Table 35: Key characteristics of underground diabatic CAES and A-CAES at a grid emissions cap of 150 
kgCO2e/MWh. All other inputs are the same as Table 32. 

Parameter Diabatic CAES A-CAES 

Power CapEx ($/kW) 850-1200 1100-1700 

Energy CapEx ($/kWh) 5-25 10-50 

Efficiency (%) NA 63 

Work ratio (MWh in/ MWh out) 0.75 1.60 

Heat rate (GJ/MWh) 4.2 0 

Price of gas ($/GJ) 5 10 5 10 

LCOE ($/MWh) 97.7-97.8 109.1 93.8-97.8 105.2-109.1 

Power capacity (% of peak load) 6-0 6-0 33-1 33-1 

Energy capacity (hours of average load) 1-0 1-0 19-0.2 19-0.2 
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3-5- Sensitivity to capital cost of DZC 

Cost figures for DZC are uncertain due to their limited deployment. As a case in point, estimates for the Vogtle 

AP1000 nuclear plant currently under construction in GA, USA is around 6400 $/kW [116]. The figures for 

the Korea-UAE nuclear contracts announced in 2009 ($3700/kW [117]) is however, almost half of for the 

Vogtle project. In a recent study, Abdulla et al. [118] used expert elicitations to estimate capital cost of light 

water reactors, both based on current technology and small modular reactors (SMR). The median of the 

estimates for a 1 GW reactor ranged from $2600 to $6600/kW while it varied between $4000 and 

$16300/kW for a 45 MW light water SMR. Cost figures for concentrated solar power plants (CSP) also lay in a 

wide range. Estimates for the Crescent CSP plant (110 MW, 10 hours of thermal storage, under construction 

in NV, USA) are about $9000/kW [119, 120] . The price tag of the Solana plant (250 MW, 6 hours of thermal 

storage, commissioned in 2013 in AZ, USA) is roughly $8000/kW [120]. We used a value of $9000/kW for 

capital cost of DZC in the base case model. 

Figure 44 explores the robustness of our key results and conclusions to the capital cost of DZC. Three 

scenarios are illustrated in this figure:  

a) no BES is allowed (to quantify the economic value of BES at current capital costs in decarbonizing the 

electricity supply), 

b) BES is available at the current costs, and 

c) a scenario with 50% reduction in both the energy-specific capital cost (XE) and power-specific capital 

cost (XP) of BES compared to the current levels considered in case b.  

We chose one generic BES system from the mechanical (with current costs of XE=30 $/kWh and XP=1500 

$/kW) and electrochemical (XE=375 $/kWh and XP=550 $/kW) BES category to perform this sensitivity 

analysis. All other simulation inputs have the same values as the base case simulation (listed in Table 32).  

The simulated mechanical BES system is much more successful in reducing the LCOE and its power capacity 

is consistently and considerably (~2-3 times) higher than of the electrochemical system. The optimal BES 

capacity is almost zero when the cost of DZC is ζ$6000/kW (for the mechanical category) and $9000/kW (for 

the electrochemical system) with current cost estimates for BES. This is because wind and BES lose their 
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economic competitiveness as DZC gets less capital intensive. Even cutting both power and energy capital 

costs of the battery makes marginal changes in the LCOE ȋζ ̈́ͳȀMWhȌ unless capital cost of DZC remains 

above $9000/kW. As we discussed in Section 2-3, DZC represents the least capital intensive, dispatchable 

technologyȄCSP, nuclear, CCS, biomass or geothermal (possibly even with high voltage direct current, HVDC, 

transmission lines)Ȅthat can be utilized in a given location. We believe that the value of 9000 $/kW used in 

this paper is mostly likely an overestimate of this best-case DZC cost. 

Price of gas is an important player in determining the competitiveness of DZC with wind and the required 

amount of storage. We repeat the simulation with higher gas prices of $10/GJ (Figure 45) and $20/GJ (Figure 

46). More expensive gas and DZC bump up the LCOE and optimal capacity of storage. Nevertheless, our 

general conclusion about higher competitiveness of mechanical BES systems to batteries with their current 

costs remains valid. The optimal capacity of batteries and particularly their impact on LCOE remain less than 

of the mechanical systems. Even at the very high gas price of $20/GJ and DZC capital cost of $12000/kW, the 

power capacity of the simulated electrochemical system remained below 10% of the peak electric load (100 

MW). Halving both its power- and energy-specific cost increased this number to below 25% of the peak load. 

The corresponding figures for the mechanical system modeled here are 20% and 40%.  

An interesting observation is that raising the price of gas increases the optimal capacity of BES more at lower 

DZC costs. This signals that more BES is deployed with cheap DZC to reduce the generation share of now 

more expensive (higher fuel cost) gas turbines. This is because at very high DZC price tags, the only 

economical generators would be wind and gas turbine. The optimal capacity of wind and gas turbine (SCGT 

and CCGT combined) is plotted in Figure 47 and Figure 48 for the simulated mechanical and electrochemical 

systems with $10/GJ and $20/GJ gas prices, respectively. Considering Figure 45 to Figure 48 reveals that 

some (although small) BES capacity is deployed despite the absence of wind from the optimal generation fleet 

at DZC capital costs at or below $6000/kW.  
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Figure 44: Sensitivity of LCOE and power capacity of BES to capital cost of DZC. Each sub-plot presents three 
cases: a) no BES is allowed, b) BES at the current capital costs and, c) BES with 50% reduction in both XE and 
XP values considered in case b. The sub-figure on top shows the results for a generic BES system in region 1 
with XE=30 $/kWh and XP=1500 $/kW as its current costs. The sub-figure at the bottom represents region 2 
with XE=375 $/kWh and XP=550 $/kW as the current costs. Region 1 and 2 represent mechanical and 
electrochemical bulk storage systems (see Figure 38). Price of gas is $5/GJ. 
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Figure 45: Sensitivity of LCOE and power capacity of BES to the capital cost of DZC. The sub-figure on top 
shows results for a generic BES system in region 1 with XE=30 $/kWh and XP=1500 $/kW as its current costs. 
The sub-figure at the bottom represents region 2 with XE=375 $/kWh and XP=550 $/kW as the current costs. 
Price of gas is $10/GJ. 
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Figure 46: Sensitivity of LCOE and optimal power capacity of BES to the capital cost of DZC. The sub-figure on 

top shows results for a generic BES system in region 1 with XE=30 $/kWh and XP=1500 $/kW as its current 

costs. The sub-figure at the bottom represents region 2 with XE=375 $/kWh and XP=550 $/kW as the current 

costs. Price of gas is $20/GJ.  
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Figure 47: Power capacity of wind and gas turbine fleet with various DZC costs and $10/GJ (top) and $20/GJ 

(bottom) gas prices. The simulation results are for a sample BES system from the mechanical category. Two 

cost scenarios for BES are considered: current estimates (XE=30 $/kWh and XP=1500 $/kW) and 50% 

reduction in both the energy- and power-specific capital cost.  
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Figure 48: Power capacity of wind and gas turbine fleet with various DZC costs and $10/GJ (top) and $20/GJ 
(bottom) gas prices. The simulation results are for a sample BES system from the electrochemical category. 
Two cost scenarios for BES are considered: current estimates (XE=375 $/kWh and XP=550 $/kW) and 50% 
reduction in both the energy- and power-specific capital cost. 
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3-6- Sensitivity to price of gas 

We used $5/GJ as the price of natural gas in the base case results presented. This value is comparable to the 

average price of $4.8/GJ paid by power plants across the United States between 2009 and 2013 [121]. Due to 

uncertainties in future gas prices especially under emissions restrictions and in the wake of the 

unconventional gas revolution, here we evaluate robustness of our key conclusions to this parameter. Similar 

to Figure 44, Figure 49 illustrates the LCOE and power capacity of a generic mechanical and a battery BES 

system, but with respect to price of gas instead of DZC CapEx. The GHG emissions intensity is capped at 150 

kgCO2e/MWh and all parameters except price of gas are the same as Table 32.  

The availability of BES marginally impacts the overall cost of electricity with the current BES capital costs 

figures, although the mechanical BES system starts to matter at high gas prices ($20/GJ). Reducing the 

energy-specific and power-specific capital costs (XE and XP) of the mechanical BES by 50% lowers the LCOE 

much more (3.5-7.0 $/MWh compared to LCOE at current XE and XP cost figures), particularly with gas prices 

below $20/GJ, compared to the generic electrochemical system. There is a maximum of $2.5/MWh difference 

between the electricity supply cost of the generation fleet utilizing the electrochemical system with the 

current capital costs and with 50% cost reduction (occurring at an unrealistically high gas price of $40/GJ).  

The optimal power capacity of BES is far more sensitive because of the reduced optimal capacity of gas 

turbines at high gas prices and the competition between wind, BES, and DZC to compensate for that. Our 

conclusion that the optimal capacity of the mechanical BES systems is much (~2-3 times) higher compared to 

of the battery systems, especially with 50% cost reductions, is also robust to changes in gas prices.  

As discussed in Section 3-5, both the capital cost of DZC and price of gas impact the significance of BES in 

reducing decarbonization costs and supporting wind integration. Figure 50 and Figure 51 show similar 

results to Figure 49 but for cheaper ($6000/kW) and more expensive ($12000/kW) DZC instead of 

$9000/kW. Both the overall cost of electricity supply and the optimal capacity of BES (especially for the 

mechanical system) increase as the capital cost of DZC is raised. Even at the high DZC cost of $12000/kW, the 

capacity of the battery system remains below 10% of the peak load. Halving the cost of BES does not increase 

capacity of the electrochemical BES beyond 20% unless the price of gas gets above $25/GJ. 



180 
 

 

 

Figure 49: Sensitivity of the LCOE and power capacity of BES to the price of gas. Each sub-plot presets three 
cases: a) no BES is allowed, b) BES at the current costs, and c) 50% reduction in both XE and XP compared to 
case b. The top sub-figure presents a generic mechanical BES system (from region 1 in Figure 38) with XE=30 
$/kWh and XP=1500 $/kW as its current costs. The sub-figure at the bottom represents a generic 
electrochemical technology (from region 2 of Figure 38) with XE=375 $/kWh and XP=550 $/kW as the current 
costs. Capital cost of DZC is $9000/kW in all scenarios. 
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Figure 50: Sensitivity of the LCOE and power capacity of BES to the price of gas at $6000/kW as the CapEx of 

DZC. The top sub-figure presents a generic mechanical BES system (region 1) with XE=30 $/kWh and XP=1500 

$/kW as its current costs. The sub-figure at the bottom represents a generic electrochemical technology 

(region 2) with XE=375 $/kWh and XP=550 $/kW as the current costs.  
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Figure 51: Sensitivity of LCOE and power capacity of BES to the price of gas at $12000/kW as the capital cost 
of DZC. The top sub-figure presents a generic mechanical BES system (region 1) with XE=30 $/kWh and 
XP=1500 $/kW as its current costs. The sub-figure at the bottom represents a generic electrochemical 
technology (region 2) with XE=375 $/kWh and XP=550 $/kW as the current costs. 
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3-7- Sensitivity to storage efficiency  

The roundtrip efficiency of electricity storage obviously varies among different BES technologies. We focused 

on the capital cost of storage systems as the dominant parameter impacting the economics of BES throughout 

the analysis. Nevertheless, A-CAES is among the least efficient BES systems; an average value of 63% 

compared to 75% for the generic BES system that we modeled (Table 30). In order to assess robustness of the 

results, we adjusted storage efficiency of the specific BES technologies in two scenarios: 75% (independent of 

the BES type, similar to Table 32) and the current estimates (according to values listed Table 31). As shown in 

Table 36, the storage efficiency has insignificant impact on our key results. Even accounting for its low 

efficiency, A-CAES remains the most cost-effective technology followed by PHS.  

Table 36: Sensitivity of the key results to the storage efficiency of specific BES technologies at an emissions 

cap of 150 kgCO2e/MWh. Average of the values shown in bold in Table 30 are used as the energy- and power-

specific capital cost of each storage technology (similar to Figure 43). Two values for storage efficiency are 

considered: 75% (independent of BES technology) and technology-specific values (see Table 30). All other 

parameters are similar to Table 32. 

Parameter PHS A-CAES Pb-A NaS ZnBr VRB 

Efficiency (%) 75 78 75 63 75 83 75 80 75 68 75 73 

XE ($/kWh) 55 30 375 325 300 400 

XP ($/kW) 1750 1400 550 575 1000 1250 

LCOE ($/MWh) 97.7 97.7 96.7 97.3 97.7 97.7 97.7 97.7 97.8 97.8 97.8 97.8 

BES power (% of 
peak) 

2.6 3.2 14.5 10.0 1.3 1.3 1.6 1.6 0.0 0.0 0.0 0.0 

BES energy (hrs 
of average load) 

0.4 0.5 4.6 2.2 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 

BES market 
share (%) 

0.8 1.0 4.3 1.9 0.1 0.1 0.2 0.2 0.0 0.0 0.0 0.0 

 

3-8- Upper bound for penetration of storage  

What would be the economically optimal deployment of bulk storage provided that storage is free and ideal 

(without losses)? This question gives the upper bound for the market share that the BES industry could gain. 

According to Table 37, the ultimate market share of BES would be 31% in the best case (gas price of $10/GJ 

or higher and with an emissions cap of 150 kgCO2e/MWh). The rest (69%) of the load is directly supplied by 
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wind in this scenario and the contributions of GT and DZC are zero. The optimal power capacity of BES is 96% 

of the peak load and its energy capacity is large enough to meet the average electric load for 52 days. In the 

carbon-free scenario, the optimal capacity of GT and DZC turn out to be zero too, regardless of the gas price. 

Table 37: Optimal characteristics of the storage and wind fleet assuming almost free (XE=XP=0.001) and 
almost ideal (efficiency=99.99%) bulk storage with a GHG emissions cap of 150 kgCO2e/MWh. All other input 
parameters are similar to Table 32. 

Gas 
price 

LCOE 
BES power 
capacity 

BES energy 
capacity 

BES market 
share 

Wind 
capacity 

Wind gen. 
share 

$/GJ 
$/MWh % of peak 

load 
Hours of 
avg. load 

% of annual 
load supply 

% of peak 
load 

% of annual 
generation 

5 67.9 78 1027 22 105 66 

7.5 73.6 78 1027 22 105 66 ηͳͲ 76.9 96 1248 31 159 100 

 

6- Conclusions 

We draw two policy-relevant conclusions from this work. First, large-scale adoption of bulk electricity 

storage compared to variable renewables and gas turbines is neither technically required nor cost effective as 

a means to reduce carbon emissions even when variable renewables play a large role. In other words, 

intermittent renewables need not to wait for the availability of cheap bulk storage to become an effective tool 

for decarbonization. This conclusion breaks down only when emissions must be reduced by more than about 

70% or when the cost of dispatchable-low-carbon power sources is very high (above $9000/kW with an 

emissions cap of 150 kgCO2e/MWh at current BES cost estimates, see Figure 44). Second, at their current 

costs, adiabatic CAES and PHS show the most appealing prospects in lowering the decarbonization cost 

among other BES technologies due to their low energy-specific capital costs and despite their much higher 

power-specific capital costs.  

The strength of our analysis, like any other, turns on its assumptions. Our most important simplifications 

include ignoring transmission, ignoring forecast errors of wind and load, and using a green-field model rather 

than one that allows dynamic adjustment of capacity over time. We have limited the simulation to 15-minute 
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time intervals and have not modeled any reliability requirements (e.g. reserve margin). We have also used a 

fixed gas price of $5/GJ and a constant storage efficiency of 75%.  

The following paragraphs tease out the quantitative conclusions that underpin each of the high-level claims, 

and explain why we think the policy-relevant conclusions are robust to our simplifying assumptions. Table 39 

provides a systematic overview of all significant assumptions and their likely impact on the conclusions.  

Our first conclusion is that availability of inexpensive BES has relatively small effects on the overall cost of 

electricity generation, unless extremely tight emission mandates are in place or dispatchable-low-carbon 

technologies are very expensive. Under an emissions cap of 150 kgCO2e/MWh Ȃ a ~70% cut in emissions 

intensity compared to the current USA or world average Ȃ a reduction in storage costs by more than an order 

of magnitude (to XE=5 $/kWh and XP=100 $/kW from already optimistic values of XE=25 and XP=1500 from 

the mechanical BES category) cuts the cost of electricity generation by 16%. This is not a significant reduction 

when compared to the impact of cutting the capital cost of wind or DZC by 50%, which lowers electricity cost 

by 26% and 29%, respectively (see Table 38 for a complete list of cases and comparative costs and 

emissions). One should note that assessing the likelihood and the associated costs of cutting the capital cost of 

different technologies were not in the scope of our analysis. We analyzed only the effects of reducing the 

capital cost of BES, wind, and DZC on the cost of electricity supply. 

The economically optimal deployment of bulk storage was a relatively small fraction of peak capacity, even 

when we imposed a tight emissions allowance of 150 kgCO2e/MWh (see Figure 41). It is crucial to note that 

despite its smaller capacity compared to the wind and gas fleet in our model, the optimal capacity of BES 

turned out to be substantially large compared to its current deployment level. As a case in point, the ratio of 

the existing BES power capacity to the peak load in the United States is below 3% (below 0.1% if PHS is 

excluded) [122]. Therefore, our simulation calls for massive increase in capacity of BES, from the current 

value of 3% of the peak load to ~10% (for mechanical systems with their current costs, as shown in Figure 

41). Our model also shows the need for larger buildup of wind compared to BES capacity. The ratio of the 

existing wind fleet to peak load is ~8% in the United States while the optimal value for the wind capacity 

using mechanical BES systems in Figure 41 is ~70%. Therefore, one can argue that the capacity of wind 
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should increase three times more compared to of BES (with current cost estimates for mechanical systems 

and with an emissions cap of 150 kgCO2e/MWh).  

The energy capacity of our optimally sized storage fleet sufficed to supply the average electric demand 

continuously for only 2 days with an emissions cap of 150 kgCO2e/MWh, even with the cheapest storage cost 

system that we simulated (XE=5 $/kWh and XP=100 $/kW). Other than niche applications that are not 

captured in this analysis, it is therefore hard to justify the development of storage for significantly longer than 

a day, especially hydrogen-based technologies which are even more capital intensive and less efficient 

compared to the systems studied here. The optimal energy capacity of BES in the carbon-free grid also 

remained small (below one day of average load) when XE൒ $25/kWh and XP൒ $100/kW. Obviously if the cost 

of storage is significantly reduced compared to other decarbonization pathways and compared to its current 

values, BES would capture a larger market share. As shown in Table 37, a free and ideal storage system would 

be sized to supply the average electric load for ~40-50 days. 

In many respects, we use assumptions that are optimistic for BES and therefore we give an upper bound for 

its cost effectiveness. The economically optimal size of the wind fleet would be lower in the real world once 

transmission requirements are taken into account (i.e. more capital-intensive wind farms). A smaller wind 

fleet would likely translate to a larger DZC fleet and hence, less variability in electricity supply. Therefore, the 

need for bulk storage and its impact on the overall cost of electricity would likely be lower than what we have 

presented here (see Table 39). Imperfect forecasts of wind availability and electric load would also hurt the 

economics of wind and storage compared to dispatchable generators. Finally, increased geographical 

dispersion of wind farms in future low carbon grids can lower the variability in the aggregate wind 

generation and reduce the need for BES. 
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Table 38: LCOE corresponding to various sensitivity analyses discussed in the conclusion section. All cases 
assume an emissions cap of 150 kgCO2e/MWh. ǲWǤRǤTǤǳ stands for ǲwith respect toǳǤ 

Scenario LCOE 
($/MWh) 

% change  

W.R.T base case 

Base case (Table 32 with XE=25 $/kWh, XP=1500 $/kW, and GHG 
cap= 150 kgCO2e/MWh) 

96.8 0% 

Base case with XE=5 $/kWh and XP=100 $/kW 81.2 -16% 

Base case with $1000/kW wind 72.0 -26% 

Base case with $4500/kW DZC 68.6 -29% 

Base case with $10/GJ gas 108.1 +12% 

Base case with XE=5 $/kWh, XP=100 $/kW, and $10/GJ gas 92.6 -4% 

Base case with $4500/kW DZC and $10/GJ gas 83.4 -14% 

Base case with $1000/kW wind and $10/GJ gas 77.7 -20% 

Base case with XE=30 $/kWh and XP=1400 $/kW (A-CAES cost 
values) 

96.7 ~0% 

Base case with XE=30 $/kWh, XP=1400 $/kW, and efficiency of 
63% (A-CAES cost and efficiency values) 

97.3 1% 

Base case with XE=30 $/kWh, XP=1400 $/kW, and efficiency of 
70% (A-CAES cost values and 10% improvement in efficiency) 

97.0 0% 

 

The price of natural gas in the future is obviously uncertain. Due to the strong performance of gas turbines in 

our results, especially CCGT, we assessed the effects of higher gas prices on the impacts that availability of 

cheap BES will have on the cost of electricity generation. Using higher gas prices mildly changes the 

aforementioned 16% drop in the cost of electricity with $5/GJ gas when the storage cost is reduced by more 

than an order of magnitude to XE=5 $/kWh and XP=100 $/kW (see Table 38). The same order-of-magnitude 

drop in storage costs but now with 10 $/GJ gas, reduces the electricity cost by only 14%. This saving is again 

not significant when we compare it with the benefits of lowering the capital cost of wind itself or DZC. Halving 

the cost of wind and DZC at $10/GJ gas lowers the cost of electricity by 23% and 28%, respectively. (Refer to 

Figure 49 to Figure 51 for full sensitivity analysis.) 

Cost-reduction efforts of various BES technologies should be prioritized, among other goals, according to 

their effectiveness in decreasing the cost of low-carbon electricity. As a case in point, the California Public 

Utilities Commissionǯs 2013 decision to exclude PHS plants larger than 50 MW from the Californiaǯs 1.3 GW 



188 
 

(by 2020) electricity storage mandate may be hard to defend on the basis of cost effectiveness or technical 

potential. The Commission argues that ǲthe sheer size of PHS projects would dwarf other smaller, emerging 

technologies; and as such, would inhibit the fulfillment of market transformation goalsǳ [123]. We strongly 

support the deployment storage technologies to enable learning-induced cost reductions. However, we 

caution that such technology-favoring policies can delay development of more cost-effective storage 

technologies such as PHS that seem to play a more significant role in decarbonizing electricity. We 

acknowledge that this argument also depends on one's judgment about the likelihood of future R&D progress 

in various BES technologies (i.e. reduction in the cost of each BES technology per unit of R&D expenditure). 

While electrochemical batteries are currently very far from being cost effective for bulk storage of electricity, 

they are or may be technically important and cost competitive in two other important applications in a low-

carbon economy. First, they can be attractive tools for managing mismatch between supply and demand of 

electricity at finer temporal resolutions which are not included in our study or ensuring reliability of the grid. 

These technologies have an economic advantage over other BES systems (e.g. PHS) and low carbon 

generators (e.g. DZC): they can be deployed in smaller scales and have higher operational flexibilities (e.g. 

higher ramp rates). Second, the electrochemical battery (and also hydrogen-based) technologies may play a 

central role in decarbonizing the transportation sector. Finally, note that each BES technology may well find a 

market niche (e.g. small islands with wind and diesel generation); here we examined only the large-scale 

electricity systems.  

Our second high-level conclusion is that the economics of BES are primarily driven by its energy-specific 

capital cost. Therefore, mechanical storage technologies (characterized with low energy-specific XE, but high 

power-specific XP, capital costs) are currently more competitive compared to electrochemical systems 

(intermediate XE and XP). Even halving the capital costs of batteries makes marginal changes in the overall 

cost of electricity generation (see Figure 43). Nevertheless, lowering the capital cost of mechanical systems, 

especially power-specific cost, drives a much steeper drop in decarbonization costs and it also boosts 

integration of wind and market share of storage. (Note that we have assessed the relative impacts of cutting 

the cost of various technologies on the cost of supplying low-carbon electricity. We have not, however, 

studied the relative effects of R&D investment in reducing the capital cost of various technologies.) Therefore, 
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developing BES technologies with low energy-specific capital costs (e.g. A-CAES) deserves a higher priority 

for bulk storage applications, unless the capital cost of systems with high power-specific costs (i.e. flow 

batteries) can be reduced much faster and cheaper.  

We acknowledge that siting of pumped-hydro and underground compressed air energy storage projects is 

geographically constrained in contrast to electrochemical systems. PHS requires two large water reservoirs 

with sufficient elevation difference and has a large land footprint. Underground storage of air needs a suitable 

geologic formation such as a salt dome. Our study did not include such restrictions. 

We were surprised by the promise of underground adiabatic CAES in contrast to very poor performance of 

diabatic CAES. Despite having the lowest energy-specific capital cost (XE) among all BES technologies we 

studied, gas combustion of diabatic CAES hurts its competitiveness under emissions constraints. The results 

points to the importance of developing storage technologies with low cost of energy capacity and low 

emissions and the more limited importance of roundtrip efficiency and power-specific cost of BES systems in 

lowering decarbonization costs.  

Finally, note that that we simulated the generation fleet under an optimal GHG constraint. Non-economic 

choices may produce very different outcomes. A region that forgoes nuclear power or other large-scale DZC 

or restricts gas turbines beyond the carbon constraints simulated here will use more bulk storage. 
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Table 39: Qualitative comparison of the major assumptions and simplifications of the model to the real world 
and their likely impact on the key results. The plus (negative) signs indicate the corresponding assumption/ 
simplification favors (disfavors) BES in our model compared to a given counterfactual. 

Assumption Counterfactual  Implications Impact on 
BES 

Green-field 
analysis 

A model with temporal 
evolution and vintaging of 
generation capacity in which 
factors costs and emissions 
constraints gradually 
approached the values used in 
our model (i.e. brown-field 
analysis).  

The brown-field model would keep much 
of the existing gas assets, making BES 
less competitive as the capital cost of gas turbines would be ǮfreeǯǤ 

+ 

Transmission 
costs and 
constraints are 
ignored  

A model with transmission 
constraints which also 
considers costs of adding new 
transmission 

Transmission costs driven by resource 
remoteness would increase the net cost 
of wind. This would make wind a bit less 
competitive with DZC and gas, slightly 
decreasing the need for BES. Moreover, 
siting of some BES systems (e.g. PHS) is 
geographically constrained. Therefore, 
considering transmission would hurt 
economics of some BES. 

+ 

Transmission costs can incent siting BES 
near generation (especially wind and 
solar) to allow economic optimization of 
the transmission capacity. Moreover, 
strategically siting of BES across the grid 
can relieve constraints and defer 
transmission upgrades. 

- 

Wind data are 
from ERCOT 
with a capacity 
factor of 35% 

A model considering a wide 
range of geographical areas 
with different wind and load 
profiles 

ERCOT is endowed with relatively strong 
wind resources. Lower capacity factors 
would make wind more capital-intensive 
and give gas and DZC an advantage over 
wind and BES. System-wide capacity 
factors significantly beyond 35% seem 
unlikely to us.  

+ (for 
capacity 
factors 
below 
35%) 

 

Correlation between wind and load may 
vary in different geographical regions. 
Repeating the simulation for other 
systems can enhance robustness of 
results.  

- 
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Table 39 (Continued) 

Solar energy is 
not modeled 

A model allowing both wind 
and solar capacity 

Solar farms have lower capacity factors 
and are currently more expensive (~>1.5 
times) compared to wind farms. 
Therefore, we do not expect considering 
solar will alter our conclusions about the 
need for BES, unless cost of solar steeply 
drops below of wind in future.  

nil 

 

Wind availability is sometimes higher 
overnight and in winter, in contrast to 
load. Changes in solar irradiance may 
follow changes in load better. This may 
improve economics of solar-based 
electricity and possibly increase demand 
for BES  

- 

15-minute 
time resolution 

A model considering finer 
resolutions and reliability 
requirements of the grid (e.g. 
black start) 

A high-temporal resolution model would 
build storage for the short duration load 
balancing, but this is independent from 
bulk storage of electricity, the focus of 
this paper.  

nil 

1-year 
simulation 
period 

Taking into account inter-
annual variations in wind 

Renewable energies, especially wind, can 
experience large inter-annual variations, 
which increase their effective cost and 
reduce their optimal capacity. 

 

+ 

Static 
modeling 

A model considering future 
reductions in cost of all 
technologies (gas, wind, and 
DZC), not just BES 

Using current cost estimates for gas 
turbine, DZC, and wind can favor BES 
providing their costs can be reduced 
faster than BES and vice versa. 

nil 

Gas price of 
$5/GJ 

A model considering future gas 
prices across various region 
and electricity markets 

According to Section 3-6, we do not 
expect major impacts on the key 
conclusions unless gas prices are above 
$20/GJ. 

- (if price 
is beyond 
~$20/GJ)  

Forecast errors 
in load and 
wind are 
ignored 

A model considering forecast 
errors (ax-ante rather than ex-
post) and their improvement 
over time 

Utilization factor of wind and BES would 
be lower in the real world. Our model can 
build the smallest amount of wind and 
BES to economically meet the electric 
load. Therefore, considering forecast 
errors would make wind and BES more 
capital intensive and less economical. 

+  
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Chapter 6: Conclusions 
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The essence of this dissertation is to assess the role and significance of bulk energy storage technologies 

(BES), especially compressed air storage (CAES) in cutting greenhouse gas emissions from the electricity 

supply in service of mitigating climate change. In doing so, three primary research questions are tackled:  

1. What are the thermodynamics and engineering performance of selected low-carbon CAES 

technologies? (Chapter 2)  

2. How do the emissions and economics of a newer and cleaner CAES design (Distributed CAES, 

D-CAES) compare to the mainstream CAES technology as well as to gas turbines? (Chapters 3 and 4)  

3. How cost effective are bulk storage technologies in general, as one of the building blocks of future 

low-carbon electricity systems? Specifically, what would be the economically efficient penetration 

level of bulk storage at various levels of electricity decarbonization? (Chapter 5) 

This chapter summarizes the key findings, conclusions, and energy policy implications of previous chapters. It 

integrates them into a broader picture regarding the need for bulk electricity storage and its potential to 

address the practical challenges of deeply cutting emissions from the electricity sector. Future work is 

recommended to refine the results and broaden the scope of the conclusions. 

1- Managing GHG emissions of CAES 

Although CAES is arguably among the cheapest and most mature technologies for bulk storage of electricity, 

the conventional CAES technology may be too carbon intensive to play a role in the prospective carbon-

constrained grids. The direct emissions of CAES (~280 kgCO2e/MWh with a heat rate of 4.2 GJ/MWh), which 

are caused by the need for combusting natural gas to heat compressed air prior to expansion and power 

generation, seem insignificant (about 40-60% of gas turbines).  However, large-scale use of CASE would likely 

be economical only in a world with a very high prenateratoin of intermitent renewables. The most plausible 

justificatoin for such a high intgeration of renewables is stringent carbon constraints. Nonetheless, under 

such tights restrictions, the resudiaul emssions of CASE sharply limit it's competetiveness with respect to 

other carbon-free storage systems, such as electrochemical batteries. 

Poor prospect of the conventional CAES technology as a carbon mitigation tool has motivated development of 

low- or even zero-carbon compressed air storage concepts. A main category of such advanced designs is 
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based on utilizing the heat of compression (generated during the charging phase) to negate the heating fuel 

demand of the storage plant during the discharge process. 

Chapter 2 provided a first-order estimate of the thermodynamic and emissions performance of four such 

cleaner CAES designs. An analytical exergy analysis of one full charge and discharge cycle was performed to 

quantify the key engineering metrics of these advanced CAES systems, such as roundtrip storage efficiency 

and exergy density. The First and Second Laws of thermodynamics and ideal gas formulae were applied to 

different system components to study the performance of the storage plants. Moreover, two of these four 

CAES designs were introduced and analyzed for the first time. A PCT (Patent Cooperation Treaty) patent 

application was filed based on one of the studied CAES concepts. 

Export of the compression heat to supply external low-temperature heating demands (e.g. space heating) had 

the highest overall exergy efficiency (~80%) (see Section 3-3 in Chapter 2). This concept, called Distributed 

CAES (D-CAES), is based on relocating the compression facility from the air storage site to the heat load site. 

Though this system is thermodynamically superior to the conventional CAES design (with an exergy 

efficiency of ~50%), it will not be technically and economically viable unless a suitable heating load and air 

storage are in close proximity (in 100 km range, see Section 3-5 in Chapter 4).  

Physical storage of the high-temperature (e.g. 600 °C) heat of compression to heat the expanding air during 

the discharge process is the core idea of the second advanced CAES system studied, adiabatic CAES (A-CAES). 

Although its capital cost would be higher than conventional CAES, A-CAES can reach relatively high roundtrip 

storage efficiencies (~70%) without any fuel combustion and GHG emissions (see Section 4-4 in Chapter 2).  

Chemical storage of the compression heat in the form of hydrogen is an alternative strategy to its physical 

storage (as done in A-CAES). Hydrogen can be generated via electrolysis and stored at the same time as 

compressed air. Combustion of the stored hydrogen later heats the expanding air during the power 

generation phase, which eliminates the need for natural gas combustion (conventional CAES) or physical 

storage of the compression heat (A-CAES). The inside-the-fence line (i.e. direct) GHG emissions of hydrogen-

based CAES technologies are negligible, comparable to A-CAES. 
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The third advanced CAES design studied in Chapter 2 is based on the fact that electricity demand of 

electrolysis decreases at higher reaction temperatures. Feeding the heat of air compression into a high-

temperature electrolyzer (HTE) to reduce the electricity-intensity of hydrogen production is the essence of 

the CAES-HTE design. Nevertheless, providing high-temperature heat hurts the performance of the 

compressors (due to higher pressures and limited intercooling). The overall exergy efficiency of the 

CAES-HTE storage system modeled in Chapter 2 is ~50%, assuming an ideal electrolyzer. Using more realistic 

values for the efficiency of the electrolyzer itself (e.g. an efficiency of 50% instead of 100%) lowers the 

efficiency of CAES-HTE to about 35% (see Figure 15 in Chapter 2).  

The simulation revealed that electrolysis of water at the ambient temperature, so called low-temperature 

electrolysis (LTE) would lead to similar values for the roundtrip storage efficiency of the CAES-LTE system 

compared to the CAES-HTE configuration. This is because the lower electricity demand of the electrolyzer is 

offset by the higher work of the compressor in the CAES-HTE design. Therefore, CAES-LTE looks more 

competitive than CAES-HTE considering the engineering difficulties and higher costs of electrolyzers 

operating at elevated temperatures. 

Excluding D-CAES Ȃ which may be practical only in niche markets Ȃ A-CAES seems to provide the best 

trade-off between storage efficiency, GHG emissions and capital cost among the CAES technologies studied. 

This conclusion is in line with the recent R&D efforts (e.g. the pilot ADELE project in Germany [30]) to prove 

the concept and overcome the technical challenges of A-CAES as a potentially impactful technology for 

electricity decarbonization. 

In many respects, the thermodynamic simulation presented in Chapter 2 paints an optimistic picture of the 

performance of CAES technologies. This analytical study rests on the ideal gas equation of state with the 

assumption of temperature-independent specific heats and ignores several inefficiencies such as heat losses 

in the cavern or the thermal storage. Part-load operation of the storage plant is not modeled either. Future 

work could build on the model developed in Chapter 2 to perform a more complicated analysis of the various 

CAES systems with dynamic modeling of heat transfer and thermal energy storage, particularly A-CAES and 

D-CAES. A thorough analysis using more sophisticated tools and software products (such as Aspen Plus) can 
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address some of the modeling limitations and uncertainties of the simulation in Chapter 2. Nevertheless, the 

systematic treatment of all the CAES technologies using the same approximations is likely to give relative 

performance figures of merit that are more reliable than absolute performance figures for a particular 

technology. Furthermore, the agreement of the results presented here with the performance of the real world 

CAES plants (McIntosh and ADELE) and with the literature of CAES suggests the robustness of the 

conclusions regarding the poor exergy performance of hydrogen-based and conventional CAES technologies 

compared to A-CAES and D-CAES.  

2- CAES and D-CAES under emissions tax 

Locating the compressor inside a municipal region (instead of at the air storage site) is the core requirement 

of the D-CAES system. This enables supplying the otherwise-wasted compression heat to an external space 

and water heating load. Heat recovery brings in fuel credits (equal to the saved heating fuel) for the D-CAES 

facility and reduces its effective (apparent) GHG emissions intensity. However, both the capital cost and 

pressure losses of the pipeline required to transport the compressed air to the storage site undermine the 

viability of this low-emissions air storage system.  

Chapter 3 informed the question of how exporting the compression heat might strengthen the economics of 

air storage plants against gas turbines for managing the intermittency of wind. Since a substantial body of 

literature (for instance [52, 59, 60, 124]) has shown the need for some sort of carbon constraints for CAES to 

be economically viable compared to gas turbines, various levels of carbon tax were considered and a green-

field analysis was undertaken. 

The model developed in Chapter 3 optimized the capacity and hourly operations of a hypothetical generation 

fleet with the total cost of supplying an electric load as the objective function. The generation portfolio was 

made up of wind, simple and combined cycle gas turbines, and either D-CAES or conventional CAES. A 

variable carbon tax was blended into the base price of $5/GJ for gas. The electricity and heating load data, as 

well as wind profiles were from Alberta, Canada. The contribution of this analysis was quantifying the 

environmental and economic value of heat recovery from CAES at the systems level (i.e. designing an 

economically optimal generation portfolio) under an emissions tax regime (0-80 $/tCO2e). 
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The length of pipeline was identified as the prominent factor for the economic competitiveness of D-CAES 

with conventional CAES and gas turbines. Assuming a moderate pipeline length of 50 km, neither CAES nor 

D-CAES entered the generation fleet until an emissions tax of $40/tCO2e was applied (see Figure 20 and 

Figure 21 in Chapter 3). This level of tax on top of the assumed market price of $5/GJ was equivalent to an 

effective gas price of ~$7.6/GJ. Past this price however, D-CAES provided a lower system-wide cost of 

electricity compared to conventional CAES, although the gap remained very small (~1% with $80/tCO2e tax 

and a 50 km pipeline). This phenomenon was driven by the small market share of both CAES and D-CAES as 

compared to wind and gas (~8% of the load supply with an emissions tax of $80/tCO2e). Interestingly, gas 

turbines remained very competitive even at high penalties for GHG emissions (~25% of electricity was 

supplied by gas at $80/tCO2e tax; refer to Section 3-2 in Chapter 3 for details.) It is of note that the electricity 

load profile used in Chapter 3 was based on the peaking load of Alberta (total load minus the base load). If the 

total load had been used instead, the share of gas turbines would likely have been even higher. 

D-CAES not only reduced the overall cost of electricity supply compared to conventional CAES, but it also 

improved the total emissions intensity of the generation fleet (by about 10% in the best case). As the carbon 

tax increased and the distance between the heat load and air storage decreased, D-CAES became the more 

economically and environmentally attractive (see Figure 27 in Chapter 3). 

The analysis in Chapter 3 indentified a range of pipeline lengths and emissions taxes under which D-CAES 

might support more economical integration of wind compared to conventional CAES and gas turbines. It is 

important, however, to underscore that D-CAES will not become a game changer for supplying low-carbon 

electricity due to its inherently small market size. First and foremost, its economics are closely linked to the 

existence of a suitable air storage facility in close proximity to a large, concentrated heating (or cooling) load. 

Moreover, the size of the electric load (not the heat load) that D-CAES interacts with seems to be a limiting 

factor. In order to maximize utilization of the recovered heat, the capacity of the D-CAES compressor should 

be comparable to the base heating load. The consistently small optimal capacity of the D-CAES compressor 

compared to the peak electric load (below 10%, see Figure 21 in Chapter 3) indicates that the heating load 

needs to be much smaller relative to the electricity load. Hence, the niche market of exporting low-
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temperature heat of compression can saturate quickly, thus hindering deployment of the D-CAES technology 

at scale.  

There are some additional scenarios in which D-CAES may outcompete CAES that Chapter 3 did not evaluate. 

While a copper-plate analysis was performed in Chapter 3, transmission constraints will limit the operations 

of D-CAES less compared to conventional CAES in the real world. Since the compression train of D-CAES is 

co-located with load, its ability to store excess and cheap electricity is more resistant to grid congestions and 

transmission outages. Moreover, if the expander of D-CAES is also moved to the load site, no transmission line 

and gas pipeline between the storage site and the load would be needed. Quantify the economic value of these 

advantages of D-CAES is left for future research. Finally, storing the excess recovered heat (even seasonal 

storage) or using it for cooling purposes (e.g. absorption chilling) could bring in more profits for D-CAES 

compared to the simple system analyzed in Chapter 3. 

3- CAES and D-CAES in deregulated electricity markets 

Volatility in electricity prices is essential for the economic viability of compressed air storage plants whose 

primary applications are energy arbitrage and load shifting. The price of natural gas is also important as it 

directly impacts the fuel cost of CAES and possibly shifts the spot price of electricity. Gas prices can also 

strongly influence the heat recovery revenues of D-CAES because natural gas is a relatively clean and 

accessible fuel for district heating applications. To explore the interplay between these factors, ten years of 

historical gas and electricity data from a specific deregulated market (Alberta) were used in Chapter 4 to 

compare the economics of D-CAES and conventional CAES and to possibly build a business case for D-CAES.  

Chapter 4 used a profit maximization routine to study the effects of market conditions (spot prices of gas and 

electricity) and selected design parameters (e.g. size of air store) on the cost competitiveness of two 

hypothetical D-CAES and conventional CAES plants performing electricity arbitrage. Furthermore, a 

geological screening of the gas reservoirs within a 100 km radius of the major cities in Alberta was performed 

to investigate how realistic it might be to site a D-CAES facility in the vicinity of a large, concentrated heating 

load. Although a general model was synthesized in this chapter, the results were specific to Alberta, as a 

potential niche market for D-CAES. 
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The revenues of conventional CAES showed a very strong dependence on volatilities in the electricity prices 

while it was essentially insensitive to gas prices (correlation coefficients of 0.95 and 0.04; see Figure 31 in 

Chapter 4). The trend was, however, the opposite for the incremental profit of D-CAES over CAES. It was 

strongly influenced by gas prices (correlation coefficient of 0.91) and independent of volatilities in electricity 

prices. The results suggested that both high gas prices and a volatile electricity market were required for 

economic attractiveness of D-CAES. 

D-CAES outperformed CAES over the ten-year simulation period if the heating load and air storage were sited 

closer than 75 km. Based on the results of the geological screening and since this siting breakeven point 

occurred at a relatively long distance, Chapter 4 concluded that D-CAES might have a competitive advantage 

over conventional CAES in Alberta. Higher profits as well as lower GHG emissions led to a negative carbon 

abatement cost of -$40/tCO2e for the D-CAES plant over the study period (with a 50 km pipeline). 

Another interesting observation was the relatively small optimal capacity of the compressor compared to the 

expander (~20%) for both storage facilities. A larger generation compared to storage capacity maximized the 

sales of electricity during the infrequent price spikes. One should note that as more storage and peaking 

plants are added to any generation fleet, the volatility of prices will reduce, thus hurting the profitability of 

individual plants. Such market-specific dependencies introduce high uncertainties in generalizing and 

extrapolating the results to different geographical regions as well as to future grids with possible major 

changes (e.g. larger availability of interruptible loads). The goal of Chapter 4 was developing a model to 

assess the cost-competitiveness of D-CAES and applying the model to a specific electricity system in which 

D-CAES might have a market niche. 

Both Chapters 3 and 4 evaluated only the electricity arbitrage and load shifting applications. Nonetheless, 

operational flexibility of compressed air storage plants such as high part-load efficiency and fast ramp rates 

may increase their competitiveness with other generation and storage technologies. Incorporating these 

limited and market-specific benefits into future analyses would provide a better and broader understanding 

of market niches for D-CAES.  
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A fundamental assumption in Chapter 4 is that the modeled storage plants act as merchant (stand-alone) 

facilities and are price takers. However, future price structures could significantly change in response to 

higher penetration of intermittent renewables. For instance, adding solar farms at scale could depress peak 

prices (peak in both supply and demand in the afternoon hours) and increase off-peak prices (no generation 

overnight). Taking into account the price uncertainties is extremely complicated, market-dependant, and 

geographic-specific. Future work remains to characterize such changes in pricing schemes and their impact 

on the economics of storage systems. 

The screening presented in Chapter 4 highlighted the pay thickness as the most limiting factor among the four 

geological criteria considered. (Less than 2% of the screened natural gas pools passed this filter, see Section 

2-4 in Chapter 4). Permeability, however, may be an even tighter constraint that was excluded from the 

analysis due to the scarcity of rigorous data in the public domain. High permeability (tens of millidarcy) is 

required for fast charging and discharging of the air storage plant38. Rapid developments in the field of 

horizontal drilling and hydraulic fracturing (fracking) may relax this constraint in a cost-effective manner 

though [125]. A thorough assessment of suitable geologic formations for air storage is integral for any 

comprehensive market analysis of compressed air storage. Such a study would have particular importance for 

both D-CAES and A-CAES. The inherent geographical requirements of D-CAES add another level of complexity 

to finding a proper geologic formation. A-CAES seems to provide the best combination of storage efficiency 

and emissions performance among CAES designs analyzed in Chapter 2. The low exergy density of A-CAES 

caverns, however, mandates larger storage volumes compared to conventional CAES design. This limitation 

can potentially undermine the viability of deploying A-CAES at scale. 

4- Importance of bulk storage for electricity decarbonization 

The low exergy density of compressed air-based storage technologies raises legitimate concerns about their 

practicality if large volumes of such plants are needed in prospective low-carbon electricity systems (i.e. 

physical shortage of suitable reservoirs for air storage).  Geographical constraints for siting pumped hydro 

                                                                    
38 In fact, low permeability was cited as one of the key reasons for cancellation of the Iowa Stored Energy Park 
(ISEP) CAES project in 2011. 
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storage (PHS) projects and the high price tags of electrochemical batteries are also concerning if large 

quantities of bulk storage are needed to manage intermittency of wind and solar and deeply cut the GHG 

emissions from the electricity sector. 

Chapter 5 attempts to address the fundamental question of how much bulk storage is economically efficient 

to drastically (e.g. 70%) decarbonize the electricity supply. A key factor here is the capital cost of storage 

systems themselves, which is very uncertain (see Table 30 in Chapter 5). Rather than using a point estimate 

for the cost of specific storage technologies, a parametric approach was taken to address cost uncertainties 

and technological breakthroughs. Splitting the total capital cost of bulk storage technologies into two separate 

components (energy-specific and power-specific costs, $/kWh and $/kW) allowed interpretation of the 

results over a wide range of cost estimates for storage, even significantly below the current values. This 

strategy can inform R&D efforts and energy policy on the relative importance (and the priority) of reducing 

the power-specific and energy-specific capital costs of various technologies for bulk storage application. 

Storage of the excess wind and solar energies is not the only strategy to achieve a low-carbon electricity grid. 

Low capital cost in addition to good emissions performance make gas turbines cost-effective carbon 

mitigation candidates. Moreover, a suite of dispatchable-zero-carbon (DZC) generation technologies such as 

nuclear, geothermal, and biomass can be deployed instead of, or in conjunction with the intermittent 

renewables. A sound decarbonization policy needs to consider the cost competitiveness of all potential 

pathways, not just storage technologies in isolation.  

Chapter 5 investigated the economically optimal deployment level of BES, wind, gas turbine, and DZC under 

stringent restrictions on GHG emissions at a systems level, over a broad range of BES costs. A green-field 

analysis was performed to minimize the overall cost of electricity supply based on historical wind and 

electricity load data from ERCOT at a 15-minute temporal resolution and over a simulation period of one 

year. Robustness of the results to the price of natural gas and the capital cost of wind and DZC was evaluated. 

Additionally, Chapter 5 provided a comprehensive survey of the literature on the cost and roundtrip 

efficiency of various bulk storage technologies. 
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In contrast to the common notion, the availability of cheap storage (e.g. ͷͲΨ reduction compared to todayǯs 
costs) had relatively small effects (<7%, see Figure 43) on the overall decarbonization costs. This key 

conclusion broke only when the capital cost of DZC or gas was very high (above ~$9000/kW for DZC and 

$20/GJ for gas, see Sections 3-5 and 3-6 in Chapter 5) or extremely stringent emissions restrictions were in 

place (carbon-free electricity, see Figure 40 in Chapter 5). Drastically reducing the capital cost of BES by an 

order of magnitude (to XE=5 $/kWh and XP=100 $/kW from already optimistic values of XE=25 and XP=1500 

from the mechanical BES category) reduced the LCOE by 15%. 

Despite its small influence on the cost of low-carbon electricity, the capital cost of BES (particularly its 

energy-specific cost) impacted the optimal penetration level of the intermittent renewable (wind) in a 

noticeable manner (see Figure 41 in Chapter 5). The relative importance of BES to gas turbines for wind 

integration was approximated by calculating the ratio of their optimal power capacities when DZC was 

deliberately kept out of the generation portfolio. At a sharp carbon cut of ͹ͲΨ compared to todayǯs emissions 
levels, the role of BES turned out to be three times less important compared to gas turbines in the best case 

scenario (refer to Table 33 in Chapter 5 for the details). The relatively lower importance of BES for wind 

integration compared to gas turbines in Chapter 5, however, should not undermine the absolute need for the 

buildup of bulk storage systems in the future low-carbon electricity systems. As a case in point, the ratio of 

the existing capacity of gas turbines to storage is about 19 in the United States [122], far above the optimal 

ratio calculated in Chapter 5 to sharply decarbonize the electricity supply. 

Long-term storage of electricity was not economically justified. The optimal energy capacity of BES sufficed to 

meet the average load for only one day with the current capital cost estimates and under a tight emissions cap 

of 150 kgCO2eȀMWh for the generation fleet ȋ̱͹ͲΨ cut in todayǯs emissions intensity of the gridȌǤ Reducing 

both the power-specific and energy-specific costs of storage to $100/kW and $5/kWh could not increase the 

optimal energy capacity of BES by more than a factor of two (Section 3-3 in Chapter 5). 

Mechanical-based BES technologies, namely adiabatic CAES (A-CAES) and pumped hydro storage (PHS) were 

consistently more influential in reducing the cost of electricity supply and in supporting integration of wind 

compared to electrochemical storage systems (i.e. batteries), at their current costs. This is due to the 
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substantially lower energy-specific costs of the mechanical storage systems despite their higher power-

specific costs. A-CAES gained the highest market share among other storage technologies studied because of 

its low energy-specific cost. Finally, the prospect of diabatic (conventional) CAES turned out to be very poor 

due to its non-negligible residual GHG emissions associated with combustion of natural gas. 

It is necessary for R&D efforts and decarbonization policies not to overestimate the urgency and relative 

importance of reducing the cost of bulk storage systems to reduce the GHG emissions from the electricity 

sector. This is based on the much lower impact of reducing the capital cost of BES compared to wind and DZC, 

and because of the strong performance of gas turbines. One should however, note that Chapter 5 did not 

study the likelihood and the required R&D expenditures to cut the capital costs of various technologies.  

Using real-world load and wind data from ERCOT as a relatively large electricity system with abundant wind 

resources and performing extensive sensitivity analyses supported the strength and generality of the 

conclusions in Chapter 5. The findings of this chapter were based on few key simplifications and assumptions 

and limited modeling capabilities. It is essential to consider the impacts of these simplification and modeling 

assumptions when evaluating the conclusions (see Table 39 in Chapter 5 for a comprehensive list). 

A copper-plate assumption was made in Chapter 5. Taking into account the transmissions costs and 

constraints can both favor and disfavor BES though. On one hand, including cost of transmission lines makes 

intermittent renewables more capital intensive. This will work against the optimal capacity of wind and the 

need for bulk storage to manage its intermittency. On the other hand, strategically siting storage systems, in 

particular batteries, can reduce grid congestion and strengthen the economic value of storage. Therefore, 

modeling transmission will make the results more accurate for specific grids though it may hurt the 

generality of the conclusions. 

Including other renewable sources, especially solar energy, in the generation portfolio would also strengthen 

the analysis. Solar farms have lower capacity factors (~50% lower) and higher capital costs (>50% higher 

[126] Ȃ although the gap is rapidly closing) compared to wind farms. The cost of electricity supply from solar 

is consequently, higher than wind. On the other hand, the diurnal and seasonal intermittency of solar may 

match the variability in load better than wind, which can shift the need for storage in both directions. 
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Inclusion of solar energy may lower the need for the peaking capacity (e.g. summer peaks) while it can also 

increase the need for storing electricity produced overnight by the conventional power plants. Therefore, 

building on the existing model to include a broader set of generation technologies, especially solar is of high 

importance to refine the conclusions of Chapter 5. 

One of the most comprehensive assessments of renewable integration in the United States is the ʹͲͳʹ NRELǯs 
Renewable Electricity Futures Study [127]. This group modeled the entire US grid in 2050 at an hourly 

resolution to evaluate the technical possibility of supplying a substantial portion (e.g. 80%) of the load with 

renewables. The key strengths of the NREL study in the context of this thesis are taking into account 

transmission infrastructure, geographical distribution of renewables, reliability requirements (although 

limited), and a broad portfolio of technology pathways (e.g. biomass, clean coal, and solar). Nevertheless, the 

conclusions with respect to the relative insignificance of storage are consistent with those of Chapter 5. In the 

80% renewable integration scenario (equivalent to ~80% reduction in GHG emissions intensity of the 

electricity sector) for instance, the optimal power capacity of storage to peak load was ~15%. This is while 

the ratio of the combined capacity of wind and solar to peak load was ~88%. Moreover, the capacity of wind 

was double that of solar, highlighting the relative importance of including wind in Chapter 5. Finally, the 

NREL report also asserted the higher cost-effectiveness of mechanical storage systems compared to batteries.  

The analysis in Chapter 5 used a temporal resolution of 15 minutes because the core objective was assessing 

the need for bulk storage of electricity. Nevertheless, some bulk storage systems can provide a variety of 

ancillary services to the grid at finer time scales (e.g. frequency control). Inclusion of such market 

opportunities would provide a broader picture of the role of and need for the storage systems to make low-

carbon grids a reality. A drastic change in the overall conclusions regarding the marginal significance of bulk 

storage for electricity decarbonization, however, is not expected since not all ancillary services are additive. 

For instance, the reliability requirements for providing spinning reserve could constrain the storage plant 

from performing peak shaving or load following duties. 

Furthermore, variations in wind and solar-based electricity are much stronger (higher amplitude) at larger 

time scales (lower frequencies); diminishing the relevance of modeling finer times scales when assessing the 
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need for bulk storage systems. For instance, Lueken et al. [109] used the frequency domain (power spectrum) 

method to analyze the power output from wind, solar photovoltaic (PV), and solar thermal farms and 

concluded that the fluctuations were at least three orders of magnitude smaller at frequencies of (10 min)-1 

compared to those at (12 h)-1. Moreover, interconnecting wind farms Ȃ even over moderate distances of few 

hundred kilometers Ȃ reduces their output variability across all time scales but it particularly dampens the 

high frequency variations [6, 128]. As a case in point, Fertig et al. [6] studied the effects of interconnecting 

wind farms over four wide geographical regions in the United States using the power spectra analysis. They 

found that daily fluctuations were still 3-5 orders of magnitude stronger than at the hourly time scale. In 

summary, as the penetration of wind and solar increases, the need for balancing variations at small time 

scales will decrease more per unit of generated electricity. Consequently, including time resolutions finer 

than 15 minutes at high penetration of intermittent renewables is not expected to cause a major departure 

from the fundamental conclusions - that relatively high cost and immaturity of bulk storage technologies are 

not the key hurdles to deeply cutting emissions from the electricity system.  

Another simplification in Chapter 5 was using constant heat rates and emissions intensities for all generators, 

regardless of their loading. In the real world, ramping limits and part-load operation of gas turbines degrade 

their CO2 and NOx emissions compared to the nameplate levels. For example, in a 2008 study Katzenstein and 

Apt [129] estimated the emissions of two industrial gas turbines operated at a 1 minute resolution to 

compensate for fluctuations in the output of individual wind and solar PV farms in order to supply baseload 

power. They concluded that reductions in CO2 emissions were ~25% lower in reality compared to the 

nameplate values. Using a fixed emissions intensity for gas turbines, regardless of their load level is therefore, 

a shortcoming of the analysis presented in Chapter 5. However, there are indications that the principle 

conclusions of Chapter 5 are robust to this modeling simplification. Firstly, the part-load efficiency and 

emissions performances of gas turbines have been improving to address these concerns (e.g. KA26 design by 

Alstom [130], Frame H series by Siemens [131], and FlexEfficiency50 design by General Electric GE [132]). It 

is reasonable to assume that such improvements will intensify under deep emissions cuts considered in 

Chapter 5. Secondly, only the time scale of 15 minutes and above is the focus of Chapter 5. A suite of strategies 

other than ramping gas turbines can be undertaken to address the mismatch between supply and demand at 
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finer time scales, including interconnecting variable renewables and using demand-side management. In fact, 

deploying electrochemical batteries might be a cost-effective strategy for that application, which is separate 

from the concentration of Chapter 5.  

In summary, this dissertation has provided an engineering and economic analysis of selected compressed air 

storage technologies for bulk storage of electric energy to manage variability of wind. Adiabatic CAES 

revealed the most attractive attributes. A simple but very informative framework was also developed to 

attempt a broader question of how much bulk energy storage would be needed to drastically and cost 

effectively cut GHG emissions of electricity supply. The results indicated that gas turbines could cost 

efficiently support a large penetration level of intermittent renewables. Taken as a whole, the intellectual 

contribution of this PhD work has been to provide insights into efficient decarbonization of the electricity 

sector, undoubtedly among the top priorities of any comprehensive and effective policy to mitigate climate 

change.  
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