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Abstract

The first part of this thesis introduces a new statistical method to estimate parameter values in

a mixed population consisting of both single- and bi- phasic longitudinal trajectories. This pro-

posed model is capable of categorizing patients according to their longitudinal relationships and

estimating the associated parameters of interest, while accounting for between-patient variability.

We applied this method to a large phase III randomized trial and found significant differences in

patients between different treatment cohorts and within the same treatment cohort, in terms of

their longitudinal relationships, with the majority of patients displaying complex bi-phasic trends.

In the second part of this thesis, we designed a dynamical system model to explain the observed

bi-phasic longitudinal trends and their implications for the underlying cancer biology. We found

that a hybrid model encompassing both hierarchical cellular model and clonal expansion model is

needed to explain the observed bi-phasic patterns. The third part of this thesis explores the effects

of proliferative patterns in colon crypt on crypt stability and rates of somatic evolution.
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1.1 Summary

A piecewise linear random-effects mixture model taking into account both heterogeneity and

nonlinear relationships between biomarkers and time is presented. The proposed model is capable

of categorizing patients according to their functional relationships and estimating the associated

parameters of interest, while accounting for between-patient variability. This model is applied to a

large randomized controlled phase III clinical trial for multiple myeloma. Results from this model

suggest that the longitudinal tumor burdens in multiple myeloma patients are heterogeneous

and nonlinear, even among patients assigned to the same treatment cohort. In addition, between

cohorts, there are distinct differences in terms of the regression parameters and the distributions

among categories in the mixture. These results imply that longitudinal data from clinical trials

may harbor unobserved subgroups and nonlinear relationships; accounting for both are essential

for analyzing longitudinal data. Given the short follow-up time of clinical trials, the current

implementation of the model focuses primarily on mono- vs. bi- phasic changes in longitudinal

relationships; however this model can be extended to include multi-phasic changes and multiple

categories, as well as other clinically important covariates.

Keywords: longitudinal data, random-effects model; mixture distributions; piecewise linear.

1.2 Introduction

The abilities to handle imbalance in the numbers of observations, to distinguish between-subject

and within-subject sources of variability, and to model population-level response as well as

individual trajectories, make random-effects model a popular choice for analyzing longitudinal

data, particularly in medical research [1–3]. Recent progress extends the random-effects models to

account for heterogeneity in data, assuming it arises from a finite mixture model [4]. This exten-

sion is particularly relevant to clinical research, since clinical data may often contain unobserved

categorical variables corresponding to, for example, “responders” or “non-responders”. Ignoring

such mixtures may result in biases in estimates. Xu and Hedeker applied this idea and found
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there is ample evidence of non-homogeneous responses in two large psychiatric clinical trials [5].

Ketchum, Best and Ramakrishnan further extended the mixed-effects mixture models to allow for

differences in the variance-covariance matrices [6]. These improvements enable the random-effects

models to better characterize heterogeneity in data.

In addition to population heterogeneity, changes in functional relationships between response

variables and explanatory variables, particularly with time, are ubiquitous in longitudinal studies:

HIV-1 viral load [7, 8], hepatitis B/C viral loads [9, 10], BCR-ABL expression levels in chronic

myeloid leukemia [11, 12] and M-protein declines in multiple myeloma [13]. Biomarkers in these

examples exhibit nonlinear changes over time, and many of which are biphasic in nature. One

method for accounting for changes in the functional relationships is the nonlinear mixed-effects

models [14,15]. Morrel et al. applied a piecewise nonlinear mixed-effects model to a prostate cancer

data set with unknown change time. Naumova, Must and Laird applied a piecewise mixed-effect

model with known change points to a prospective study on the development of obesity in female

adultescents; in this model, the piecewise change points are the time of menarche [16]. Cudeck

and Klebe, and Harring et al. applied similar ideas to psychology related data sets [17, 18]. There

examples demonstrate the flexibility of the nonlinear mixed-effects models to handle changing

functional relationships over time.

Both heterogeneity and varying functional relationships have been addressed separately, however,

only a few papers addressed both problems simutaneously. Pauler and Laird introduced a gen-

eral framework for finite mixture of nonlinear hierarchical models; and they applied their method

to investigate noncompliance in a HIV clinical trial [19]. In their application, the mixture con-

sists of a constant mean model for the complying patients and a piecewise linear model for the

noncomplying patients. Recently, Lu and Huang extended the general framework proposed by

Pauler and Laird to incorporate skewness in distributions [20]; they applied their method to an-

alyze HIV viral load data from the patients enrolled in the ACTG398 trial [21]. The underlying

nonlinear mixed-effects model they have used is formulated based on the model structure from a

3



well-known ODE model [22]. One problem associated with these approaches is that their mod-

els require extensive prior knowledge in order to specify the nonlinear models before analyzing

the data. Misspecification of the model may have detrimental effects on parameter estimation

and patient classification. Particularly, if the differences between different categories in the mix-

ture are not well separated, specifying the model becomes an even more challenging problem. To

address this issue, we present a piecewise linear random-effects mixture model that does not re-

quire any sophisticated prior knowledge of the model structure to address both heterogeneity and

time-varying functional relationships. The only assumptions of this proposed model are, that the

underlying data may contain a mixture of mono- and bi- phasic observations, and, that the biphasic

observations are piecewise linear; no further constraints on the intercepts and slopes are needed.

The primary purpose of this model is to offer an initial inspection method to detect for deviations

from the linear mixed-effects model. Given the limited numbers of follow-up measurements in

clinical trials, the current implementation of the model focuses primarily on mono- vs. bi- phasic

changes; however, this proposed model could be generalized to include multi-phasic changes and

multi-category mixtures. In addition, because of the piecewise linear nature of the model, other

clinically relevant covariates can also be included easily.

1.3 Methods:

We designed a hierarchical model to allow both monophasic and biphasic intercepts and slopes

to vary between patients. In addition, for the biphasic patients, the phasic change time is patient-

specific. For the ith patient with total Mi observations, the dependent variable yij , corresponding

to the quantitative measure of the disease burden, may either follow a monophasic or a biphasic

regression line, depending on the latent indicator variable ηi:

ηi = 0 : yij = s0i + s1itij + εij

ηi = 1 :

{
yij = b0i + b1itij + εij , for j = 1...ki
yij = b′0i + b′1itij + εij , for j = ki+1...Mi

(1.1)

where, ki denotes for the phasic transition point for patient i, if patient i is biphasic. The individual

regression parameters, si and bi are drawn from their respective population-level distributions:

4



si =

(
s0i
s1i

)
∼ N

((
S0

S1

)
,ΣS,2×2

)
= N(S,ΣS) (1.2)

bi =


b0i
b1i
b′0i
b′1i

 ∼ N


B0

B1

B′0
B′1

 ,ΣB,4×4

 = N(B,ΣB) (1.3)

Assuming for now that regardless of true “phasicities”, biphasic design matrices are given, the

“complete-data” likelihood which needs to be maximized is:

P (S,ΣS , B,ΣB , σ
2, λ|Y,H) ∝

N∏
i=1

{(1− λ)P (Yi|QsiS,QsiΣS(Qsi )
T + Iσ2)}1−ηi

N∏
i=1

{λP (Yi|QbiB,QbiΣB(Qbi )
T + Iσ2)}ηi

(1.4)

where, Qsi and Qbi denote for the individual mono- and bi- design matrices respectively, and

H = (η1, ..., ηN )T , where ηi is the missing indicator variable for “phascity”. For now, Qsi and Qbi

are assumed to be given and the structures for the mono- and bi- phasic design matrices are shown

below:

Qsi =

1 ti1
...

...
1 tiMi

 (1.5)

Qbi =



1 ti1 0 0
...

...
...

...
1 tik 0 0
0 0 1 tik+1

...
...

...
...

0 0 1 tiMi


(1.6)

The design matrix, shown in Eq (1.6), allows the biphasic model in Eq (1) to be written in the form

of standard linear regression [23]. The procedure to construct the biphasic design matrix for each

patient is presented in later text.
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The corresponding marginal likelihood function is:

P (S,ΣS , B,ΣB , σ
2, λ|Y ) ∝

N∏
i=1

{(1− λ)P (Yi|QsiS,QsiΣS(Qsi )
T + Iσ2) + λP (Yi|QbiB,QbiΣB(Qbi )

T + Iσ2)}
(1.7)

To maximize the marginal likelihood, we implemented the Expectation Maximization (EM) algo-

rithm coupled with Empirical Bayes estimators, using the procedures derived by Verbeke and

Lesaffre [4] and Xu and Hedeker [5]. Following the notations used in Xu and Hedeker, the Em-

pirical Bayes estimators for individual regression parameters and the covariance matrices are:

ŝi = S + (Σ−1S + (Qsi )
T (σ2Ii)

−1Qsi )
−1Qsi (σ

2Ii)
−1(Yi −QsiS)

b̂i = B + (Σ−1B + (Qbi )
T (σ2Ii)

−1Qbi )
−1Qbi (σ

2Ii)
−1(Yi −QbiB)

Σ̂si = (Σ−1S + (Qsi )
T (σ2Ii)

−1Qsi )
−1

Σ̂bi = (Σ−1B + (Qbi )
T (σ2Ii)

−1Qbi )
−1

(1.8)

The expectation step calculates the expectation of the “phasicity” indicator variables, ηi:

zi = P (ηi = 1|S,B,ΣS ,ΣB , λ, σ2, Yi) =
λ 1©i

(1− λ) 0©i + λ 1©i

(1.9)

where,

0©i : N(Yi|QsiS,QsiΣS(Qsi )
T + Iσ2)

1©i : N(Yi|QbiB,QbiΣB(Qbi )
T + Iσ2).

6



The maximization step consists of the followings:

λ̂new =
1

N

N∑
i=1

zi

Ŝnew =

N∑
i=1

(1− zi)ŝi
N∑
i=1

(1− zi)

B̂new =

N∑
i=1

zib̂i

N∑
i=1

zi

Σ̂newS =

N∑
i=1

(1− zi)(Σ̂si + (ŝi − Ŝnew)(ŝi − Ŝnew)T )

N∑
i=1

(1− zi)

Σ̂newB =

N∑
i=1

zi(Σ̂bi + (b̂i − B̂new)(b̂i − B̂new)T )

N∑
i=1

zi

σ̂2new =

N∑
i=1

(1− zi)[usi (usi )T +Qsi Σ̂si(Q
s
i )
T ]

N∑
i=1

(1− zi)
+

N∑
i=1

zi[u
b
i (u

b
i )
T +Qbi Σ̂bi(Q

b
i )
T ]

N∑
i=1

zi

(1.10)

where, usi = Yi −Qsi ŝi and ubi = Yi −Qbi b̂i.

Hitherto, the EM algorithm is derived under the assumption that biphasic design matrices

are provided; however, these matrices are in fact hidden and need to be estimated. The estimation

of this biphasic change point is a very-known problem in statistics, mathematics and computer

science with many applications in other field, and many methods have been suggested [24,25]. We

employed the simplest Bayesian formulation of the change point problem, suggested by Carlin,

Gelfand and Smith [26]. For a particular patient i with Mi observations, there are Mi + 1 possible

change points. For completeness, change points occurring before the first observation and after the

last observation are also being considered.

7



Qbi0 =


0 0 1 ti1
0 0 1 ti2
...

...
...

...
0 0 1 tiMi−1
0 0 1 tiMi

 (1.11) Qbi1 =


1 ti1 0 0
0 0 1 ti2
...

...
...

...
0 0 1 tiMi−1
0 0 1 tiMi

 (1.12)

Equation (1.11) is an example in which phasic transition occurs before the first observation and the

example in which phasic transition between the first and the second observations is shown in equa-

tion (1.12). The subscripts 0 and 1 in Qbi0 and Qbi1 denote the position before which observations the

phasic changes occur. Assuming all patients follow the trial protocol precisely, despite its infinites-

imal probability, the phasic transition problem can be formulated into a finite mixture problem, in

which each split of the design matrix is a distinct category. The overall marginal likelihood is:

L(S,B,ΣS ,ΣB , λ, π, σ
2|Y ) =

N∏
i=1

{(1− λ)N(Yi|QsiS,QsiΣS(Qsi )
T + Iσ2) + λ

Mi∑
j=0

πijN(Yi|QbijB,QbijΣB(Qbij)
T + Iσ2)}

(1.13)

where, π = (πT1 , ..., π
T
N )T and πi = (πi1, ..., πiMi

)T , representing the vector of weighting factors.

The corresponding conditional likelihood, conditioning on the unobserved indicator variables, can

be written as:

L(S,B,ΣS ,ΣB , λ, π, σ
2|Y,Ξ, H) =

N∏
i=1

[(1− λ)N(Yi|QsiS,QsiΣS(Qsi )
T + Iσ2)]1−ηi [λ

Mi∏
j=0

{πijN(Yi|QbijB,QbijΣB(Qbij)
T + Iσ2)}ξij ]ηi

(1.14)

where, ξij is the unobserved indicator for jth biphasic design matrix for subject i, such that
Mi∑
j=0

ξij = 1, and ξi = (ξi0, ..., ξiMi
)T and Ξ = (ξT1 , ..., ξ

T
N )T . The EM algorithm can be applied to

the conditional likelihood (1.14) to maximize the marginal likelihood function, equation (1.13). In

the expectation step,

ζij = P (ξij = 1|B,ΣB , σ2, Yi) =
πijN(Yi|QbijB,QbijΣB(Qbij)

T + Iσ2)

Mi∑
j=0

πijN(Yi|QbijB,QbijΣB(Qbij)
T + Iσ2)

(1.15)

is calculated. Similarly, the expected value for ηi can be calculated:

zi = P (ηi = 1|S,B,ΣS ,ΣB , λ, σ2, Yi) =
λexp( 3©i)

(1− λ)exp( 2©i) + λexp( 3©i)
(1.16)

8



where,

2©i : 2logN(Yi|QsiS,QsiΣS(Qsi )
T + Iσ2)− 2log(Mi)

3©i : 2log(

Mi∑
j=0

πijN(Yi|QbijB,QbijΣB(Qbij)
T + Iσ2))− 4log(Mi)

where, 2©i and 3©i are the negative bayesian information criteria (BIC) for the mono- and bi- phasic

models respectively. Bayesian information criterion corrects for improvement in fitting associated

with increasing model complexity and the Mi + 1 possible design matrices for the biphasic model.

In addition, bayesian information criterion ensures model identifiability by penalizing against the

biphasic model. The advantage of this approach is that it does not require prior knowledge for

specifying the conditions needed to ensure identifiability, such as B1 < S1 < B′1 and B′0 < B0. In

terms of selecting for the appropriate penalty factors for the BIC, we used the most “naive” penalty

factors of 2 and 4 which correspond to the numbers of regression parameters in the mono- and bi-

phasic models.

Assuming all patients comply with the trial protocol precisely, πj = πij = πi′j , the maximization

of ζij can be easily achieved:

πnewj = πnewij = πnewi′j =

N∑
i=1

ζijzi

N∑
i=1

zi

. (1.17)

However, in practice never do all patients follow the trial design precisely; frequently, patients

either miss follow-up visits completely or not according to their scheduled time. This departure

from the trial design creates misalignments between patients’ observation intervals. To compensate

for this departure from the trial design and to correct for misalignments, a novel continuous time

variable specifying the phasic transition probability as a function of time is introduced:

θ(t) =

∑N
i=1

∑Mi−1
j=1 ζijI(tij < t < ti(j+1))zi∫max(t)

0

∑N
i=1

∑Mi−1
j=1 ζijI(tij < t < ti(j+1))zidt

. (1.18)

Continuous variable θ(t) represents the normalized phasic transition density at time t. The weight

for each interval for each patient can be updated by integrating over its corresponding interval:

πnewij =

∫ ti(j+1)

tij

θ(t)dt. (1.19)
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We ignore the scenarios in which biphasic transitions occur before the first observation or after the

last observation, since the regression lines in these two cases are monophasic in nature.

The Empirical Bayes estimators for the biphasic individual regression parameters and bipha-

sic covariance matrices are modified to take into account this additional layer of mixture among

biphasic patients:

b̂ij = B + (Σ−1B + (Qbij)
T (σ2Ii)

−1Qbij)
−1Qbij(σ

2Ii)
−1(Yi −QbijB)

Σ̂bij = (Σ−1B + (Qbij)
T (σ2Ii)

−1Qbij)
−1

(1.20)

For the monophasic parameters, the maximization step remains unchanged; and the maximization

steps for the biphasic parameters and the variance consist of the following steps:

B̂new =

N∑
i=1

Mi∑
j=0

ziζij b̂ij

N∑
i=1

zi

Σ̂newB =

N∑
i=1

Mi∑
j=0

ziζij(Σ̂bij + (b̂ij − B̂new)(b̂ij − B̂new)T )

N∑
i=1

zi

σ̂2new =

N∑
i=1

(1− zi)[usi (usi )T +Qsi Σ̂si(Q
s
i )
T ]

N∑
i=1

(1− zi)
+

N∑
i=1

Mi∑
j=0

ziζij [u
b
ij(u

b
ij)

T +QbijΣ̂bij (Q
b
ij)

T ]

N∑
i=1

zi

(1.21)

where, ubij = Yi −Qbij b̂ij .

The Gibbs’ sampler is used to assess the uncertainty associated with the parameter estimates. The

starting values for the Gibbs’ sampler are obtained from the aforementioned algorithm and the

detailed steps for the Gibbs’ sampler are listed below:

1. Calculate ζij for each patient, using equation (1.15).

2. For each patient, draw a ξi vector from a multinomial distribution with a parameter vector ζi;

and obtain the corresponding biphasic design matrix Qbij , such that ξij = 1.

10



3. Calculate zi based on the monophasic design matrix, Qsi and the biphasic design matrix Qbij

from step (3).

4. Draw ηi from Bernoulli distribution with parameter zi for each patient.

5. Update θ(t) using equation (1.18), with ζij replaced by ξij and zi replaced by ηi.

6. Draw a vector πi from a Dirichlet distribution with a parameter vector

(
∫ ti2
ti1

θ(t)dt, ...,
∫ tiMi−1

tiMi−2
θ(t)dt), for each patient.

7. Draw λ from a Beta distribution with parameters (
N∑
i=1

ηi + 1,
N∑
i=1

(1− ηi) + 1).

8. Sampling si and bi:

si ∼ N(ŝi, Σ̂si)

bi ∼ N(b̂ij , Σ̂bij ))

(1.22)

where, ŝi and Σ̂si are from equation (1.8), and b̂ij and Σ̂bij are from equation (1.21). The

design matrix for the biphasic is draw from step (2).

9. Sampling S and B from si and bi:

S ∼ N(

N∑
i=1

(1− ηi)si
N∑
i=1

(1− ηi)
,

ΣS
N∑
i=1

(1− ηi)
)

B ∼ N(

N∑
i=1

ηibi

N∑
i=1

ηi

,
ΣB
N∑
i=1

ηi

)

(1.23)

10. Sampling ΣS and ΣB :

ΣS ∼ Inv −Wishart(

N∑
i=1

(1− ηi)− 1− 2,

N∑
i=1

(1− ηi)(si − S)(si − S)t)

ΣB ∼ Inv −Wishart(

N∑
i=1

(ηi)− 1− 4,

N∑
i=1

(ηi)(bi −B)(bi −B)t)

(1.24)

11. Sampling σ2:

Inv − χ2(

N∑
i=1

Mi − 2,

1
N∑
i=1

Mi − 2

N∑
i=1

{(1− ηi)(Yi −Qsi si)t(Yi −Qsi si) + (ηi)(Yi −Qbibi)t(Yi −Qbibi)})

(1.25)
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Figure 1.1: Longitudinal trajectories for the simulated patients in the three scenarios. Blue lines indicate
monophasic patients’ trajectories; red lines indicate biphasic patients’ trajectories. Vertical solid lines indi-
cate the median time at which phasic transitions occur for the biphasic patients; vertical dashed lines indicate
the 10th% and 90th% phasic transition time. All biphasic patients have the same phasic transition time in
scenario one; hence, the dashed and solid lines coincide.

1.4 Simulations

We designed three simulation studies to test the algorithms’ abilities to categorize patients and to

estimate parameters. All three scenarios have the same population level regression parameters

as shown in Table 1.1; the differences between the three scenarios lie in the covariance matrices

specifying for between-patient variability. The first simulation scenario assumes that there is no

between-patient variability; the second simulation scenario assumes that there is between-patient

variability in the intercepts and slopes in both mono- and bi- phasic patients; however, there are no

correlations between these parameters, i.e. all non-diagonal cells in Σs and Σb are zero. The third

scenario assumes there is a significant positive correlation between the first and second slopes

among the biphasic patients, with correlation 0.5. In each scenario, we simulated 100 patients,

N = 100. The proportion of biphasic patients is 0.60, λ = 0.60; i.e. there are 60 biphasic and

40 monophasic patients. Each patient according to a hypothetical protocol is measured every 21

days for 1 baseline and 17 follow-up measurements for a total follow-up duration of 357 days.

In this simulation study, the actual visits may deviate within ± 5 days from the scheduled time.

The true individual regression parameters are drawn from multivariate normal distributions with

respective population parameters and covariance matrices, (S, ΣS), or (B, ΣB), depending on

“phascities”. For each simulated biphasic patient i, phasic transition time occurs at t =
bi0−b′i0
b′i1−bi1

.
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We first applied the EM algorithm to estimate the parameter values that maximize the marginal

likelihood. The true and estimated parameters, excluding the covariance for the three scenarios,

are shown in Table 1.1. In all three scenarios, the proposed model was able provide parameter

estimates that are in close proximity to the true parameter values. The only exception is that the

biphasic proportion parameter λ is biased towards the monophasic model in scenarios 2 and 3.

These biases are the results of the BIC correction for ensuring model identifiability and compen-

sating for overfitting. Estimating the covariance matrices for scenarios two and three is more

challenging, Table 1.2. In particular, we found that the proposed model consistently over-estimates

the variance term associated with the second intercept for the biphasic patients. Three possible

causes for this poor estimation are: 1) the biphasic design matrices are estimated; misclassification

of observations between the first and second phases may result in an enlarged variance term

for the second intercept. 2) estimation of the second intercept requires projection back to time

zero; uncertainty is magnified by projection. 3) In the phasic transition time in our simulated

data is distributed according the Gaussian ratio distribution, with heavy tails [27]; thus, biphasic

patients with extreme transition time may not be classified correctly. The reason for simulating the

transition time using the Gaussian ration distribution is made based on the observation that the

phasic transition time in real data often have heavy tails. In addition to parameter estimation, the

proposed model was able to classify patients according to their “phasicities”, Table 1.3.

Table 1.1: The true and the means of the estimated parameters in the three simulation scenarios. The means of
the estimated parameters are calculated based on 1,000 simulation runs for each scenario.

S0 S1 B0 B1 B′0 B′1 σ λ

Truth 90.00 -0.2500 91.00 -0.3500 55.00 -0.1500 5.00 0.6000

Scenario One 89.99 -0.2499 90.83 -0.3463 56.20 -0.1538 4.89 0.5999

Scenario Two 89.79 -0.2569 90.57 -0.3466 56.87 -0.1506 5.00 0.5058

Scenario Three 89.80 -0.2533 90.63 -0.3453 56.74 -0.1535 4.98 0.5449

In addition to the three scenarios, we performed sensitivity analysis to test the effects of population-

level intercepts and slopes, S0, S1, B0, B1, B
′
0, andB′1 on classification accuracy, Figure 1.2. For each

of the three scenarios, we tested a grid of values for the biphasic first slope, B1 (-0.45, ..., -0.26),

13



Table 1.2: The true and the means of estimated covariance components in the three simulation scenarios. True
values are shown outside of the parentheses and estimated values are shown inside the parentheses. The
lower triangular components of the monophasic covariance matrix and the upper triangular components of
the biphasic covariance matrix are shown. The means of the estimated covariance components are calculated
based on 1,000 simulation runs for each scenario.

Scenario One
b0 b1 b′0 b′1

0.0000 ( 1.6766) 0.0000 (-0.0140) 0.0000 ( 0.3485) 0.0000 (-0.0011) b0
0.0000 ( 0.0002) 0.0000 (-0.0060) 0.0000 ( 0.0000) b1

s0 0.0000 ( 0.8547) 0.0000 ( 12.469) 0.0000 (-0.0442) b′0
s1 0.0000 (-0.0035) 0.0000 ( 0.0000) 0.0000 ( 0.0002) b′1

s0 s1

Scenario Two
b0 b1 b′0 b′1

4.0000 ( 5.1418) 0.0000 (-0.0124) 0.0000 ( 0.9831) 0.0000 (-0.0062) b0
0.0009 ( 0.0006) 0.0000 (-0.0070) 0.0000 ( 0.0003) b1

s0 4.0000 ( 4.4488) 4.0000 ( 12.931) 0.0000 (-0.0480) b′0
s1 0.0000 (-0.0019) 0.0009 ( 0.0011) 0.0009 ( 0.0009) b′1

s0 s1

Scenario Three
b0 b1 b′0 b′1

4.0000 ( 5.0456) 0.0000 (-0.0117) 0.0000 ( 0.8151) 0.0000 (-0.0036) b0
0.0009 ( 0.0007) 0.0000 (-0.0097) 0.0000 ( 0.0006) b1

s0 4.0000 ( 4.3801) 4.0000 ( 13.589) 0.0000 (-0.0461) b′0
s1 0.0000 ( 0.0017) 0.0009 ( 0.0010) 0.0009 ( 0.0010) b′1

s0 s1
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Table 1.3: Classification accuracy for the three scenarios. A representative example for each scenario and the
averages of 1,000 simulation runs are shown. A hard cut-off for calling a patient mono- or bi- phasic is used
based on the expected probabilities of being biphasic. Patients with expected biphasic probabilities exceeding
0.5 are called to be biphasic, otherwise, monophasic.

Representative examples Scenario 1 Scenario 2 Scenario 3

Truth Truth Truth
Monophasic Biphasic Monophasic Biphasic Monophasic Biphasic

Estimated Monophasic 40 0 40 7 40 1
Bi-phasic 0 60 0 53 0 59

Sensitivity/Specificity 100% 100% 100% 88% 100% 98%
Averages of 1,000 simulations 100% 100% 99.88% 84.37% 99.85% 90.87%

and the second slope, B′1 (-0.24, ..., -0.05), centering around the monophasic slope S1 = −0.25.

For this sensitivity analysis, the second intercept for the biphasic patients were kept at the values

such that the population-level phasic transition time occur at the middle of the time span of the

trial (178 days). All other parameters, S0, S1, B0, σ and λ were kept at the values used in the

previous three scenarios. The covariance matrices, if applicable, were also kept at the values used

in the three scenarios. As expected, as the biphasic first and second slopes approach the value

of the monophasic slope, the specificity diminishes in all three scenarios. More biphasic patients

are misclassified as monophasic patients. Due to the strong penalty induced by the BIC correction

in deciding patients “phascities”, the proposed model is biased toward the monophasic model.

Sensitivity is close to 100% in all three scenarios; hence the contour plots for sensitivity are not

shown. In addition, we also investigated the effects of the numbers of observations per patient and

the effects of the numbers of patients on the model’s ability to distinguish between mono- and bi-

patients. As expected, as the number of observations per patient decreases, specificity decreases.

Interestingly, the model is less sensitive towards the total numbers of patients, Figure 1.3.

In addition to obtaining the maximum likelihood parameter estimates, Gibbs’ sampling was im-

plemented to assess the statistical significance of the estimated parameters for the three scenarios.

The key parameter of interest in this simulation study is the coverage probability for the proposed

model. We simulated 1,000 independent data sets using identical parameters values for each

scenario. The EM algorithm is first applied to search for the parameter values that maximize

the likelihood; then using them as the starting values, a Monte Carlo simulation is performed

for each data set, with the number of iterations per simulation equal 30,000. With these samples
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Figure 1.2: Specificity as a function of true biphasic slopes. True monophasic slope is kept at -0.25; biphasic
first slopes vary between -0.45 and -0.26; biphasic second slopes vary between -0.24 and -0.05. Population-
level monophasic slope and biphasic first intercepts are 90 and 91 respectively; the second slopes for biphasic
patient are selected such that the population level phase transition occurs at 178 days, which is in the middle
of 357-day trial period. Each graph is generated based the averages of 10 simulations.

generated from the posterior distribution, we constructed a 95% simultaneous rectangular credible

region for each simulated data set, using the method outlined by Held [28, 29]. The coverage

probability is calculated as the probabilities of the simultaneous credible regions covering all 8

parameters for scenario one and covering all 21 parameters in scenarios two and three, out of the

1,000 simulated data sets. The coverage probabilities are 80.8%, 75.0% and 76.4% for the three

scenarios, respectively. We performed detailed analysis to determine the parameter with the worst

coverage probability in each scenario. For scenario one, the estimated standard deviation, σ,

has the worst coverage probability of only 87.2%. The σ sampled from the Gibbs’ sampler are

consistently smaller than the actual noise standard deviation. This discrepancy can be explained

by the mismatch between the model, which assumes the existence of between-patient variability,

and the simulated data, in which all patients are identical in terms of their regression parameters.

Thus, the model mistakenly attributes a portion of the random noise to the between-patient

covariance matrices, hence reducing the variance of the noise term. Further analysis for scenarios

two and three reveals that the variance component for the biphasic second intercept has the lowest

coverage rate among all parameters; the 95% simultaneous credible regions for all 21 parameters

only were able to cover the covariance term for the second intercept at rates of 90.1% and 90.7%

for scenarios two and three, respectively. In this case, the covariance components obtained from
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Figure 1.3: Specificity as a function of the numbers of observations per patient and the total numbers of
patients per simulated data set. Parameter values are identical to these used in the three scenarios. The
numbers of observations per patient vary in the figure on the left; these observations are evenly distributed
between day 0 and day 357. The total numbers of patients, N , vary in the figure on the right; the number of
observations per patient is kept at 18.

the Gibbs’ sampler are consistently higher than the true covariance used in the simulated data.

The same reasons, mentioned in the EM algorithm section, can explain this enlarged covariance.

Another parameter of particular interest is the correlation between the first and second slopes

in scenario three. Focusing only on this parameter, our model was able to detect this significant

correlation in 62.1% of the simulation runs; significant correlation is defined as 0 not being covered

by the 95% credible region. Overall, the actual coverage probabilities from the proposed model

are lower than the nominal probabilities. Model complexity is believed to be a leading contributor

for this poor coverage; as previous research has shown that even in the simple binomial case,

coverage probability rarely agrees with the nominal probability [30]. In addition, the parameter

values, particularly the slopes, used in our simulation have considerable overlaps; this makes the

identification of patients’ “phasicities” difficult, lowering the coverage probabilities.

To ensure fairness in assessing model’s ability to estimate parameters, the true model parameters

and patients’ “phascities” were never used and are always hidden. The starting values for the

EM algorithm were determined based on an ad hoc procedure. For the monophasic patients, the

starting values are estimated by fitting each patient, regardless of the true “phascity”, a simple
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linear regression. The maximum and minimum values in intercepts and slopes define the range

of the starting values for the EM algorithm. The monophasic between-patient covariance matrix

is obtained by calculating the covariance between simple linear regression parameters. For the

biphasic starting values, 0th to Xth percentiles of observations and Y th to 100th percentile of

observations, ranked according to time of measurement, are used to establish the range for the first

and second phases. Likewise, the covariance for these parameters is used as the starting values

for the between-patient covariance matrix. The standard deviation for the noise is obtained from

fitting a simple linear regression to all data points across all patients. The proportion parameter,

λ, is always assumed to be 0.5, to reflect the lack of prior knowledge. The continuous weighting

variable θ(t) is seeded from a normal distribution density centered at the phasic change point

established by the biphasic starting values; the associated standard deviation term is kept at 1/10

of the maximum observation span.

1.5 Application

To further demonstrate the utility of the proposed method, we applied it to the M-protein data

from the Velcade as Initial Standard Therapy in Multiple Myeloma: Assessment with Melphalan

and Prednisone (VISTA) trial [31]. Briefly, the VISTA trial is a randomized, open-label phase

III study, consisting of 682 patients with newly diagnosed, untreated, symptomatic, measurable

multiple myeloma patients. In this study, the patients were randomized to treatment either with

melphalan and prednisone with (VMP cohort) or without bortezomib (MP cohort) (bortezomib,

Johnson & Johnson Pharmaceutical R&D and Millennium). Measurable disease was defined

as the presence of quantifiable M-protein in serum or urine, or measurable soft-tissue or organ

plasmacytomas. The longitudinal M-protein data for patients in the VISTA are shown in Figure 1.4.

The parameter estimates from our model reveal a few interesting features associated with the

M-protein dynamics, Table 1.4. First, the differences between the first and second slopes for

the biphasic patients in both cohorts are striking. For the biphasic patients, the first slopes are
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Figure 1.4: Longitudinal trajectories for patients in the VISTA trial separated by treatment cohorts. The
monophasic (blue) and biphasic (red) lines indicate the population-mean trajectories based on maximum like-
lihood estimates from the EM algorithm.

significantly more negative than the second slopes in both cohorts. Second, the proportions of

biphasic patients are significantly different in the two cohorts. Third, the biphasic first slope in the

VMP cohort is more negative than the biphasic first slope in the MP cohort. Forth, the biphasic first

intercept are similar in both cohorts. Fifth, the long-term declines for the biphasic patients in both

cohorts are not significantly different. Sixth, in both cohorts, the intercepts for the monophasic

patients tend to be substantially smaller than the first intercepts of the biphasic patients. Lastly, in

the MP cohort, despite the large differences in the rates of initial declines, the long-term declines

are very similar between the monophasic and the biphasic patients, as shown by the similarity

in the estimates for S1 and B′1. These observed differences in the M-protein dynamics between

cohorts suggest that the tumor dynamics of multiple myeloma are highly complex. Once possible

explanation proposed by us is that the tumor dynamics follows a hybrid mathematical model with

both hierarchical and clonal expansion components [13].

Table 1.4: 95% simultaneous credible regions for the MP and VMP cohorts in the VISTA trial.
Cohorts S0 S1 B0 B1 B′0 B′1 σ λ

MP (2.332, 3.062) (-0.004, -0.002) (4.344, 5.452) (-0.036, -0.016) (2.234, 3.230) (-0.004, -0.001) (0.254, 0.279) (0.359, 0.592)
VMP (1.064, 2.686) (-0.003, -0.000) (3.996, 4.689) (-0.077, -0.053) (1.114, 1.671) (-0.002, -0.001) (0.220, 0.340) (0.794, 0.938)
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1.6 Discussion

We have proposed a piecewise linear mixture random-effects model to investigate heterogeneity

and time varying functional relationships in longitudinal data. This proposed model is a special

case of the general framework proposed by Pauler and Laird [19]. The proposed model assumes

a simple yet robust piecewise linear functional form. The major advantage of this piecewise

linear functional form over other more complex nonlinear functions is that the likelihood can be

maximized analytically, using empirical Bayes estimators and standard expectation-maximization

algorithm. No prior knowledge of the functional relationship other than the piecewise assumption

is required; this method would be particularly useful for initial exploratory analysis. In addi-

tion, in the extreme case in which all patients are monophasic, the proposed model completely

reduces to the linear mixed-effects model. Although not shown here, this model can be easily

extended to include covariates other than time alone. In addition, the ease of interpretation of

the parameter estimates is another advantage of the proposed model. One minor drawback of

our approach is that for the biphasic patients, Eq (1.1), the proposed model produces a point of

discontinuity between ki and ki+1 observations. Nonlinear models, such as the broken-stick model,

Bacon Watts model, and, polynomial model suggested by Matthews et. al. offer potential so-

lutions to this problem [32]; however, analytical solutions do not exist for these nonlinear functions.

From the prospectives of clinical trial design, one interesting question is how to design a trial to

maximize “phasicity” detection. Our linear framework may offer a simpler approach to address

such questions. Although from our analysis of the M-protein data we have not found significant

correlation between “phasicities” and patients’ outcomes, the distinct mono- and bi- phasic

trajectories may have significant medical importance, that warrants further medical and biological

investigations. Better ability in identifying patients according to their individual trajectories may

further improve patient prognosis and disease management. Similar conclusion was reached by

Lu and Huang in their analysis of HIV viral load data [20]. In addition, our model can also be

extended beyond between-patient variability by including additional layers inside the hierarchy.

For instance, patients with metastatic solid tumors, multiple tumors at different sites may share a
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large degree of similarity yet having distinct differences depending on their micro environments.

Modeling on-treatment responses require the incorporation of between-patient variability and

within-patient-between-tumor variability. These questions can be addressed easily in the proposed

piecewise linear framework.
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2.1 Summary

Current standard therapy induces complete responses and prolongs overall survival in multiple

myeloma (MM) patients, but ultimately fails to eradicate disease [33]. Here, we analyzed tumor

response data from two large randomized controlled phase III trials [31, 34–36] and a randomized

controlled phase II trials [37] to establish and validate a mathematical model of MM cell dynamics.

Dynamics of treatment response in newly diagnosed patients were most consistent with a mathe-

matical model postulating the existence of two tumor cell subpopulations, “myeloma progenitor

cells” and “myeloma differentiated cells”. Differential treatment responses were observed with

significant tumoricidal effects on myeloma differentiated cells and less clear effects on myeloma

progenitor cells. When applying our model to data of relapsed MM patients [34], we found that

a hybrid mathematical model incorporating both a MM differentiation hierarchy and clonal evo-

lution best explains the tumor response patterns in all patients. The clinical data, together with

mathematical modeling, suggests that bortezomib-based therapy exerts a selection pressure on the

myeloma cells that can shape the disease phenotype, thereby generating further inter-patient vari-

ability. Our modeling approach incorporating clonal evolution and a cancer differentiation hierar-

chy also has implications for other tumor types.

2.2 Introduction

Therapy with melphalan and prednisone has been the standard of care for elderly patients with

newly diagnosed multiple myeloma (MM) for more than 40 years [38, 39]. In 2008, the proteasome

inhibitor bortezomib (Velcade R©) was approved in combination with melphalan and prednisone

for treatment of newly diagnosed MM patients not eligible for high-dose chemotherapy, based on

the results of the randomized phase III VISTA trial comparing bortezomib-melphalan-prednisone

to melphalan-prednisone treatment [34]. Earlier, bortezomib was approved for treatment of re-

lapsed multiple myeloma based on the results of the randomized phase III APEX trial comparing

bortezomib monotherapy to dexamethasone treatment [35, 36]. Although in both phase III stud-
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ies, bortezomib had been able to induce complete tumor responses and significantly prolong sur-

vival [31, 36, 40] myeloma relapses eventually occurred and the patients could not be considered

cured. Recently a new phase II trial investigating the safety and efficacy of the addition of siltux-

imab to the bortezomib-melphalan-prednisone regimen showed no significant survival difference

associated with siltuximab [37]. Furthermore, the existence of a differentiation hierarchy of MM

cells has been suggested [41], but the effects of chemotherapies on different subpopulations re-

main largely unexplored. Here we analyzed the treatment response of MM patients and sought to

identify the effects of treatment on different subpopulations of cells.

2.3 Methods

To develop a mathematical model for multiple myeloma (MM) tumor cell dynamics under treat-

ment, we utilized M-protein data from 682 newly diagnosed MM patients in the VISTA trial [31].

First, we utilized a statistical modeling approach to identify unique treatment response trends

among patients; second, we constructed a dynamical system model to model multiple myeloma

tumor cell dynamics. This dynamical system model is updated and validated using two indepen-

dent trials, the CNTO 328 trial [37] and the APEX trial [36].

2.3.1 Trial summaries and patient selection

VISTA trial

The Velcade as Initial Standard Therapy in Multiple Myeloma: Assessment with Melphalan and

Prednisone (VISTA) trial is a randomized, open-label phase III study, consisting of 682 patients

with newly diagnosed, untreated, symptomatic, measurable Multiple Myeloma (MM) patients.

These patients were not candidates for high-dose therapy and stem-cell transplantation because

of age (≥ 65 years) and/or coexisting conditions [33]. In this study, the patients were randomized

to treatment with melphalan and prednisone with or without bortezomib (bortezomib, Johnson &
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Johnson Pharmaceutical R&D and Millennium). Measurable disease was defined as the presence

of quantifiable M-protein in serum or urine, or measurable soft-tissue or organ plasmacytomas.

Treatment was given for 54 weeks (9 cycles) unless discontinued earlier upon withdrawal of the

patient’s consent, disease progression, or the occurrence of unacceptable toxic side effects.

The 682 patients were randomly assigned to receive nine 6-week cycles of melphalan (at a

dose of 9 mg per square meter of body-surface area) and prednisone (at a dose of 60 mg per

square meter) on days 1, 2, 3, and 4 of each cycle. The two arms differed in the additional

administration of bortezomib: patients in one arm received only melphalan and prednisone, while

patients in the other arm received, in addition, bortezomib at a dose of 1.3 mg per square meter.

Bortezomib was administered on days 1, 4, 8, 11, 22, 25, 29, and 32 of cycles 1 to 4 and on days

1, 8, 22, and 29 of cycles 5 to 9. The dose of melphalan, prednisone or bortezomib was reduced

if there was any pre-specified hematologic toxic effect of grade 3 or 4, or a non-hematologic toxic

effect. For both arms, treatment was administered for a maximum of 9 cycles (54 weeks) and was

discontinued upon disease progression, treatment-related toxicity, or withdrawal of consent. All

study medication was supplied from a central source by the study sponsor.

Blood samples were collected for each patient every three weeks (at day 1 and day 22 of

each 6-week cycle) for the entire duration of the treatment, i.e. 54 weeks after the date of random-

ization. In addition, blood samples were collected every eight weeks after treatment completion

until the development of confirmed progressive disease. For patients who discontinued treatment

before the 54-week time period was completed, blood samples were obtained every three weeks

until the end of the 54-week time period, and every eight weeks thereafter. All blood samples for

serum M-protein electrophoresis were analyzed in a central laboratory (Covance).

Of the 682 randomized patients, 668 were evaluable for response in the trial (i.e., they had

baseline measurable disease and were treated with at least one dose of study drug). Of those, there

were 604 patients with heavy chain MM (measurable levels of M-protein IGG, IGA, IGM, or IGD

by serum protein electrophoresis) who were included in this analysis. Patients with light chain
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disease (n = 54) or only measurable plasmocytomas (n = 10) were not included in the modeling. Of

those 604 patients, 301 were randomized to the control arm and were administered only melphalan

and prednisone (referred to as the VISTA MP cohort), while 303 were randomized to the case arm

and were treated with melphalan, prednisone and bortezomib (referred to as the VISTA VMP

cohort). Two patients from the VISTA MP cohort and 3 patients from the VISTA VMP cohort were

excluded from further analysis due to early treatment discontinuation (melphalan or prednisone)

or treatment crossover. We thus obtained 299 patients in the VISTA MP cohort and 300 patients in

the VISTA VMP cohort.

VMP with or without CNTO328 trial

VMP with or without CNTO328 trial is a randomized, open-label, phase II study, consisting of

118 newly diagnosed patients, treated either bortezomib-melphalan-prednisone with siltuximab

(SVMP, n=64, 12 from the safety cohort + 52 from the efficacy cohort) or bortezomib-melphalan-

prednisone alone (VMP, n=54) 2. The primary objectives for this study are: 1) assessing the safety

of SVMP, 2) assessing the efficacy of SVMP. For the purpose of assessing efficacy, patients were

randomized based on a 1:1 ratio to either SVMP or VMP, and were treated up to a maximum of 9

cycles (54 weeks). For the VMP cohort, patients received nine 6-week cycles of oral melphalan 9

mg/m2 and oral prednisone 60 mg/m2, days 1 to 4, in combination with intravenous bortezomib

1.3 mg/m2 on days 1, 4, 8, 11, 22, 25, 29, and 32 during cycles 1 to 4; days 1, 8, 22, and 29 during

cycles 5 to 9. For the SVMP cohort, patients received siltuximab at 11 mg/kg every 3 weeks by

intravenous infusion. Blood and 24-hour urine samples were collected every 3 weeks during the

54-week treatment period then at every 9 weeks interval until progression; M-protein analyses

were performed by a central laboratory.

Of the 106 randomized patients (efficacy cohorts), 105 were evaluable for response in the

trial (i.e., they had baseline measurable disease and were treated with at least one dose of study

drug). Of those, there were 90 patients with single heavy chain MM (measurable levels of
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M-protein IGG and IGA by serum protein electrophoresis) who were included in this analysis.

Patients with light chain disease (n=13) or biclonal heavy chain disease (n=2) were removed. Of

those remaining 90 patients, 43 were randomized to SVMP cohort and 47 were randomized to

VMP cohort. The 12 patients in the safety cohort are not analyzed since these patients were not

randomized.

APEX trial

The Assessment of Proteasome Inhibition for Extending Remission (APEX) trial is a randomized,

open-label, phase III study, consisting of 669 relapsed MM patients with measurable progressive

disease after one to three previous treatments3. In this study, patients were randomized to either

an intravenous bolus of bortezomib or high-dose dexamethasone.

The 669 patients were randomized by strata based on the number of previous treatments (1 vs.

¿1), time to progression after the last treatment (≤6 months vs. ¿6 months), and 2-microglobulin

values (≤2.5 mg per liter vs. ¿2.5 mg per liter), to either intravenous bolus of bortezomib (at a

dose of 1.3 mg per square meter of body-surface area) on day 1, 4, 8, and 11 of cycles 1 through

8 (21-day cycles) and on days 1, 8, 15, and 22 of cycles 9 to 11 (35-day cycles) for a maximum

treatment period of 273 days, or oral dexamethasone (40 mg) on days 1 to 4, 9 to 12, and 17 to 20

of cycles 1 through 4 (35-day cycles) and on days 1 to 4 of cycles 5 through 9 (28-day cycles), for a

maximum treatment period of 280 days. Platelet and red cell transfusions and the administration

of neutrophil growth factors and epoetin alpha were allowed. All patients received bisphospho-

nates intravenously every three to four weeks unless such treatment was clinically contraindicated.

Patients were evaluated every 3 weeks during the first 39 weeks. Follow-up was then per-

formed every six weeks until disease progression, after which follow-up for skeletal events and

survival was performed every three months. Patients with a complete response continued to

receive treatment for two cycles after the confirmation of the response. Patients who discontinued
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treatment before disease progression were followed every 3 weeks for 39 weeks or until disease

progression. All assessments of M protein were confirmed at a central laboratory.

Of the 669 randomized patients, 624 were evaluable for response in the trial (i.e., they had

baseline serum M-protein measurements and were treated with at least one dose of the study

drug). Of these, there were 538 patients with heavy chain MM (measurable levels of M-protein

IGG, IGA, IGM, or IGD by serum protein electrophoresis) who were included in this analysis.

Patients with light chain or non-secretory (n=86) disease were excluded. Of the remaining 538

patients, 269 were randomized to receive bortezomib (Velcade R©, referred to as the APEX VEL

cohort) and 269 were randomized to receive dexamethasone (referred to as the APEX DEX cohort).

2.3.2 Statistical analysis

We first aimed to investigate the presence of general trends within the treatment response data in

each of the six cohorts from the three trials. We performed this investigation both at individual

patient level and at whole cohort level.

Patient-level analysis

For each patient, we used the M-protein data, starting from the baseline value obtained before

the initiation of therapy until the end of follow-up, to fit four statistical models. The aim of this

model fitting was to identify the model with the best fit. The set of models investigated comprised

a single-phase exponential curve, a 2-phasic exponential curve with a turning point, a 3-phasic

exponential curve with two turning points, and a 4-phasic exponential curve with three turning

points. These models were chosen since the goal of this study was to investigate the dynamics

of treatment response of MM cells through the analysis of serum M-protein levels, and since

any cell population is expected to decrease (or increase) at an exponential rate. Furthermore,

visual inspection suggested that overall, the data of most patients displayed at most four slopes.
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When fitting these four models to each individual patient’s data, we first performed a logarithmic

transformation of the original data and then fit a linear, 2-phasic linear, 3-phasic linear, or 4-phasic

linear model to the transformed data. For data points for which the M-protein level was below

the threshold for quantification, a value of 0.05 g/dl was used in the model, since a value of

zero does not allow logarithmic transformation and 0.05 g/dl represents the upper level of

detectability in the central laboratory. In the following, a linear model refers to a model applied to

the logarithmically transformed data.

For each patient, the data of the M-protein measurements over time was of the format (t1, y1), ...,

(tn, yn), where time points were enumerated as t1 < ... < tn, and the corresponding M-protein

values were given as y1, ..., yn. A piecewise linear model with k turning points can be written as

E(y) = β0 + β1t+ δ1(t− τ1)I(t>τ1) + ...+ δk(t− τk)I(t>τk) (2.1)

Here I represents the indicator function. The parameters τ1, ..., τk are the turning points between

the piecewise linear segments. The parameters β0 and β1 determine the slope and intercept of the

first segment of the fitted model. Finally, the parameters δ1, ..., δk determine the additional slopes

of the remaining segments of the fitted model; for instance, for a 2-phasic model, the first slope is

given by β1 while the second slope is given by β1 + δ1. The piecewise linear model with k = 0,

1, 2, and 3 turning points corresponds to the single-phasic, 2-phasic, 3-phasic and 4-phasic linear

model, respectively. To determine the best fitting model, among the four models, for each individ-

ual patients, we used the join point software, which is publicly availability through National Cancer

Institute [42]. For each model with k turning points, we estimated a total of 2 + 2k parameters, for

parameter estimation, we utilized Hudson’s Method, [43], as it provides more accurate estimates

compared to the Grid Search method [42], even though it is computationally more expensive. For

the three trials, we applied the approach to determine the best fitting model for each patient, the

parameter estimates are listed in Tables 2.1, 2.2 and 2.3. Based on the observation that the major

of patients in all three trials display either 1- or 2- phasic patterns, we further investigated 1- and

2- phasic M-protein decline trends for patients with more than 4 data points while on treatment,
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shown in Tables 2.4, 2.5 and 2.6.

Cohort-level analysis

We then investigated the best fitting model for the entire patient cohort. The data was of the form

(tij , yij), i = 1, ..., N and j = 1, ..., ni, where i is the patient-specific index; N is the total number of

patients, and ni is the total number of data points for patient i. The two models under consideration

are equation (2.2) the single-phasic model and equation (2.3) the bi-phasic model:

E(yij) = ai + bitij (2.2)

E(yij) = ai + bitij + δi(tij − τi)I(tij>τi) (2.3)

For each model, the total sum of squared errors (SSE) and total sum of squares (SST) are calculated,

as
N∑
i

SSEi and
N∑
i

SSTi across all patients. At individual patient level, the R2
i is calculated as

R2
i = 1 − SSEi

SSTi
; and at cohort level, the total R2 is calculated as R2 = 1 −

N∑
i

SSEi/
N∑
i

SSTi. We

used the Bayesian information criterion to determine the best fitting model for a entire cohort, while

accounting for difference in model complexity [44]:

BIC = log(
SEEk
N∑
i=1

ni

) +
pk
N∑
i=1

ni

log(

N∑
i=1

ni) (2.4)

where, k denotes the number of piecewise segments, with k = 0 denoting single-phasic model

and k = 1 denoting bi-phasic model, respectively; and pk denotes the number of parameters, with

p0 = 2 and p1 = 4, for single- and bi- phasic models respectively. Estimates are listed in Tables 2.7.

These results suggest that the bi-phasic model is the best fitting model for all six cohorts from the

three trials. Thus, we fitted a bi-phasic model to each patient, estimates shown in Table 2.8.
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Table 2.1: Summary statistics of the estimated slopes and turning points for the VISTA trial.
Slopes and turning points Mean (standard deviation) Median (standard deviation)

VISTA trial MP cohort
First slope, β1 -0.0055 (0.0094) -0.0024 (272)
Second slope, β2 0.0003(0.0097) 0.0002(168)
Third slope, β3 0.0022(0.0172) 0.0017(67)
Fourth slope, β4 0.0036(0.0077) 0.0032(18)
First turning point, τ1 197.7(132.0) 158.2(168)
Second turning points, 339.4(136.2) 335.0(67)
Third turning points, 410.0(85.4) 401.5(18)

VISTA trial VMP cohort
First slope, β1 -0.0222(0.0218) -0.0172(263)
Second slope, β2 -0.0010(0.0134) 0.000(104)
Third slope, β3 0.0053(0.0239) 0.0029(104)
Fourth slope, β4 0.0005(0.0153) 0.0018(31)
First turning point, τ1 126.6(92.1) 98.4(234)
Second turning points, τ2 353.8(171.7) 335.4(104)
Third turning points, τ3 443.8(155.7) 393.0(31)

Table 2.2: Summary statistics of the estimated slopes and turning points for the CNTO 328 trial.
Slopes and turning points Mean (standard deviation) Median (standard deviation)

CNTO 328 trial VMP cohort
First slope, β1 -0.0247 (0.0216) -0.0178 (41)
Second slope, β2 -0.0082(0.0221) -0.0008(40)
Third slope, β3 0.0082(0.0264) 0.0022(21)
Fourth slope, β4 0.0102(0.0124) 0.0095(6)
First turning point, τ1 126.0(91.66) 102.3(40)
Second turning points, 285.4(115.4) 257.3(21)
Third turning points, 420.6(161.2) 463.7(6)

CNTO 328 trial SVMP cohort
First slope, β1 -0.0500(0.0541) -0.0281(40)
Second slope, β2 -0.0068(0.0272) 0.000(34)
Third slope, β3 0.0078(0.0282) 0.0014(16)
Fourth slope, β4 0.0079(0.0181) 0.0132(8)
First turning point, τ1 91.0(64.9) 64.7(34)
Second turning points, τ2 290.7(152.8) 64.7(34)
Third turning points, τ3 439.7(153.3) 465.6(8)
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Table 2.3: Summary statistics of the estimated slopes and turning points for the APEX trial.
Slopes and turning points Mean (standard deviation) Median (standard deviation)

APEX trial DEX cohort
First slope, β1 -0.0059 (0.0120) -0.0037 (206)
Second slope, β2 0.0076(0.0110) 0.0045(85)
Third slope, β3 0.0165(0.044) 0.0032(6)
Fourth slope, β4 - -
First turning point, τ1 78.7(40.1) 72.4(85)
Second turning points, 181.1(82.5) 144.8(6)
Third turning points, - -

APEX trial VEL cohort
First slope, β1 -0.0142(0.0241) -0.0085(229)
Second slope, β2 -0.0004(0.0168) 0.0003(119)
Third slope, β3 0.0191(0.0282) 0.0099(23)
Fourth slope, β4 0.0060(0.0055) 0.0069(3)
First turning point, τ1 71.7(51.5) 62.6(119)
Second turning points, τ2 153.8(85.0) 135.0(23)
Third turning points, τ3 155.8(40.2) 140.0(3)

Table 2.4: Summary statistics of the estimated 1- and 2- phasic slopes and turning points for the VISTA trial.
Slopes and turning points Mean (standard deviation) Median (standard deviation)

VISTA trial MP cohort
Single-phasic patients

Slope, β -0.0025(0.0047) -0.0015(153)
Bi-phasic patients

First slope, β1 -0.0101(0.0108) -0.0073(102)
Second slope, β2 -0.0014(0.0247) -0.0003(102)
Turning point, τ 127.7(75.3) 111.4(102)

VISTA trial VMP cohort
Single-phasic patients

Slope, β -0.0100(0.0099) -0.0073(55)
Bi-phasic patients

First slope, β1 -0.0253(0.0229) -0.0201(194)
Second slope, β2 0.0000(0.0117) 0.0000(194)
Turning point, τ 109.6(71.2) 89.6(194)
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Table 2.5: Summary statistics of the estimated 1- and 2- phasic slopes and turning points for the CNTO 328
trial.

Slopes and turning points Mean (standard deviation) Median (standard deviation)
CNTO 328 trial VMP cohort

Single-phasic patients
Slope, β -0.0056(0.0058) -0.0048(4)

Bi-phasic patients
First slope, β1 -0.0197(0.0156) -0.0157(36)
Second slope, β2 -0.0080(0.0200) -0.0001(36)
Turning point, τ 153.2(76.7) 134.3(36)

CNTO 328 trial SVMP cohort
Single-phasic patients

Slope, β -0.0053(0.0072) -0.0032(8)
Bi-phasic patients

First slope, β1 -0.0637(0.0586) -0.0391(30)
Second slope, β2 -0.0019(0.0069) 0.0000(30)
Turning point, τ 104.4(75.7) 82.8(30)

Table 2.6: Summary statistics of the estimated 1- and 2- phasic slopes and turning points for the APEX trial.
Slopes and turning points Mean (standard deviation) Median (standard deviation)

APEX trial DEX cohort
Single-phasic patients

Slope, β -0.0037(0.0074) -0.0020(94)
Bi-phasic patients

First slope, β1 -0.0169(0.0142) -0.0129(49)
Second slope, β2 0.0056(0.0055) 0.0041(49)
Turning point, τ 83.5(44.6) 74.7(49)

APEX trial VEL cohort
Single-phasic patients

Slope, β -0.0051(0.0091) -0.0020(83)
Bi-phasic patients

First slope, β1 -0.0285(0.0244) -0.0219(85)
Second slope, β2 0.0049(0.0116) 0.0015(85)
Turning point, τ 69.8(33.3) 65.3(85)
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Table 2.7: Best fitting model for a cohort of patients.
1-phasic model 2-phasic model 1-phasic model 2-phasic model

VISTA MP VISTA VMP
Min Ri 0.000 0.089 0.002 0.174
25% Ri 0.327 0.678 0.374 0.874
Median Ri 0.629 0.865 0.645 0.929
Mean Ri 0.572 0.787 0.577 0.889
75% Ri 0.847 0.938 0.813 0.962
Max Ri 0.980 0.999 0.955 1.000
R 0.706 0.902 0.642 0.910
BIC -978.9 -1096.8 -480.5 -773.1

CNTO 328 VMP CNTO 328 SVMP
Min Ri 0.007 0.684 0.003 0.187
25% Ri 0.444 0.872 0.350 0.876
Median Ri 0.630 0.926 0.399 0.948
Mean Ri 0.573 0.912 0.473 0.883
75% Ri 0.731 0.968 0.773 0.968
Max Ri 0.938 0.999 0.950 1.000
R 0.640 0.929 0.471 0.934
BIC -241.5 -313.9 -214.8 -309.5

APEX DEX APEX VEL
Min Ri 0.000 0.054 0.000 0.228
25% Ri 0.105 0.716 0.195 0.828
Median Ri 0.370 0.846 0.529 0.937
Mean Ri 0.404 0.799 0.498 0.873
75% Ri 0.684 0.944 0.777 0.983
Max Ri 0.964 1.000 0.996 1.000
R 0.496 0.830 0.580 0.898
BIC -1201.4 -1402.5 -1376.1 -1729.7

Table 2.8: Cohort-level parameters
Cohorts Slope 1, β1 Slope 2, β2 Turning point, τ
VISTA MP -0.0067 -0.0011 116.20
VISTA VMP -0.0237 -0.0016 106.2
CNTO 328 VMP -0.0192 0.0004 151.5
CNTO 328 SVMP -0.0530 0.0014 106.6
APEX DEX -0.0169 0.0037 67.1
APEX VEL -0.0285 0.0034 70.1
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2.3.3 Mathematical model

The differentiation hierarchy model

Our mathematical model considers the differentiation hierarchy of hematopoietic cells. In the nor-

mal differentiation hierarchy, stem cells reside on top of the hierarchy and give rise to progenitor

cells, which produce differentiated cells. In the Multiple Myeloma (MM) differentiation hierarchy,

there are MM progenitor cells, which give rise to MM differentiated cells. The abundances of nor-

mal stem cells, progenitors and differentiated cells are given by x0, x1 and x2, while the abundances

of MM progenitor cells and MM differentiated cells are given by y1 and y2 . Normal stem and pro-

genitor cells as well as MM progenitor cells do not secret the monoclonal (M-)protein while MM

differentiated cells do. Although normal plasma cells also secret M-protein, their contribution to

the rate of M-protein production is small enough such that it can be neglected; otherwise, healthy

individuals would test positive for M-protein. The M-protein abundance secreted by MM cells is

given by z. Normal stem cells divide at the rate rx per day. The rate constants for the production

of progenitors and differentiated cells are given by a and b, with the appropriate suffixes to distin-

guish between normal and MM cells. Normal stem cells die at rate d0, progenitors at rate d1, and

differentiated cells at rate d2 per day. MM progenitor cells and differentiated cells die at rates δ1 and

δ2 per day, respectively. M-protein are depleted at rate δ3 per day. Cells at all levels are assumed

to potentially reproduce symmetrically and/or asymmetrically; the limited replication potential of

more differentiated cell types is then considered as part of the differentiation rates. We assume

that there is a slow clonal expansion of MM progenitor cells. This assumption is made since other-

wise, MM progenitor cells would not be able to make up a significant fraction of the progenitor cell

compartment at diagnosis. Furthermore, as compared to normal cells, there is an increased rate at

which MM differentiated cells are produced. The basic model is given by

Normal Myeloma
Stem cells ẋ0 = [rxϕx0

− d0]x0
Progenitor cells ẋ1 = axϕx1

x0 − d1x1 ẏ1 = [ayϕy1 − δ1]y1
Differentiated cells ẋ2 = bxx1 − d2x2 ẏ2 = byy1 − δ2y2

M-protein − ż = cyy2 − δ3z

(2.5)
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Here, ϕx0
= [1 + ρx0

x0]−1, ϕx1
= [1 + ρx1

(x1 + y1)]−1 and ϕy1 = [1 + ρy1(x1 + y1)]−1 denote the

density dependence terms.

Density dependence for normal stem cells is achieved by the function ϕx0
= [1 + ρx0

x0]−1.

Density dependences for normal and MM progenitors are achieved through the density depen-

dence terms ϕx1
= [1 + ρx1

(x1 + y1)]−1, and ϕy1 = [1 + ρy1(x1 + y1)]−1. These functions take

into account cell crowding, limited resources, and interactions with the microenvironment. In

the absence of MM cells, the differentiation hierarchy of normal cells is in equilibrium, i.e. the

abundances and proportions of different cell types do not change. Once the first MM progenitor

cell arises, it produces MM differentiated cells, which in turn secrete M-protein. We assume

that MM progenitors and differentiated cells have increased production rates as compared to

their normal counterparts, ay > ax and by > bx. We consider that diagnosis occurs and treat-

ment initiates when the MM differentiated cell burden reaches the same level as the normal

differentiated cells. Chemotherapy acts by increasing death rates. The half-life of M-protein is

not affected by treatment to a large extent. These effects result in distinct phases of treatment

response: (i) the first phase, with an exponential slope of -δ2, corresponds to the decline of

differentiated MM cells; this slope has an average of δ2 = −0.0067 per day for patients treated with

VISTA MP and δ2 = −0.0237 per day for patients treated with bortezomib in addition to VISTA

MP; and (ii) the second phase, with a slope of −l ≈ ayϕy1 − δ1, signifies the depletion of MM

progenitors; this slope is about −l = −0.0011 per day for patients in the VISTA MP cohort and

l = −0.0016 per day for patients treated with bortezomib in addition to VISTA MP. The second

slope of depletion, −l, in fact depends on the density dependence term; the resulting non-linearity

leads to the system not being able to be solved exactly. However, during the time of treatment,

there is little variation in the density dependence term. We have therefore assumed it to be constant.

The model represents the kinetically dominant subpopulations in the hematopoietic differen-

tiation hierarchy; in reality, this hierarchy includes a larger number of distinct differentiation

levels. However, for the purposes of explaining the chemotherapy response dynamics, only three

populations for normal cells and two populations for MM cells are necessary to include in the
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simplest possible mathematical model. Similarly, if each subpopulation consists of many clones

of the same differentiation stage, which may have distinct growth, differentiation, and death

kinetics, then the predictions of the model with regard to the question addressed in this paper

does not change significantly. The model then describes the dominant clone within the respective

subpopulation at any time.

The clonal evolution model

The above mathematical framework assumes a differentiation hierarchy of the MM cell system.

An alternative hypothesis is that instead of the MM differentiation hierarchy, there are genetically

different MM clones in the system. This model is given by

Normal Myeloma
Progenitor cells ẋ0 = [rxϕx0

− d0]x0 MM clone1 ẏ1 = [r1 − d1]y1
− MM clone2 ẏ2 = [r2 − d2]y2
− M-protein ż = r(y1 + y2)− dz

(2.6)

where, ϕ0 = [1 + ρx0x0]−1 denotes the density dependence terms.

In this alternative mathematical model, the abundance of normal cells are given by x0 and

the abundance of MM cells in the two MM clones is denoted as y1 and y2, respectively. The rate

constants for the production and death rates of cells are given by r and d, with the appropriate

suffixes for each cell type. We assume that MM cells in both MM clones produce M-protein at the

same rate. We then conducted simulations to investigate whether this model could recapitulate

the observed VISTA trial data.

The simulations were conducted in the following way. We solved the ordinary differential

equation system to obtain an explicit form of the M-protein value. Let C1 and C2 be the number

of MM cells in clone 1 and clone 2 when treatment starts; let Z0 be the M-protein baseline

level at treatment initiation. We then obtained the level of M-protein values over time during
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treatment as Z(t) = A1e
a1t + A2e

a2t + A3e
−dt, where, A1 = rC1/(a1 + d), A2 = rC2/(a2 + d) and

A3 = Z0−A1−A2 where, a1 = r1−d1 and a2 = r2−d2. We analyzed the treatment response of 249

VISTA VMP patients who had sufficiently many data points (5 or more) and compared, for each

patient, the best fitting model (1-phasic or 2-phasic exponentials models). We found that 55 out

of 249 patients had the 1-phasic model as the best fitting model while 194 had the 2-phasic as the

best fitting model. We also obtained the estimates of first and second slopes as well as the turning

points of the 83 2-phasic patients whose had both negative first and second slopes of M-protein

depletion. In the simulation of the alternative mathematical model, we simulated M-protein data

during treatment of 249 patients. For each patient, we randomly sampled a pair of M-protein

depletion rates (a1, a2) from the estimated rates of the above 83 VISTA VMP patients in the VISTA

trial. We then randomly simulated a M-protein baseline value Z0 for each simulated case from the

VISTA baseline values for VISTA VMP patients. For the initial number of cells in the two clones

(C1 and C2), we chose their sum to be 105 and chose the value of the less frequent clone (clone 2)

from a power-law distribution [45]. This choice was made since clone 1 was considered to produce

clone 2 by the accumulation of a specific (epi)genetic change, and the number of cells in such a

new clone, when the total number of cells (including both clones) reaches a certain size is given by

a power law distribution [45]. To be specific, we chose a power law distribution with cumulative

density function F (y) = 1 − (y/L)−α+1with parameters L = 1 and α = 1.1. The production rate

of M-protein was given by r = dZ0/(C1 + C2) and its depletion rate by d = 0.08. Furthermore,

we added a noise term generated from a normal distribution with mean 0 and standard deviation

0.1. With the chosen parameters and added noise, we obtained, for each case, the M-protein values

during treatment every 22 days for up to a year. Any M-protein value below 0.05 was considered

as below detection baseline and was replaced by 0.05 for the following statistical analysis.

After obtaining the simulated data of 249 cases through the above process, we compared for

each case the best fitting model between 1-phasic and 2-phasic exponential models. In one

simulation iteration, we obtained 113 cases whose best-fitting model was the 1-phasic model while

the remaining 136 displayed a better fit with the 2-phasic model. In the VISTA trial, these numbers

were 55 (1-phasic) versus 194 (2-phasic). There was a significant difference in the numbers of

38



1-phasic and 2-phasic patients between the observed clinical data in the VISTA trial and the

simulated data based on the alternative mathematical model (p = 5 × 10−8, Fisher’s exact test).

Furthermore, the estimated turning points for 2-phasic patients with both negative first and

second slopes were significantly different between the observed clinical data in the VISTA trial

and the simulated data based on the alternative mathematical model (90±69, median 72 days in

VISTA data; 186±81, median 169 days in simulated data; p = 2 × 10−12, two-sample t-test). In the

simulated data, fewer cases had 2-phasic trends and for those 2-phasic cases, the turning points

occurred much later compared with what we observed in the VISTA trial. The simulation results

were consistent when we repeated the above simulation to investigate its robustness regarding the

stochasticity in choosing slopes from VISTA patients as well as the number of cells in clone 2. We

did not repeat the analysis for patients of the VISTA MP cohort since the results are expected to be

very similar. Thus the alternative mathematical framework considering genetically different MM

clones was unable to recapitulate the VISTA trial data.

The hybrid model

To explain the early rebound of M-protein values before the termination of treatment in the refrac-

tory patients, we then proposed a model combining both the MM differentiation hierarchy model

and the clonal evolution model. This model is given by

Normal MM clone 1 MM clone 2
Stem cells ẋ0 = [rxϕx0 − d0]x0

Progenitor cells ẋ1 = axϕx1
x0 − d1x1 ẏ1 = [ayϕy1 − δ1]y1 ż1 = [azϕz1 −∆1]z1

Differentiated cells ẋ2 = bxx1 − d2x2 ẏ2 = byy1 − δ2y2 ż2 = bzz1 −∆2z2
M-protein − Ṁs = cyy2 − δ3Ms Ṁr = czz2 −∆3Mr

Overall M-protein M = Ms +Mr

(2.7)

Here, ϕx0 = [1 + ρx0x0]−1, ϕx1 = [1 + ρx1(x1 + y1)]−1, ϕy1 = [1 + ρy1(x1 + y1 + z1)]−1, and

ϕz1 = [1 + ρz1(x1 + y1 + z1)]−1 denote the density dependence terms.

This model is analogous to the original differentiation hierarchy model, with the addition of
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a resistant clone. The dynamics of this system depends on the relative frequencies of the two

clones, which is controlled by the time at which mutation arises. For small z1, MM clone 1 cells

determine the treatment response, as these M-protein trajectories are observed in the newly

diagnosed patients; as treatment continues, MM clone 2 slowly expands. However, given the

small number of clone 2 progenitor cells at the beginning of the first treatment, clone 2 cells are not

sufficiently abundant to drive the rebound of M-protein values after the termination of the initial

treatment. However, after multiple rounds of treatment, clone 2 reaches dominance and may result

in a rebound even before the termination of treatment. Clones 1 and 2 may also be referred to as

“sensitive” and “resistant” MM clones.

Ancillary parameters for the hierarchy model and the hybrid model

The mathematical model proposed is a highly parameterized model; besides the estimated

parameter values for the first and second slopes, a list of ancillary parameters are required for the

prediction of the M protein trajectories. The parameter values for these ancillary parameters are

listed here below. The parameter values are selected based on the estimation of multiple myeloma

total tumor burden, which is estimated to be on the order of 1012cells [46]. We assume that

normal differentiated cells are on the order of 1012 cells. Furthermore we assume that the cellular

ratio between stem: progenitor: differentiated cells is 1:100:10,000. In addition, The production

rate (g/cell/dL) and elimination rate of M-protein (0.07/day) were obtained from experimental

measurements [46, 47]. All other parameters, besides the first and second slopes, are selected such

that the normal cells are in a state of homeostasis.

where,

fn(x, δ′, δ) =

{
δ′elog

δ
δ′ /(365×5)x for 0 ≤ x ≤ 365× 5

δ for x > 365× 5
(2.8)
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Table 2.9: Parameters used in the hierarchical model and the hybrid model during different phases of disease
progression and treatment.

Density dependence terms
ρx0

= 5× 10−7 ρx1
= 5× 10−10 ρy1 = 8× 10−9 ρz1 = 8× 10−9

Before treatment
rx = 0.005 d0 = 0.0001
ax = 0.05 ay = az = 0.25 d1 = 0.0001 δ1 = ∆2 = 0.0001
bx = 0.5 by = bz = 0.5 d2 = 0.003 δ2 = ∆2 = 0.003

cy = cz = 2.2× 10−13 δ2 = ∆2 = 0.07
On-treatment
rx = 0.005 d0 = 0.0001
ax = 0.05 ay = az = 0.25 d1 = 0.0001 δ1=slope1-ayϕy1 , ∆2 = 0.0001
bx = 0.5 by = bz = 0.5 d2 = 0.003 δ2=slope2, ∆2 = 0.0001

cy = cz = 2.2× 10−13 δ2 = ∆2 = 0.07
Post-treatment
rx = 0.005 d0 = 0.0001
ax = 0.05 ay = az = 0.25 d1 = 0.0001 δ1 = fn(x, slope1− ayϕy1 , 0.0001), ∆2 = 0.0001
bx = 0.5 by = bz = 0.5 d2 = 0.003 δ2 = fn(x, slope2, 0.003), ∆2 = 0.0003

cy = cz = 2.2× 10−13 δ2 = ∆2 = 0.07

where, x denotes the number of days once treatment cession, δ and δ′ denote the before treatment

and on-treatment death rate, respectively. The five-year (365 × 5) used in the equation (2.8) corre-

spond tot he median survival time of multiple myeloma patients [48].

2.4 Results

For each patient, we investigated several statistical models to identify the model with the best fit to

the M-protein data (Methods). When studying the individual dynamics of treatment response in

both the VISTA MP and VISTA VMP cohorts, we identified a 2-phasic exponential model to be the

best-fitting statistical model for both cohorts (Methods, Table 2.7). The summary statistics for the

first slopes (β1), second slopes (β2) and turning points (τ ) for the VISTA and the APEX trials when

fitting 2-phasic exponential models to all patients in each cohort are shown in Table 2.8. First, we

found that patients in the VISTA VMP cohort had a significantly steeper first slope on average than

patients in the VISTA MP cohort (p = 3 × 10−15 Wilcoxon rank-sum test). Second, for the VISTA

trial, the difference between cohorts in terms of the second slopes was not statistically significant

(p=0.2439 Wilcoxon rank-sum test) and both cohorts were not significantly different from zero

(MP p=0.2645 and VMP p=0.08 t-statistics). Third, the difference between cohorts in terms of the
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turning point was also not statistically significant (p=0.3852 Wilcoxon rank-sum test).

In addition to the cohort-level analysis described above, we also estimated the bortezomib

treatment effect by comparing the treatment response dynamics of patients in the VISTA trial, at

an individual patient level, by determining the best piecewise exponential model (1- vs. 2-phasic

models) for each patient. First, we found that there was a significantly larger proportion of 2-phasic

patients in the VISTA VMP cohort as compared to the VISTA MP cohort (p ≤ 10−16, Fisher’s exact

test). Second, 2-phasic patients in the VISTA VMP cohort had a significantly steeper first slope

than such patients in the VISTA MP cohort (p = 3 × 10−15 for all patients with β1¡0, Wilcoxon

rank-sum test). The difference between cohorts in the second slope was not statistically significant.

Third, 2-phasic patients in the VISTA VMP cohort had a smaller turning point than patients in the

VISTA MP cohort (p = 0.02 for all 2-phasic patients with β1¡0 and p = 0.01 for all 2-phasic patients

with β0 < 0 and β1 < 0, Wilcoxon rank-sum test). When investigating the relationship between the

best-fitting model and MM stage, we found that patients with advanced-stage disease in the VISTA

MP cohort were significantly more likely to display a 2-phasic rather than a 1-phasic exponential

trend after the initiation of therapy . For the VISTA VMP cohort, however, there was no significant

association between MM stage and the shape of the treatment response curve. In both cohorts,

there were more deaths of patients with positive second slopes compared to patients with negative

second slopes. Furthermore, for VISTA VMP patients displaying a 2-phasic M-protein depletion in

the treatment phase, the first slope was significantly associated with the time to progression (p =

0.005, Cox model) when controlling for MM stage.

The observed 2-phasic M-protein depletion suggests multiple myeloma cellular dynamics is

highly complex. To interpret these results in a cell biology-relevant framework, we designed a

mathematical model describing the differentiation hierarchy of the hematopoietic system (Meth-

ods). This model was created to relate the abundance of M-protein to the numbers of different MM

cells. In the context of this model, normal stem cells reside on top of the hierarchy and give rise to

progenitor cells, which in turn produce differentiated cells. In addition to normal cells, the bone
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marrow of MM patients also includes MM cells. Since the statistical analyses above suggested

the presence of a 2-phasic exponential depletion of M-protein values over time, we designed

a model including two subpopulations of MM cells with distinct growth and differentiation

kinetics: progenitors and differentiated cells. In this model, MM progenitors reside on top of

the MM hierarchy and give rise to MM differentiated cells, which in turn produce M-protein.

MM progenitors produce none or only low amounts of M-protein, which we neglected in the

mathematical model (Methods).

This hierarchical mathematical model, together with the estimates of the two slopes obtained

with our statistical modeling approach, was then used to predict the kinetics of the treatment

response in the VISTA MP and VMP cohorts (Figure 2.1b-e). After treatment initiation, the MM cell

population declines at the death rate of differentiated MM cells during therapy (equal to the first

slope identified in the data, mean -0.0067 (VISTA MP cohort) and -0.0237 (VISTA VMP cohort))

until the latter reach a steady state with MM progenitor cells; from this time onwards, the kinetics

display a shallower decrease signifying the depletion of progenitor cells during treatment (equal

to the second slope identified in the data, mean -0.0011 (VISTA MP cohort) and -0.0016 (VISTA

VMP cohort)). After treatment discontinuation, some patients show a lasting suppression of their

M-protein values, while others experience a disease rebound. In the context of the mathematical

model, these patterns are generated by a selective effect of treatment on different MM clones:

treatment may select for MM phenotypes with altered growth and differentiation kinetics as

compared to the predominant clone present at the time of diagnosis. In patients in whom no

rebound occurs by the end of follow-up, the MM clones that remain after treatment are less “fit”

(either via a decreased growth rate or an increased death rate) than those present before treat-

ment. Thus, their expansion occurs at a slower time scale, such that the M-protein value slowly

increases after treatment cessation but remains below the detection limit. In patients in which a re-

bound occurs, cells are selected that lead to positive M-protein values after variable periods of time.

We also tested another mathematical model, which postulates the existence of two geneti-

cally independent MM clones, i.e. a clonal evolution model (Methods). We found that there was
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a significant difference in the numbers of 1-phasic and 2-phasic patients between the observed

clinical data in the VISTA trial and the simulated data based on the clonal evolution model

(p = 5× 10−8, Fisher’s exact test). Furthermore, the estimated turning points for 2-phasic patients

were significantly different between the observed clinical data in the VISTA trial and the simulated

data based on the clonal evolution model (Methods). Thus, the clonal evolution model, which

considers genetically different MM clones, was unable to recapitulate the VISTA trial data.

To validate the hierarchical mathematical model, we utilized data from two independent

clinical trials: the CNTO 328 trial comparing bortezomib-melphalan-prednisone (VMP) vs. sil-

tuximab plus VMP (SVMP) in newly diagnosed patients (n=106); and the APEX trial comparing

high-dose dexamethasone (DEX) vs. single agent bortezomib (VEL) in refractory patients (n=669).

For the two validation data sets, we first applied the same statistical methods as before to estimate

the treatment effects. For both CNTO 328 and APEX trials, we found that the cohort-level during

treatment M-protein responses are best explained by the 2-phasic exponential model Table 2.7.

The summary statistics at the whole cohort-level are shown in Table 2.8. For the CNTO 328 trial,

we found that there is a statistically significant different between CNTO 328 VMP and CNTO 328

SVMP in terms of the first slopes (β1), (p=0.0005, t-test). However, comparing between VISTA

VMP and CNTO 328 VMP cohorts, the first slopes are not significantly different (p=0.2082, t-test).

Interestingly, although the addition of siltuximab significantly increases the initial reduction of

the M-protein levels, the CNTO 328 trial failed in establishing survival benefits [37]. In terms of

the second slopes, there is no significant difference between CNTO 328 VMP and SVMP cohorts

(p=0.7586, t-test); and both cohorts were not significantly different from zero (VMP p= 0.8953

and SVMP p=0.2123, t-test). For the APEX trial, first we found that patients in the APEX VEL

cohort had a significantly steeper first slope than patients in the APEX DEX cohort (p = 0.0035

t-test). Second, the difference between cohorts in terms of the second slope was not statistically

significant (p=0.8635 t test). However, unlike the VISTA trial, in the APEX trial the second slopes

are significantly positive (DEX p=0.01231 and VMP p=0.001 t-statistics). These increases may

signify the development of resistance. In all three trials, patients displayed significant reductions

in M-protein levels immediately upon receiving treatments; however, the long-term effects of these
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Figure 2.1: The hierarchical mathematical model accurately predicts the dynamics of M-protein response in
the VISTA and CNTO 328 trials. (a) Illustration of the hierarchical mathematical model. Normal and MM cells
are shown in black and blue, respectively. Solid downward arrows indicate the direction in the differentia-
tion hierarchy. Circular arrows indicate cellular regeneration within each differentiation level. Double-lined
arrow indicates M-protein production from differentiated MM cells. (b-c) The panels display the abundance
of healthy (black) stem cells, healthy (black) and MM (blue) progenitor cells and differentiated cells over time
(years) for the VISTA MP (panel b) and VISTA VMP (panel c) cohorts since the emergence of the first MM
cell, as predicted by the mathematical framework (see Methods). The pink shaded region denotes the time
during which patients receive treatment. (d-g) Concordance between observed population-level MM protein
trajectories and the MM protein levels predicted by the mathematical model. The parameter values for the
first and second slopes used to generate panels d), e) and f) are listed in Table 2.9. For panel g) the model
predicted trajectory is generated using the same first and second slopes as panel e). All ancillary parameters
for panels d)-g) are identical and are listed in Methods.

medications remain less clear.

We then aimed to validate our mathematical model (see Figure 2.1 and Methods) using data

from the CNTO 328 and the APEX trials. First, for the CNTO 328 trial, consisting of newly

diagnosed patients, the hierarchical model was able to recapitulate the population-level M-protein

trajectory. The population-level M protein trajectory for the VMP cohort in the CNTO 328 trial can

be recapitulated using the same first and second slope estimates obtained from the VISTA trial,

Figure 2.1 e) and g). For the SVMP cohort, the M-protein trajectory can be recapitulated using

slope estimates obtained from the SVMP patient data, while keep all other parameters unchanged

45



Figure 2.1 f) and Table 2.8.

For the APEX trial, we observed increasing trends in M-protein values already during the

treatment phase in many patients in the APEX trial at both the cohort and individual patient

level; this was not unexpected as the time to myeloma progression is shorter in relapsed multiple

myeloma than in newly diagnosed myeloma, and therefore for many patients in the APEX trial,

this time fell within the trial-specified treatment duration. First, among patients displaying

1-phasic patterns, more patients in the APEX trial had statistically significant positive slopes,

(β1¿0 and p¡0.05; APEX DEX: 4/94 and APEX VEL: 11/83) than in the VISTA trial (VISTA MP:

3/153 and VISTA VMP: 0/55). Second, for patients displaying 2-phasic patterns in the APEX trial,

we observed rebounds (β2¿0) in the M-protein values during treatment (see Table 2.8). Initially,

2-phasic patients in both trials had similar responses to treatment, as shown by the decline in

M-protein values immediately after treatment initiation and the similarity in the magnitudes of

β1. However, the long-term treatment response differed between the APEX and VISTA patients.

We observed that, among patients who displayed 2-phasic trends, relapsed patients in the APEX

trial were more likely to have statistically significant rebounds (β2¿0 and p¡0.05; APEX DEX: 22/49

and APEX VEL: 31/85) than the newly diagnosed patients in the VISTA trial (VISTA MP: 19/102

and VISTA VMP: 27/194). In addition, most rebounding patients in the APEX trial had M-protein

rebounds within 100 days after the start of treatment, while still on treatment (median: 74.21 days;

mean: 83.20; sd: 41.88 for APEX DEX cohort and median: 68.02 days; mean: 69.14; sd: 27.80 for

APEX VEL cohort).

Based on these observations in all four trial cohorts, we attribute the differences in M-protein

dynamics between newly diagnosed and relapsed patients to the existence and expansion of a

resistant clone in the relapsed patients (Figure 2.2 a). A dominant resistant clone existing prior

to treatment explains the increasing M-protein values during treatment among 1-phasic patients

in the APEX trial; an expanding resistant clone during treatment explains the initial declines

followed by increases in M-protein values in the APEX trial; and the presence of a small resistant

clone explains continuing 2-phasic declines in the remaining patients (Figure 2.2 b-d). Therefore,
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we extended our mathematical model to take into account resistant clone(s) (Figure 2.2 a). In

this model, in addition to normal cells and sensitive MM cells, there is a resistant clone that

originally arose from the sensitive progenitor MM cells. This resistant clone gives rise to a similar

differentiation hierarchy as the sensitive cells. The observed M-protein values are the sum of

M-protein values generated from the sensitive and resistant clones; the amount of M-protein

secreted by each clone is proportional to the size of the clone and the relative secretion rates, which

are considered to be similar; this assumption can be relaxed as more data becomes available. The

time at which resistance arises determines the relative proportion of sensitive and resistant cells.

In newly diagnosed patients, the M-protein contribution from the resistant cells during treatment

is negligible; this is supported by the observation that only a relatively small number of patients (7

and 21% in VISTA VMP and MP cohorts, respectively) experienced increases in M-protein values

while on treatment in the VISTA trial. In contrast, in the relapsed patients from the APEX trial, due

to prior treatment-induced clonal selection, the M-protein contribution from the resistant clone

is sufficiently large to alter the treatment response trajectory, leading to rebounds in a subset of

patients while on treatment in the APEX trial (Methods). This hybrid model was able to explain

the M-protein dynamics for both newly diagnosed and relapsed myeloma patients in response

to chemotherapy (Figure 2.1 d-e and Figure 2.2 e-f). Our model suggests that treatment-induced

clonal selection may contribute to the increases of the M-protein levels in the refractory patients

while on treatment.

2.5 Discussion

Our analysis of newly diagnosed and refractory patient responses to therapy in the VISTA trial re-

vealed complex but structured kinetic patterns that support a two-cell hierarchical model for MM.

The proposed model was able to recapitulate the observed two phasic decline patterns observed

in the majority of patients. Our model suggests the existence of a MM progenitor cell population

that has self-renewal capacity and distinct growth kinetics and gives rise to the differentiated MM

cell population. Notably, inter-patient variability of disease kinetics at the time of disease relapse

was significant, requiring the adjustment of growth parameters in the model, suggesting that
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Figure 2.2: The hybrid mathematical model accurately predicts the dynamics of M-protein response in all three
trials. (a) Illustration of the hybrid mathematical model. Normal, sensitive and resistant MM cells are shown
in black, blue and red, respectively. The dashed arrow indicates the mutation event that gives rise to the first
resistant cell. Solid downward arrows indicate the direction in the differentiation hierarchy. Circular arrows
indicate cell regeneration within each differentiation level. Double-lined arrow indicates the production of
M-protein from differentiated MM cells. (b) Illustration of effects of the time at which resistance arises on the
observed M-protein trajectories. Left: resistance emerges very early; middle: resistance emerges early; right:
resistance emerges late. The blue lines denote the contribution to the changes in the observed M-protein values
of sensitive MM cells; the red lines denote the contribution to the changes in the observed M-protein values of
resistant MM cells; and the black dots represent the observed total M-protein levels from both sensitive and
resistant MM cells. Although the sensitive cell response to treatment remains identical in all three subpanels,
the timing at which resistance arises determines the observed M-protein response. (c-d) The panels display
the abundance of healthy (black) stem cells, healthy (black), sensitive MM (blue) and resistant MM (red)
progenitor cells and differentiated cells over time (years) for early (c) vs. late (d) emergence of resistance
for the APEX DEX cohort, as predicted by the mathematical framework. Panels (c) and (d) have identical
parameter values except for the time at which resistance arises. The time at which resistance arises dictates
whether rebounds occur during treatment phase. (e-f) M-protein treatment responses are dichotomized based
on rebound status for APEX DEX and VEL cohorts. Rebound during treatment (purple): patients with at least
one positive slope during the treatment phase; No rebounding during treatment (orange): patients with all
negative slope(s) during the treatment phase. Observed median M-protein values (≥10 observations) from
each subgroup are shown in dots. Lines show model-predicted M-protein trajectories. Within each cohort, all
parameter values are identical, except the time at which resistance arises.
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distinct MM progenitor subclones may have been selected by bortezomib treatment. The existence

of clonal selection between myeloma subclones was also supported by our analysis of relapsed or

refractory patients in the APEX trial. Recent studies [49–51] documented pronounced intra-patient

genetic heterogeneity in human neoplasias and attributed disease progression and drug resistance

to the differential molecular features of the underlying tumor subclones. Detection of genetic

heterogeneity, however, does not preclude the existence of functional heterogeneity within a

tumor and its individual clones. Quantification of functional heterogeneity in tumors is technically

challenging with experimental methods. Mathematical modeling can address these limitations

and provide insights into the relative contribution of genetic versus functional heterogeneity in the

behavior of human cancers.

Our data are consistent with reports of clonogenic B-cell ”MM stem cells” isolated from pa-

tient samples [41,52]. However, experimental data are divided on whether MM progenitor cells are

in fact contained within the CD138- cell compartment [53–55]. Additional surface markers may be

needed to identify MM progenitor cells, but alternative biological explanations are also possible.

MM progenitors may be a functionally distinct subset of MM cells defined by something other

than by markers of normal B-cell maturation, e.g by stromal cell interactions [56,57]. Alternatively,

two-phase response kinetics might be explained by yet undefined drug metabolism induced over

time (although published pharmacokinetic data on bortezomib are not consistent with this hypoth-

esis [58]), or by the induction of immune or other host responses activated after treatment initiation.

Our model provides a method for testing biological hypotheses directly relevant to disease

outcomes in patients with MM. For example, blockade of plasma cell differentiation via sup-

pression of Ire1-Xbp1 pathway in myeloma was recently found to cause resistance to bortezomib

treatment [59], a finding that is consistent with our model. The model could be used to iteratively

improve new clinical trials through mathematical analyses of treatment effects of specific agents

on both differentiated and progenitor cells populations. In addition, our model can be applied to

the optimization of myeloma treatment protocols, including the role of multi-drug combinations

with complementary effects on differentiated and progenitor cell populations in initial therapy
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for active disease [60]. As multiple MM clones are present at diagnosis, the administration of

rational combination treatments at relapse may reduce their expansion and therefore lead to more

favorable outcomes, again an area where the model may have utility [61, 62]. Thus, collecting

quantitative data centrally from future clinical trials and using mathematical modeling in various

settings of the disease could aid efforts to improve survival for patients with MM overall.
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3.1 Summary

Epithelial cells in the colon are arranged in cylindrical structures called crypts in which cellular

proliferation and migration are tightly regulated. We hypothesized that the proliferation patterns

of cells may determine the stability of crypts as well as the rates of somatic evolution towards

colorectal tumorigenesis. Here, we propose a linear process model of colonic epithelial cells that

explicitly takes into account the proliferation kinetics of cells as a function of cell position within

the crypt. Our results indicate that proliferation kinetics has significant influence on the speed of

cell movement, kinetics of mutation propagation, and sensitivity of the system to selective effects

of mutated cells. We found that, of all proliferation curves tested, those with mitotic activities

concentrated near the stem cell, including the actual proliferation kinetics determined in in vivo

labeling experiments, have a greater ability of delaying the rate of mutation accumulation in colonic

stem cells compared to hypothetical proliferation curves with mitotic activities focused near the

top of the crypt column. Our model can be used to investigate the dynamics of proliferation and

mutation accumulation in spatially arranged tissues.

3.2 Introduction

Colorectal cancer is the third most prevalent cancer type for both men and women in the United

States, accounting for 9% of all cancer deaths [63]. This large incidence can be partially attributed

to the rapid cell divisions that continuously replenish the colonic epithelium, as this large amount

of cell turnover increases the risk of accumulating the genetic changes leading to colorectal tumori-

genesis [64]. The gene most frequently altered in colorectal cancer is adenomatous polyposis coli

(APC), with more than 85 % of all colorectal cancer cases harboring mutations in this gene [65].

APC, a tumor suppressor, is a negative regulator of the b-catenin oncoprotein [66] and mutations

in APC lead to elevated levels of β-catenin in the cytoplasm, which in turn induce changes in

proliferation, differentiation, migration, adhesion, and apoptosis [67]. Germline APC mutation

results in the familial adenomatous polyposis (FAP) syndrome, which is characterized by an early

onset of colorectal cancer in almost all afflicted individuals [68]. Other frequently altered genes
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in colorectal cancer include KRAS [69], the SMAD genes [70], TP53 [71], and MYC [72, 73]. In

addition to alterations of oncogenes and tumor suppressor genes, colorectal tumors often display a

mutator phenotype, which has been broadly categorized as microsatellite instability (MIN) [74] or

chromosomal instability (CIN) [75]. About 15% of sporadic colorectal cancers display MIN, caused

by a loss of DNA mismatch repair gene function [74]; the remaining 85% have CIN, characterized

by an excessive rate of gaining or losing whole chromosomes or parts of chromosomes, at a rate of

up to 10−2 per chromosome per cell division [75]. An important feature associated with tumors

harboring CIN is the accelerated rate of loss of heterozygosity (LOH), which increases the rate of

tumor suppressor gene inactivation. It is not unusual for more than half of the genes in colorectal

tumor cells to display LOH [76]. More than one hundred genes associated with CIN have been

identified in yeast, many of which have human homologs [77, 78].

In addition to the genetic sequence leading to colorectal cancer, the physical architecture and

proliferation kinetics of epithelial cells have also been the topic of many investigations. Epithelial

cells in the colon are arranged in cylindrical compartments called crypts [79]. Each crypt contains

on average 2,000 cells, with about 40 cells in circumference and 80 cells in height [80]. A small num-

ber of stem cells (4-6) are located at the bottom of the crypt [81, 82]. These cells divide to produce

the differentiated progenies populating the crypt. The latter cells divide and migrate upward with

limited lateral movement and are eventually shed off into the lumen of the large intestine [83]. The

proliferation kinetics of cells follows a complex and spatially specific pattern, with proliferating

cells concentrated at the bottom half of the crypt, near the stem cells, and the upper half of the crypt

consisting of non-dividing migrating cells [80, 84]. This proliferation pattern is tightly controlled,

and changes in this pattern have been shown to be associated with the progression towards

colorectal cancer [85]. Quantitative measurements in animal models demonstrated that the speed

of the upward migration increases from 0.02 cell positions per hour per crypt column at the bottom

of the crypt to approximately 1.0 cell positions per hour near the top [86]. Under normal circum-

stances, the entire crypt is regenerated every 2 to 7 days [64]. Overall, the human colon contains

about 107 crypts, thus bringing the total number of epithelial cells in the colon to about 2×1010 cells.
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As experiments involving colonic epithelial cells remain technically challenging or infeasible

in humans, several mathe- matical and computational models were developed to enhance our

understanding of crypt kinetics and the somatic evolution leading to colorectal cancer. Early

work has led to the postulation that colorectal cancer is the result of a sequential accumulation

of mutations [87]. ince then, many mathematical models have been proposed to describe the

accumulation of mutations leading to colorectal cancer. For instance, some investigators have

addressed the effects of tissue architecture on the rate of mutation accumulation in colonic tissues.

These studies include the spatially explicit models proposed by Komarova and Wang [88] to

investigate the location within the crypt at which APC mutations arise, by Michor et al. to

elucidate the time during tumorigenesis at which CIN arises [89], and by Buske et al. to investigate

the changes in tissue dynamics resulting from gains or losses of specific gene functions using an

agent-based model [90]. In addition, Nowak et al. proposed a linear process model to study the

speed of somatic evolution in colonic crypts [91]. In this model, N cells within a crypt column are

projected onto a one-dimensional grid. During each time step, a cell is selected for reproduction.

A cellular division yields two daughter cells, with one daughter occupying the original position

and the other daughter residing in the position immediately to the right of the original cell. All

cells on the right of the dividing cell move to the right by one position in the grid, and the last cell

is shed off into the lumen of the intestine. During each cell division, a mutation may occur with a

certain probability; each daughter cell has a chance of 1/2 of inheriting the mutation. Compared to

a well-mixed population of cells, this linear process was shown to slow down the speed of somatic

evolution and to conceal the selective effects of advantageous mutants [91]. This observation

suggests that the cellular architecture of multicellular tissues has the potential to delay the onset of

cancer. Several other models were designed to specifically investigate crypt kinetics. Two excellent

reviews by van Leeuwen et al. [92] and de Matteis et al. [93] provide an in-depth discussion of these

studies: a two-dimensional lattice-based model [94, 95], a one-dimensional lattice-based model

with an intraepithelial growth factor gradient [96], a two-dimensional lattice-free model based on

Voronoi tessellation [97], and a cellular Potts model (CPM) [98]. Recently, Mirams and Fletcher

presented an integrated model incorporating both proliferation kinetics and tissue architecture for

investigating mutation fixation within a crypt [99]. Using the number of proliferating cells as a
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proxy for proliferation kinetics, they showed that the dynamics of cell division have a significant

effect on the spread of mutated cells within the population.

Despite these forays, several open questions remain regarding the effects of proliferation ki-

netics on the rate of mutation accumulation towards colorectal cancer. To address these issues,

we developed a spatially arranged stochastic model of the colonic crypt. We investigated several

different proliferation kinetics curves, including one quantitatively measured using labeling

indices in the normal colonic epithelium [19,23], and their effects on the rate of somatic evolution

towards colorectal tumorigenesis. This model contributes to a quantitative understanding of the

initiation and progression of colorectal cancer and can be used to investigate the effects of spatial

patterns on mutation accumulation.

3.3 Methods

The mathematical model: in order to investigate the effects of proliferation kinetics on the rate

of somatic evolution toward colorectal tumorigenesis, we designed a spatial model capturing the

essential features of tissue architecture and cellular movement in colonic crypts. Each colonic crypt

is modeled by a representative column of cells, which is projected onto a linear lattice (3.1 A). The

total number of cells per column is given by N = 80, as determined by in vivo measurements with

a measured mean of 81.9 cells (±9.7 cells) [80]. Position 1 on the left end of the lattice represents

the stem cell and position N on the far right represents the apex of the crypt, close to the gut

lumen. During every elementary time step of this stochastic process, a cell at position i is selected

to divide according to a probability weight, wi, defined by a specific proliferation kinetic curve for

≤i≤N , zero elsewhere. The two daughter cells are then placed into positions i and i + 1, causing

cells that previously resided in positions i + 1 to N to shift by one position to the right. The last

cell is shed into the gut lumen. During each division, a mutation may occur with probability u. If

a mutation arises, then each of the daughter cells has a chance of 1/2 of inheriting the mutation.

This flexible model then allows us to investigate the effects of different proliferation curves on the
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rate of somatic evolution. Our model closely resembles the one originally proposed by Nowak et

al. [91], with the difference of incorporating specific proliferation kinetics.

The dynamics of proliferation is a function of the cell position in the crypt column. The prolif-

eration kinetic curve assigns a mitotic probability to each position in the crypt column: a more

proliferative position in the crypt column is represented by a larger mitotic probability. We

examined five proliferation kinetic curves (Figure 3.1 C). Position 1, the stem cell position, has

the same mitotic probability in all curves, such that w1
N∑
i=1

wi

is identical for all curves. Weights for

positions 2 to 80 are assigned by different proliferation curves. Proliferation curve 1 represents the

measured kinetic curve, which is extrapolated from in vivo bromodeoxyuridine (BrdU) labeling

experiments [80, 84]. The measured distribution was approximated using a normal distribution

with mean 18 and standard deviation 15 to best match the 90th percentile interval of the measured

curve. The probability weights for choosing a cell at each position in the crypt column, i= 2 to

80, are specified by the probability density function, 1
15
√
2π
e−

1
2 (
i−18
15 )2 . Curve 2 represents the

logistic proliferation curve generated from 1

1+e
i−40
10

; this curve is used to investigate the effects of

spreading the proliferation activities upwards in the crypt column. Curve 3 represents a uniform

curve. Curve 4 represents the mirror image of curve 2, with a vertical plane of reflection between

positions 40 and 41. Finally, curve 5 represents the mirror image of curve 1, with a vertical plane

of reflection between positions 40 and 41. Curves 4 and 5 were selected to examine the effects of

proliferating activities concentrated far away from the stem cell.

In addition to the normal shedding of the last cell in the crypt column, accidental premature

cell death may also occur (Figure 3.1 B). The rates of apoptosis have been measured using terminal

deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) in normal cells, hyperplastic

polyps, adenomas and carcinomas; in these cases, the percentage of cells being labeled ranged

from 1% to 4% [100]. These observations suggest that multiple cell deaths may occur during

each round of cell division. In the context of our model, such cell death may occur after each

normal cell division event. The number of dying cells, m, follows a Poisson distribution with

mean λ, which denotes the mean number of cell deaths per round of cell division. To incorporate
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Figure 3.1: Schematics of the linear process and proliferation kinetic curves. A: We designed a linear process
model to describe the essential features of cell movement in a colonic crypt. During each time step, a cell at
position i is selected to divide. During mitosis, a mutation may occur with probability u, giving rise to one
mutated and one wild type daughter cell, with equal probability of occupying either position i or i + 1. Cell
division pushes all cells to the right of position i upwards in the crypt by one position. The last cell is shed
into the lumen of the colon. B: Cell death may occur after each round of cell division. The number of dying
cells follows a Poisson distribution with mean l; the positions of the dying cells are selected according to a
uniform distribution. Dead cells are replaced by replenishing cell divisions. Dying cells at position j can only
be replaced by cells of a similar (j+1≤k≤j+d) or less (k≤j) differentiated stage. Position k is selected according
to the proliferation kinetics curve. If multiple cells die simultaneously, the replenishing cell divisions occur
sequentially, in the order of j(1), j(2) ... j(m), where j(1), j(2) ... j(m) are ordered death position. The m positions
for the replenishing cell divisions are selected according to the reweighted kinetic curve. C: Proliferation
kinetic curves as a function of cell positions. The black curve represents the measured labeling index for
normal human colon using bromodeoxyuridine (BRDU). The colored curves represent the five kinetic curves
under investigation. See the Methods section for details. Note that curve 1 is in good agreement with the
measured labeling index.
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the possibility of having multiple cell deaths, λ can vary between 0 and 3.2. The upper bound

of 3.2 corresponds to 4% of the length of the crypt column, which is the observed percentage of

cells undergoing apoptosis using Tunel labeling [101]. Cells are selected for death according to

a particular apoptosis curve specifying the likelihood of cell death for each position in the crypt

column. Due to a lack of quantitatively measured apoptosis curves as a function of cell position

within the crypt column, we used the five proliferation curves discussed above as proxies for

apoptosis curves and tested the resulting twenty five combinations of proliferation and apoptosis

curves for their effects on the dynamics of the system.

The vacancy resulting from a cell death at position j can be filled by an additional cell divi-

sion occurring at position k, where k ≤ j + d and d indicates the size of the interval in which more

differentiated cells can replace the dead cell. All following numerical examples are calculated

based on δ= 5. Position k is selected for a replenishing cell division according to the re-weighted

proliferation, w′k = wk
j+δ∑
l=1

alwl

, where al indicates the existence of a viable cell at position l. If multiple

cells die simultaneously, the replenishing cell divisions occur sequentially, in the order of j(1),

j(2) ... j(m), where j(1), j(2) ... j(m) are ordered positions for the m dying cells. The m positions

for the replenishing cell divisions are again selected according to the sequentially re-weighted

proliferation kinetic curve. This design was chosen to ensure that the dead cell(s) can only be

replaced by cells of a similar differentiation stage (j + 1 ≤ k ≤ j + d) or a less differentiated stage

(k≤j). In this model, the differentiation hierarchy is fully specified by each cell’s position in the

crypt column, with position 1 representing the least differentiated cell and position N representing

the most differentiated cell. In addition, this replacement rule captures the essential features of

two biological observations governing cellular repopulation of crypt columns: (i) replacement

mitotic activities are concentrated near the stem cell [101, 102]; and (ii) newly divided cells migrate

upward in the crypt column [86].

The accumulation of mutations is described by specific transition probabilities between dif-

ferent mutational states. The possibility of back mutations, which reconstitute a less mutated

state, is neglected. The mutation rates are assumed to be constant with respect to cell positions
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and with respect to time. Table 3.1 provides the range of plausible values used for the individual

mutation rates. In addition to mutations arising during cell division, we also incorporated random

mutations not linked to replication into our framework. Due to the lack of data on the positional

dependency of this type of random mutation, such mutations are assumed to be equally likely to

occur in any position in the crypt column. The mutation rate for the cell division- independent

mutation events is considered to be the same as that of mutation events linked to cell division.

Table 3.1: The values used for individual mutation rates.
Type of mutation Mutation rate per cell division References

u0 APC+/+ to APC+/− 10−7 [103]
u1 APC+/− to APC−/− 10−7 to 10−5 [104, 105]
u2 APC+/+ to APC+/+CIN and APC+/− to APC+/−CIN 10−7 to 2× 10−6 [11]
u3 APC+/−CIN to APC−/−CIN Up to 10−2 [76]

Time is measured in rounds of cell shedding. At each elementary time step, the cell at position

80 is shed off into the lumen of the gut as the result of cell division and the associated cell

movement. Cell deaths and replenishing cell divisions that replace dead cells are not counted as

extra increments in time. The rationale for this design is to distinguish between the regenerative

cell divisions under normal circumstances and the compensatory cell divisions for apoptotic losses.

The instantaneous time scale for replenishing cell divisions is extrapolated from the observation

that under strong external stimuli, the rate of progression through the cell cycle is accelerated;

for instance, ionizing radiation was shown to induce proliferative activity [106] and shorten

the duration of the cell cycle [107]. In addition, thermal injury [108] and starvation- induced

stress [109] also tend to increase mitotic activity. In this study, we adopted the assumption of

instantaneous replenishing cell divisions regardless of whether strong external stimuli are present

or not.

Relative fitness is defined as the ratio of the proliferation rate of a mutant cell to that of a

wild type cell at position i in the crypt column, wmutanti

wwildtypei

. A relative fitness greater than 1 indicates

that a mutant cell as position i is more likely to be selected to undergo cell division than a wild type

cell at the same position. A relative fitness value of less than 1 represents a fitness disadvantage
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and thus decreases the probability of cell divisions at that position. A relative fitness value of

1 signifies a neutral mutation. We investigated the effects of relative fitness values between 0.5

(representing a 50% fitness disadvantage of a mutant cell) and 2.0 (representing a 100% fitness

advantage of a mutant cell) [110].

3.4 Results

3.4.1 Cellular movement

Using this spatially arranged stochastic process model, we first investigated the effects of different

proliferation curves on cell movement. Five different proliferation curves were selected to illustrate

their effects on cell movement (Figure 3.1C). Curve 1 represents the measured labeling indices

(LI) from in vivo experiments [84, 106]; curve 2 was selected to investigate the effects of spreading

proliferating activities upwards in a crypt column; curve 3 represents the uniform kinetics in

which cell proliferation is equally likely to occur in any cell along the crypt column; and curves 4

and 5 represent the mirror images of curves 2 and 1, respectively. The selection probabilities for

position 1 in all curves are identical; furthermore the area under each curve is normalized to the

same total in order to make the effects of each curve comparable.

The rates of cellular movement, measured by the number of mitoses required for a cell at a

particular position in the column to reach the top of the crypt (position 80), depends on the shape

of the proliferation curve (3.1 A Left). As expected for all kinetic curves investigated, cells located

near the bottom of the crypt require a larger number of cell divisions to reach the top. For kinetic

curves with mitotic activities concentrated near the base of the crypt column (curves 1 and 2),

substantially fewer cell divisions are required to push out a cell located in the bottom half of the

column. The numbers of cell divisions required to accomplish this task are very similar for curves

1 and 2. The uniform curve (curve 3) requires slightly more rounds of cell divisions (Figure 3.1 A

Right). In contrast, curves 4 and 5, which have mitotic activities concentrated near the top of crypt
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column, require a much larger number of cell divisions than the other curves. In addition, we

observed significant variations among individual runs of the stochastic simulation in the number

of cell divisions needed to push a cell out of the crypt when considering the five different curves.

At each position in the crypt, curves 4 and 5 show larger variations among simulation runs than

curves 1, 2, and 3. Interestingly, cells proliferating according to kinetic curves 4 and 5 show a

stronger positional dependency in the amount of variation as compared to curves 1, 2 and 3. For

instance, for curves 4 and 5, the number of cell divisions needed to push out a cell located near the

top of the crypt column is less variable than that for a cell located near the bottom (Figure 3.2 A).

In addition to the qualitative descriptions of cellular movement for different growth kinetic

curves, we also derived a mathematical representation of the cellular behavior. The dynamics

of cellular movement in the crypt column can be represented by a Markov chain. After each

round of cell shedding, the transition probability for a cell in position m to remain in position m

is given by Pm,m =
∑
l>m

wl + 1
2wm, and transition probability from position m to m + 1 is given

by Pm,m =
∑
l<m

wl + 1
2wm for m ranging from 1... N , zero elsewhere. The absorbing state for this

transition matrix represents the vent of a cell exiting the crypt column by reaching its top. The

expected number of cell divisions needed for a cell to exit the crypt column (E) and the variance

of the number of cell division (V ) are given as the follows [111]:

E = (IN×N − PT )−11N×1 (3.1)

where IN×N is the identity matrix of size N , PT is the transition matrix, and 1N×1 is a vector of

length N and

V = (2(IN×N − PT )−1 − IN×N )E − E ∗ E (3.2)

where E ∗ E denotes the the Hadamard product of the expected number of cell divisions [112].

The presence of cell death results in changes in the transition matrix. The new transition

matrix is then given by products of the transition matrix for normal shedding, PT and the transi-

tion matrix for replenishing cell divisions, PTR. The transition probabilities in the PTR matrix are
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Figure 3.2: The rate of cellular movement in the crypt column. A: The left panel shows the distribution of
the number of mitoses needed to push a cell at position i out of the crypt column for each proliferation curve.
Colors match the corresponding proliferation curves in Fig. 1C. The horizontal axis represents the position of
the cell in the crypt. Box plots indicate the distribution of the number of mitoses, assuming no cell death. The
size of each bar indicates the amount of variation in the number of cell divisions. The right panel provides
a zoomed-in view focusing on curves 1, 2 and 3. B: The effects of cell death on cellular movement in the
crypt for three selected representative positions (2, 12, and 22) in the crypt column under the assumption of a
uniform death selection function. As the death rate, λ, increases, the rate of cell movement increases, as shown
by the decreasing number of mitoses needed to push a cell out of the crypt column. C: The panel shows the
effects of cell death on the mitotic stress of the stem cell assuming a uniform death selection function. The
average number of times the stem cell is selected for divisions is displayed as a function of cell death for the
proliferation kinetic curves. Without cell death, the number of times the stem cell is selected for cell division is
identical for all curves. As λ increases, the mitotic stress on the stem cell increases. The magnitude of increase
depends on the shape of proliferation kinetic curve. Dots represent results from simulations, whereas the lines
are exact results based on the terms inside the parentheses in Eq. 3.4. All graphs are generated based on 1,000
simulations for each kinetic curve under each scenario. All cells are assumed to have identical relative fitness
values.
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all zero, except for Pm,m−1, Pm,m and Pm,m+1, which are given by:


Pm,m−1 =

∑
1≤j≤N

∑
k>j

QkjI(j < m < k) + 1
2

∑
m−δ<j<m

Qmj

Pm,m =
∑

1≤j≤N

∑
k>j+δ,k 6=j

QkjI(m 6∈ min(k, j)...max(k, j)) + 1
2

∑
j<m−δ

Qmj

Pm,m+1 =
∑

1≤j≤N

∑
k>j

QkjI(k < m < j) + 1
2

∑
j>m

Qmj

(3.3)

where Qkj = P (death = j) wk∑
l≤j+δ,l 6=j

wl
for k ≤ j + δ and k 6= j, zero otherwise; this quantity denotes

the probability of apoptosis occurring at position j and a replacement cell division occurring at

position k; and I denotes an indicator variable. The overall transition probability matrix is then

given by:

P ′T =

∞∑
v=0

PT × (PTR)v × e−λλv

v!
(3.4)

This matrix contains the average transition probabilities in the linear system for a given death rate

λ. The expected number of cell division needed for a cell to exit the crypt column (E) and the

variance for the number of cell divisions (V ) can be calculated from equations 3.1 and 3.2.

The most important effect of cell death is its ability to accelerate cellular movement in the

crypt column (Figure 3.2 B). As the mean number of deaths, λ, per cell division increases, fewer

rounds of cell division are required to push a cell out of the crypt column (Figure 3.2 B). These

acceleration effects on cellular movement were observed even when λ was as low as 0.1 and

were more prominent in crypts proliferating according to curves 4 and 5 than those proliferating

according to the other curves. Regression analysis indicated that the median number of cell

divisions needed to push a cell at position 2 out of the crypt was not significantly different among

crypt columns proliferating according to curves 1, 2 and 3. Also, interactions between birth and

death curves were not significantly correlated with the speed of cellular movement. In addition to

causing this acceleration effect, cell deaths also increase the mitotic burden on the stem cell (Figure

3.2 C). The mitotic burden of a cell is defined as the mean number of times a cell is selected to

undergo cell divisions per time step. These divisions could either be cell divisions occurring under

normal circumstances or replenishing replications that replace dead cells. Note that, in the absence

of cell death (λ = 0), , the average number of times the stem cell is selected to divide is identical for
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all curves. However, in the presence of cell death, λ > 0, he number of times of selecting the stem

cell to undergo replenishing cell divisions depends on the shapes of the proliferation kinetic and

death curves as well as the death rate. Under the uniform death curve, when λ > 0, proliferative

curves 1 and 2 show the smallest increases in the mitotic burden of the stem cell, due to the

positioning of the proliferating cells close to the stem cell. These proliferating cells may undergo

replenishing cell divisions to replace dead cells arising further up in the crypt column, which help

lessen the mitotic burden on the stem cell. In contrast, the stem cell’s mitotic burden increases

drastically for proliferative curves 4 and 5 due to the long distance between the stem cell and the

other proliferating cells. In these cases, cell deaths occurring in the middle of the crypt column can

only be replaced by stem cell divisions due to the shape of the mitotic curves and the replenishing

rules imposed; this effect thus increases the mitotic burden on the stem cell. The mitotic burden

for other cells is less affected by cell death as compared to that of the stem cell and the overall

shape of the kinetic curves remains similar to the original shape in the absence of cell death. One

important consequence of over-using the stem cell to replace dead cells is that it accelerates the

rate of mutation accumulation in the stem cell, as explored in the following section.

3.4.2 The single mutation model

We then incorporated a simple mutation model into the linear process. This addition captures

for instance the accumulation of an inactivating mutation in one APC allele, thus transforming

an APC+/+ cell into an APC+/− cell (Figure 3.3 A). As a representative example, the dynamics

of the somatic evolution process within a single crypt column is displayed in (Figure 3.2 B) n

the absence of cell death, all mutations arising in non-stem cells within the crypt column are

eventually flushed out of the crypt; only mutations arising in the stem cell have the ability to reach

fixation, i.e. reach 100% frequency within a crypt column. This spatial restriction highlights the

fundamental difference between the linear process and a stochastic process model describing a

well-mixed population, for instance the Moran process [89] or the Wright-Fisher process. In the

latter models, any cell within the population has an equal chance of taking over the population if

all fitness values (i.e. growth and death rates) are equal. In the linear process, in contrast, only a
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mutation arising in the stem cell has the ability to take over the entire population of cells.

Somatic evolution in the crypt column in the absence of cell death can be split into two disjoint

events: (i) a mutation arising in the stem cell, and (ii) mutation propagation through the crypt

column (Figure 3.3 B). Since the mutation rate at which APC is inactivated per allele, u0, is low

(estimated to be on the order of 10−7 per cell division [103]), the rate-limiting event of this process

is the time it takes until the mutation arises in the stem cell; mutations arising in any other cell

are neglected here since they cannot reach fixation in the crypt. The number of times the stem cell

divides is specified by the proliferation kinetic curve. In the absence of cell death, the probability

of selecting the stem cell for cell division is identical for all kinetic curves; thus the time, measured

by the number of mitoses occurring, until all cells in the crypt column are in the APC+/− state is

identical for all kinetic curves (Figure 3.3 C). The distribution of mitotic activities along the crypt

column plays no role in modifying the speed of mutation accumulation in the stem cell, since the

rate of stem cell divisions are equal among all curves investigated (see Methods). The probability

of fixation by time t in the linear process is determined by the probability that a mutation has arisen

in the stem cell by time t,

P (t) = 1− (1− u0w1

2
)t (3.5)

For a small u0, this expression can be approximated by

P (t) =
u0w1t

2
(3.6)

Here w1 denotes the probability of selecting the stem cell position for replication and the factor of

1
2 arises from the two possible arrangements of cells after cell divisions, only one of which can lead

to a mutant cell residing in the stem cell position. Once the stem cell becomes mutated, fixation

of its offspring in the crypt column quickly ensues. However, the rate of propagation of mutated

cells throughout the crypt is heavily influenced by the kinetic curves (Figure 3.3 D). Mutated cells

in crypts proliferating according to curves 1 and 2 reach fixation faster than in those proliferating

according to curves 4 and 5. Curve 3, the uniform curve, leads to fixation of mutant cells on a
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Figure 3.3: The single mutation model. A: Schematic representation of the single mutation model. B: An
example of the dynamics of somatic evolution in the crypt column. The curves show the proportions of cells
in the crypt column. The colors correspond to cell types in panel A. The gray shaded region indicates the stem
cell is mutated to APC+/−. For illustration purposes, u0 = 0.01. C: The number of mitoses needed for a wild
type crypt column to transition to an APC+/− state for various proliferation kinetic curves in the absence
of cell death. As expected, the numbers of cell division needed to reach mutant fixation are the same for all
curves. The mutation rate is u0 = 10−7 per cell division. Box plots are color coded, corresponding to the
curves in Fig. 1C. D: The number of mitoses needed for fixation of APC+/− cells for various proliferation
kinetic curves, measured from the time at which the stem cell accumulates the APC+/− mutation assuming
no cell death. The gray area corresponds to the gray shaded interval in panel B. E: Acceleration of mutation
accumulation due to cell death. As the death rate, l, increases, fewer cell divisions are required for a mutated
stem cell to arise. The comparison between panels C-E highlights the importance of proliferation kinetics of
non-stem cells in the presence of cell death. F: Effects of fitness differences and proliferation curves on the
rate of somatic evolution. The range of relative fitness spans from 0.5 to 2.0. G: The left panel shows the
effects of fitness differences and different proliferation curves on the rate of APC+/− fixation, starting from
anAPC+/− stem cell in the absence of cell death. The panel on the right provides a zoomed-in view on curves
1, 2 and 3.
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Table 3.2: The probabilities of selecting the stem cell for a replenishing division per cell death event.

Death Curve 1 Death Curve 2 Death Curve 3 Death Curve 4 Death Curve 5

Birth Curve 1 0.0374 0.0344 0.0269 0.0193 0.0186
Birth Curve 2 0.0471 0.0421 0.0314 0.0207 0.0190
Birth Curve 3 0.0844 0.0735 0.0504 0.0274 0.0224
Birth Curve 4 0.4201 0.3354 0.1969 0.0584 0.0294
Birth Curve 5 0.9180 0.7525 0.4587 0.1650 0.0488

slightly slower time scale than curves 1 and 2, but still faster than curves 4 and 5. In addition,

the amount of variability in the number of cell divisions required for the APC+/−mutation to

propagate through the crypt column also depends on the shapes of the kinetic curves. As the

mitotic activity becomes more concentrated near the top of the crypt, towards the gut lumen, the

amount of variability among individual simulation runs in the fixation time increases (Figure 3.3

D).

In contrast, in the presence of non-stem cell death, the interactions between birth and death

curves determine the speed of somatic evolution (Figure 3.3 E). We derived an analytical approxi-

mation to show the accelerating effects of non-stem cell death on the rate of mutation accumulation

in the stem cell, in the absence of relative fitness differences between mutated an normal cells and

in the absence of stem cell death. The probability of selecting the stem cell to undergo one round

of additional cell division, and thus to shift all downstream cells along the crypt column to fill the

vacancy created by a cell death at position j, is given by w1
j+δ∑
l=1

alwl

, where δ specified the size of the

interval (i.e. the number of cells) in which more differentiated cell can replace the dead cell. Thus,

the probability of a mutation arising in the stem cell during this additional round of cell division

is given by w1
j+δ∑
l=1

alwl

u0

2 . Since the expected number of cell deaths occurring during a time interval t

is λt, the probability that a mutation occurs in the stem cell during λt additional cell divisions is

given by

P (t) = 1−
bλtc∏
r=1

(1− w1

jr+δ∑
l=1

alwl

u0
2

) (3.7)

where jr indicates the position at which the rth cell death event occurs. For small u0, this
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expression can be approximated by
bλtc∑
r=1

w1
jr+δ∑
l=1

alwl

u0

2 . If λt >> N , it can further be approximated

by u0λt
2

N∑
k=2

( w1
k+δ∑
l=1

alwl

Pdeath(k)), where Pdeath(k) denotes the probability of cell death occurring at a

particular position in the crypt column, and ak = 0.

In addition to division-linked mutations, cell division-independent mutation also contributes

to the rate of mutation accumulation in the stem cell. Given the assumption that cell division-

independent mutation may occur anywhere in the crypt column, the additional contribution to the

overall rate of mutation accumulation in this scenario can be modeled by including the factor u0t
N .

Thus the overall fixation rate in the crypt column of a new mutant cell is given by

P (t) = u0t(
w1

2
+
λ

2

N∑
k=2

(
w1

k+δ∑
l=1

alwl

Pdeath(k)) +
1

N
) (3.8)

The interactions between birth kinetics and death positions determine the probability of se-

lecting the stem cell for replenishing cell divisions after apoptosis, as stated by the term
N∑
k=2

( w1
k+δ∑
l=1

alwl

Pdeath(k)) in equation (3.9).

For the five curves examined, the interactions between birth kinetics and death selection are

shown in Table 3.2. Curve 1 has the lowest probability of selecting the stem cell for replenishing

cell divisions for all death curves. In addition, the rates of selecting the stem cell are less variable

for curve 1 across different death selection curves (row 1 in Table 3.2) than for other proliferation

kinetic curves. Deaths occurring near the top of the crypt column, such as in death curve 5, lower

the mitotic burden on the stem cell for all birth kinetics curves. Of all twenty-five combinations

examined, the interaction between birth kinetics curve 1 and death selection curve 5 results in

the lowest amount of mitotic burden on the stem cell. In contrast, birth kinetics curve 5, with

mitotic probabilities concentrated near the top of the crypt, and death selection curve 1, with

apoptosis occurring near the stem cell, result in substantial increases in the probability of selecting

the stem cell for replenishing cell divisions. In addition to the interaction between the location of

proliferating cells and cells undergoing apoptosis, the rate of cell death, λ, also controls the rate of
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mutation accumulation in the stem cell. As λ increases, the rate of mutation accumulation in the

stem cell is accelerated. Lastly, cell division-independent mutation increases the overall mutation

rate, as shown by the last term in equation (3.9).

We also investigated the effects of fitness changes of mutant cells on the speed of somatic

evolution. Relative fitness is defined as the ratio of selection probabilities for proliferation of a mu-

tant cell to that of a wild type cell at the same position in the crypt column (see Methods). Changes

in the relative fitness can potentially affect the speed of both the rate of mutation accumulation in

the stem cell and the rate of mutant propagation through the crypt column. We investigated the

effects of relative fitness values between 0.5 (representing a 50% fitness disadvantage of a mutant

cell) and 2.0 (representing a 100% fitness advantage of a mutant cell) [110]. The speed of somatic

evolution was not significantly affected by changes in fitness within this range (Figure 3.3 F). This

effect arises because the rate-limiting event is represented by the generation of the first mutation

in the stem cell, which - unlike its propagation throughout the crypt column - is not dependent on

fitness. In the case of an extremely advantageous mutation with a relative fitness value greater than

10, fixation of its offspring in the crypt column can be substantially delayed for the cases in which

the initial mutation arises in a non-stem cell. In these cases, cell divisions in non-stem mutants

are driving the cellular movement and tissue regeneration in the crypt column, thus reducing

the probability of the stem cell undergoing cell divisions. When conditioning on the event that

the stem cell is already mutated, we found that the relative fitness has a significant effect on the

fixation time for some kinetic curves (Figure 3.2 G). For instance, curves 4 and 5 are more sensitive

to changes in relative fitness; as the relative fitness of mutants decreases, more cell divisions are

required for a mutant cell to reach fixation. In contrast, curves 1 and 2 are less sensitive to changes

in the relative fitness. The variation in the fixation time also depends on the kinetic curves and on

the relative fitness of the mutant cells. Again, curves 1 and 2 lead to less variation compared to

curves 4 and 5. Furthermore, at low relative fitness values, the number of cell divisions necessary

for fixation is more variable than at high relative fitness values for curves 4 and 5. The uniform

curve is more sensitive to fitness variations compared to curves 1 and 2 (Figure 3.2 G).

69



We then modified the basic mathematical framework to allow for the special case of stem

cell death. In such situations, a mutant stem cell may be replaced by a more differentiated

cell. Apoptosis of the stem cell delays the rate of mutation accumulation in the stem cell and

mutant fixation. Regression analysis indicates that the number of times a mutant stem cell is

replaced by a wild type cell as the result of apoptosis in the stem cell position is significantly

related to the birth kinetics, death rate, relative fitness, and specific interactions between birth and

death curves. Kinetics curves with mitotic probabilities concentrated near the top of the crypt

(curves 3, 4 and 5) are less likely to lead to a loss of a mutation that had arisen in the stem cell

position. Mutant stem cells with a low relative fitness are more likely to be replaced by wild type

cells, since such mutant cells have a slower rate of propagation. Furthermore, large death rates

increase the mean number of times a mutant stem cell is replaced by a wild type cell through

apoptosis and dedifferentiation. Since the death selection function is normalized such that the

stem position has an equal probability of being selected for all curves, death curves have no

effect on the rate at which mutant stem cells are replaced by wild type cells. The interactions

between birth and death curves only have weak effects on how often the mutant stem cell loses

a mutation. Overall, these observations suggest that apoptosis in the stem cell has the ability

to delay mutant fixation, whereas apoptosis in the differentiated cells accelerates mutation

accumulation by increasing stem cell divisions. Consistent with this observation, recent studies

suggest that a high rate of stem cell apoptosis in the small intestine is partially responsible for the

low incidence of small intestine cancer compared to colorectal cancer; in the latter, the stem cell

is protected from undergoing apoptosis by the expression of bcl−2, an anti-apoptosis protein [113].

3.4.3 The two mutation model

We then investigated a two mutation model within the linear process. This scenario captures,

for instance, the mutations inactivating both alleles of the APC gene (Figure 3.4 A). Similarly to

the single mutation model, the rate of emergence of double mutant cells (i.e. APC−/− cells) is

driven by the rates per cell division at which the two mutations arise, for all growth kinetic curves
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investigated.

We first studied the dynamics of the accumulation of these two mutations by investigating the ef-

fects of proliferation kinetics on the probability that an APC+/− cell acquires an additional muta-

tion in the second APC allele before being flushed out of the crypt. We investigated these dynamics

in the absence of cell death. Figure 3.4 B shows a representative simulation run. There are two

scenarios: the first APC mutation may arise in the stem cell, or alternatively it could arise in a

non-stem cell. Once the stem cell harbors the first APC mutation, in the absence of cell death, this

mutation is permanently maintained in the crypt and eventually, the second APC mutation arises.

In contrast, if the first APC mutation arises in a non-stem cell, the probability that this cell and its

progeny gain an additional mutation before exiting the crypt depends on four factors: the mutation

rate for inactivating the second APC allele, u1, the location of the APC+/− cell, the kinetic curve,

and the relative fitness of the APC+/− cell. As expected, an increase in u1 enhances the probability

of accumulating an additional mutation in a non-stem mutant cell (Figure 3.4 C-F). This observa-

tion agrees with the findings by Komarova and Wang [88] that for a large u1, APC+/− cells are

likely to arise among differentiated cells. The position of the APC+/− cell also has a significant in-

fluence on the probability of accumulating the additional mutation. An APC+/− cell residing near

the stem cell has a higher probability of acquiring a second mutation before being “washed” out

of a crypt than a cell residing near the top of crypt (Figure 3.2 C-F). Finally, different birth kinetic

curves also have effects on the probability of acquiring further mutations. For an APC+/− cell at

a particular position between 3 and 80, curves with mitotic activities concentrated near the stem

cell (curves 1, 2 and 3) have small probabilities of acquiring the second APC mutation before the

cell exits the lattice (Figure 3.4 C-F). This effect is more prominent for a large than for a small u1.

The probability of accumulating the second mutation depends on the sum of mitotic probability

weights for each cell: w1 +...+wi−1, where i denotes the position of the first APC+/− cell; this sum

is inversely related to the probability of accumulating the second APC mutation. For instance, if

the APC+/− cell resides at position 8, then the curve with the smallest sum of mitotic probability

weights for positions 1 to 7 leads to the largest chance that this clone accumulates an additional
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Figure 3.4: The two mutation model. A: Schematic representation of the mutations leading to inactivation of
both APC alleles, at rates u0 and u1, respectively. B: A representative example of the dynamics of somatic
evolution in the linear process. Each color-coded curve represents the proportion of each cell type in the crypt
column, with colors corresponding to those in panel A. The gray shaded region represents the time interval
during which the stem cell is in the APC+/− state. The yellow shaded region represents the time interval
during which the stem cell is in the APC−/− state. C-F: Conditional probability for losing the second APC
allele before anAPC+/− cell at a particular position along the crypt column is “flushed” out of the crypt in the
absence of cell death. At each position between 2 and 80, 1,000 simulation runs are generated in the absence of
cell death to determine the probabilities of APC+/− cells gaining new mutations before being “flushed” out
of the crypt column. Four different rates of inactivating the second APC allele, u1, were investigated and are
shown on the top of the four sub panels. The bottom two panels provide zoomed-in views.
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mutation before exiting the lattice. Since all curves have the same mitotic probability for position

1, the chance that an APC+/− cell at position 2 accumulates a new mutation is the same for all

kinetic curves. This effect arises only in the absence of cell death. Therefore, conditional to the

event that an APC+/− cell resides between positions 3 and 80, those kinetic curves with mitotic

probability weights concentrated near the stem cell confer a protective effect against acquiring new

mutations. Increasing the relative fitness of mutant cells increases the likelihood that an APC+/−

cell acquires a new mutation by enhancing the likelihood of this cell and its progeny to be selected

for cell divisions. These considerations hold under the assumption of no cell death. The presence

of cell death, in contrast, reduces the probability for a mutant cell to gain an additional mutation;

increasing the rate of cell death enhances the likelihood for a mutant cell and its progeny to either

die or be flushed out the crypt before they accumulate a new mutation.

3.4.4 Chromosomal instability

Finally, we incorporated the effects of chromosomal instability (CIN) into our model. CIN

arises due to the accumulation of a specific mutation at rate u2 and leads to a large mutation

rate, u3, at which the second APC allele is inactivated during cell divisions [76] (Figure 3.5 A).

Considering this additional mutation event, we then set out to investigate the effects of CIN on

the dynamics of the system. For large u3, we observed a phenomenon that has previously been

termed “stochastic tunneling” [114] . Tunneling refers to the process in which a crypt column

moves from a homogeneous state in which all cells harbor ρ mutations to a homogeneous state

in which all cells harbor ρ + 2 mutations, without ever transiting through a state in which all

cells harbor ρ + 1 mutations. For instance, in our model, tunneling occurs when cells in the

crypt column move from an APC+/− state directly to an APC−/−CIN state, without reaching

fixation in the APC+/−CIN state, as illustrated in Figure 3.5 B. Another possible tunneling

scenario is APC−/−CIN to APC+/−CIN to APC−/−CIN. Tunneling between other states is less

likely to occur given the small second mutation rates. Unlike prior investigations concerning the

tunneling rate for a well-mixed population of cells [115], cells in this model remain constrained to

a one-dimensional lattice.
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The tunneling rate depends on the mutation rate, u3, the death rate, the birth kinetic curve, the

death selection curve, and the relative fitness of mutated cells. Consider the uniform death curve

(curve 3) as an illustration: for this curve, as u3 increases, a larger proportion of all simulation runs

display tunneling for all five proliferation kinetic curves (Figure 3.5 C). Even though all curves

lead to this phenomenon, we found that crypts proliferating according to curves 4 and 5 are more

likely to display tunneling than those proliferating according to curves 1, 2 and 3. For curves 4

and 5, more stem cell divisions are required to reach fixation of APC+/− CIN cells, starting from

an APC+/−CIN stem cell, than for the other curves. Because of the large number of stem cell

divisions in crypts proliferating according to curves 4 and 5, there is a large probability for the stem

cell to lose the second copy of the APC gene before all cells in the column become APC+/−CIN

cells. For a given u3, as the mean number of cell deaths, λ, increases, a larger proportion of

simulation runs reach fixation of APC−/−CIN cells via tunneling. Furthermore, we found that

increases in λ result in larger increases in the tunneling probability for cells proliferating according

to curves 4 and 5 than for those proliferating according to curves 1, 2 and 3. Finally, in the presence

of cell death, high relative fitness values of APC+/−CIN cells reduce the tunneling probability,

whereas high relative fitness values of APC−/−CIN cells promote tunneling. Since the relative

fitness values of APC+/−CIN and APC−/−CIN cells are correlated, the ratio of relative fitness

values of APC+/−CIN and APC−/−CIN cells determines the tunneling rate. This ratio affects the

selection of replacing cell divisions and hence the tunneling probability. Higher-order interaction

terms involving birth curves, death curves and death rate are also important determinants of

tunneling rates.

Finally, we derived a general solution for the tunneling probability under the assumption of

no cell death. The general solution comprises the production of three terms: (1) the limiting

probability of the initial APC−/−CIN cell at position k to reach either the absorbing states: that

an APC−/−CIN stem cell arises, leading to tunneling, or that no further mutation arises in the

stem cell position before the APC−/−CIN clone is removed from the crypt column, signifying
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Figure 3.5: The effects of chromosomal instability and tunneling. A: Schematic representation of the mutations
leading to the inactivation of both APC alleles incorporating chromosomal instability. B: The upper panel
displays a representative example of linear somatic evolution dynamics. Each color-coded curves represent
the proportion of each cell type in the crypt column, with colors corresponding to those in panel A. Dashed
and solid lines correspond to cells with and within CIN respectively. The gray and yellow shaded regions
represent the time interval during which the stem cell is in the APC+/− state and APC−/− state respectively,
regardless of CIN status. The lower panel provides a zoomed-in view. Notice that the dashed red curve does
not reach 1, which signifies tunneling. This representative simulation run is performed using the uniform
proliferation kinetics in the absence of cell death and fitness differences. The mutation rate is inflated to u0 =
u1 = u2 = 10−3 and u3 = 0.01 for computational speed. C: The tunneling probability as a function of u3 and
the cell death rate, l, for the five proliferation curves under uniform death selection. To reduce the extent of
complexity, tunneling rate is simulated using a three-state system consisting of APC+/−, APC+/−CIN and
APC−/−CIN cells instead of the six-state system as illustrated in Panel A. Each simulation run starts with a
crypt column seeded with an APC+/− cell at the stem position. The number of simulation runs is set at 1,000.
Stem cell death is allowed. D: Concordance between simulated tunneling rates and analytical rates for linear
systems of length N = 10, 20, ...100 with equal proliferation probability at each position, using mutation rate
u3 = 0.001, 0.01, 0.1 and 1.0. All simulations were performed for 1,000 runs. E: Analytical tunneling rate for
the five proliferation curves at different mutation rate.
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the fixation of APC+/−CIN cells; (2) the probability that the initial APC−/−CIN cell arises

at position k conditional to the vent that an APC+/−CIN to APC−/−CIN mutation occurred

while APC+/−CIN populating the crypt column reach position l; (3) the probability that an

APC+/−CIN to APC−/−CIN mutation occurs as APC+/−CIN cells populating the crypt

column reach position l. The transition matrix for calculating the limiting probabilities is given by



pi,j = 1
2u3(wj−1 + w + j), for 1 ≤ j < i

pi,j = 1
2u3wj−1 +

N∑
l=1

wl

pi,i+1 = (1− u3)
i−1∑
l=1

wl

pN+1,N+1 = 1
0 elsewhere

(3.9)

The transition matrix specifies the movement of the left-mostAPC−/−CIN cell in the crypt column.

Under the assumption of no cell death, the movement of the left-mostAPC−/−CIN cell completely

determines the tunneling probabilities. The two absorbing states are state 1, when the left-most

APC−/−CIN cell arises in the stem cell position, resulting in tunneling, and state N + 1, when the

left-most APC−/−CIN cell is out of the crypt column, resulting in fixation of APC+/−CIN cells.

The tunneling probability vector of length N − 1 can be calculated using the fundamental matrix

of an absorbing Markov chain [103, 112],

[P (Tunneling|APC−/−CIN cell at position k)] = [IN−1 − P2:N,2:N ]−1 × [P2:N,1] (3.10)

Thus, the overall tunneling vector of length N , denoted by [P (T |k)], is given by

[P (T |k)] = [1, P (Tunneling|APC−/−CIN cell at position k)] (3.11)

This expression arises since tunneling occurs with probability 1 if theAPC+/−CIN toAPC−/−CIN

mutation arises in the stem cell.

Under the assumption of no cell death, the mutation conferring CIN must occur in the stem

cell position, since otherwise, it would be flushed out of the crypt column. Thus, the probability
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for the initial APC−/−CIN cell to arise at position k depends on the position of the right-most

APC+/−CIN cell as the latter populate the crypt column:

P (initial APC−/−CIN cell at positionk|right-most

APC+/−CIN cell at position land a mutation occurs)

=
0.5(wk−1 + wk))

l∑
i=1

wi

for k ≤ l + 1

(3.12)

Thus, the probability that the initial APC−/−CIN cell occurs at position k conditional to the event

that the right-most APC+/−CIN cell is located at position l and a mutation occurs can be ar-

ranged in matrix form, denoted by [P (k|l)], with columns representing k and rows representing

l. Lastly, the probability that an APC+/−CIN to APC−/−CIN mutation occurs as the right-most

APC+/−CIN cell moves into position l follows a geometric distribution:

P (right-most APC+/−CIN)cell at position l and a mutation occurs) = (1− u3)l−1u3 (3.13)

for 1 ≤ l ≤ N . Thus, a vector of lengthN , denoted by [P (l)], completely specifies the probabilities of

a mutation occurring as the right-most APC+/2−CIN cell moves from l−1 position to l. Therefore,

the overall tunneling probability can be calculated as

P (T ) = [P (T |k)]× [P (k|l)]× [P (l)] (3.14)

We then compared this analytical result with exact computer simulations and found good agree-

ment (Figure 3.5 D). Furthermore, using this analytical result, we calculated the tunneling rates for

the different proliferation curves at various values of the APC+/−CIN to APC−/−CIN mutation

rate u3 (Figure 3.5 E). For a given u3, those proliferation curves with mitotic probabilities concen-

trated near the stem cell have lower tunneling probabilities than those with mitotic probabilities

near the top of the crypt. In addition, in the absence of cell death, a variation in fitness values

does not affect the tunneling rates; in contrast, fitness variation is significantly associated with the

tunneling rate when cell death is present.
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3.5 Discussion

We designed a spatially arranged computational model of intestinal epithelial cells to investigate

the effects of proliferation kinetics on the dynamics of cell movement and mutation accumulation

in the colonic crypt. The model considers a single cell column within a colonic crypt, in which N

cells are arranged onto a one-dimensional lattice. One end of the lattice represents the bottom of

the crypt, where the stem cell resides, and the other end represents the orifice of the crypt (Figure

3.1 A). Mitotic activities cause cell movements towards the upper end of the crypt and push the

last cell off the lattice. During each cell division, a mutation may occur, which might increase

the proliferative activity of the resulting mutant cell and can represent a step towards colorectal

tumorigenesis. We then compared the effects of five different proliferation curves on the speed of

somatic evolution and cell movement (Figure 3.1 C). We used these proliferative curves to demon-

strate that proliferation kinetics is an important criterion that needs to be considered in modeling

the dynamics of somatic evolution in spatially arranged tissues. In addition to the proliferation

kinetics, we introduced a differentiation hierarchy to this linear process model. In our model, only

cells at similar or less differentiated stages can replace dead cells. Finally, we used a discrete time

scale such that under normal circumstances, only cell divisions contribute to the measurement of

time while cell death and replenishing cell division events are assumed to be instantaneous in time.

Compared to previously published models [94, 95, 97, 98], in our model the crypt structure is

greatly simplified to a one-dimensional lattice; nonetheless, the essential features of cell movement

are captured by our simple model, in that cells move upward towards the gut lumen with limited

lateral movement [82]. This simplified design allows for the investigation of the effects of prolif-

eration kinetics on the rate of mutation accumulation. In addition, unlike previously published

models, our simple design enables us to derive analytical solutions for several quantities of

interest such as the rate of mutation accumulation and the tunneling probability. In contrast to

compartmental models [116–118], the linear model has the advantage of retaining the spatial

structure dictating colonic epithelial cell behavior. In addition, our model contains a gradual

differentiation hierarchy, which is represented by the cell positions in the crypt, instead of being
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characterized by discrete compartmental boundaries.

Using this model, we demonstrated that spatially explicit proliferation kinetics have a signif-

icant impact on the stability and the dynamics of the crypt column in terms of the speed of cell

movement and mutation propagation as well as sensitivities to apoptosis and selective effects

of mutant cells. Comparing the proliferation kinetic curves we investigated, we identified three

advantages of a spatial architecture in which the proliferative potential of cells is located close to

the stem cell: 1) this type of proliferation architecture increases the stability of the linear system

in terms of providing a less variable rate of cell movement; 2) in the presence of cell death, this

architecture delays the rate of mutation accumulation in the stem cell; and 3) it provides protection

against tumorigenesis by reducing the probability of acquiring further mutations in the absence of

cell death. These results suggest that the kinetic curve identified using labeling index studies in

the human colon [80,84] best delays the rate of somatic evolution towards colorectal tumorigenesis

when compared to the other curves investigated here.

Prior work has demonstrated that both spatial organization and cellular hierarchy need to

be considered in modeling somatic evolution [119]. Our findings highlight the importance of

proliferation patterns, in addition to spatial arrangements and cellular hierarchies, in studying

tissue and mutation dynamics. This area has not been explored in-depth prior to our investigation.

Despite the highly simplified nature of our model, we have demonstrated that proliferation curves

with mitotic activities concentrated near the stem cell confer an advantage to the colon crypt by

increasing the stability of the linear system and by delaying the rate of mutation accumulation.

Normal proliferation kinetics, in addition to the linear tissue architecture, can suppress the rate

of evolution towards colorectal cancer. A departure from such proliferation kinetics accelerates

the rate of mutation accumulation in the colonic crypt and destabilizes natural cell flow, thus

representing a step towards cancer.
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