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Abstract

A recent focus in health care policy is on comparative effectiveness of treatments–from

drugs to behavioral interventions to medical devices. Medical devices bring a unique set

of challenges for comparative effectiveness research. In this dissertation, I develop statis-

tical methods for comparative effectiveness estimation and illustrate the methodology in

the context of three different medical devices. In chapter 2, I review approaches for causal

inference in the context of observational cohort studies, utilizing a potential outcomes

framework demonstrated using data for patients undergoing revascularization surgery

with radial versus femoral artery access. Propensity score methods; G-computation;

augmented inverse probability of treatment weighting; and targeted maximum likeli-

hood estimation are implemented and their causal and statistical assumptions evaluated.

In chapter 3, I undertake a theoretical and simulation-based assessment of differential

follow-up information per treatment arm on inference in meta-analysis where applied re-

searchers commonly assume similar follow-up duration across treatment groups. When

applied to the implantation of cardiovascular resynchronization therapies to examine

comparative survival, only 3 of 8 studies report arm-specific follow-up. I derive the bias

of the rate ratio for an individual study using the number of deaths and total patients per

arm and show that the bias can be large, even for modest violations of the assumption

that follow-up is the same in the two arms. Furthermore, when pooling multiple studies

with Bayesian methods for random effects meta-analysis, the direction and magnitude

of the bias is unpredictable. In chapter 4, I examine the statistical power for designing a

study of devices when it is difficult to blind patients and providers, everyone wants the
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device, and clustering by hospitals where the devices are implanted needs to be taken

into account. In these situations, a stepped wedge design (SWD) cluster randomized de-

sign may be used to rigorously assess the roll-out of novel devices. I determine the exact

asymptotic theoretical power using Romberg integration over cluster random effects to

calculate power in a two-treatment, binary outcome SWD. Over a range of design param-

eters, the exact method is from 9% to 2.4 times more efficient than designs based on the

existing method.
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1. Introduction



A recent focus in health care policy is on comparative effectiveness of treatments–from

drugs to behavioral interventions to medical devices. The demand for rigorous demon-

strations of comparative effectiveness has led to previously developed statistical tools

being utilized in new settings. Medical devices bring a unique set of challenges for com-

parative effectiveness research. After the introduction of medical devices in the 1950s and

1960s, increasing medical device technology, such as the development of cardiac pace-

makers and prosthetic heart valves, prompted the FDA to propose a different approval

process than that established for drugs. Medical device development and clinical assess-

ment differs from drugs in many ways (Konstam et al. (2003)). A device evolves progres-

sively, through refinement of its components and/or systems. For example, modification

of an existing medical device may only involve a change in material or in a component,

whereas improving a drug may involve combining two agents or a different biological

target. The clinical effect of an implantable device is dependent upon the skill of the im-

planting physician, the so-called learning curve effect, whereas the clinical effect of a drug

is not dependent on the skill of the prescriber. Study design issues, such as blinding and

the aforementioned learning curve effects are challenging when assessing the effective-

ness of a device compared to best medical therapy. Devices are often designed to perform

multiple tasks and are not specifically engineered for one biologic target. Finally, devices

are frequently designed to be used in conjunction with medications. These represent

just some of the considerations when thinking about statistical methods for assessing the

safety and effectiveness of medical devices in a comparative effectiveness setting.

This dissertation develops statistical methodology for comparative effectiveness assess-

ments, including design considerations, of medical devices. In Chapter 2, I review the as-

sumptions underpinning a causal analysis, linking to the potential outcomes framework

developed by Rubin (Rubin (1974)). Methodology for binary treatments and a single out-

come in the absence of randomization are reviewed. I discuss the causal and statistical as-

sumptions associated with estimators based on propensity score matching, stratification

and weighting; G-computation; augmented inverse probability of treatment weighting;
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and targeted maximum likelihood estimation. A comparative assessment of the effec-

tiveness of two different artery access strategies for patients undergoing percutaneous

coronary interventions with a coronary stent illustrate the different approaches. Rudi-

mentary R code is provided to assist the reader in implementing the various approaches.

Like many inferential problems, some assumptions are not testable – for causal inference,

these include the explicit assumption of potential outcomes, stable unit treatment value

assignment (SUTVA), and ignorability of treatment assignment. In the artery access ex-

ample, we find that all methods indicated a lower risk of in-hospital complications for

the radial artery approach compared to the femoral approach, with the risk of in-hospital

complications being approximately 1.6% lower in the radial group.

In Chapter 3, I undertake a theoretical and simulation-based assessment of the effect of

differential follow-up information per treatment arm on inference in meta-analysis where

the most common approach in clinical applications assumes follow-up duration is similar

across treatment groups. The research is motivated by an investigation of the effective-

ness of cardiac resynchronization therapy devices compared to those with cardioverter-

defibrillator capacity where 3 of 8 studies report arm-specific follow-up duration. I derive

the bias of the rate ratio when incorrectly assuming equal follow-up duration in the sin-

gle study binary treatment setting. Simulations illustrate bias, efficiency, and coverage,

and demonstrate that bias can be large, even for modest violations of the assumption

that follow-up is the same in the two arms of an individual study. Combining study rate

ratios with hierarchical Poisson regression models, I examine bias and coverage for the

overall rate ratio via simulation in three cases: when average arm-specific follow-up du-

ration is available for all studies, some studies, and no study. In the null case, bias and

coverage are poor when the study average follow-up is used and improve even if some

arm-specific follow-up information is available. As the rate ratio gets further from the

null, bias and coverage remain poor. Furthermore, when pooling multiple studies with

Bayesian methods for random effects meta-analysis, the direction and magnitude of the

bias is unpredictable. When all studies are randomized trials, the impact of differential
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follow-up is less likely to be an issue, as trials are designed to have equal follow-up in

each arm.

In Chapter 4, I determine power for a binary treatment on a binary outcome in a cross-

over cluster randomized design, referred to as a stepped wedge cluster randomized design.

The design is motivated by the potential for large center effects in clinical trials of im-

plantable medical devices and where the demand for the new device is high. Approxi-

mate power for a binary outcome based on a linear mixed model assuming normal vari-

ance has been proposed (Hussey and Hughes (2007)). Using maximum likelihood theory,

I determine the exact asymptotic theoretical power for a two-tailed Wald test by capi-

talizing on computational advances using Romberg integration over the distribution of

the cluster random effects. Power is compared among several designs, as well as to that

found by Hussey and Hughes. I find that our method has higher power for the same de-

sign taking the binary nature of the outcome into account versus Hussey and Hughes. I

use this method to design a study powered to detect effectiveness of a new left ventricular

assist device (LVAD) model for patients with end-stage heart disease.
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2.1 Introduction

Comparative effectiveness research (CER) is designed to inform health-care decisions by

providing evidence on the effectiveness, benefits, and harms of different treatment op-

tions (AHR (2014)). While the typology of CER studies is broad, this chapter focuses

on CER conducted using prospective or retrospective observational cohort studies where

participants are not randomized to an intervention, treatment, or policy. We assume out-

comes and covariates are measured for all subjects and there is no missing outcome or

covariate information throughout; we also assume that the data are sampled from the

target population – the population of all individuals for which the treatment may be con-

sidered for its intended purpose. Without loss of generality, we use the terms control or

comparator interchangeably and focus on one non-time varying treatment. The scope of

methods considered are limited to linear models – a single treatment assignment mecha-

nism model and a single linear outcome model.

An example involving the in-hospital complications of radial artery access compared to

femoral artery access in patients undergoing percutaneous coronary interventions (PCI)

illustrate ideas. Coronary artery disease can be treated by a PCI in which either a balloon

catheter or a coronary stent is used to push the plaque against the walls of the blocked

artery. Access to the coronary arteries via the smaller radial artery in the wrist, rather than

the femoral artery in the groin, requires a smaller hole and may therefore, reduce access-

site bleeding, patient discomfort, and other vascular complications. Table 2.1 summarizes

information for nearly 40,000 adults undergoing PCI in all non-federal hospitals located

in Massachusetts. The data are prospectively collected by trained hospital data managers

utilizing a standardized collection tool, sent electronically to a data coordinating cen-

ter, and adjudicated (Mauri et al. (2008)). Baseline covariates measured include age, sex,

race, health insurance information, comorbidities, cardiac presentation, and medications

given prior to the PCI. Overall, radial artery access (new strategy) compared to femoral

artery access (standard strategy) is associated with fewer in-hospital vascular and bleed-
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ing complications (0.69% vs 2.73%). However, there is significant treatment selection –

healthier patients are more likely to undergo radial artery access compared to those un-

dergoing femoral artery access. Patients associated with radial artery access have less

diabetes, more prior congestive heart failure, more left main coronary artery disease, and

more shock compared to those undergoing femoral artery access. The CER question is:

When performing PCI, does radial artery access cause fewer in-hospital complications compared

to femoral artery access for patients with similar risk?

The remainder of the chapter provides the main building blocks for answering CER ques-

tions in settings exemplified by the radial artery access example – a single outcome with

two treatment options. We sometimes refer to the two treatment groups as treated and

comparator, exposed and unexposed, or treated and control. Notation is next introduced

and the statistical causal framework is described. We adopt a potential outcomes frame-

work to causal inference (Holland (1986)). The underlying assumptions required for CER

are discussed. We restrict our focus to several major classes of estimators, and note that

we do not exhaustively include all possible estimators for our parameter of interest. Ap-

proaches for assessing the validity of the assumptions follow and methods are illustrated

using the PCI data.

2.2 Causal Model Basics

Assume a population of N units indexed by i each with an outcome, Yi. In the radial

artery example, units are subjects, and Yi = 1 if subject i had a complication after PCI and

0 otherwise. Assume a binary-valued treatment such that Ti = 1 if the patient received

the new treatment (e.g., radial artery access) and 0 (e.g., femoral artery access) otherwise.

Approaches for treatments assuming more than two values, multi-valued treatments, gen-

eralize from those based on binary-valued treatments (see Imbens (2000), Lu et al. (2001)).

Variables that are not impacted by treatment level and occur prior to treatment assign-
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Table 2.1: Population characteristics stratified by type of intervention. All entries are percentages
with the exceptions of number of observations, age, and number of vessels with > 70% stenosis.

Intervention
Radial Femoral

No. of Observations 5192 35022
Demographics
Mean Age [SD] 63 [12] 65 [12]
Female 25.3 29.8
Race
White 89.6 89.4
Black 3.3 3.2
Hispanic 4.3 3.5
Other 2.8 3.9
Health Insurance
Government 46 50.3
Commercial 4.8 13.4
Other 49.2 36.3
Comorbidities
Diabetes 33.1 32.7
Prior Congestive Heart Failure 9.4 12.7
Prior PCI 32 34.3
Prior Myocardial Infarction (MI) 28.7 30.1
Prior Coronary Artery Bypass Surgery 8.4 15.7
Hypertension 79.6 80.7
Peripheral Vascular Disease 12.1 12.8
Smoker 24.8 23.1
Lung Disease 13.7 14.4
Cardiac Presentation
Multi-vessel Disease 10.3 10.9
Number of Vessels > 70% stenosis 1.49 1.58
Left Main Disease 3.7 7.2
ST-segment elevated MI 38.9 42.6
Shock 0.44 1.8
Drugs Prior to Procedure
Unfractionated Heparin 87.3 61.7
Low Molecular Weight Heparin 3.83 4.27
Thrombin 25.5 54.9
G2B3A Inhibitors 26.7 26.8
Platelet Aggregate Inhibitors 85.8 86.6
Aspirin 98.2 97.5
In-Hospital Complication, % 0.69 2.73
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ment are referred to as covariates. Let Xi denote a vector of observed covariates, all mea-

sured prior to receipt of treatment. Notation is summarized in Table 2.2. Within X , some

covariates may be confounders. Confounding occurs due to differences in the outcome

between exposed and control populations even if there were no exposure. The covariates

that create this imbalance are called confounders (Greenland and Robins (1986)). Another

type of covariate is an instrumental variable that is independent of the outcome and corre-

lated with the treatment (see Imbens and Angrist (1994)). Instrumental variables, when

available, are used when important key confounders are unavailable; their use is not dis-

cussed here. In the radial artery example, X includes age, race, sex, health insurance

information, and cardiac and non-cardiac comorbidities. Because there are two treatment

levels, there are two potential outcomes for each subject (Sekhon (2008)). Only one of the

two potential outcomes will be observed for a unit.

Table 2.2: Notation for the potential outcomes framework to causal inference
Notation Definition

Ti Binary treatment for unit i (1=treatment; 0=comparator)
Yi Observed outcome for unit i
Y0i Potential outcome for unit i if Ti = 0
Y1i Potential outcome for unit i if Ti = 1
Xi Vector of pre-treatment measured covariates for person i
µT EX(E(Y | T = t,X)), marginal expected outcome under t
∆ µ1 − µ0, causal parameter

2.2.1 Causal Parameters

The idea underpinning a causal effect involves comparing what the outcome for unit i

would have been under the two treatments – the potential outcomes. Let Y1i represent the

outcome for unit i under Ti = 1 and Y0i for Ti = 0. The causal effect of the treatment on the

outcome for unit i can be defined in many ways. For instance, interest may center on an

absolute effect, ∆i = Y1i−Y0i, the relative effect ∆i = Y1i/Y0i, or on some other function of the

potential outcomes. The fundamental problem of causal inference is that we only observe

the outcome under the actual treatment observed for unit i, Yi = Y0i(1 − Ti) + Y1i(Ti).

9



A variety of causal parameters are available with the choice dictated by the particular

problem. We focus on the causal parameter on the difference scale, ∆ = µ1 − µ0, where

µ1 and µ0 represent the true proportions of complications if all patients had undergone

radial artery access and femoral artery access, respectively. The marginal mean outcome

under treatment T = t is defined as

µT = EX (E(Y | T = t,X)) , (2.1)

averaging over the distribution of X . The marginal expected outcome is found by exam-

ining the conditional outcome given a particular values of X and averaging the outcome

over the distribution of all values of X . The parameter µT is useful when interest rests on

assessing population interventions. If the treatment effect is constant or homogeneous,

then the marginal parameter is no different from the conditional parameter.

The average treatment effect (ATE) is defined as

E[Y1 − Y0] = EX (E[Y | T = 1, X = x]− E[Y | T = 0, X = x]) (2.2)

and represents the expected difference in the effect of treatment on the outcome if subjects

were randomly assigned to the two treatments. The ATE includes the effect on subjects

for whom the treatment was not intended, and therefore may not be relevant in some

policy evaluations (Heckman et al. (1997)). For example, to assess the impact of a food

voucher program, interest rests on quantifying the effectiveness of the program for those

individuals who are likely to participate in the program. In this case, the causal parameter

of interest is the average effect of treatment on the treated (ATT)

EX (E[Y | T = 1, X = x]− E[Y | T = 0, X = x] | T = 1) . (2.3)

The ATT provides information regarding the expected change in the outcome for a ran-

domly selected unit from the treatment group.

Which causal estimand is of interest depends on the context. When randomized, on aver-

age, the treated sample will not be systematically different from the control sample, and
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the ATT will be equal to the ATE. Throughout this chapter we focus on the ATE as the

causal estimand of interest because (1) both radial and femoral artery access are a valid

strategy for all subjects undergoing PCI and (2) we wish to determine whether fewer com-

plications would arise if everyone had undergone radial artery access rather than femoral

artery access.

2.2.2 Underlying Causal Assumptions

If the following untestable assumptions are violated, the causal parameters defined can

be estimated statistically but cannot be interpreted causally. We begin with the explicit

assumption of potential outcomes. The ability to state the potential outcomes implies

that although an individual receives a particular treatment, the individual could have

received the other treatment, and hence has the potential outcomes under both treatment

and comparison conditions.

Stable unit treatment value assignment (SUTVA): No interference and no variation in
treatment

The stable unit treatment value assignment (SUTVA) consists of two parts: (1) no interfer-

ence and (2) no variation in treatment. SUTVA is untestable and requires subject matter

knowledge. The no interference assumption implies that the potential outcomes for a

subject do not depend on treatment assignments of other subjects. In the radial artery

example, we require that radial artery access in one subject does not impact the proba-

bility of an in-hospital complication in another subject. If a subject’s potential outcomes

depends on treatments received by others, then Yi(T1, T2, ..., TN), indicating outcome for

subject i depends on the treatment received by T1, T2, · · · , TN . SUTVA implies

Yi(T1, T2, ..., TN) = Yi(Ti) = Yit. (2.4)

Under what circumstances would the assumption of no interference be violated? Con-
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sider determining whether a new vaccine designed to prevent infectious diseases – be-

cause those who are vaccinated impact whether a person becomes infected, there will be

interference. The radial artery access example may violate the no interference assumption

when considering the practice makes perfect hypothesis. As physicians increase their skill

in delivering a new technology, the less likely complications arise in subsequent uses,

and the more likely the physician is to use the new technology. Conditioning physician

random effects would make the no interference assumption reasonable.

The second part of SUTVA states that there are not multiple versions of the treatment (and

of the comparator), or that the treatment is well defined and the same for each subject

receiving it. In the radial artery access example, if different techniques are used to access

the radial artery (or the femoral artery) by different clinicians, then the SUTVA is violated.

Ignorability of treatment assignment

The most common criticism of CER using observational cohort studies involves the un-

measured confounder problem – the assertion that an unmeasured variable is confound-

ing the relationship between treatment and the outcome. Ignorability of the treatment

assignment or unconfoundedness of the treatment assignment with the outcome assumes

that conditional on observed covariates, the probability of treatment assignment does not

depend on the potential outcomes. Hence, treatment is effectively randomized condi-

tional on observed baseline covariates. This assumption is untestable and can be strong,

requiring observation of all variables that affect both outcomes and treatment in order to

ensure

(Y0, Y1) ⊥ T | X and P (T = 1 | Y0, Y1, X) = P (T = 1 | X). (2.5)
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2.2.3 Key Statistical Assumptions

Positivity

Positivity requires units at every combination of observed covariates,

0 < P (T = 1 | X) < 1. (2.6)

Structural violations of positivity occur when units associated with a certain set of covari-

ates cannot possibly receive the treatment or control. The ATE and the ATT cannot be

identified under structural violations of positivity. A treatment for use only in women,

for example, requires exclusion of males. Practical violations of the positivity assump-

tion may arise due to finite sample sizes. With a large number of covariates, there may

not be subjects receiving treatment and control in strata induced by the covariate space.

Positivity is a statistically testable assumption.

Constant treatment effect

A constant treatment effect conditional on X implies that for any two subjects having the

same values of covariates, their observable treatment effects should be similar

∆i | X = ∆j | X i 6= j. (2.7)

Under a constant treatment effect, the ATE may be interpreted both marginally and con-

ditionally. While this assumption can be empirically assessed, guidelines regarding ex-

ploratory and confirmatory approaches to determination of non-constant treatment ef-

fects should be consulted (see pco (2013)). Moreover, methods that have the average

causal effect in the population as the estimand do not need to make any assumptions

about constant treatment effect within levels of the confounders. These methods include

IPTW, G-computation, and TMLE (see below).
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2.3 Approaches

Under the assumptions described above, various approaches exist to estimate the ATE.

The approaches are divided into three types: methods that model only the treatment

assignment mechanism via regression, methods that model only the outcome via regres-

sion, and methods that use both the treatment assignment mechanism and outcome. For-

mulae are provided and general guidelines for implementation based on existing theory

to assist the reader in deciding how best to estimate the ATE are described.

2.3.1 Methods Using the Treatment Assignment Mechanism

Rosenbaum and Rubin (Rosenbaum and Rubin (1983)) defined the propensity score as

the probability of treatment conditional on observed baseline covariates, e(Xi) = P (Ti =

1 | Xi). The propensity score, e(X), is a type of balancing score such that the treatment

and covariates are conditionally independent given the score, T ⊥ X | e(X) so that for

a given propensity score, treatment assignment is random. The true propensity score in

observational studies is unknown and must be estimated. Because of the large number of

covariates required to satisfy the treatment ignorability assumption, the propensity score

is typically estimated parametrically by regressing the covariates on treatment status and

obtaining the estimated propensity score, ê(X). Machine learning methods have been

developed for prediction and have been applied to estimation of the propensity score

(see Lee et al. (2009), McCaffrey et al. (2004), Setoguchi et al. (2008), van der Laan and

Rose (2011)). Variables included in the propensity score model consist of confounders

and those related to the outcome but not to the treatment. The latter are included to

decrease the variance of the estimated treatment effect (Rubin (2007)). Instrumental vari-

ables, those related to treatment but not to the outcome should be excluded (Brookhart

et al. (2006)). The rationale for the exclusion of instrumental variables under treatment

ignorability relates to the fact that their inclusion does not decrease the bias of the esti-
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mated treatment effect but does increase the variance. By their construction, propensity

scores reduce the dimensionality of the covariate space so that they can be utilized to

match, stratify, or weight observations. These techniques are next described. Inclusion

of the propensity score as a predictor in a regression model of the outcome to replace

the individual covariates constitutes a simpler dimension reduction approach compared

to other estimators that use both the complete outcome regression and treatment mecha-

nism (see Section 2.3.3). However, if the distribution of propensity scores differ between

treatment groups, there will not be balance (Stuart (2010)) between treated and control

units when using ê(X) as a covariate, subsequent results may display substantial bias

(Kang and Schafer (2007)). Thus methods that do not make use of the propensity score,

such as G-computation (Section 2.3.2) still benefit from an analysis of the propensity score,

including testing for empirical violations of the positivity assumption.

Matching

Matching methods seek to find units with different levels of the treatment but having sim-

ilar levels of the covariates. Matching based on the propensity score facilitates the match-

ing problem through dimension reduction. Several choices must be made that impact the

degree of incomplete matching (inability to find a control unit to match to a treated unit)

and inexact matching (incomparability between treated and control units). These consid-

erations include determination of the structure of the matches (one treated matched to

one control, one-to-k, or one-to-variable), the method of finding matches (greedy versus

optimal matching), and the closeness of the matches (will any match do or should only

close matches be acceptable). The literature on matching is broad on these topics. We

refer the reader to Rassen 2012 et al. (Rassen et al. (2012)) for discussion about matching

structure, Gu and Rosenbaum (Gu and Rosenbaum (1993)) for a discussion on the com-

parative performance of algorithms to find matches, and Rosenbaum (Rosenbaum (2002))

for options for defining closeness of matches.
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Let jm(i) represent the index of the unit that is mth closest to unit i among units with the

opposite treatment to that of unit i, JM(i) the set of indices for the first M matches for

unit i, such that JM(i) = j1(i), ..., jM(i), and KM(i) the number of times unit i is used as a

match. Lastly, define KM(i) =
N∑
l=1

Ii ∈ JM(l) where I is the indicator function. Then the

ATE estimator and its corresponding variance are

∆̂Matching =
1

N

N∑
i=1

[
(2Ti − 1)

(
1 +

KM(i)

M

)
Yi

]
,

Var(∆̂Matching) =
1

N2

N∑
i=1

(
1 +

KM(i)

M

)2

σ̂2(Xi, Ti) (2.8)

where the conditional variance σ̂2(Xi, Ti) is estimated as J
J+1

(
Yi − 1

J

J∑
m=1

Ylj(i)

)2

and J is a

fixed number of observations. This approach (Abadie and Imbens (2006)) is implemented

in the Matching package in the R software system. The variance formula does not account

for estimation of the propensity score, only the uncertainty of the matching procedure

itself. While adjustment for the matched sets in computing standard errors is debated

(Stuart (2010)), we recommend that this design features be accounted for in the analysis.

Much of the preceding discussion assumed a larger pool of controls to find matches for

treated subjects – estimators based using this strategy provides inference for the ATT. Esti-

mating the ATE additionally requires identification of treatment matches for each control

group unit. Therefore, the entire matching process is repeated to identify matches for

units in the control group. The matches found by both procedures are combined and

used to compute the ATE.

Stratification

Stratification methods, also referred to as sub-classification methods, divide subjects into

strata based on the estimated propensity score. Within each stratum, treatment assign-

ment is assumed random. As with matching, sub-classification can be accomplished
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without using the propensity score, but this runs into problems of dimensionality. Com-

monly subjects are divided into groups by quintiles of the estimated propensity score, as

Rosenbaum and Rubin (Rosenbaum and Rubin (1984)) showed that using quintiles of the

propensity score to stratify eliminates approximately 90% of the bias due to measured

confounders in estimating the absolute treatment effect parameter, ∆ = Y1 − Y0. The

average effect is estimated in each stratum as the average of the differences in outcomes

between the treated and control:

∆̂q =
1

N1q

∑
i∈T∩Iq

Yi −
1

N0q

∑
i∈C∩Iq

Yi

whereNiq is the number of units in stratum q with treatment i, Iq is indicates membership

in stratum q, so T ∩ Iq would indicate that a subject in stratum q received the treatment.

The overall average is computed by averaging the within strata estimates based on their

sample sizes:

∆̂Stratification =

Q∑
q=1

Wq∆q; Wq =
N1q +N0q

N

Var(∆̂Stratification) = ΣqW
2
q v

2
q ; v2

q =
v2

1q + v2
0q

2
(2.9)

where v2
iq = s2

iq/Niq. Because individuals in each stratum do not have identical propensity

scores, there may be residual confounding (see Austin and Mamdani (Austin and Mam-

dani (2006))) and balance between treated and control units requires examination within

strata.

Inverse Probability of Treatment Weighted Estimators (IPTW)

The intuition behind weighting is that units that are underrepresented in one of the treat-

ment groups are up weighted and units that are overrepresented are down weighted. The

ATE can be estimated as

∆̂HT−IPTW =
1

N

N∑
i=1

TiYi

ê(Xi)
− 1

N

N∑
i=1

(1− Ti)Yi
1− ê(Xi)

(2.10)
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using the estimated propensity score, ê(X). We denote this estimate HT-IPTW to ac-

knowledge the Horvitz-Thompson (Horvitz and Thompson (1952)) ratio estimator uti-

lized in survey sampling. IPTW estimators solve an estimating equation that sets the es-

timating function to zero and aims to find an estimator that is a solution of the equation.

For example, consider
N∑
i=1

D(∆̂)(Ti, Yi, Xi) = 0,

withD(∆)(Ti, Yi, Xi) defining the estimating function and ∆̂ is an estimator of the param-

eter that is a solution of the estimating equation. Robins et al (Robins et al. (1995)) derived

variance estimators, but bootstrapping can also be used. Inverse propensity score weight-

ing is sensitive to outliers. Treated subjects with a propensity score close to one or control

subjects with a propensity score close to zero will result in large weights. The weights

can be trimmed but doing so introduces bias in estimation of the treatment effect (Potter

(1993)). Robins, Hernan and Brumback (Robins et al. (2000)) propose using stabilizing

weights, such that

∆̂S−IPTW =

(
N∑
i=1

Ti

ê(Xi)

)−1 N∑
i=1

TiYi

ê(Xi)
−

(
N∑
i=1

1− Ti
1− ê(Xi)

)−1 N∑
i=1

(1− Ti)Yi
1− ê(Xi)

(2.11)

IPTW estimators are known to have problems with large variance estimates in finite

samples. Inverse probability weights can be used to estimate parameters defined by a

marginal structural model, which we do not discuss here (see Robins et al. (2000)). See

Lunceford and Davidian (Lunceford and Davidian (2004)) and Stefanski and Boos (Ste-

fanski and Boos (2002)) for details regarding deriving variances using the empirical sand-

wich method. Alternatively, a bootstrap procedure may be applied to the whole process

including estimation of the propensity score.
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2.3.2 Methods Using the Outcome Regression

Multivariable Regression Modeling

The ATE can be estimated by the treatment coefficient from regression of the outcome

on the treatment and all of the confounders. The functional form of the relationship be-

tween the outcome and covariates needs to be correctly specified. The risk difference can

be validly estimated by fitting a ordinary least squares regression model and using the

robust variance to account for non-normality of the error terms. This approach is exactly

equivalent to fitting a generalized linear model for a binomial outcome with the identity

link and robust variance.

In the case of no overlap of the observed covariates between treatment groups, the model

cannot be fit as the design matrix will be singular. Therefore, erroneous causal infer-

ences are prohibited by the mechanics of the estimation procedure in the case of complete

non-overlap. However, standardized differences should still be looked at to see how the

treated and control groups differ, even under the assumption of no unmeasured con-

founding. If there is little overlap, we do not want to extrapolate to areas where we may

not be justified in making causal inference.

G-Computation

G-computation (G-computation algorithm formula, G-formula, Generalized-

computation) is completely non-parametric (Robins (1986)), but we focus on parametric

G-computation, which is a maximum-likelihood-based substitution estimator (Snowden

et al. (2011)). Substitution estimators involve using a maximum-likelihood-type estimator

(e.g., regression, super learning, etc.) for the outcome regression and plugging it into

the parameter mapping that defines the feature we are interested in estimating – here,

that feature is the average treatment effect µ1 − µ0. Under ignorability of the treatment
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assignment, the G-computation formula permits identification of the distribution of

potential outcomes based on the observed data distribution. In step 1, a regression

model or other consistent estimator for the relationship of the outcome with treatment

(and covariates) is obtained. In step 2, (a) set each unit’s treatment indicator to T=1 and

obtain predicted outcomes using the fit from step 1 and (b) repeat step 2(a) by setting

each unit’s treatment indicator to T=0. The treatment effect is the difference between

Ŷ1i and Ŷ0i for each unit, averaged across all subjects. When there are no treatment

covariate interactions, linear regression and G-computation that uses a parametric linear

regression provide the same answer for a continuous outcome. We can define this as

∆̂G−comp =
1

N

N∑
i=1

[Ê(Y | Ti = 1, Xi)− Ê(Y | Ti = 0, Xi)] (2.12)

where Ê(Y | Ti = t,Xi) is the regression of Y on X in treatment group T = t. Two

points are worth noting. First, if the outcome regression is not estimated consistently,

the G-computation estimator may be biased. Second, while positivity violations will not

be obvious when implementing a G-computation estimator, they remain important to

assess, and can lead to a non-identifiable parameter or substantially biased and inefficient

estimate.

2.3.3 Methods Using the Treatment Assignment Mechanism and the
Outcome

Double robust methods use both an estimator for the outcome regression and for the treat-

ment assignment. Estimators in this class may be preferable because they are consistent

for the causal parameters if either the outcome regression or treatment assignment regres-

sion are consistently estimated (Robins et al. (1994)). Two double robust methods include

the augmented inverse probability of treatment weighted estimator (A-IPTW) and the

targeted maximum likelihood estimator (TMLE).
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Augmented Inverse Probability Weighted Estimators (A-IPTW)

Like IPTW estimators, A-IPTW estimators are also based on estimating equations but

differ in that A-IPTW estimators are based on the efficient influence curve. An efficient

influence curve is the derivative of the log-likelihood function with respect to the param-

eter of interest. The efficient influence curve is a function of the model and the parameter,

and provides double robust estimators with many of their desirable properties, including

consistency and efficiency (van der Laan and Robins (2003)). The A-IPTW for the ATE is

∆̂A−IPTW =
1

N

N∑
i=1

[I(Ti = 1)− I(Ti = 0)]

ê(Xi)
(Yi − Ê(Y | Ti, Xi))

+
1

N

N∑
i=1

(Ê(Y | Ti = 1, Xi)− Ê(Y | Ti = 0, Xi)) (2.13)

where Ê(Y | Ti = t,Xi) is the regression of Y on X in treatment group T = t, and I() is an

indicator function. The nuisance parameters in the estimating equation for the A-IPTW

are the treatment assignment mechanism and the outcome regression. Further discussion

of estimating equations and efficient influence curve theory can be found in (van der

Laan and Rose (2011), van der Laan and Rubin (2006), van der Laan and Robins (2003)).

Of note, A-IPTW estimators ignore the constraints imposed by the model by not being

substitution estimators. For example, an A-IPTW estimator for a binary outcome many

produce predicted probabilities outside the range [0,1]. Thus finite sample efficiency may

be impacted, even though asymptotic efficiency occurs if both the outcome regression

and treatment assignment mechanism are consistently estimated.

Targeted Maximum Likelihood Estimator (TMLE)

The TMLE has a distinct algorithm for estimation of the parameter of interest, sharing the

double robustness properties of the A-IPTW estimator, but boasting additional statistical

properties. TMLE is a substitution estimator, thus unlike the A-IPTW, it does respect the
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global constraints of the model. Therefore, among other advantages, this improves the

finite sample performance of the TMLE.

The TMLE algorithm for the ATE involves two steps. First, the outcome regression E[Y |

T,X] and the treatment assignment mechanism e(X) are estimated. Denote the initial

estimate Ê[Y | T,X] = Q̂0(T,X) and the updated estimate

Q̂1(T,X) = Q̂0(T,X) + ε̂

(
T

ê(X)
− 1− T

1− ê(X)

)
,

where ε is estimated from the regression of Y on T

ê(X)
− 1−T

1−ê(X)
with an offset Q̂0(T,X). The

estimator for the ATE is the given by

∆̂TMLE =
1

N

N∑
i=1

(Q̂1(T = 1, Xi)− Q̂1(T = 0, Xi)) (2.14)

A parametric regression can be used to estimate both the outcome regression and the

treatment assignment mechanism. However, the targeted learning framework allows for

the use of machine learning methods to estimate these components in an effort to achieve

consistent estimators (van der Laan et al. (2007), van der Laan and Rose (2011), Rose

(2013)). Confidence intervals for both the A-IPTW and TMLE can be constructed using in-

fluence curve methods or bootstrapping techniques(van der Laan and Rose (2011),van der

Laan and Rubin (2006),van der Laan and Robins (2003)).

2.4 Assessing Validity of Assumptions

2.4.1 Ignorability

Ignorability of the treatment assignment is not directly testable and largely assessed by

subject matter knowledge. Several strategies can bolster the viability of the assump-

tion(Rosenbaum (1987)) however. Multiple control or comparison groups that differ with

respect to an unmeasured confounder, if available, can be used. If outcomes between the
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two control groups do not differ, then this observation would support the argument that

the unmeasured confounder is not responsible for any treatment-control outcome differ-

ences. Another option is to identify an outcome that is associated with an unmeasured

covariate but where a treatment would not expect to have any effect. Such outcomes,

referred to as control outcomes, provide a means to detect unobserved confounding. Tch-

etgen (Tchetgen (2014)) proposes a method to correct estimates using control outcomes.

Finally, Rosenbaum (Rosenbaum (2002)) provides approaches to perform a sensitivity

analyses for an unobserved confounder through examination of a range of potential cor-

relations between the unobserved confounder and the treatment assignment, and the un-

measured confounder and the outcome.

2.4.2 Positivity

Positivity or overlap can be measured through examination of the distributions of covari-

ates for the treated and control subjects. While there are many measures of balance, the

difference in average covariates scaled by the sample standard deviation, d, provides an

intuitive metric. It is calculated as

d =
x̄1j − x̄0j√

s21j+s
2
0j

2

(2.15)

where x̄ij is the mean of covariate j among those with treatment i and sij is the esti-

mated standard deviation. The quantity d is interpreted as the number of standard devia-

tions the treated group is above the control group. Mapping the standardized differences

to percentiles provides a mechanism to describe the extent of non-overlap between two

groups. For instance, a standardized difference of 0.1 indicates 7.7% non-overlap of the

two normal distributions; a standardized difference of 0 indicates complete overlap of the

two groups; and a standardized difference of 0.7 corresponds to 43.0% non-overlap. Rules

of thumb suggest that a standardized difference less than 0.1 is negligible Normand et al.
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(2001)). Examination of the standardized differences alone characterizes only marginal

distributions – the distribution of individual covariates. Because areas of weak overlap

may exist, reviewing the distributions of the estimated propensity scores stratified by

treatment groups is recommended.

2.4.3 Constant treatment effect

The assumption of a constant treatment effect may be explored by introducing interac-

tions between the treatment and sub-group indicators; or by dividing the population into

subgroups based on Xi, estimating an average causal effect within each subgroup, and

comparing the constancy of subgroup specific causal effects. Cases in which the treatment

effect may not be constant should be identified a priori as well as the size of meaningful

treatment effect heterogeneity in order to avoid multiple testing.

2.5 Radial Versus Femoral Artery Access for PCI

We return to the PCI example introduced earlier to determine whether access via the

radial artery reduces the risk of in-hospital complications compared to access via the

femoral artery. Table 2.1 indicates imbalances between the radial and femoral artery ac-

cessed subjects. For instance, the standardized difference for use of thrombin is -62.85%

indicating 40% non-overlap between the distribution of thrombin use for those under-

going PCI via the radial artery and those via the femoral artery. Ten of the observed

covariates have percent standardized differences greater than 10.
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2.5.1 Estimating Treatment Assignment: Probability of Radial-Artery
Access

The propensity score was estimated using logistic regression. The set of covariates ini-

tially considered were determined by conversations with cardiologists who perform PCI.

A primary model specification was selected for determining radial versus femoral artery

access and included all covariates linearly as well as interactions (see the Appendix). Vi-

sual examination of a density plot of the estimated linear propensity scores by treatment

arm (Figure 2.1) provides insights into the observable differences between the radial and

femoral groups. The overlap assumption may also tested with a formal comparison test,

such as the Kolmogorov-Smirnov nonparametric test. If there is little overlap, excluding

subjects with extreme propensity score values may be necessary. For example, there are

some subjects undergoing femoral artery accessed PCI whose estimated linear propensity

scores do not overlap with the linear propensity scores for radial artery accessed subjects

(Figure 2.1, density to the left of values of -5.0). Dropping subjects will make the estimates

only valid for the region of common support. For the PCI example, visual inspection in-

dicates that there are no patients who have a very high probability of radial treatment (on

the probability scale, values near 1). The majority of subjects in both groups have low

propensity scores, but those receiving radial artery access have higher propensity scores

on average, as expected.

2.5.2 Approaches

Using the estimators described earlier, we determine the comparative effectiveness of

radial artery access relative to femoral artery access. For comparability among estimates,

all 95% interval estimates reported below are constructed using robust standard errors

(1000 bootstrap replicates or theoretical results).
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Figure 2.1: Density of estimated linear propensity scores, logit(ê(Xi)), by artery access strategy.
Larger values of the propensity score correspond to a higher likelihood of radial artery access. The
upper horizontal axis gives the scale of the actual estimated probabilities of radial artery access.

Matching on the Propensity Score. Using the Matching program in R, we implement 1-1

matching without replacement to estimate the ATE. First, we identified femoral-artery

accessed matches for each radial-artery accessed subject and next, found radial-artery ac-

cessed matches for each femoral-artery accessed subject. This resulted in 10326 matched

pairs using a caliper of 0.2 standard deviations of the linear propensity score. The caliper

was necessary in order to reduce the standardized differences for all covariates to below

0.1. In the matched sample, 42 of the radial artery subjects were used only once, 5142

were used twice, and 8 were not used; 7084 of the femoral artery subjects were used once,

1621 were used twice, and 26317 were not used. After matching, the percent standard-

ized mean differences (Table 2.3 and Figure 2.2) improved. The linear propensity scores

for radial artery and femoral artery accessed subjects in the matched sample overlap sub-

stantially (Figure 2.3).
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Figure 2.2: Percent standardized mean differences before (red) and after matching (green), ordered
by largest positive percent standardized mean difference before matching.

The ATE estimated using matching and corresponding 95% confidence interval are

∆̂Matching = −0.0143(−0.0182,−0.0104) (2.16)

indicating subjects undergoing PCI via radial artery access were 1.43% less likely to have

an in-hospital complication compared to those accessed via the femoral artery. Using a

more stringent caliper moved the point estimate further from the null, but discarded more
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Table 2.3: Population characteristics pre and post matching listed by type of intervention. All are
reported as percentages, except the number of procedures, age, and number of vessels. Positive
standardized differences indicates a larger mean in the radial artery group.

Pre-Match Post Match
% %

Intervention Standardized Intervention Standardized
Radial Femoral Mean Diff Radial Femoral Mean Diff

No. of Procedures 5192 35022 10326 10326
Demographics
Mean Age [SD] 63 [12] 65 [12] -15.68 63 [12] 63 [12] 0.29
Female 25.3 29.8 -9.88 25.4 25.0 0.91
Race
White 89.6 89.4 0.66 89.7 89.2 1.83
Black 3.3 3.2 0.91 3.2 3.1 0.72
Hispanic 4.3 3.5 4.40 4.3 4.8 -2.50
Other 2.8 3.9 -6.74 2.7 2.9 -1.00
Health Insurance
Government 46 50.3 -8.65 46.2 46.1 0.23
Commercial 4.8 13.4 -30.09 4.8 5.6 -3.31
Other 49.2 36.3 26.24 48.9 48.3 1.24
Comorbidities
Diabetes 33.1 32.7 0.85 33.1 33.8 -1.35
Prior CHF 9.4 12.7 -10.41 9.5 9.8 -1.08
Prior PCI 32 34.3 -4.75 32.1 33.3 -2.44
Prior MI 28.7 30.1 -3.24 28.7 29.2 -1.05
Prior bypass surgery 8.4 15.7 -22.68 8.4 9.3 -2.90
Hypertension 79.6 80.7 -2.81 79.7 79.8 -0.24
Peripheral vascular disease 12.1 12.8 -2.22 12.1 13.2 -3.21
Smoker 24.8 23.1 3.94 24.9 24.7 0.38
Lung disease 13.7 14.4 -2.04 13.8 14.1 -0.92
Cardiac Presentation
Multi-vessel Disease 10.3 10.9 -2.21 10.2 9.9 0.97
# of Vessels > 70% stenosis 1.49 1.58 -12.53 1.49 1.49 0.30
Left main Disease 3.7 7.2 -15.21 3.8 4.1 -1.60
ST-elevated MI 38.9 42.6 -7.56 39.1 39.1 0.04
Shock 0.44 1.8 -13.08 0.4 0.7 -3.90
Drugs Prior to Procedure
Heparin (unfractionated) 87.3 61.7 61.50 87.2 86.6 1.81
Heparin (low weight molecular) 3.83 4.27 -2.21 3.8 3.6 1.33
Thrombin 25.5 54.9 -62.85 25.7 24.9 1.83
G2B3A inhibitors 26.7 26.8 -0.33 26.8 25.6 2.75
Platelet Aggregate inhibitors 85.8 86.6 -2.20 86.2 86.4 -0.48
Aspirin 98.2 97.5 4.79 98.2 98.1 0.79
In-Hospital Complication, % 0.69 2.73 0.69 2.09

observations.

We note two additional facts. First, the estimate of the ATT is -0.0145 (standard error =

0.0023), a slightly larger benefit in those likely to undergo PCI via the radial artery. Sec-

ond, because we created matched pairs, McNemar’s test could also be used for inference.

The number of pairs in which the in-hospital complication rates differed within members

of the pairs was 285 (2.76% of the 10326 matched pairs). Among the 285 discordant pairs,

the number of pairs in which the radial artery accessed member had an in-hospital com-
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Figure 2.3: Density of estimated linear propensity scores, logit(ê(Xi)), after matching by artery
access strategy. Larger values of the propensity score correspond to a higher likelihood of radial
artery access. The top axis gives the scale of the actual estimated probabilities of radial artery
access.

plication was 70 (0.25 of discordant pairs). This value is lower than the null of 0.5 and

indicates a benefit of radial artery access.

Stratification on the Propensity Score. The 40214 subjects were grouped into five strata

using estimated propensity scores (Table 2.4). In the lowest quintile (q = 1), 2.46% of

subjects fell into the radial artery access group whereas in the highest quintile, 31.8% of

the subjects were accessed via the radial artery. If the propensity scores are balanced in

each stratum, the covariates in each stratum should also be balanced. However, only
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Figure 2.4: Boxplots of the linear propensity scores (log odds of radial artery access) by quintile.
Boxplot widths are proportional to the square root of the samples sizes. The right axis gives the
scale of the actual estimated probabilities of radial artery access.

using 5 strata did not result in balanced propensity scores for the PCI data. Two sample

t-tests within strata showed significant differences in the propensity scores for the radial

and femoral groups, although visually, the linear propensity scores appear quite similar

within strata (Figure 2.4). There was less balance in the extreme quintiles, as is often the

case.

Table 2.4: Properties of the quintiles based on the propensity score where q = 1 has the smallest
values of the propensity score and q = 5 the largest. For each quintile, sample sizes and percent-
ages of subjects undergoing radial artery access, the difference in mean in risk of complications
(∆̂q, Section 2.3.1), and the average estimated propensity score are reported.

Stratum Radial Femoral Average
q N1q % N0q ȳ1q − ȳ0q ê(X)
1 198 2.46 7845 -0.0135 0.0246
2 435 5.41 7608 -0.0147 0.0529
3 753 9.36 7289 -0.0217 0.0926
4 1249 15.53 6794 -0.0181 0.1588
5 2557 31.79 5486 -0.0158 0.3166

Overall 5192 12.91 35022 -0.0168 0.1291

The stratum-specific estimates are consistent – in every quintile, radial artery accessed

patients were less likely to have complications compared to femoral artery accessed pa-

tients. Quintile-specific estimates were combined to obtain an overall ∆̂Stratification= -
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0.0168 (-0.0213, -0.0122) (Section 2.3.1) indicating that subjects undergoing PCI via radial

artery access were 1.68% less likely to have in-hospital complications compared to those

accessed via the femoral artery. Caution should be exercised in interpreting this estimate

given the imbalance between treatment group still present within quintiles. Increasing the

number of strata from 5 to 10 did not eliminate imbalance of the linear propensity scores

between radial and femoral subjects within strata based on two sample t-tests (6 out of the

10 strata had p-values > 0.05). Achieving balance requires modifying the logistic model

for treatment assignment or eliminating subjects residing in areas of non-overlap. In our

example, we are unable to find a propensity score method that balances the data using

stratification and thus conclude that this approach is unsuitable. Haviland et al found

their treatment and control groups to be too dissimilar to warrant continued propensity

score analysis (Haviland et al. (2007)).

Weighting by the Propensity Score. To implement weighting by the inverse probability,

we estimate the weights as 1/ê(X) for the radial subjects and 1/(1− ê(X)) for the femoral

subjects. The weights are strongly right skewed having a maximum of 170 (radial artery

accessed subject) and median of 1.11 leading to ∆̂HT−IPTW = −0.0168(−0.0214,−0.0122).

The stabilized point and interval estimates are ∆̂S−IPTW = −0.0169(−0.0214,−0.0124).

The results are similar, both indicating a benefit of radial artery access. However, the

maximum weight, even after stabilizing, remained large with a value of 22.

Multivariate Regression. We estimate the ATE for a few different multivariate regression

models with robust standard errors. Adjusting for all measured covariates using indi-

cators for quintiles of age and number of vessels with > 70% stenosis, the ATE was

−0.0160(−0.0205,−0.0112). All potential confounders have events, so it is reasonable

with our sample size to include all known and suspected risk factors in the multivari-

able model. A stepwise selected model with a liberal entry/exit criteria (p-value=0.2)

was also run where when any variable where 1 or more levels were selected, all levels

were forced into the final model. This model resulted in an ATE closer to the null value,

−0.0152(−0.0200,−0.0107).
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G-Computation. G-computation does not use the model for the propensity score. To

estimate the ATE using G-computation we assume a linear relationship between in-

hospital complications and all covariates and the treatment indicator. The estimated

coefficients and standard errors are reported in Table 2.5. The key parameter is the co-

efficient of the term Radial which is estimated as -0.016 (standard error = 0.002). Us-

ing all the estimated regression coefficients to obtain predictions and differencing yields

∆̂G−comp = −0.0160(−0.0189,−0.0127).

Table 2.5: Estimated coefficients (standard errors) of the outcome model.
Estimated

Covariate Coefficient Standard Error
Female 0.017 (0.002)
Diabetes 0.001 (0.002)
Smoker 0.001 (0.002)
Prior PCI -0.004 (0.002)
Prior MI 0.0002 (0.002)
Prior CABG -0.007 (0.003)
Prior CHF 0.027 (0.002)
Lung Disease 0.006 (0.002)
STEMI 0.012 (0.002)
Race: Black -0.008 (0.004)
Race: Hispanic -0.003 (0.004)
Race: Other -0.0002 (0.005)
Insurance: Commercial 0.005 (0.003)
Insurance: Other -0.002 (0.002)
Shock 0.068 (0.006)
Left Main Disease 0.022 (0.003)
Age 0.001 (0.0001)
Multi-Vessel Disease 0.008 (0.003)
# of Vessels > 70% stenosis -0.001 (0.001)
Peripheral Vascular Disease 0.006 (0.002)
Hypertension 0.003 (0.002)
Aspirin 0.0002 (0.005)
Fractionated Heparin 0.002 (0.002)
Low Molecular Weight Heparin 0.001 (0.004)
G2B3A Inhibitors 0.021 (0.002)
Platelet Aggregate Inhibitors -0.006 (0.002)
Thrombin -0.001 (0.002)
Radial Access -0.016 (0.002)
Constant -0.034 (0.008)

Augmented-IPTW. The augmented IPTW uses both the model for the outcome and the

propensity score (see Section 2.5.1 and Appendix Table) for an estimate of ∆̂AIPTW =

−0.0164(−0.0210,−0.0118). The risk of in-hospital complications is 1.64% lower in the
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radial group.

Targeted Maximum Likelihood Estimation. To estimate the ATE using TMLE, we utilize

the tmle package in R. We supply parametric models for the outcome and the propensity

score (see Section 2.5.1 and Appendix Table) to compare results. The resulting treatment

effect estimate is ∆̂TMLE = −0.0163(−0.0209,−0.0117). Inferences are similar to the earlier

findings – a lower risk of in-hospital complications associated with radial compared to

femoral artery access.

2.5.3 Comparison of Approaches

The results of the various approaches to estimation of the effectiveness of radial artery

access compared to femoral artery access for PCI are similar (Figure 2.5). Each indicated

a lower risk of in-hospital complications for the radial artery approach compared to the

femoral approach. The only method that discarded subjects was matching on the propen-

sity score which may explain why the estimated risk difference for this method differed

from the others. The ATE based on G-computation had the shortest confidence interval

(width = 0.62), 2/3 the size of the largest.

Table 2.6: Model Results: estimated coefficient of the treatment effect, radial versus femoral artery
access on any in-hospital complications (robust standard errors).

Estimated
Method Coefficient Standard Error
Matching -0.0143 (0.0020)
Stratification -0.0168 (0.0023)
IPTW -0.0168 (0.0023)
Multivariate regression -0.0160 (0.0024)
G-computation -0.0160 (0.0016)
A-IPTW -0.0164 (0.0023)
TMLE -0.0163 (0.0023)

Did we make reasonable assumptions? We indicated that the SUTVA may be violated as a

consequence of (a) patients nested with physicians and (b) the practice makes perfect hy-
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Figure 2.5: Comparison of results, ordered by size of ATE estimate. All methods use the same
model for treatment assignment and outcome. All 95% confidence intervals are based on 1000
bootstrap replicates.

pothesis. A reasonable next step would involve the inclusion of random physician effects.

The positivity assumption is met for the matching estimator because of the restrictions we

placed on identifying matches. However, there may be regions of imbalance for the other

estimators using the estimated propensity scores - we observed residual confounding

when using the stratified estimate. In terms of treatment assignment ignorability, we do

not have a control outcome nor an additional comparison group. We did determine that

to attribute the ATE to an unobserved confounder rather than to radial artery access, an

unobserved confounder would need to produce a 2.5 fold increase in the odds of radial

access (beyond that adjusting for the set of covariates we have already included). Is it

plausible that such a confounder exists? Of course one could exist – to place the size of

the unmeasured confounder into context, the odds associated with fractionated heparin

is 7.1 and with no shock of 3.9. Finally, there is an a-priori reason to believe that the effec-

tiveness of radial versus femoral artery access may differ between males in females, that
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is, there may be a non-constant treatment effect. Using matching estimators, we find a

benefit of radial artery access in both males and females, with the ATE in females twice

that of males: female ATE = -0.0267 (standard error = 0.004317) and male ATE = -0.0100

(standard error = 0.001583).

2.6 Concluding Remarks

As the need for comparative effectiveness research grows, reliance on observational co-

hort studies will as well. Several estimators are available to researchers to infer the effect

of interventions. Causal inference can be made from observational studies whenever

there is no bias. In cross-sectional studies, standard multivariable modeling methods can

be used to obtain causal estimates, but the model needs to include all confounders prop-

erly parameterized. Double robust methods may be helpful if we have more knowledge

about the model for treatment assignment than the model for the outcome. All involve

statistical assumptions, and as we have described, some fundamental causal assumptions

that are not testable. In this chapter we reviewed a selected set of estimators – our review

is by no means comprehensive and are for cross-sectional data only. The reader is strongly

encouraged to read the articles we have referenced. An example involving the choice of

artery to utilize when unblocking clogged arteries illustrated the assumptions required,

empirical evidence to support the assumptions when possible, and the estimates. The

data involved nearly 40,000 subjects and the availability of many covariates. Even with

this relatively small dataset, its dimensionality required reduction in order to facilitate

analyses despite having a clear CER question. We focused on a single treatment assign-

ment mechanism model and a single outcome model – clearly, more than one model may

fit the data and meet the assumptions. As data acquisition technologies grow, researchers

will be faced with making more analytical decisions when conducting empirical studies.

These decisions should be made transparent to readers.
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3.1 Introduction

A common statistical tool used to infer the comparative effectiveness of treatments is

through a meta-analysis where study-specific estimates obtained from the literature are

combined using standard statistical principles. With an increasing medical literature and

wider range of statistical modeling techniques possible through computational advances,

the types of meta-analyses have also increased (Sutton and Higgins (2008)). Researchers

combine study effect estimates not only from randomized trials, but also from observa-

tional studies (Stroup et al. (2000)), from a combination of randomized and observational

studies via cross-design synthesis (Droitcour et al. (1993)), and from trial arms corre-

sponding to different studies via network meta-analysis (Lumley (2002)). The expand-

ing reliance on network or cross-design meta-analyses highlights differential follow-up

duration, which must be accounted for when events occur at any point over a follow-up

period and censoring occurs throughout that period.

The conventional meta-analysis includes I primary studies using summary information,

{Yij, nij}, such as a statistic and sample size, for each treatment arm j, about a parameter,

θij , with the common objective of making inferences about a population parameter, µ.

When follow-up duration varies by treatment arm, we require the exposure in each study

arm, ēj =
∑nj

k=1 ejk/nj , where ejk is the follow-up for person k in arm j. While use of inci-

dent rate models or survival models is common within studies, most applied researchers

continue to utilize odds ratios as the primary measures of associations, modeling proba-

bilities of events within a particular time frame to combine study summaries. A BioMed

Central article (Tierney et al. (2007)) reviewing one year of the Cochrane Library, for ex-

ample, reported that the majority of cancer-related meta-analyses (63%) employed odds

ratios or relative risks rather than hazard ratios.

When the follow-up time is fixed, modeling the probability of death is accomplished us-

ing the number of events and the total number of people, while assuming follow-up du-

ration is the same or similar for the treatment arms. For meta-analyses of time to event
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data, the log hazard ratio can be estimated directly if the observed number of events and

the log rank expected number of events in each group for each study are reported, or if the

log hazard ratio and its variance from the results of a Cox regression (Woods et al. (2010))

are available. Parmar (Parmar et al. (1998)) details other methods when the hazard ratio

with confidence interval, p-value for the Mantel-Haenszel version of the log rank statistic,

or when the published survival curves are given.

Differential follow-up duration in meta-analysis of observational studies is particularly

challenging. In work for the Food and Drug Administration’s Medical Device Epidemi-

ology Network (MDEpiNet), we require assessing safety and effectiveness of cardiac

resynchronization therapy (CRT) devices compared to CRT devices with cardioverter-

defibrillator capacity (CRT-D). Both are implanted pacemakers used to improve mechani-

cal synchrony in patients with heart failure and involve the placement of three leads (right

and left atrium, and right ventricle). The CRT-D has an added defibrillation capability to

break fast arrhythmias. The devices differ in costs (Feldman et al. (2005)) − average pa-

tient costs are higher for CRT-D ($82,200) compared to CRT-alone ($59,900). While there

is a lack of clinical trials designed to assess the incremental benefit of CRT-D compared to

CRT alone, the vast majority of patients receiving therapy with biventricular pacing are

now implanted with CRT-D devices. Table 3.1 provides a summary of the 8 studies that

compare CRT-D and CRT-alone. This comparison is part of a larger evidence synthesis

project with interest in comparing CRT-D, CRT-alone, and optimal medical therapy. The

search strategy was based on a previously published comprehensive review of cardiac

resynchronization therapy and implantable cardioverter-defibrillators in left ventricular

systolic dysfunction sponsored by the Agency for Healthcare Research and Quality.

A data synthesis of the CRT studies presents a number of complications. First, the aver-

age length of follow-up is 25.7 months with a standard deviation of 15.3 months across

the studies. The constancy of the log hazard across this time frame is questionable and

a full-accounting of the follow-up time is required. Second, not all primary studies use

a survival time approach. The information available for all-cause mortality include the
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number of deaths per arm, the total number of patients per arm, and the average length

of follow-up across both arms (rather than average per arm). The typical approach for

determining person-months of follow-up per arm involves multiplying the reported av-

erage months of follow-up time by the total number of people enrolled in each treatment

group. The average all-cause mortality rate, across all primary studies, is 8.83 deaths per

1000 person-months: 7.37 deaths per 1000 person-months in the CRT-D arm and 10.63

deaths per 1000 person-months in the CRT-alone arm. For the observational studies the

mortality rate is 8.43 per 1000 person-months, whereas for the RCT studies the mortal-

ity rate is higher, at 10.03 deaths per 1000 person-months. Table A.2 in the Appendix

provides more follow-up information by study where the evidence suggests differential

follow-up time by treatment arm. Only 3 studies provide any information regarding arm-

specific follow-up time.

Using theoretical calculations in Section 3.2, we derive the bias of the rate ratio in the

setting of a single study with two treatment groups. We use simulations to illustrate

bias, efficiency, and coverage when ignoring variable treatment arm follow-up duration.

We present a model to combine rate ratios in the meta-analytic setting. In this setting,

we utilize simulation to characterize the operating characteristics of the estimators as a

function of the duration of differential follow-up and describe how the availability of

follow-up by treatment arm impacts these estimators. In Section 3.3 we perform a data

analysis of the CRT-D and CRT studies. We close with recommendations for performing

meta analyses when follow-up varies by treatment arm and when this information is

unavailable in Section 3.4.
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Table 3.1: CRT-D versus CRT-alone primary studies: All-cause mortality and other study sum-
maries. IHD = ischemic heart disease; NYHA = New York Heart Association; LVEF = left ven-
tricular ejection fraction; QRS represents the time it takes for depolarization of the ventricles. ?
indicate that the data was not reported.

No. of Follow-up (months) All-Cause Mortality/N
Study Year Patients CRT-D CRT CRT-D CRT
Adlbrecht et al. (2009) 2009 205 ? ? 19/110 9/95
Stabile et al. (2009) 2009 233 56.8 60.1 49/116 53/117
Bai et al. (2008) 2008 542 ? ? 73/395 57/147
Auricchio et al. (2007) 2007 1298 ? ? 91/726 119/572
Ermis et al. (2004) 2004 126 13 18 8/62 26/64
Pappone et al. (2003) 2003 135 ? ? 6/88 9/47
TOTAL 2539 ? ? 246/1497 273/1042
Bristow et al. (2004) 2004 1212 16 16.5 105/595 131/617
Schuchert et al. (2013) 2013 402 ? ? 20/228 19/174
TOTAL 1614 ? ? 125/823 150/791

Baseline characteristics
Mean Age % % % NYHA Mean Mean (SD) QRS

Study (years) Male IHD Class III % LVEF (milliseconds)
Adlbrecht et al. (2009) 65 78 46 83 27.5 158 (31)
Stabile et al. (2009) 69 77 49 69 26.5 ≤ 120
Bai et al. (2008) 67 77 67 81 20 162 (24)
Auricchio et al. (2007) 64 76 43 80 24 168 (29)
Ermis et al. (2004) 69 96 56 87 22 ?
Pappone et al. (2003) 64 76 43 100 28 153 (11)
MEAN 66.3 80 50.7 83.3 24.7 160.3
Bristow et al. (2004) 67 67 55 87 21 160 (?)
Schuchert et al. (2013) 68 80 50 85 25 163 (?)
MEAN 67.5 73.5 52.5 86 23 161.5
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3.2 Methods

3.2.1 A Single Study

Consider a two-arm study with interest centered on a rate ratio for a control (j = 0) and a

treatment arm (j = 1). Assume the number of events from treatment arm j is Yj ∼ Pois(θj)

where the expected number of events is θj . The average length of follow-up for the jth

treatment arm is ej =
∑nj

k=1 ejk/nj where k indexes individuals and nj indexes the total

number of individuals in the jth treatment arm. We write θj = λj × ej × nj , with λj as the

mortality rate defined as λj = ξ exp(ω × j). The parameter ξ represents the outcome rate

in the j = 0 arm and ω is the log rate ratio of the outcome in the j = 1 arm compared to

the j = 0 arm. The maximum likelihood estimator (MLE) of ω is

ω̂ = log

(
λ̂1

λ̂0

)
= log

(
Y1/e1n1

Y0/e0n0

)
(3.1)

because λ̂j =
Yj
ejnj

. When average follow-up is the same in each treatment arm the MLE

depends only on the number of subjects in each arm, ω̂ = log
(
Y1/n1

Y0/n0

)
.

The most common approach utilized when follow-up information is not reported sepa-

rately for each treatment arm but rather reported for the overall study, ē, is to assume

follow-up duration is the same in each arm ē = ē1 = ē0 so that the estimator becomes:

ω̂∗ = log

(
λ̂∗1

λ̂∗0

)
= log

(
Y1/n1

Y0/n0

)
(3.2)

with λ̂∗j =
Yj
ēnj

. Both the correct and incorrect estimators for the rate ratio (RR), defined as
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exp(ω), are biased (see Appendix A.2.2 for derivations) with f = e1
e0
> 0 such that

E
{

êxp(ω)− exp(ω)
}

= exp(ω)

[
ξe0n0

(ξe0n0)2 + 3(ξe0n0) + 1

]
and (3.3)

E
{

̂exp(ω∗)− exp(ω)
}

= exp(ω)

[
(f − 1) +

fξe0n0

(ξe0n0)2 + 3(ξe0n0) + 1

]
. (3.4)

When ē1 = ē0, f = 1 so that the bias is identical. When f < 1, implying longer follow-

up in the j = 0 arm, the term (f − 1) in Equation 3.4 is negative so that the incorrect

estimator underestimates the true rate ratio. When f > 1, a similar argument indicates

R̂R∗ overestimates the true rate ratio.

Single Study Simulations

To illustrate the impact of unequal follow-up we conducted a simulation study using 1000

experiments under a variety of conditions. We assumed e0 = 24 months for the CRT arm,

varied follow-up in the j = 1 arm CRT-D arm using ē1 = f × ē0 = 24f and permitted

f to range from 0.8 to 1.3 by 0.05 step increments. For instance, the values of f for the

Stabile, Ermis, and COMPANION studies reported in Table A.2 are 0.945, 0.722, and 0.970

respectively. We assume there are an equal number of people in each arm n0 = n1 = 200.

The baseline rate in the control CRT arm is taken to be ξ = 0.01 deaths per person-month.

Results are presented in Figure 3.1 under 3 values of the rate ratio: RR=1, 0.7, and 0.5

(large difference).

The impact of using the study average follow-up rather than the arm-specific follow-

up can be large. The simulations confirm the theoretical bias results. In general, when

follow-up is shorter in the treated arm, f < 1.0, the incorrect method of estimating the

rate ratio underestimates the true rate ratio, whereas if follow-up is longer in the treated

arm, f > 1.0, we overestimate the true rate ratio. The MSE for the incorrect rate ratio

is greater than the MSE for the correct rate ratio when f 6= 1. As f moves away from

one, coverage for the incorrect rate ratio drops from the desired 95%. Moreover, while

the bias is larger for all f 6= 1.0 with the incorrect estimator, the relative efficiency favors
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Figure 3.1: Simulation results for single study as function of relative follow-up in treatment arms:
Each experimental condition is based on 1000 simulated datasets; f = e1

e0
. Percent Bias = θ̂−θ

θ ×100;
RB = Relative Bias = Bias(RR∗)/Bias(RR); MSE = Mean Squared Error=1/1000 ×

∑
(θ̂ − θ)2; and

RE = Relative Efficiency = MSE(RR∗)/MSE(RR).

the incorrect estimator when f is slightly less than 1 (around 0.9). We also examined

experiments in which the sample sizes in the study arms were unequal and the same

pattern of increasing relative bias away from f = 1.0 as in Figure 3.1 (results not shown).

3.2.2 Multiple Studies

Rather than one study, suppose there are I primary studies such that the number of events

from arm j, study i, are Yij ∼ Poisson(θij) with

θij = λij × eij × nij where λij = ξi exp (ωi × j) . (3.5)

As before, ξi is event rate for the j = 0 arm in the ith study; ωi is the log rate ratio of the

event for j = 1 versus j = 0 in the ith study; λij is the event rate; nij is the total number

of individuals; eij is the average person-months of follow-up; and θij is the expected

number of events. The baseline rate and the log relative rate ratio are assumed to vary
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across studies to accommodate between-study variation using

ξi
indep.∼ Gamma(a, b) and ωi

indep.∼ Normal(µ, σ2). (3.6)

The selection of a Gamma distribution for the event rate in the control arm ensures posi-

tivity and is commonly used in hierarchical models with Poisson data (Carlin and Louis

(2001)). The choice of a normal distribution for the log relative rate accommodates both

positive and negative values.

A fully Bayesian approach places proper distributions for all the hyperparameters but

we focus here on µ and σ2. The model defined by equations (3.5) - (3.6) assumes that

the eij are known for all i and j. When the average person-months of follow-up per arm

and the total number of people per arm are available, then the total follow up by arm∑nij
k=1 eijk = nij × eij . However, as before, we assume eij =

∑nij
k=1 eijk/nij are unavailable

and rather ei = ei1ni1+ei0ni0
ni1+ni0

are reported. Primary interest remains focused on exp(µ), the

overall rate ratio across all studies. Because we are combining estimates across studies, σ

the between-study standard deviation, is also a key parameter. In our motivating study,

with such few primary studies, the overall results will be sensitive to this parameter.

Multiple Study Simulations

We generated 1000 experiments under 36 different parameter configurations: 3 relative

rates × 2 standard deviation values × 6 values of f . We assume a moderate number of

studies, I=20 studies. We fixed µ, the summary log rate ratio for the I studies, and σ, the

between study standard deviation of the log rate ratios. Twenty individual log rate ratios,

ωi, were drawn from N(µ, σ). We also fixed the shape and scale parameters for simulating

ξi from a Gamma distribution at a = 2.55 and b = 0.00445 implying a mean baseline rate

of a× b = 1.13 per 100 person-months and sampled 20 baseline rates in j = 0 arm. As in

the single study simulations, we assume equal sample sizes in the two arms within each
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study, but permitted the sample sizes across studies to vary. This was accomplished by

drawing sample sizes from a Uniform(50,1000).

The average follow-up times in the control arms, ei0, were generated using a mixture of

uniforms. We assumed 9 studies had ei0 ∼ Uniform(10,32); 9 studies from Uniform(33,

57); and 2 studies from a Uniform(58,200). Under this scenario, between-study follow-up

could range from 10 to 200 months. We let f = ei1/ei0 and generate average number of

deaths θij = λij × eij × nij and use this to simulate the number of deaths assuming the

data are Poisson.

We estimated the person-time assuming full knowledge of the follow-up in both arms

(e.g, the correct exposures) and then again using average exposure across both arms (e.g.,

the incorrect method). We fit the data using the WinBUGS software (Lunn et al. (2000))

and place non-informative priors for ξi ∼ Gamma(2.5, 224.7) and ωi ∼ N(µ, σ2) where

µ ∼ N(0, 106) and σ ∼ Half-Normal(0.26). The choice of the prior distribution for the

between-study standard deviation is much more influential in a hierarchical model than

the choice of the prior distribution for the overall mean. The Half-Normal distribution

ensures positivity of the standard deviation and because it has a mode at 0, also permits

no differences between studies. A Half-Normal(0.26) indicates that 0.26 is the variance

and yields a median value for σ of 0.39 with a 95% quantile of 1.0 for the between study

standard deviation of the log rate ratio.

We ran one chain with 20000 iterations, 10000 burn in and thin every 10, resulting in

1000 Markov Chain Monte Carlo (MCMC) iterations. Convergence was assessed using

the Geweke diagnostic in order to have a resulting 1000 simulations. Inference for the

parameters is based on posterior means of the resulting 1000 MCMC iterations; these

posterior means are averaged over the 1000 simulations. Credible intervals are found by

taking the 2.5% and 97.5% percentiles of the 1000 iterations sorted. Coverage is found by

calculating the frequency out of 1000 that the true value of the parameter falls between

the 2.5% and 97.5% percentiles.
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As f moves away from 1.0 the bias and coverage are worse for the incorrect RR (Table 3.2).

Bias and coverage of σ are not impacted by f , and are similar for the correct and incorrect

methods (Table 3.2). The relative bias (the percent bias of the incorrect estimator divided

by the percent bias of the correct estimator) tends to be larger in magnitude moving away

from the null value RR = 1. The relative bias is larger in magnitude when σ2 is smaller

(results not shown).

Partially Reported Follow-up Times

To address the problem of partially reported follow-up duration information by study

arm, we examined two situations. In the first, we assume that some studies do not report

follow-up by study arm completely at random (MCAR). In the second, the ”missingness”

mechanism is at random (MAR) and is related to whether the study is observational or

randomized. All experimental conditions used in the previous multiple study simula-

tions hold. For the MCAR case, we assume there is 17.5% missingness on average imply-

ing the total number of studies missing follow-up by treatment arm varies by simulation,

but is usually 3 or 4 studies. For the MAR case, we assume that there is 5% missingness

for randomized studies and 30% missingness for observational studies. We randomly

made 10 of the 20 studies observational. The models are fit using the same fully Bayesian

Poisson model in WinBUGS as previously described. When the simulated experiment

reported follow-up by study arm, that information was utilized and when arm-specific

follow-up was unavailable, the average study follow-up was used.

In general, use of partially observed follow-up times has a bias for the rate ratio that is

between the bias for the correct case of having complete arm-specific follow-up and the

incorrect case of having incomplete arm-specific follow-up for all primary studies (Table

A.3). Coverage of the rate ratio is similar for both cases of missingness. As f moves away

from 1.0, the bias and coverage worsen for the RR under both MAR and MCAR, but are

more pronounced when σ2 is larger (Figure 3.2). Bias and coverage of σ do not follow any
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Table 3.2: Bias and coverage of the rate ratio, exp(µ), and between-study standard deviation, σ,
using partially reported follow-up times: Simulation results for 20 primary studies as a function
of relative follow-up in treatment arms. Percent bias [(estimated - true)/true× 100].

RR=1 RR=0.7 RR=0.5
σ2 = 0.01 σ2 = 0.05 σ2 = 0.01 σ2 = 0.05 σ2 = 0.01 σ2 = 0.05

f Corr Incorr Corr Incorr Corr Incorr Corr Incorr Corr Incorr Corr Incorr
RR: Bias

0.9 2.00 -8.07 5.32 -4.67 -0.86 -10.49 3.33 -6.84 3.34 -6.58 5.38 -4.82
0.95 3.22 -1.68 0.62 -4.51 1.16 -4.17 3.40 -1.54 -4.20 -9.34 -1.86 -6.70

1.0 2.51 2.52 -0.87 -0.84 2.54 2.54 -4.67 -4.67 0.78 0.78 -0.62 -0.60
1.05 -0.66 4.57 1.87 7.15 2.71 8.41 2.69 8.11 -1.54 3.50 4.16 9.42
1.1 -0.13 9.87 -2.79 6.58 2.71 13.00 -2.91 6.46 -0.58 9.02 -0.14 9.34
1.2 -1.96 17.16 4.49 24.81 -1.01 18.79 -1.10 18.37 1.42 21.58 5.16 25.72

RR: Coverage
0.9 0.986 0.322 0.987 0.995 0.998 0.044 0.998 0.970 0.956 0.774 0.986 0.996

0.95 0.951 0.990 1.000 0.978 0.990 0.940 0.994 0.991 0.955 0.447 0.992 0.819
1.0 0.963 0.963 1.000 1.000 0.983 0.984 0.998 0.990 0.995 0.994 0.998 0.999

1.05 0.991 0.844 1.000 0.750 0.993 0.651 0.999 0.902 0.986 0.968 0.998 0.897
1.1 0.997 0.346 0.989 0.931 0.973 0.201 1.000 0.992 1.000 0.636 1.000 0.879
1.2 0.984 0.000 0.991 0.001 0.991 0.002 1.000 0.115 0.982 0.000 0.989 0.001

σ: Bias
0.9 9.90 15.60 12.75 12.75 10.30 10.05 18.92 17.89 47.60 46.30 5.50 6.62

0.95 9.80 10.90 -8.45 -9.66 39.40 42.20 -11.76 -10.73 61.30 63.50 -24.51 -25.00
1.0 -4.80 -4.60 -7.02 -6.98 24.90 25.10 10.64 10.60 48.10 48.10 -9.97 -9.93

1.05 -1.10 -2.90 -34.75 -34.39 53.30 57.40 -3.40 -3.53 50.90 50.90 11.81 12.16
1.1 20.10 17.30 -13.15 -14.22 52.10 52.50 28.17 27.82 52.80 55.20 11.23 9.62
1.2 16.50 14.10 -8.36 -7.11 32.20 30.90 7.83 8.32 24.70 23.80 -0.98 -0.89

σ: Coverage
0.9 0.991 0.985 0.994 0.992 0.988 0.989 0.983 0.986 0.869 0.885 0.998 0.998

0.95 0.985 0.984 0.996 0.994 0.892 0.872 0.987 0.991 0.684 0.656 0.890 0.885
1.0 0.983 0.980 0.995 0.996 0.937 0.937 0.989 0.990 0.849 0.842 0.981 0.975

1.05 0.988 0.991 0.650 0.667 0.774 0.731 1.000 1.000 0.842 0.847 0.994 0.991
1.1 0.969 0.978 0.962 0.958 0.754 0.757 0.942 0.947 0.807 0.783 0.998 0.998
1.2 0.980 0.979 0.999 1.000 0.956 0.960 0.999 0.998 0.956 0.961 0.999 1.000
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Figure 3.2: Percent Bias for the overall rate ratio via simulation in four cases for various RR and
σ2: arm-specific follow-up is available for all studies (correct), some studies (with ”missingness”
at random (MAR) and completely at random (MCAR)), and no study (average).

trend related to f and again are similar for both types of missingness (Table A.3).

3.3 Data Analysis: Effectiveness of CRT-D vs CRT

We analyzed the mortality data reported in Table 3.1 using the model described in Equa-

tions (3.5) - (3.6). Because of the small number of studies for the analysis, we considered

a total of nine different sets of prior distributions for µ (the overall log rate ratio) and σ

(the between-study standard deviation) that ranged in terms of informativeness. Models

were estimated using the WinBUGS software and ran until convergence as determined

by the Geweke score for the between-study standard deviation component. The all-cause

mortality rate averaged across all primary studies is 8.83 deaths per 1000 person-months

(for the CRT-D arm the mortality rate is 7.37 deaths per 1000 person-months and for the

CRT alone arm the mortality rate is 10.63 deaths per 1000 person-months). Seven of the 8
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studies show a benefit of CRT-D over CRT alone with a rate ratio less than 1.

Only 3 of the 8 studies report arm-specific follow up, with f =0.72 Ermis et al. (2004), 0.95

Stabile et al. (2009), and 0.97 Bristow et al. (2004). We estimate the overall rate ratio using

two approaches: in the first, we use arm-specific follow-up when available and the study

average when it is not (as in Section 3.2.2). In the second, we ignore any arm-specific

follow-up information and use the study average follow-up.

3.3.1 Prior Distributions

We assumed the overall log rate ratio arose from a normal distribution centered at the

null value of 0 (a rate ratio of 1.0). We selected three different variances for µ (overall log

rate ratio): (1) the variance is 2 yielding a 95% interval from -2.77 to 2.77 (0.063 to 15.96

on the rate ratio scale) which is vague; (2) variance is 10 indicating the 95% interval for

log rate ratio could range -6.2 to 6.2 which is quite vague; and (3) a variance of 1000000

which is extremely vague.

Three different prior distributions for the between-study standard deviation were se-

lected. Two half-normal distributions permitted the underlying log rate ratio for a study

to (1) have a median value of 0.39 with 95% quantile of 1.0 (Half-Normal(0.26)) and (2)

have a median value of 0.14 with 95% quantile of 0.36 (Half-Normal(0.03)). A uniform

distribution (Uniform(0,0.7)) had a mean and median of 0.35.

3.3.2 Results

When using the arm-specific follow-up information (for 3 of the 8 studies that provided

it), the posterior mean (95% credible interval) of the overall rate ratio was 0.71 (0.49, 0.96)

and 0.71 (0.55, 0.89) under the most non-informative pair of priors, µ ∼ Normal(0,1e06)

and σ ∼ Half-Normal(0.26), and most informative pair of priors, µ ∼ Normal(0,2) and

σ ∼ Half-Normal(0.03), respectively. These results indicate a survival benefit of CRT-D
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Table 3.3: CRT-D vs CRT-alone: posterior mean for the overall rate ratio and 95% credible intervals
for 8 primary studies under a variety of prior distributions utilizing arm-specific follow-up when
available. aE(σ) = 0.14; bE(σ) = 0.35; cE(σ) = 0.41.

Prior for Prior for overall underlying log rate ratio, µ
between-study standard deviation, σ Normal(0, 2) Normal(0, 10) Normal(0, 1e06)

Half-Normal(0.03)a 0.71 (0.55, 0.89) 0.71 (0.56, 0.90) 0.71 (0.55, 0.89)
Uniform(0, 0.7)b 0.71 (0.49, 0.99) 0.71 (0.51, 0.96) 0.72 (0.52, 0.98)

Half-Normal(0.26)c 0.70 (0.50, 0.94) 0.71 (0.51, 0.94) 0.71 (0.49, 0.96)

compared to CRT-alone, such that there is approximately a 30% lower rate of death in the

CRT-D arm (Figure 3.3(a)). The posterior mean of the between-study standard deviation

was estimated as 0.34 (0.08, 0.75) (Figure 3.3(b)). All other priors resulted in a similar

overall rate ratio. The 95% credible interval did not cover 1 for any of the priors (Table

3.3). Using the Half-Normal(0.03) prior for σ resulted in shorter credible intervals (Figure

3.3).

Results are similar, but the overall rate ratio (exp(µ)) is further from the null when ignor-

ing the arm-specific follow-up information reported in the three studies with a posterior

mean of 0.69 (see Appendix for more results). The findings from the simulation studies

when f < 1 (as in the CRT-D vs CRT meta-analysis) suggest that the estimate ignoring

arm-specific information will be further from the null than the estimate using the arm-

specific follow-up. It is not surprising that our two posterior means (0.69 and 0.71) do not

differ, given only 3 out of 8 studies reported arm-specific follow-up.

3.4 Remarks

We examined the impact of missing duration of follow-up between two treatment arms

in meta-analysis on inference about an overall mean. Although events occur at any point

over a follow-up period and censoring occurs throughout that period, most applied re-

searchers continue to use odds ratios and assume similar follow-up across treatment

groups. Equal follow-up among treatment groups is unlikely to hold in observational
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Figure 3.3: Posterior densities for parameters in the CRT meta-analysis of 8 primary studies. Solid
(dashed) lines represent least (most) informative prior distributions for the hyperparameters. Ver-
tical lines represent the 95% credible intervals. Based on 1000 draws from the joint posterior dis-
tribution.
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studies. In the single study setting, when longer follow-up occurs in the treatment arm,

e.g., f > 1, the incorrect estimator underestimates the true rate ratio and overestimates

the true rate ratio when f < 1. Mean squared error is larger relative to the correct esti-

mator when f 6= 1 and coverage is poor. Inferences are impacted with a fairly modest

difference in follow-up duration, e.g, when f = 0.8 and the null is true the coverage of

95% intervals dropped to 0.71 and the bias neared 20%, implying an estimated rate ratio

of 0.8.

We utilized hierarchical Poisson regression models to combine rate ratios across studies

and examined operating characteristics of posterior means under a variety of conditions

using simulation studies. While it is impossible to determine the direction of the bias,

both bias and coverage when there is no true effect are worse when using average follow-

up – including the available arm-specific information reduces bias compared to including

none. However, there is no way to correct the bias unless more information regarding

arm-specific follow-up duration is reported. Bushman and Wang (Bushman and Wang

(1996)) proposed methods to combine effects when some studies do not report effect es-

timates using a mixture of the reported effect estimates and vote-counting procedures.

Vote-counting procedures require effects to be homogeneous across studies, an assump-

tion not likely to be met in practice. When analyzing the CRT vs. CRT-D studies, there

was substantial variability in the duration of follow-up within and between studies, and

the majority of the studies did not report duration information. If differences in follow-up

between arms exist, then our estimates may over or under-estimate the true rate ratio and

are unable to tell in which way.

Moving forward, it is important that publications contain information on arm-specific

follow-up duration as applied researchers increasingly combine information from multi-

ple studies to learn about treatment and safety effectiveness. Network meta-analysis may

be even more prone to issues of differential follow-up duration because in such analyses

the number of treatments and the number of types of studies being compared are large.
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4.1 Introduction

Typically, clinical trials are designed to assess the efficacy of an intervention. After es-

tablishing efficacy, effectiveness of the intervention must next be assessed in a large-scale

real-life setting. In some instances, the gold standard clinical trials in which individuals

are individually randomized may not be feasible or ethical. Cluster randomized trials

randomize clusters or groups of people to interventions, rather than individuals. A clus-

ter randomized trial may be more appropriate because of administrative, political, or

ethical reasons–for example, there may be a potential for unblinding or contamination of

the intervention. However, the cluster randomization can be used to assess efficacy, as

well as effectiveness of an intervention.

In this paper, we examine the stepped wedge design (SWD) for cluster randomized trials.

The SWD is a type of cluster-level crossover design that begins with no clusters random-

ized to the intervention and ends with all clusters having the intervention. In the SWD,

pre-specified time points are chosen at which clusters are crossed over to the intervention

arm. Throughout this paper, the time points will be referred to as steps. Clusters are ran-

domized to the step at which they will receive the intervention, such that all individuals

within a cluster at a given step receive the same intervention. Data collection occurs at

each step.

The SWD may be of particular utility if it is logistically difficult to implement the inter-

vention simultaneously at many facilities, perhaps due to budget constraints or logistical

reasons. SWDs have been implemented across various disciplines (Brown and Lilford

(2006)) and may become increasingly used in comparative effectiveness research (CER).

These designs permit a rigorous, randomized component for the roll out of a new inter-

vention to clusters, as commonly occurs in practice (Cousens et al. (2011); Mdege et al.

(2011); Squire et al. (2011)).

In particular, when studying the comparative effectiveness of medical devices, roll out
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or randomization of the time at which a new center receives the newer device makes

practical sense. Physicians will need to be trained to use the new devices, as a staggered

roll out will permit. For high-risk devices, high-volume centers generally participate in

these trials. Within a hospital, physicians will have similar training, work with similar

teams of nurses and other hospital staff, and utilize common infrastructure. As such, the

outcomes of two patients treated from the same hospital are more likely to be similar than

outcomes from two patients treated at different hospitals. The intracluster (or intraclass)

correlation (ICC) is defined as the proportion of the total variance of the outcome that is

attributable to between-cluster variability, or ρ = τ2

σ2+τ2
where τ 2 is the between-cluster

variance and σ2 is the within-cluster variance. This correlation needs to be taken into

account in the design and analysis of a SWD, as in all cluster randomized trials. Consider

a study of a left ventricular assist device (LVAD) for patients with end-stage heart disease.

As the burden of heart disease increases in the U.S., the number of hearts available for

transplant has not increased commensurately and the option of waiting for a transplant

versus implantation becomes more relevant, as a heart may never become available. The

details of designing a study powered to detect effectiveness of a new type of LVAD will

be considered in this paper.

Statistical power is a critical aspect in study design, and is defined as the probability of

correctly rejecting the null hypothesis when the alternative hypothesis is true. A litera-

ture review by Brown and Lilford (Brown and Lilford (2006)) identified 12 studies imple-

menting a SWD between 1987 and 2005, but only 5 studies reported power/sample size

calculations, many of which based power on a cluster randomized design rather than a

SWD. In some settings, the cluster randomized designs will over-estimate the power of a

SWD, thereby wasting resources at best and prolonging good therapies at worst. If we are

to promote the use of the SWD, more research is needed for the statistical properties of

the design parameters of these studies. Formulas have been developed for the determina-

tion of power in the case of cluster randomized trials with continuous or binary outcomes

and are implemented in standard sample size software (Donner and Klar (2000); Hintze
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(2008)). Most outcomes in health care trials are binary. However, exact methods that ac-

count for the binary nature of outcome data have not been developed to assess power

for the SWD. In a two-arm setting, we consider the SWD for binary outcomes aimed

at estimating the risk difference as the parameter of interest. We directly compute the

variance of the maximum likelihood estimator risk difference to obtain the power of the

stepped wedge study design to detect a specified risk difference under different design

parameters. We compare our results to the results derived by Hussey and Hughes in their

paper on the statistical properties of the SWD (Hussey and Hughes (2007)). Hussey and

Hughes develop methodology for continuous outcomes and apply these results to stud-

ies with binary outcomes, although the theory underlying their model is not suitable for

binary data. We illustrate these results by a SWD for LVAD implantation.

4.2 Methods

4.2.1 The Model

Power calculations for study design depend upon the statistical model assumed to gener-

ate the data. We consider a binary treatment and a binary outcome for person k in cluster

i at step j, where there are I clusters, J steps for every cluster, andK individuals sampled

at each step within a cluster. At each step in a given cluster, new individuals are enrolled,

so there are no repeated measurements on individuals. The model assumed for the data

is a generalized linear mixed model (GLMM):

g(pijk) = β0 + β1Xijk + bi (4.1)

where β0 is the probability of the outcome under standard of care, β1 is the treatment

effect, Xijk is an indicator for the treatment of individual k in cluster i at step j, where

Xijk = Xijk′ for all i and j, bi is a random cluster effect, and E(Yijk | β0, β1, bi) = pijk. Since

this is a randomized trial, on average, no confounding is reasonably assumed. There

are no time effects, so in the absence of the intervention, the rates of outcome are not
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increasing over time. Following Hussey and Hughes, we will focus on the identity link

function for g() and a normal distribution for the random effects, bi ∼ N(0, τ 2).

Intracluster correlation

An important issue in cluster randomized trials, including the SWD, is that outcomes

from the same individuals in a cluster are generally positively correlated. This results in

an increase in the variance of Yijk relative to independent data, so the effective sample

size is smaller. The intracluster correlation coefficient (ICC), ρ, measures the correlation

between individuals from the same cluster. In the above model (4.1), ρ = τ2

τ2+p0(1−p0)
where

τ 2 is the variance of the cluster-specific random effects and p0(1− p0) = σ2
e is the variance

of a Bernoulli random variable (p0 = Pr(Y = 1 | X = 0) = β0). Another measure of the

cluster effect on the variance is the coefficient of variation, ν, τ/µ for continuous outcomes

or τ/p0 for binary outcomes (Hussey and Hughes (2007)). For binary outcomes, ρ
1−ρ =

τ2

p0(1−p0)
= ν2( p0

1−p0 ). Hence, ν =
√

( ρ
1−ρ)(1−p0

p0
), ρ = ν2p0

(ν2−1)p0+1
, and τ 2 = ρ

1−ρp0(1−p0) = ν2p2
0.

For p0 = 0.05 and a fixed τ , CVs ranging from 0 to 0.5 correspond to ICCs ranging from 0

to 0.013. We generally do not have prior knowledge or a context-relevant estimate of the

ICC. Therefore, power is typically is calculated over a range of hypothesized values for

the ICC.

4.2.2 Power

The primary object of inference in the SWD is the parameter β1, the individual level risk

difference, and the goal of the study is to test the hypothesis H0 : β1 = 0 versus HA :

β1 = βA. We base the power calculations on the Wald test using the asymptotic normal

distribution of the maximum likelihood estimator (MLE).

59



Theoretical power is calculated as

Φ

 βA√
V ar(β̂1)

− Z1−α/2


where βA is the value of β1 under the alternative hypothesis, HA, Φ(.) denotes the cumu-

lative normal distribution, and α is the Type I error rate. The challenge is in computing

the theoretical variance of β̂1, the 2-2 element of
(
−E

[
∂2lnL(θ)
∂θ∂θ′

])−1

. There are J total steps

and K individuals at each step, so for each cluster i there are J ∗K = N individuals and

the total number of individuals for the entire stepped wedge design is I ∗ J ∗K. Because

pijk = pij′k′ due to no time effects, notation can be simplified such that the outcomes for

individuals in cluster i are Yi = (Yi1, ..., YiN).

Under the linear-normal model, Pr(Yin = 1) = β0 + β1Xin + bi,

Pr(Yin = 0) = 1− (β0 + β1Xin + bi), and the full data likelihood is

L(β, τ 2) =
I∏
i=1

∫ N∏
n=1

f(Yin | bi,β)f(bi)dbi

=
I∏
i=1

∫ N∏
n=1

(β0 + β1Xin + bi)
Yin(1− (β0 + β1Xin + bi))

1−Yin 1√
2πτ

e−
b2i
2τ2 dbi

and the log-likelihood is

l(β, τ 2) =
I∑
i=1

log

∫ N∏
n=1

(β0 + β1Xin + bi)
Yin(1− (β0 + β1Xin + bi))

1−Yin 1√
2πτ

e−
b2i
2τ2 dbi (4.2)

To demonstrate how Xin is generated, consider the following example with J = 3 steps,

I = 8 clusters, and K = 15 subjects enroll per step. Clusters are randomized to the step at

which they receive the intervention and step assignments are fixed before the start of the

study. At step 1, Xin = 0 for all i = 1, ..., 8 and n = 1, ..., 15. The outcome is measured in

the 15 subjects in each cluster, of which none of the 8× 15 = 120 subjects receive the new

treatment. At step 2, Xin = 1 for i = 1, ..., 4 and Xin = 0 for i = 5, ..., 8 and n = 16, ..., 30,

because I/(J − 1) = 4 clusters are rolled over to the intervention. Now, in 4 of the 8
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clusters, all 15 individuals receive the intervention, so 4× 15 = 60 individuals receive the

new intervention and 60 do not. At step 3, Xin = 1 for all i = 1, ..., 8 and n = 31, ..., 45

and the remaining 4 clusters are rolled over to the intervention, so all 120 individuals

having received the intervention. By the end of the study, 180 individuals have received

the intervention and 180 have not.

Because there are 4 possible cases for binary Xin and Yin: (0,0), (0,1), (1,0), and (1,1), the

study data for a single cluster can be reduced to

outcome, Yin
0 1

intervention, Xin 0 Zi00 Zi01 Zi0.
1 Zi10 Zi11 Zi1.

Ni

We rewrite the log-likelihood without the product term over N by utilizing this fact,

l(β, τ 2) =
I∑
i=1

log

∫
(

1√
2πτ

e−
b2

2τ2 )Ni × (1− (β0 + b))Zi00(β0 + b)Zi01(1− (β0 + β1 + b))Zi10

(β0 + β1 + b)Zi11dbi

4.2.3 Theoretical Variance

Asymptotically, as N = J × K goes to infinity, the variance of β̂1 using a maximum

likelihood approach is the 2-2 element of
(
−E

[
∂2l(θ)
∂θ∂θ′

])−1

, where θ = (β0, β1, τ
2):

V ar(θ) ≈ [I(θ)]−1

= (−E[H(θ)])−1

=

(
−E

[
∂2l(θ)

∂θ∂θ′

]
3×3

)−1

(4.3)

=

(
E

[(
∂l(θ)

∂θ

)
3×1

(
∂l(θ)

∂θ

)T
1×3

])−1

(4.4)

where H() is the Hessian or the matrix of second derivatives of the log-likelihood and I()

is the expected Fisher Information (Newey and McFadden (1994)). Since expectation of
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the score is 0, equation 4.4 is the variance-covariance matrix of the score equations and by

the Cauchy-Schwarz inequality, it will always be positive definite. In greater detail,

∂2l(θ)

∂θ∂θ′ 3×3
=

∑
i

∂2l(θ)

∂β2
0

∂2l(θ)
∂β0∂β1

∂2l(θ)
∂β0∂τ2

∂2l(θ)
∂β1∂β0

∂2l(θ)

∂β2
1

∂2l(θ)
∂β1∂τ2

∂2l(θ)
∂τ2∂β0

∂2l(θ)
∂τ2∂β1

∂2l(θ)

∂τ22

 (4.5)

and

(
∂l(θ)

∂θ

)
3×1

(
∂l(θ)

∂θ

)T
1×3

=


∂l(θ)
∂β0
∂l(θ)
∂β1
∂l(θ)
∂τ2




∂l(θ)
∂β0
∂l(θ)
∂β1
∂l(θ)
∂τ2


T

=

∑
i

(∂l(θ)
∂β0

)2 ∂l(θ)
∂β0

∂l(θ)
∂β1

∂l(θ)
∂β0

∂l(θ)
∂τ2

∂l(θ)
∂β1

∂l(θ)
∂β0

(∂l(θ)
∂β1

)2 ∂l(θ)
∂β1

∂l(θ)
∂τ2

∂l(θ)
∂τ2

∂l(θ)
∂β0

∂l(θ)
∂τ2

∂l(θ)
∂β1

(∂l(θ)
∂τ2

)2

 (4.6)

and the sums are over i, the clusters, where the clusters are independent.

Let Z = (Z00, Z01, Z10, Z11), which is the only random component after integrating out the

unobserved random cluster effect. Given β0, β1, τ
2 through knowledge of the expected

baseline rate, a desired effect size and the intracluster correlation, and given the num-

ber of clusters I , steps J and sample sizes N per cluster. We find the expected value

of the elements of equations (4.5) and (4.6). Because both the intervention and outcome

are binary, we sum over all Z, for example E[∂
2lnLi
∂θ2

(Z)] =
Z1.∑

Z10=0

Z0.∑
Z00=0

∂2lnLi
∂θ2

(Z)Pr(Z) and

E[(∂lnLi
∂θ

(Z))2] =
Z1.∑

Z10=0

Z0.∑
Z00=0

(∂lnLi
∂θ

(Z))2Pr(Z) where Z1. is the number of people in cluster

i that receive the intervention and Z0. is the number of people in cluster i that are un-

treated, both of which are fixed by design. Further, Z1. = ji
J
N,Z0. = (1− ji

J
)N where ji is

the number of steps in cluster i on treatment. Hence, if Z10 varies from 0 to Z1., Z11 will

simultaneously be varying from Z1. to 0, since Z1. = Z11 + Z10.
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Using properties of general matrix inversion to obtain the 2-2 element,

V ar(β̂1) =
h33h11 − h2

13

h11h22h33 + 2 ∗ h12h23h13 − h2
13h22 − h2

12h33 − h2
23h11

(4.7)

where the denominator is the determinant of a 3× 3 matrix and hrc is the expected value

of the rth row and cth column of equations (4.5) and (4.6) with expectations taken over

Z | Z1., Z0..

Four unique integrals are required to calculate the elements that comprise the outer prod-

uct of first derivatives of the log-likelihood (an additional 6 are required for the matrix of

second derivatives). The details of these complex integrals can be found in the appendix.

For each unique treatment pattern of the SWD, where there are J − 1 unique intervention

patterns and I/(J − 1) clusters randomized to each pattern, we find the 2-2 element of

equation (4.4) as follows:

1. Calculate all integrals for each possible realization of Z over b

2. Combine these into the first derivatives following the equations in the appendix to

obtain ∂li
∂θ

(Z)

3. Multiply the first derivatives by

Pr(Z) =

∫
( 1√

2πτ
e−

b2

2τ2 )N × (1− (β0 + b))Z00(β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11db∑
Z

∫
( 1√

2πτ
e−

b2

2τ2 )N × (1− (β0 + b))Z00(β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11db

4. Sum over all realizations of Z to obtain
Z1.∑

Z10=0

Z0.∑
Z00=0

(∂li
∂θ

(Z))(∂li
∂θ

(Z))Pr(Z)

5. Sum over all clusters i to obtain
∑
i

E[(∂li
∂θ

(Z))2] (note that for independent clusters

the sum of the expectations over i is equal to the expectation of the sums of the
derivatives over i), which are the hrc elements

6. Calculate V ar(β̂1) as equation (4.7)

Increasing either N or J increases computation time as we must compute the inte-

grals in step 1 for each intervention pattern and the resulting possible realizations of
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Z = (Z0. + 1)(Z1. + 1) which depend on N . The computing time for this method is high

to achieve convergence at double precision accuracy using Romberg integration (see ap-

pendix section A.3.2 for the computational details).

4.2.4 Hussey and Hughes method

Our model (equation 4.1) is the same as that assumed by Hussey and Hughes, except they

assume a continuous outcome Yijk and have J − 1 additional fixed effects for a time effect

at each step. Given τ 2 and σ2, their variance formula is based on a weighted least squares

estimator with weights based on an exchangeable within-cluster correlation structure.

This gives a closed form variance estimator:

V ar(β̂1) =
Iσ2(σ2 + Jτ 2)

(IU −W )σ2 + (U2 + IJU − JW − IV )τ 2
(4.8)

where σ2 = p0(1−p0)
K

, U =
∑
ij

Xij , W =
∑
j

(
∑
i

Xij)
2 and V =

∑
i

(
∑
j

Xij)
2 where Xij = 1 if

cluster i receives the intervention at step j.

When no time effects are assumed, as here, equation (4.8) reduces to

V ar(β̂1) =
I σ

2
e

K
(σ

2
e

K
+ Jτ 2)

(IJU − U2)σ
2
e

K
+ IJ(JU − V )τ 2

When Yijk ∼ Bernoulli(pijk), Hussey and Hughes assume V ar(Yijk) = σ2
e + τ 2, V ar(Yij) =

σ2
e

K
+ τ 2 = σ2 + τ 2, and σ2 = p0(1−p0)

K
(K is the number of individuals sampled at each step

within a cluster).

4.3 Design parameters & Results

To explore the properties of our method proposed in section 4.2.3, we examined the be-

havior of Var(β̂1) as effect sizes ranged from large to small, 0.1 to 0.0125 (β1) with β0 = 0.05
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to give a variety of effects on the risk difference scale. We considered two intracluster cor-

relation coefficients (ICCs), 0.001 and 0.01, to represent a small and a moderate correlation

for binary outcomes. The total number of clusters (I) ranged from 8 to 80 and two step

wedge randomization patterns were considered (J=3 and 5). Cluster sizes of N = 15, 45,

and 90 were considered. From section 4.2.1, once β0 and the ICC are specified, τ 2 can

be calculated. The integrals in the appendix can then be calculated for every realization

of Z for the given design and summed over all clusters i to obtain the variance of the

estimated risk difference, β1 under a given design, and then, the power. The parameter

choices above led to 32 different designs in total. We assessed compared power by ex-

amining the asymptotic relative efficiency defined as the ratio of the variance of the risk

difference parameter for the Hussey and Hughes method to our maximum likelihood

method: V ar(β̂1,HH)

V ar(β̂1,ML)
. This can be interpreted as the factor by which the sample size would

need to be increased if HH was used for design instead of our ML method.

4.3.1 Comparison to Hussey and Hughes (HH)

Over the range of design parameters considered, for a fixed number of patients, our max-

imum likelihood (ML) method provided designs that ranged from 9% to 2.4 times more

efficient than designs based on HH as measured by V ar(β̂1,HH)

V ar(β̂1,ML)
.

The ARE increases as the effect size increases, as the ICC increases, for an increased num-

ber of steps (J), and as the number of patients per cluster (N ) increases.

4.3.2 General observations

As expected, decreasing the magnitude of the effect size to consider risk differences from

0.1 to 0.0125, resulted in decreased power. There was a larger decrease in power when the

total number of clusters was smaller when decreasing the effect size relative to decreasing

the effect size for a larger sample size (having more total clusters) (see Figure 4.1).
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Figure 4.1: Power in relation to the effect size, with a baseline risk of 0.05, 90 individuals per
cluster, 3 steps, and an ICC=0.01. For I=8 clusters, the total sample size is 720 and for I=80, the
total sample size is 7200.
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Table 4.1: Asymptotic relative efficiency (ARE)= V ar(β̂1,HH)

V ar(β̂1,ML)
comparing the SWD to HH, with a

baseline risk of 0.05 and I=8 total clusters. RD=risk difference, ICC=intracluster correlation coeffi-
cient, J=number of steps, N=total sample size per cluster over all steps

Risk Difference ICC J Steps N Patients / Cluster ARE
0.05 0.001 3 90 1.77
0.05 0.01 3 90 2.05
0.05 0.001 5 90 2.07
0.05 0.01 5 90 2.47
0.0125 0.01 3 90 1.99
0.025 0.01 3 90 2.01
0.05 0.01 3 90 2.05
0.10 0.01 3 90 2.07
0.05 0.01 3 45 1.09
0.05 0.01 3 90 2.05
0.05 0.01 5 45 1.25
0.05 0.01 5 90 2.47

We replicated many of the trends reported by Hussey and Hughes, but with increased

power for our maximum likelihood method. Hussey and Hughes showed that power

was relatively insensitive to varying the ICC, parametrized by the coefficient of variation,

with slightly larger power for smaller ICCs. The difference in the variance of β1 was less

than 0.01% across the ICCs considered (results not shown), which did not impact power.

If fewer clusters are crossed over to the intervention at each step, Hussey and Hughes

noted that power increases (Hussey and Hughes (2007)). For fixed total sample size,

there is a trade off between the number of steps and number of clusters switched to the

intervention at each step. Power increased when the number of steps increased (see figure

4.2). The increase in power by increasing the number of steps also occurred at a risk

difference of 0.025 and an ICC of 0.001 (results not shown).
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Figure 4.2: Power in relation to the number of steps (J), at fixed N = 90 individuals per cluster,
with a baseline risk of 0.05, risk difference of 0.05, ICC=0.01. As the number of clusters increases,
so does the total sample size.
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4.3.3 Comparison to general cluster randomized design (CRD)

Additionally, it is also of interest to compare the SWD to a cluster randomized trial (Don-

ner and Klar (2000)). Fixing the total number of clusters and assuming half were random-

ized to the intervention and half to the control all at the same time point, we compared the

power of the SWD to the CRD for an equal number of patients receiving the intervention,

number of clusters, and ICC.

When the number of patients per cluster was small (N=15), the CRD had higher power

than the equivalent SWD. At a moderate number of patients per cluster (N=45), the num-

ber of steps determined whether the CRD or the SWD was more powerful, suggesting

that for a given design there will be a point at which by increasing the number of steps,

the SWD will be more powerful, at the possible expense of extending the length of the

study (see table 4.2). We also note that the CRD is strongly sensitive to the ICC.

Table 4.2: Power for the SWD versus CRD with a baseline risk of 0.05. Assume both designs have
the same total number of clusters and total sample size. RD=risk difference, ICC=intracluster
correlation coefficient, I=number of clusters, J=number of steps, N=total sample size per cluster
over all steps

Power
Risk Difference ICC I Clusters J Steps N Patients / Cluster SWD CRD
0.05 0.01 8 3 15 0.086 0.165
0.05 0.01 80 3 15 0.471 0.872
0.05 0.01 8 3 45 0.235 0.326
0.05 0.01 80 3 45 0.975 0.998
0.05 0.01 8 5 45 0.362 0.326
0.05 0.01 80 5 45 0.999 0.998
0.05 0.001 8 5 90 0.869 0.689
0.05 0.01 8 5 90 0.869 0.461
0.1 0.01 8 3 90 0.997 0.910
0.05 0.01 8 3 90 0.645 0.461
0.025 0.01 8 3 90 0.211 0.172
0.0125 0.01 8 3 90 0.084 0.083
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4.4 Example: LVAD study design

Left ventricular assist devices (LVADs) are implantable devices that may be used as a

bridge for patients who are awaiting heart transplants or a destination for those who are

not eligible for a transplant. In either case, these patients suffer from severe heart disease

that cannot be controlled with any other therapy. LVADs are life saving devices, so both

doctors and patients may be reluctant to participate in standard randomized trial designs,

as withholding implantation of an LVAD can be deemed unethical. A 2006 working group

recommended that designs for LVADs should include a randomized component (Neaton

et al. (2007)). The SWD is a feasible option for evaluating a new LVAD. Furthermore, there

are likely large center effects for this very complex procedure that requires highly skilled

surgeons. As of 2010, only 69 medical centers were certified for implementation of LVADs

as destination therapy by the Centers for Medicare and Medicaid (Kirklin et al. (2011)).

The Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive

Heart Failure (REMATCH) trial showed that an LVAD was superior to medical therapy as

destination therapy (Rose et al. (2001)). In the LVAD group, there were 41 deaths among

68 patients (60.3%) implanted, and in the medical therapy group there were 54 deaths out

of 61 patients (88.5%) over 20 experienced centers. Based on this trial, we are interested in

the design of hospital randomized trial to implant LVADs as destination therapy, where

all patients eligible for an LVAD would be implanted in a given hospital or none of the

patients at that hospital could be implanted once the hospital reaches the step at which it

was randomized to receive the LVAD. The primary endpoint is 6-month survival and the

parameter of interest is the risk difference. We assume a baseline proportion surviving

of 20%. Another destination therapy trial compared the pulsatile Heartmate XVE with

the continuous-flow Heartmate II (Slaughter et al. (2009)). Use of LVADs for destination

therapy has increased tenfold the previous amount since January, 2010 when Heartmate

II for destination therapy was approved (Stewart and Stevenson (2011)). At the Mayo

Clinic, 117 patients underwent LVAD implementation as destination therapy from Febru-
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ary 2007 to June 2012 (64 months) (Dunlay et al. (2014)). In addition, according to the

Interagency for Mechanically Assisted Circulatory Support (INTERMACS) registry, for

destination therapy, 135 LVADs were placed from 2006 to 2009, 464 in 2010 and 248 in the

first 6 months of 2011 (Kirklin et al. (2012)). Based on these numbers, it is reasonable to as-

sume that these high volume centers could actively each identify 1-3 viable candidates for

LVAD destination therapy per month to accrue into a stepped wedge study design. We

assume that there are a number of medical centers awaiting approval to implant LVADs

as destination therapy with appropriate teams in place. We will compute the power for

randomizing every 6 months over a period of 3 years, and examine the impact of adding

additional medical centers. This corresponds to 7 steps in the SWD with no centers per-

forming destination therapy at baseline and at 3 years all centers will implant LVADs as

destination therapy for all eligible patients.

Power analyses deal with many uncertainties, including the ICC, the values of the cluster

sizes, and the effect size. For this example, no data from previous studies reported ICCs.

Because the SWD is insensitive over a range of reasonable values of the ICC, we consider

an ICC of 0.01 for this application. We assume that there are 12 medical centers that will

participate in this SWD and over each 6 month step 10 patients would meet the criteria to

be eligible for destination therapy, such that each medical center has a total sample size

of 70 patients across the entire three year period, leading to a total sample size of 840 for

the entire SWD.

For a baseline 6 month survival of 20% in the control group, the variance of the risk

difference was 1.786 × 10−4, which will result in 96% power to detect a risk difference of

0.05 or greater, indicating at least 5% greater 6 month survival for those implanted with

LVAD for destination therapy. Hussey and Hughes method yielded 93% power for this

effect size. A CRD with 6 clusters randomized to each intervention with 70 patients per

cluster would only have 27% power to detect a risk difference of 5% (calculated using

PASS Hintze (2008)).
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4.5 Discussion

In this paper, we computed theoretical asymptotic power for a binary outcome in a SWD.

This involved difficult integrations over the distribution of the unobservable random

cluster effects. By doing so, we were able to appropriately account for binary nature

of the outcome data using maximum likelihood theory, and showed that under several

different study designs, the resulting power was greater than that found by Hussey and

Hughes, using their closed form approximation for binary data. Over the range of design

parameters considered, for a fixed number of patients, our exact maximum likelihood

method provided designs that ranged from 9% to 2.4 times more efficient than designs

based on Hussey and Hughes’ variance approximation. We note that Hussey and Hughes

does have the advantage of being a closed form solution. However, with current compu-

tational capabilities our method, which will be made freely available, results in more

efficient designs.

We also found that for the SWD, power is insensitive to variations in assumptions about

the intracluster correlation coefficient. For a fixed overall number of clusters and indi-

viduals per cluster, increasing the number of steps leads to increases in the power. When

we compared the SWD to the cluster randomized design, there was a point at which in-

creasing the number of steps led to the SWD becoming more powerful than a CRD with

the same number of subjects, clusters, ICC and marginal treatment proportion. The SWD

may be longer and potentially more expensive than the CRD, however. The utility of the

SWD may be in the ability to add a randomized component when it is unethical to with-

hold the intervention from patients, when the argument may be that any randomization

is better than none when causal effect estimates are the goal.

As mentioned, little statistical theory for stepped wedge study design exists and there are

many extensions. We would like to extend our method to include settings with a time

effect. In many areas of application, the inclusion of time effects will be important. In

our LVAD example, if eligibility requirements are restructured this could lead to better
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outcomes over time in both the LVAD and optimal medical therapy groups. Time by

treatment interactions may also need to be taken into account, for example, in our LVAD

example, there is likely a learning curve effect where surgeons will take some time to be-

come more familiar and comfortable with the use of the device or the procedure, perhaps

leading to improvements in the outcome.

We used the identity link to specify the effect on the risk difference scale. Extensions to the

log and logistic links, when the parameter of interest is the risk ratio and odds ratio will

be required. We realize that the normal distribution we have placed on the probability

has infinite support which is not realistic for a probability, but it is likely that because the

variance is small, when we evaluate the integral by Romberg quadrature, the range of the

integral is sufficiently large to incorporate most of the mass and at the same time retain

the constraint that the probability is restricted to range between zero and one. Further

research will evaluate the impact of this approximation on the SWD variance calculations

and subsequent power and sample size outputs. A constrained likelihood can be derived

based upon a truncated mean zero normal which retains the flavor of normal random

effects as is commonly assumed but satisfies the restrictions relevant to binomial data. In

addition, simulation studies will be conducted that compare the empirical variance of the

constrained and unconstrained models to assess the impact of the approximation.

Simulation based methods are another approach for power calculations. We opted for

an exact approach using Romberg integration. For the same precision, we would like to

compare the computation efficiency of the two approaches and expect to find that the

exact method would be considerably faster than simulation based methods for a fixed

amount of precision.

In summary, we have demonstrated that the asymptotic maximum likelihood approach

to power calculations provides more efficient study designs for detecting a risk difference

of pre-specified magnitude than the previously available method. This suggests that the

SWD may be a more feasible study design than has been previously appreciated. We have
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focused on design components, but our findings also have implications for the analysis as

well, suggesting that the maximum likelihood estimator will often be substantially more

efficient than GEE for estimating the risk differences of SWDs.
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A. Appendices



A.1 An Overview of Statistical Approaches for Compara-
tive Effectiveness Research for Assessing In-Hospital
Complications of Percutaneous Coronary Interven-
tions By Access Site

A.1.1 Factors associated with Radial Artery Access vs Femoral Artery
Access

Table A.1: Covariates included in the propensity score model.
Linear Terms Interaction Terms
Female Smoker:Race
Diabetes Smoker:Age
Smoker Smoker:Platelet Aggregate Inhibitors
Prior PCI Prior CABG:Peripheral Vascular Disease
Prior MI Prior CHF:Hypertension
Prior CABG Prior CHF:G2B3A Inhibitors
Prior CHF Prior CHF:Thrombin
Lung Disease Lung Disease:Left Main Disease
STEMI Lung Disease:Hypertension
Race: white (baseline), black, hispanic, other Age2

Insurance: government (baseline), commercial, other STEMI:Fractionated Heparin
Shock STEMI:Low Molecular Weight Heparin
Left Main Disease STEMI:G2B3A Inhibitors
Age STEMI:Platelet Aggregate Inhibitors
Multi-vessel Disease STEMI:Thrombin
Number of Vessels > 70% stenosis Insurance:Race
Peripheral Vascular Disease Insurance:Age
Hypertension Insurance:Peripheral Vascular Disease
Aspirin Insurance:Hypertension
Fractionated Heparin Insurance:G2B3A Inhibitors
Low Molecular Weight Heparin Insurance:Thrombin
G2B3A Inhibitors Age:Peripheral Vascular Disease
Platelet Aggregate Inhibitors Age:Hypertension
Thrombin Age:Platelet Aggregate Inhibitors

Age:Thrombin
Age:Fractionated Heparin
Age:Low Molecular Weight Heparin
Peripheral Vascular Disease:Fractionated Heparin
Peripheral Vascular Disease:Low Molecular Weight Heparin
Fractionated Heparin:G2B3A Inhibitors
Low Molecular Weight Heparin:G2B3A Inhibitors
Fractionated Heparin:Platelet Aggregate Inhibitors
Low Molecular Weight Heparin:Platelet Aggregate Inhibitors
Fractionated Heparin:Thrombin
Low Molecular Weight Heparin:Thrombin
G2B3A Inhibitors:Thrombin
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A.1.2 R code

All analyses were performed with R software, version 2.14.1. General code is provided

for the case where Y is the binary outcome, T is the binary treatment, X is a vector of

covariates, and PS is the estimated propensity score. All standard errors were computed

by bootstrapping. The appendix of Ahern et al. (Ahern et al. (2009)) provides guidance

for this procedure.

Propensity Score Estimation. Denote the propensity score by PS and the linear propensity

score by lPS.

PSmodel=glm(T ∼ X,family=binomial(link=”logit”),data=dataset)
PS=predict(PSmodel,dataset,type=”response”)

lPS=predict(PSmodel,dataset)

Matching on the Propensity Score. Using the Matching package to perform 1-1 matching

(M=1), without replacement (replace=FALSE) and a caliper of 0.2 standard deviations

of the propensity score (caliper=0.2), to estimate the average treatment effect (esti-

mand=”ATE”). Further options can be found in the manual for this package.

library(Matching)
runmatch=Match(Y=Y,Tr=T,X=lPS, M=1,replace=FALSE,caliper=0.2,estimand=”ATE”)

runmatch$est # estimated ATE
runmatch$est-1.96*runmatch$se.standard # lower 95% CI limit

runmatch$est+1.96*runmatch$se.standard # upper 95% CI limit

The original data can be accessed to identify the matched pairs using:

matcheddata = dataset[c(runmatch$index.treated,runmatch$index.control),]

Stratification on the Propensity Score. First create the quintiles and then create a variable

to indicate the stratum to which a subject belongs. The data may be divided into fewer or
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more quantiles by modifying the quantile() command. Balance within each stratum can

be assessed with a t-test, where in the following ”i” should be replaced by the stratum of

interest. A loop can be used to quickly cycle through all of the strata.

breakvals=quantile(PS, prob=0:5*0.2)
strat=cut(PS, breaks=breakvals, labels=c(’1’,’2’,’3’,’4’,’5’),include.lowest=TRUE)

t.test(PS[strat==i&T==1],PS[strat==i&T==0])

To combine the results across strata, we wrote the following functions that can be called

by plugging in the variables for the outcome (out), treatment (treat), and strata (str).

difference.means = function(out, treat)

{mean(out[treat==1], na.rm=TRUE) - mean(out[treat==0], na.rm=TRUE)}

SE = function(out,treat)

{sqrt(var(out[treat==1], na.rm=TRUE)/sum(treat==1)+ var(out[treat==0], na.rm=TRUE)/sum(treat==0))}

strata.average = function(out, treat, str) {
Q = length(table(str)); n=length(out); differences=rep(NA,Q)

for (q in 1:Q) differences[q] = difference.means(out[str==q],treat[str==q])
weights=table(str)/n

overall.difference = weights%*%differences

return(list(”Mean Difference within Strata”=differences,”Average Weighted Mean

Difference”=overall.difference))}

strata.variance = function(out,treat,str)
{Q = length(table(str)); n=length(out); variances=rep(NA,Q)

for (q in 1:Q) variances[q]= SE(out[str==q],out[str==q])**2
weights = table(str)/n

overall.variance = weights**2%*%variances
return(list(”Variance within Strata”=variances,”Overall Variance”=

overall.variance,”Overall SE”=sqrt(overall.variance)))}
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strata.average(Y,T,strat)

strata.variance.average(Y,T,strat)

Weighting by the Propensity Score. For the IPTW estimators, the point estimates are

obtained using

HT.IPTW = mean((T/PS-(1-T)/(1-PS))*Y)

S.IPTW= sum(T*Y/PS)/sum(T/PS)-sum((1-T)*Y/(1-PS))/sum((1-T)/(1-PS))

G-computation. G-computation performs the outcome regression and then predicts the

outcome as if all subjects received treatment and also if all subjects received control.

Without using MSM, the estimate of the ATE is the average of each individuals predicted

Y1i and Y0i.

outreg=lm(Y ∼ T+X, data=dataset)
all.pred=predict(outreg) # predicts Y

T1.pred =predict(outreg,newdata=data.frame(dataset[,-”T”],T=1)) # predictions when T=1 for all subjects
T0.pred = predict(outreg,newdata=data.frame(dataset[,-”T”],T=0)) # predictions when T=0 for all subjects

G.comp = mean(T1.pred-T0.pred)

Augmented-IPTW. Augmented IPTW uses the same predictions of the outcome as

G-computation and then combines the predictions to compute the point estimate.

A.IPTW=mean((T/PS-(1-T)/(1-PS))*(Y-all.pred))+mean(T1.pred-T0.pred)

Targeted Maximum Likelihood Estimation. TMLE uses the tmle program and we demon-

strate how to specify the parametric forms of the outcome and treatment regressions.

Super learning is the default when Qform and gform are unspecified.
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library(tmle)
TMLE =tmle(Y=Y,A=T,W=X,Qform=Y∼A+X,gform=A ∼X)

summary(TMLE)
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A.2 Comparative Effectiveness and Meta-Analysis of Car-
diac Resynchronization Therapy Devices: The Role of
Differential Follow-up

A.2.1 CRT Data: Detailed Follow-up

Table A.2: CRT-D versus CRT-alone studies: Detailed follow-up information reported in studies.
Q1 and Q3 are the first and third quartiles, respectively. The ratio of follow-up by treatment arm
is denoted f = ē1/ē0.

Months of Follow-up (unless specified otherwise)
Study Overall Average CRT-D Arm CRT Arm f = e1

e0

Adlbrecht et al. (2009) mean 16.8 ± 12.4
Stabile et al. (2009) mean 58 ± 15 median 56.8 median 60.1 0.95

(Q1 49 and Q3 67)
Bai et al. (2008) mean 811.6 days ± 536.7

(range 371 to 2427)
Auricchio et al. (2007) median 34

(Q1 10 and Q3 40)
Ermis et al. (2004) mean 13.5 ± 12.0 13 ± 11.8 18 ± 13.2 0.72

(range 4 to 60) (range 0.5 to 53)
Pappone et al. (2003) mean 840 ± 257 days
Bristow et al. (2004) median 16.0 16.5 0.97
Schuchert et al. (2013) 12

A.2.2 Bias of the Single Study Estimator for the Rate Ratio

Assume the number of events from treatment arm j is s Yj ∼ Pois(θj) where θj = λj× ēj×

nj with ēj the average follow-up in months in arm j and nj = is the number of subjects in

arm j. Then the mortality rate is written as

λj = ξ exp(ω × j) (4.1)

where j = 0 for the control arm and j = 1 for the treatment arm. The maximum likelihood

estimator for ω is log(λ̂1/λ̂0) = log
(
Y1/e1n1

Y0/e0n0

)
because λ̂j =

Yj
ejnj

. When average follow-up
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is the same in each treatment arm, then ω = log
(
Y1/n1

Y0/n0

)
. The rate ratio is exp(ω) = λ1/λ0.

We are dealing with the expectation and variance of ratios of random variables and by

Taylor series expansions, it can be shown that

E
(
Y1

Y0

)
≈ EY1

EY0

− Cov(Y1, Y0)

E2Y0

+
Var(Y0)EY1

E3Y0

(4.2)

Var
(
Y1

Y0

)
≈ 1

E2Y0

V ar(Y1) + 2
−EY1

E3Y0

Cov(Y1, Y0) +
E2Y1

E4Y0

VarY0

=
E2Y1

E2Y0

[
Var(Y1)

E2Y1

− 2
Cov(Y1, Y0)

EY0 EY1

+
Var(Y0)

E2Y0

]
(4.3)

when expanding out to 3 terms.

Noting that the moments of the Poisson distribution are E(Yj) = θj and E(Y 2
j ) = θj +

θ2
j , then Var(Yj) = θj and E(Y 3

j ) = θ3
j + 3θ2

j + θj . Because Y1 and Y0 are independent,

Cov(Y1, Y0) = 0. When average follow-up by treatment arm, ej , is available, then E(λ̂j) =

E(
Yj
ejnj

) = 1
ejnj

E(Yj) =
θj
ejnj

.

Under the model,

E(λ̂1) =
ξ exp(ω)e1n1

e1n1

= ξ exp(ω) and E(λ̂0) =
ξe0n0

e0n0

= ξ

Hence,

E(êxp(ω)) = E

(
λ̂1

λ̂0

)
=
e0n0

e1n1

E

(
Y1

Y0

)
≈ e0n0

e1n1

(
θ1

θ0

− 0 +
θ0 ∗ θ1

θ3
0 + 3θ2

0 + θ0

)
=

e0n0

e1n1

(
ξ exp(ω)e1n1

ξe0n0

− 0 +
ξe0n0 ∗ ξ exp(ω)e1n1

(ξe0n0)3 + 3(ξe0n0)2 + (ξe0n0)

)
= exp(ω) + e0n0

(
ξ exp(ω)

(ξe0n0)2 + 3(ξe0n0) + 1

)
= exp(ω)

[
1 +

ξe0n0

(ξe0n0)2 + 3(ξe0n0) + 1

]
. (4.4)

Therefore the bias, E(êxp(ω))− exp(ω) is ξe0n0 exp(ω)
(ξe0n0)2+3(ξe0n0)+1

.
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In the absence of arm-specific follow-up, and only average follow-up for the study,

E(λ̂∗j) = E(
Yj
enj

) = 1
enj
E(Yj) =

θj
enj

and

E(λ̂∗1) =
ξ exp(ω)e1n1

en1

=
ξ exp(ω)e1

e
and E(λ̂∗0) =

ξe0n0

en0

=
ξe0

e
.

Hence,

E( ̂exp(ω∗)) = E

(
λ̂∗1

λ̂∗0

)
=
n0

n1

E

(
Y1

Y0

)
≈ n0

n1

(
θ1

θ0

− 0 +
θ0 ∗ θ1

θ3
0 + 3θ2

0 + θ0

)
=

n0

n1

(
ξ exp(ω)e1n1

ξe0n0

− 0 +
ξe0n0 ∗ ξ exp(ω)e1n1

(ξe0n0)3 + 3(ξe0n0)2 + (ξe0n0)

)
= exp(ω)

e1

e0

+
n0 ∗ ξ exp(ω)e1

(ξe0n0)2 + 3(ξe0n0) + 1

= exp(ω)

[
e1

e0

+
n0 ∗ ξe1

(ξe0n0)2 + 3(ξe0n0) + 1

]
. (4.5)

Therefore the bias, E( ̂exp(ω∗))− exp(ω) is exp(ω)
[(

e1
e0
− 1
)

+ n0∗ξe1
(ξe0n0)2+3(ξe0n0)+1

]
.
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A.2.3 Simulation Results: Partially Observed Follow-up Times

Table A.3: Bias and coverage of the rate ratio, exp(µ), and between-study standard deviation, σ,
using partially reported follow-up times: Simulation results for 20 primary studies as a function
of relative follow-up in treatment arms. Percent bias [(estimated - true)/true × 100].

RR=1 RR=0.5
σ2 = 0.01 σ2 = 0.05 σ2 = 0.01 σ2 = 0.05

f MCAR MAR MCAR MAR MCAR MAR MCAR MAR
RR: Bias

0.9 0.21 0.21 3.41 3.39 5.44 5.42 3.52 3.52
0.95 2.35 2.37 -0.23 -0.22 -5.20 -5.16 -2.66 -2.64

1.0 2.50 2.50 -0.70 -0.71 0.76 0.76 -0.54 -0.54
1.05 0.33 0.31 2.59 2.59 -0.60 -0.56 4.84 4.82
1.1 3.68 3.69 4.47 4.44 1.18 1.02 1.45 1.50
1.2 1.25 1.28 7.82 7.85 2.52 2.55 8.30 8.26

RR: Coverage
0.9 0.995 0.997 0.992 0.993 0.935 0.923 0.997 0.997

0.95 0.971 0.969 1.000 1.000 0.918 0.918 0.992 0.990
1.0 0.951 0.954 1.000 1.000 0.997 0.997 0.999 0.999

1.05 0.991 0.995 0.992 0.993 0.997 0.998 0.998 0.997
1.1 0.904 0.906 0.990 0.987 0.997 0.996 1.000 1.000
1.2 0.983 0.981 0.891 0.899 0.967 0.963 0.881 0.886

σ: Bias
0.9 15.60 15.20 14.66 14.97 68.64 68.53 7.13 7.22

0.95 13.10 13.90 -8.45 -8.54 63.00 62.90 -24.68 -24.54
1.0 -4.60 -4.70 -7.28 -7.32 47.40 47.40 -10.08 -10.04

1.05 0.67 0.17 -34.69 -34.47 53.10 52.70 12.56 12.33
1.1 0.65 1.17 -12.19 -12.29 55.80 55.60 12.24 12.16
1.2 35.70 36.70 -3.18 -2.64 40.09 40.38 3.66 3.09

σ: Coverage
0.9 0.969 0.974 0.978 0.983 0.597 0.607 0.998 0.997

0.95 0.981 0.979 0.994 0.996 0.649 0.656 0.886 0.881
1.0 0.987 0.987 0.999 0.999 0.851 0.859 0.988 0.983

1.05 0.991 0.982 0.641 0.656 0.830 0.852 0.993 0.991
1.1 0.985 0.974 0.976 0.986 0.740 0.745 0.993 0.994
1.2 0.844 0.845 0.998 0.999 0.825 0.834 0.999 0.998
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A.2.4 CRT Data Analysis: Ignoring Arm-Specific Follow-up for the 3
Studies Reporting Follow-Up

When ignoring the arm-specific follow-up information reported in the three studies, the

posterior mean (95% credible interval) of the overall rate ratio was 0.69 (0.48, 0.93) using

the most non-informative pair of priors, µ ∼ Normal(0,1e06) and σ ∼ Half-Normal(0.26).

This result also indicates a survival benefit of CRT-D compared to CRT-alone, but the

benefit is slighly further from than null than when including the information (compare

to 0.71 [0.49, 0.96] for using arm-specific follow-up). A similar comparison based on the

most informative pair of priors, µ ∼ Normal(0,2) and σ ∼ Half-Normal(0.03), the rate

ratio is 0.69 [0.54, 0.86]. All other priors resulted in a similar overall rate ratio with 95%

credible intervals that do not contain 1 (Table A.4). The posterior mean of the between-

study standard deviation was estimated as 0.34 [0.03, 0.74], similar to that obtained using

arm-specific follow-up (compare to 0.34 [0.08, 0.75])

Table A.4: CRT-D vs CRT-alone: posterior mean for the overall rate ratio and 95% credible intervals
for 8 primary studies under a variety of prior distributions ignoring arm specific follow-up. aE(σ)
= 0.14; bE(σ) = 0.35; cE(σ) = 0.41.

Prior for Prior for overall underlying log rate ratio, µ
between-study standard deviation, σ Normal(0, 2) Normal(0, 10) Normal(0, 1e06)

Half-Normal(0.03)a 0.69 (0.54, 0.86) 0.69 (0.54, 0.86) 0.69 (0.53, 0.86)
Uniform(0, 0.7)b 0.69 (0.49, 0.92) 0.69 (0.49, 0.92) 0.68 (0.48, 0.93)

Half-Normal(0.26)c 0.69 (0.49, 0.94) 0.69 (0.48, 0.96) 0.69 (0.48, 0.93)
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A.3 A Maximum Likelihood Approach to Power Calcula-
tions for the Risk Difference in a Stepped Wedge De-
sign for the Design of Left Ventricular Assist Devices
for Destination Therapy

A.3.1 First and second derivatives

We want to take the derivative of this with respect to β0, β1 and τ 2. We will use the chain

rule ∂
∂t
f(g(t)) = f ′(g(t))g′(t) where f(t) = log(t) and f ′(t) = 1/t and g() =∫

(
1√
2πτ

e−
b2

2τ2 )N × (1− (β0 + b))Z00(β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11db

(4.6)

We assume regularity conditions hold, that allow exchanging integration and differentia-

tion in the calculation of g′().

We first find the following integral, which we need for the chain rule above:

∂

∂β0

(
1√
2πτ

e−
b2

2τ2 )N × (1− (β0 + b))Z00(β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11

Factor out constants:

(2π)−N/2

e− b2

2τ2

τ

N (
∂

∂β0

(1− (β0 + b))Z00(β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11

)

Product Rule with (1− (β0 + b))Z00 and (β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11 :

(2π)−N/2(
e−

b2

2τ2

τ
)N
[
(β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11

∂

∂β0

(1− (β0 + b))Z00

+(1− (β0 + b))Z00

(
∂

∂β0

(
(β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11

))]
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Chain Rule for ∂
∂β0

(1− (β0 + b))Z00 :

(2π)−N/2

e− b2

2τ2

τ

N [
Z00(1− (β0 + b))Z00−1

(
∂

∂β0

(1− (β0 + b))

)
(β0 + b)Z01

(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11 + (1− (β0 + b))Z00(
∂

∂β0

((β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11)

)]

Differentiate ∂
∂β0

(1− (β0 + b)) = −1:

(2π)−N/2

e− b2

2τ2

τ

N [
− Z00(1− (β0 + b))Z00−1(β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11

+(1− (β0 + b))Z00

(
∂

∂β0

((β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11)

)]

Product Rule with (1− (β0 + β1 + b))Z10 and (β0 + b)Z01(β0 + β1 + b)Z11 :

(2π)−N/2

e− b2

2τ2

τ

N [
− Z00(1− (β0 + b))Z00−1(β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11

+(1− (β0 + b))Z00

(
(β0 + b)Z01(β0 + β1 + b)Z11

∂

∂β0

((1− (β0 + β1 + b))Z10)

+(1− (β0 + β1 + b))Z10
∂

∂β0

((β0 + b)Z01(β0 + β1 + b)Z11)

)]

Chain Rule for ∂
∂β0

(1− (β0 + β1 + b))Z10 :

(2π)−N/2

e− b2

2τ2

τ

N [
− Z00(1− (β0 + b))Z00−1(β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11

+(1− (β0 + b))Z00

(
(β0 + b)Z01(β0 + β1 + b)Z11Z10(1− (β0 + β1 + b))Z10−1(

∂

∂β0

((1− (β0 + β1 + b)))

)
+ (1− (β0 + β1 + b))Z10

∂

∂β0

((β0 + b)Z01(β0 + β1 + b)Z11)

)]
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Differentiate ∂
∂β0

(1− (β0 + β1 + b)) = −1:

(2π)−N/2

e− b2

2τ2

τ

N [
− Z00(1− (β0 + b))Z00−1(β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11

+(1− (β0 + b))Z00

(
− (β0 + b)Z01(β0 + β1 + b)Z11Z10(1− (β0 + β1 + b))Z10−1

+(1− (β0 + β1 + b))Z10
∂

∂β0

((β0 + b)Z01(β0 + β1 + b)Z11)

)]

Product Rule with (β0 + b)Z01 and (β0 + β1 + b)Z11 :

(2π)−N/2

e− b2

2τ2

τ

N [
− Z00(1− (β0 + b))Z00−1(β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11

+(1− (β0 + b))Z00

(
− (β0 + b)Z01(β0 + β1 + b)Z11Z10(1− (β0 + β1 + b))Z10−1

+(1− (β0 + β1 + b))Z10

(
(β0 + β1 + b)Z11

∂

∂β0

((β0 + b)Z01)

+(β0 + b)Z01
∂

∂β0

((β0 + β1 + b)Z11))

)]

Chain Rule for ∂
∂β0

(β0 + b))Z01 and differentiate ∂
∂β0

(β0 + b) = 1 :

(2π)−N/2

e− b2

2τ2

τ

N [
− Z00(1− (β0 + b))Z00−1(β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11

+(1− (β0 + b))Z00

(
− (β0 + b)Z01(β0 + β1 + b)Z11Z10(1− (β0 + β1 + b))Z10−1

+(1− (β0 + β1 + b))Z10
(
(β0 + β1 + b)Z11Z01(β0 + b)Z01−1

+(β0 + b)Z01
∂

∂β0

((β0 + β1 + b)Z11))

)]
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Chain Rule for ∂
∂β0

(β0 + β1 + b))Z11 and differentiate ∂
∂β0

(β0 + β1 + b) = 1 :

(2π)−N/2

e− b2

2τ2

τ

N [
− Z00(1− (β0 + b))Z00−1(β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11

+(1− (β0 + b))Z00

(
− (β0 + b)Z01(β0 + β1 + b)Z11Z10(1− (β0 + β1 + b))Z10−1

+(1− (β0 + β1 + b))Z10
(
(β0 + β1 + b)Z11Z01(β0 + b)Z01−1

+(β0 + b)Z01Z11(β0 + β1 + b)Z11−1)

)]
Simplifying the result is:

(2π)−N/2

e− b2

2τ2

τ

N [
− Z00(1− (β0 + b))Z00−1(β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11

+Z01(1− (β0 + b))Z00(β0 + b)Z01−1(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11

−Z10(1− (β0 + b))Z00(β0 + b)Z01(1− (β0 + β1 + b))Z10−1(β0 + β1 + b)Z11

+Z11(1− (β0 + b))Z00(β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11−1

]
Now we use this result, adding the integral over b back in, combined with the chain rule

to obtain the final result:

1∫
( 1√

2πτ
e−

b2

2τ2 )N × (1− (β0 + b))Z00(β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11db
×

∫
(2π)−N/2

e− b2

2τ2

τ

N [
− Z00(1− (β0 + b))Z00−1(β0 + b)Z01(1− (β0 + β1 + b))Z10

(β0 + β1 + b)Z11 + Z01(1− (β0 + b))Z00(β0 + b)Z01−1(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11

−Z10(1− (β0 + b))Z00(β0 + b)Z01(1− (β0 + β1 + b))Z10−1(β0 + β1 + b)Z11

+Z11(1− (β0 + b))Z00(β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11−1

]
db (4.7)

We first find the following integral, which we need for the chain rule above:

∂

∂β1

(
1√
2πτ

e−
b2

2τ2 )N × (1− (β0 + b))Z00(β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11
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The derivation is similar to the previous derivative with respect to β0, but we have some

simplification because only 2 of the terms have β1 and the result is:

(2π)−N/2

e− b2

2τ2

τ

N

(1− (β0 + b))Z00(β0 + b)Z01

[
− Z10(1− (β0 + β1 + b))Z10−1(β0 + β1 + b)Z11 + Z11(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11−1

]

Now we use this result, adding the integral over b back in, combined with the chain rule

to obtain the final result:

1∫
( 1√

2πτ
e−

b2

2τ2 )N × (1− (β0 + b))Z00(β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11db
×

∫
(2π)−N/2

e− b2

2τ2

τ

N

(1− (β0 + b))Z00(β0 + b)Z01

[
− Z10(1− (β0 + β1 + b))Z10−1

(β0 + β1 + b)Z11 + Z11(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11−1

]
db (4.8)

We first find the following integral, which we need for the chain rule above:

∂

∂τ 2
(

1√
2πτ

e−
b2

2τ2 )N × (1− (β0 + b))Z00(β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11

Chain Rule for ( e
− b2

2τ2√
τ2

)N and factor out constants with respect to τ 2:

(
1

2π
)N/2((1− (β0 + b))Z00(β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11)N(

e−
b2

2τ2

√
τ 2

)N−1

∂

∂τ 2
(
e−

b2

2τ2

√
τ 2

)
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Product Rule with e−
b2

2τ2 and 1√
τ2

:

(
1

2π
)N/2((1− (β0 + b))Z00(β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11)N(

e−
b2

2τ2

√
τ 2

)N−1(
1√
τ 2

∂

∂τ 2
(e−

b2

2τ2 ) + e−
b2

2τ2
∂

∂τ 2
(

1√
τ 2

)

)

Chain Rule for e−
b2

2τ2 and differentiate ∂
∂τ2

(− b2

2τ2
) = b2

2(τ2)2
and differentiate ∂

∂τ2
( 1√

τ2
) =

− 1
2(τ2)3/2

:

(
1

2π
)N/2((1− (β0 + b))Z00(β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11)N(

e−
b2

2τ2

√
τ 2

)N−1(
b2

2(τ 2)5/2
(e−

b2

2τ2 ) + e−
b2

2τ2 (− 1

2(τ 2)3/2
)

)

Simplifying the result is:

(
1

2π
)N/2((1− (β0 + b))Z00(β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11)N(

e−
b2

2τ2

√
τ 2

)N−1

(
b2e−

b2

2τ2

2(τ 2)5/2
− e−

b2

2τ2

2(τ 2)3/2

)

Now we use this result, adding the integral over b back in, combined with the chain rule

to obtain the final result:

1∫
( 1√

2πτ
e−

b2

2τ2 )N × (1− (β0 + b))Z00(β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11db
×

∫
(

1

2π
)N/2((1− (β0 + b))Z00(β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11)N(

e−
b2

2τ2

√
τ 2

)N−1

(
b2e−

b2

2τ2

2(τ 2)5/2
− e−

b2

2τ2

2(τ 2)3/2

)
db (4.9)

We need the second derivatives for the expected Fisher information matrix, if we prefer to

use this to estimate the asymptotic variance of β̂1 instead of the outer product of gradients,

which only requires the first derivatives of the log likelihood.
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The results from the first derivatives are all of the form f(t)/g(t). We will use the quotient

rule: ∂
∂t
f(t)
g(t)

= f ′(t)g(t)−f(t)g′(t)
[g(t)]2

. Both f(t) and g(t) are integrals, so we again assume regu-

larity conditions hold, that allow exchanging integration and differentiation in order to

calculate f ′(t) and g′(t).

Note that g(t) =
∫

( 1√
2πτ

e−
b2

2τ2 )N×(1−(β0+b))Z00(β0+b)Z01(1−(β0+β1+b))Z10(β0+β1+b)Z11db

(Eq (4.6)) for each case. This is the integral we just worked with for the first derivatives.

Hence, we have the results for g′(t) in the previous section and can plug these in. Hence,

we will focus on taking derivatives inside the integral for the numerators.

Derivatives inside the integral of (2π)−N/2
(
e
− b2

2τ2

τ

)N
(−Z00)(1−(β0+b))Z00−1(β0+b)Z01(1−

(β0 + β1 + b))Z10(β0 + β1 + b)Z11 , the first term of the numerator of ∂
∂β0
l(β, τ 2):

with respect to β0

∂

∂β0

((2π)−N/2

e− b2

2τ2

τ

N

(−Z00)(1− (β0 + b))Z00−1(β0 + b)Z01(1− (β0 + β1 + b))Z10

(β0 + β1 + b)Z11)

Factor out constants:

−Z00(2π)−N/2

e− b2

2τ2

τ

N (
∂

∂β0

(1− (β0 + b))Z00−1(β0 + b)Z01(1− (β0 + β1 + b))Z10

(β0 + β1 + b)Z11

)

Product Rule with (1− (β0 + b))Z00−1 and (β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11 :

−Z00(2π)−N/2

e− b2

2τ2

τ

N [
(β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11

∂

∂β0

(1− (β0 + b))Z00−1

+(1− (β0 + b))Z00−1

(
∂

∂β0

(
(β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11

))]
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Chain Rule for ∂
∂β0

(1− (β0 + b))Z00−1:

−Z00(2π)−N/2

e− b2

2τ2

τ

N [
(Z00 − 1)(1− (β0 + b))Z00−2

(
∂

∂β0

(1− (β0 + b))

)
(β0 + b)Z01

(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11 + (1− (β0 + b))Z00−1(
∂

∂β0

(
(β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11

))]

Differentiate ∂
∂β0

(1− (β0 + b)) = −1:

−Z00(2π)−N/2

e− b2

2τ2

τ

N [
− (Z00 − 1)(1− (β0 + b))Z00−2(β0 + b)Z01(1− (β0 + β1 + b))Z10

(β0 + β1 + b)Z11 + (1− (β0 + b))Z00−1

(
∂

∂β0

(
(β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11

))]

Product Rule with (1− (β0 + β1 + b))Z10 and (β0 + b)Z01(β0 + β1 + b)Z11 :

−Z00(2π)−N/2

e− b2

2τ2

τ

N [
− (Z00 − 1)(1− (β0 + b))Z00−2(β0 + b)Z01(1− (β0 + β1 + b))Z10

(β0 + β1 + b)Z11 + (1− (β0 + b))Z00−1

(
(β0 + b)Z01(β0 + β1 + b)Z11

∂

∂β0

((1− (β0 + β1 + b))Z10)+

(1− (β0 + β1 + b))Z10
∂

∂β0

((β0 + b)Z01(β0 + β1 + b)Z11)

)]

Chain Rule for ∂
∂β0

(1− (β0 + β1 + b))Z10 :

−Z00(2π)−N/2

e− b2

2τ2

τ

N [
− (Z00 − 1)(1− (β0 + b))Z00−2(β0 + b)Z01(1− (β0 + β1 + b))Z10

(β0 + β1 + b)Z11 + (1− (β0 + b))Z00−1

(
(β0 + b)Z01(β0 + β1 + b)Z11Z10(1− (β0 + β1 + b))Z10−1

(
∂

∂β0

((1− (β0 + β1 + b)))) + (1− (β0 + β1 + b))Z10
∂

∂β0

((β0 + b)Z01(β0 + β1 + b)Z11)

)]
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Differentiate ∂
∂β0

(1− (β0 + β1 + b)) = −1:

−Z00(2π)−N/2

e− b2

2τ2

τ

N [
− (Z00 − 1)(1− (β0 + b))Z00−2(β0 + b)Z01(1− (β0 + β1 + b))Z10

(β0 + β1 + b)Z11 + (1− (β0 + b))Z00−1

(
− (β0 + b)Z01(β0 + β1 + b)Z11Z10(1− (β0 + β1 + b))Z10−1

+(1− (β0 + β1 + b))Z10
∂

∂β0

((β0 + b)Z01(β0 + β1 + b)Z11)

)]

Product Rule with (β0 + b)Z01 and (β0 + β1 + b)Z11 :

−Z00(2π)−N/2

e− b2

2τ2

τ

N [
− (Z00 − 1)(1− (β0 + b))Z00−2(β0 + b)Z01(1− (β0 + β1 + b))Z10

(β0 + β1 + b)Z11 + (1− (β0 + b))Z00−1

(
− (β0 + b)Z01(β0 + β1 + b)Z11Z10(1− (β0 + β1 + b))Z10−1

+(1− (β0 + β1 + b))Z10

(
(β0 + β1 + b)Z11

∂

∂β0

((β0 + b)Z01) + (β0 + b)Z01
∂

∂β0

((β0 + β1 + b)Z11)

))]

Chain Rule for ∂
∂β0

(β0 + b))Z01 and differentiate ∂
∂β0

(β0 + b) = 1 :

−Z00(2π)−N/2

e− b2

2τ2

τ

N [
− (Z00 − 1)(1− (β0 + b))Z00−2(β0 + b)Z01(1− (β0 + β1 + b))Z10

(β0 + β1 + b)Z11 + (1− (β0 + b))Z00−1

(
− (β0 + b)Z01(β0 + β1 + b)Z11Z10(1− (β0 + β1 + b))Z10−1

+(1− (β0 + β1 + b))Z10

(
(β0 + β1 + b)Z11Z01(β0 + b)Z01−1 + (β0 + b)Z01

∂

∂β0

((β0 + β1 + b)Z11)

))]

Chain Rule for ∂
∂β0

(β0 + β1 + b))Z11 and differentiate ∂
∂β0

(β0 + β1 + b) = 1 :

−Z00(2π)−N/2

e− b2

2τ2

τ

N [
− (Z00 − 1)(1− (β0 + b))Z00−2(β0 + b)Z01(1− (β0 + β1 + b))Z10

(β0 + β1 + b)Z11 + (1− (β0 + b))Z00−1

(
− (β0 + b)Z01(β0 + β1 + b)Z11Z10(1− (β0 + β1 + b))Z10−1

+(1− (β0 + β1 + b))Z10
(
(β0 + β1 + b)Z11Z01(β0 + b)Z01−1 + (β0 + b)Z01Z11(β0 + β1 + b)Z11−1

))]
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Simplifying the result is:

−Z00(2π)−N/2

e− b2

2τ2

τ

N [
− (Z00 − 1)(1− (β0 + b))Z00−2(β0 + b)Z01(1− (β0 + β1 + b))Z10

(β0 + β1 + b)Z11 + Z01(1− (β0 + b))Z00−1(β0 + b)Z01−1(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11

−Z10(1− (β0 + b))Z00−1(β0 + b)Z01(1− (β0 + β1 + b))Z10−1(β0 + β1 + b)Z11

+Z11(1− (β0 + b))Z00−1(β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11−1

]

Hence, derivative with respect to β0 of the first term of the numerator of ∂
∂β0
l(β, τ 2) is

∫
−Z00(2π)−N/2

e− b2

2τ2

τ

N [
− (Z00 − 1)(1− (β0 + b))Z00−2(β0 + b)Z01(1− (β0 + β1 + b))Z10

(β0 + β1 + b)Z11 + Z01(1− (β0 + b))Z00−1(β0 + b)Z01−1(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11

−Z10(1− (β0 + b))Z00−1(β0 + b)Z01(1− (β0 + β1 + b))Z10−1(β0 + β1 + b)Z11

+Z11(1− (β0 + b))Z00−1(β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11−1

]
db (4.10)

with respect to β1

∂

∂β1

((2π)−N/2

e− b2

2τ2

τ

N

(−Z00)(1− (β0 + b))Z00−1(β0 + b)Z01(1− (β0 + β1 + b))Z10

(β0 + β1 + b)Z11)

The derivation is similar to the previous derivative with respect to β0, but we have some

simplification because only 2 of the terms have β1 and the result is:

−Z00(2π)−N/2

e− b2

2τ2

τ

N

(1− (β0 + b))Z00−1(β0 + b)Z01

[
− Z10(1− (β0 + β1 + b))Z10−1

(β0 + β1 + b)Z11 + Z11(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11−1

]
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Hence, derivative with respect to β1 of the first term of the numerator of ∂
∂β0
l(β, τ 2) is

∫
−Z00(2π)−N/2

e− b2

2τ2

τ

N

(1− (β0 + b))Z00−1(β0 + b)Z01

[
− Z10(1− (β0 + β1 + b))Z10−1

(β0 + β1 + b)Z11 + Z11(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11−1

]
db (4.11)

with respect to τ 2

∂

∂τ 2
((2π)−N/2

e− b2

2τ2

τ

N

(−Z00)(1− (β0 + b))Z00−1(β0 + b)Z01(1− (β0 + β1 + b))Z10

(β0 + β1 + b)Z11)

Chain Rule for ( e
− b2

2τ2√
τ2

)N and factor out constants with respect to τ 2:

(
1

2π
)N/2((−Z00)(1− (β0 + b))Z00−1(β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11)

N(
e−

b2

2τ2

√
τ 2

)N−1 ∂

∂τ 2
(
e−

b2

2τ2

√
τ 2

)

Product Rule with e−
b2

2τ2 and 1√
τ2

:

(
1

2π
)N/2((−Z00)(1− (β0 + b))Z00−1(β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11)

N(
e−

b2

2τ2

√
τ 2

)N−1

(
1√
τ 2

∂

∂τ 2
(e−

b2

2τ2 ) + e−
b2

2τ2
∂

∂τ 2
(

1√
τ 2

)

)

Chain Rule for e−
b2

2τ2 and differentiate ∂
∂τ2

(− b2

2τ2
) = b2

2(τ2)2
and differentiate ∂

∂τ2
( 1√

τ2
) =

− 1
2(τ2)3/2

:

(
1

2π
)N/2((−Z00)(1− (β0 + b))Z00−1(β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11)

N(
e−

b2

2τ2

√
τ 2

)N−1

(
b2

2(τ 2)5/2
(e−

b2

2τ2 ) + e−
b2

2τ2 (− 1

2(τ 2)3/2
)

)
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Simplifying the result is:

(
1

2π
)N/2((−Z00)(1− (β0 + b))Z00−1(β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11)

N(
e−

b2

2τ2

√
τ 2

)N−1

 b2e−
b2

2τ2

2(τ 2)5/2
− e−

b2

2τ2

2(τ 2)3/2


Hence, derivative with respect to τ 2 of the first term of the numerator of ∂

∂β0
l(β, τ 2) is∫

(
1

2π
)N/2((−Z00)(1− (β0 + b))Z00−1(β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11)

N(
e−

b2

2τ2

√
τ 2

)N−1

 b2e−
b2

2τ2

2(τ 2)5/2
− e−

b2

2τ2

2(τ 2)3/2

 db (4.12)

Derivatives inside the integral of (2π)−N/2
(
e
− b2

2τ2

τ

)N
(Z01)(1−(β0 +b))Z00(β0 +b)Z01−1(1−

(β0 + β1 + b))Z10(β0 + β1 + b)Z11 , the second term of the numerator of ∂
∂β0
l(β, τ 2):

with respect to β0

∂

∂β0

((2π)−N/2

e− b2

2τ2

τ

N

(Z01)(1− (β0 + b))Z00(β0 + b)Z01−1(1− (β0 + β1 + b))Z10

(β0 + β1 + b)Z11)

Similar to the derivative with respect to β0 of the first term of the numerator, the result is:

Z01(2π)−N/2

e− b2

2τ2

τ

N

[
− Z00(1− (β0 + b))Z00−1(β0 + b)Z01−1(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11

+(Z01 − 1)(1− (β0 + b))Z00(β0 + b)Z01−2(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11

−Z10(1− (β0 + b))Z00(β0 + b)Z01−1(1− (β0 + β1 + b))Z10−1(β0 + β1 + b)Z11

+Z11(1− (β0 + b))Z00(β0 + b)Z01−1(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11−1

]
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Hence, derivative with respect to β0 of the second term of the numerator of ∂
∂β0
l(β, τ 2) is

∫
Z01(2π)−N/2

e− b2

2τ2

τ

N

[
− Z00(1− (β0 + b))Z00−1(β0 + b)Z01−1(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11

+(Z01 − 1)(1− (β0 + b))Z00(β0 + b)Z01−2(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11

−Z10(1− (β0 + b))Z00(β0 + b)Z01−1(1− (β0 + β1 + b))Z10−1(β0 + β1 + b)Z11

+Z11(1− (β0 + b))Z00(β0 + b)Z01−1(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11−1

]
db (4.13)

with respect to β1

∂

∂β1

((2π)−N/2

e− b2

2τ2

τ

N

(Z01)(1− (β0 + b))Z00(β0 + b)Z01−1(1− (β0 + β1 + b))Z10

(β0 + β1 + b)Z11)

Similar to the derivative with respect to β1 of the first term of the numerator, the result is:

Z01(2π)−N/2

e− b2

2τ2

τ

N

(1− (β0 + b))Z00(β0 + b)Z01−1

[
− Z10(1− (β0 + β1 + b))Z10−1

(β0 + β1 + b)Z11 + Z11(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11−1

]

Hence, derivative with respect to β1 of the second term of the numerator of ∂
∂β0
l(β, τ 2) is

∫
Z01(2π)−N/2

e− b2

2τ2

τ

N

(1− (β0 + b))Z00(β0 + b)Z01−1

[
− Z10(1− (β0 + β1 + b))Z10−1

(β0 + β1 + b)Z11 + Z11(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11−1

]
db (4.14)

with respect to τ 2

∂

∂τ 2
((2π)−N/2

e− b2

2τ2

τ

N

(Z01)(1− (β0 + b))Z00(β0 + b)Z01−1(1− (β0 + β1 + b))Z10

(β0 + β1 + b)Z11)
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Similar to the derivative with respect to τ 2 of the first term of the numerator, the result is:

(
1

2π
)N/2((Z01)(1− (β0 + b))Z00(β0 + b)Z01−1(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11)

N(
e−

b2

2τ2

√
τ 2

)N−1

 b2e−
b2

2τ2

2(τ 2)5/2
− e−

b2

2τ2

2(τ 2)3/2


Hence, derivative with respect to τ 2 of the second term of the numerator of ∂

∂β0
l(β, τ 2) is∫

(
1

2π
)N/2((Z01)(1− (β0 + b))Z00(β0 + b)Z01−1(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11)

N(
e−

b2

2τ2

√
τ 2

)N−1

 b2e−
b2

2τ2

2(τ 2)5/2
− e−

b2

2τ2

2(τ 2)3/2

 db (4.15)

Derivatives inside the integral of (2π)−N/2
(
e
− b2

2τ2

τ

)N
(−Z10)(1−(β0 +b))Z00(β0 +b)Z01(1−

(β0 + β1 + b))Z10−1(β0 + β1 + b)Z11 , the third term of the numerator of ∂
∂β0
l(β, τ 2): with

respect to β0

∂

∂β0

((2π)−N/2

e− b2

2τ2

τ

N

(−Z10)(1− (β0 + b))Z00(β0 + b)Z01(1− (β0 + β1 + b))Z10−1

(β0 + β1 + b)Z11)

Similar to the derivative with respect to β0 of the first term of the numerator, the result is:

−Z10(2π)−N/2

e− b2

2τ2

τ

N [
− Z00(1− (β0 + b))Z00−1(β0 + b)Z01(1− (β0 + β1 + b))Z10−1

(β0 + β1 + b)Z11 + (Z01)(1− (β0 + b))Z00(β0 + b)Z01−1(1− (β0 + β1 + b))Z10−1(β0 + β1 + b)Z11

−(Z10 − 1)(1− (β0 + b))Z00(β0 + b)Z01(1− (β0 + β1 + b))Z10−2(β0 + β1 + b)Z11

+Z11(1− (β0 + b))Z00(β0 + b)Z01(1− (β0 + β1 + b))Z10−1(β0 + β1 + b)Z11−1

]
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Hence, derivative with respect to β0 of the third term of the numerator of ∂
∂β0
l(β, τ 2) is

∫
−Z10(2π)−N/2

e− b2

2τ2

τ

N [
− Z00(1− (β0 + b))Z00−1(β0 + b)Z01(1− (β0 + β1 + b))Z10−1

(β0 + β1 + b)Z11 + (Z01)(1− (β0 + b))Z00(β0 + b)Z01−1(1− (β0 + β1 + b))Z10−1(β0 + β1 + b)Z11

−(Z10 − 1)(1− (β0 + b))Z00(β0 + b)Z01(1− (β0 + β1 + b))Z10−2(β0 + β1 + b)Z11

+Z11(1− (β0 + b))Z00(β0 + b)Z01(1− (β0 + β1 + b))Z10−1(β0 + β1 + b)Z11−1

]
db (4.16)

with respect to β1

∂

∂β1

((2π)−N/2

e− b2

2τ2

τ

N

(−Z10)(1− (β0 + b))Z00(β0 + b)Z01(1− (β0 + β1 + b))Z10−1

(β0 + β1 + b)Z11)

Similar to the derivative with respect to β1 of the first term of the numerator, the result is:

−Z10(2π)−N/2

e− b2

2τ2

τ

N

(1− (β0 + b))Z00(β0 + b)Z01

[
− (Z10 − 1)(1− (β0 + β1 + b))Z10−2

(β0 + β1 + b)Z11 + Z11(1− (β0 + β1 + b))Z10−1(β0 + β1 + b)Z11−1

]

Hence, derivative with respect to β1 of the third term of the numerator of ∂
∂β0
l(β, τ 2) is

∫
−Z10(2π)−N/2

e− b2

2τ2

τ

N

(1− (β0 + b))Z00(β0 + b)Z01

[
− (Z10 − 1)(1− (β0 + β1 + b))Z10−2

(β0 + β1 + b)Z11 + Z11(1− (β0 + β1 + b))Z10−1(β0 + β1 + b)Z11−1

]
db (4.17)

with respect to τ 2

∂

∂β1

((2π)−N/2

e− b2

2τ2

τ

N

(−Z10)(1− (β0 + b))Z00(β0 + b)Z01(1− (β0 + β1 + b))Z10−1

(β0 + β1 + b)Z11)
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Similar to the derivative with respect to τ 2 of the first term of the numerator, the result is:

(
1

2π
)N/2((−Z10)(1− (β0 + b))Z00(β0 + b)Z01(1− (β0 + β1 + b))Z10−1(β0 + β1 + b)Z11)

N(
e−

b2

2τ2

√
τ 2

)N−1

 b2e−
b2

2τ2

2(τ 2)5/2
− e−

b2

2τ2

2(τ 2)3/2


Hence, derivative with respect to τ 2 of the third term of the numerator of ∂

∂β0
l(β, τ 2) is∫

(
1

2π
)N/2((−Z10)(1− (β0 + b))Z00(β0 + b)Z01(1− (β0 + β1 + b))Z10−1(β0 + β1 + b)Z11)

N(
e−

b2

2τ2

√
τ 2

)N−1

 b2e−
b2

2τ2

2(τ 2)5/2
− e−

b2

2τ2

2(τ 2)3/2

 db (4.18)

Derivatives inside the integral of (2π)−N/2
(
e
− b2

2τ2

τ

)N
(Z11)(1− (β0 + b))Z00(β0 + b)Z01(1−

(β0 + β1 + b))Z10(β0 + β1 + b)Z11−1, the fourth term of the numerator of ∂
∂β0
l(β, τ 2):

with respect to β0

∂

∂β0

(2π)−N/2

e− b2

2τ2

τ

N

(Z11)(1− (β0 + b))Z00(β0 + b)Z01(1− (β0 + β1 + b))Z10

(β0 + β1 + b)Z11−1

Similar to the derivative with respect to β0 of the first term of the numerator, the result is:

Z11(2π)−N/2

e− b2

2τ2

τ

N [
− Z00(1− (β0 + b))Z00−1(β0 + b)Z01(1− (β0 + β1 + b))Z10

(β0 + β1 + b)Z11−1 + Z01(1− (β0 + b))Z00(β0 + b)Z01−1(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11−1

−Z10(1− (β0 + b))Z00(β0 + b)Z01−1(1− (β0 + β1 + b))Z10−1(β0 + β1 + b)Z11−1

+(Z11 − 1)(1− (β0 + b))Z00(β0 + b)Z01−1(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11−2

]
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Hence, derivative with respect to β0 of the fourth term of the numerator of ∂
∂β0
l(β, τ 2) is

∫
Z11(2π)−N/2

e− b2

2τ2

τ

N [
− Z00(1− (β0 + b))Z00−1(β0 + b)Z01(1− (β0 + β1 + b))Z10

(β0 + β1 + b)Z11−1 + Z01(1− (β0 + b))Z00(β0 + b)Z01−1(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11−1

−Z10(1− (β0 + b))Z00(β0 + b)Z01−1(1− (β0 + β1 + b))Z10−1(β0 + β1 + b)Z11−1

+(Z11 − 1)(1− (β0 + b))Z00(β0 + b)Z01−1(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11−2

]
db (4.19)

with respect to β1

∂

∂β1

(2π)−N/2

e− b2

2τ2

τ

N

(Z11)(1− (β0 + b))Z00(β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11−1

Similar to the derivative with respect to β1 of the first term of the numerator, the result is:

Z11(2π)−N/2

e− b2

2τ2

τ

N

(1− (β0 + b))Z00(β0 + b)Z01

[
− Z10(1− (β0 + β1 + b))Z10−1

(β0 + β1 + b)Z11−1 + (Z11 − 1)(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11−2

]

Hence, derivative with respect to β1 of the fourth term of the numerator of ∂
∂β0
l(β, τ 2) is

∫
Z11(2π)−N/2

e− b2

2τ2

τ

N

(1− (β0 + b))Z00(β0 + b)Z01

[
− Z10(1− (β0 + β1 + b))Z10−1

(β0 + β1 + b)Z11−1 + (Z11 − 1)(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11−2

]
db (4.20)

with respect to τ 2

∂

∂τ 2
((2π)−N/2

e− b2

2τ2

τ

N

(Z11)(1− (β0 + b))Z00(β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11−1
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Similar to the derivative with respect to τ 2 of the first term of the numerator, the result is:

(
1

2π
)N/2((Z11)(1− (β0 + b))Z00(β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11−1)

N(
e−

b2

2τ2

√
τ 2

)N−1

 b2e−
b2

2τ2

2(τ 2)5/2
− e−

b2

2τ2

2(τ 2)3/2


Hence, derivative with respect to τ 2 of the fourth term of the numerator of ∂

∂β0
l(β, τ 2) is∫

(
1

2π
)N/2((Z11)(1− (β0 + b))Z00(β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11−1)

N(
e−

b2

2τ2

√
τ 2

)N−1

 b2e−
b2

2τ2

2(τ 2)5/2
− e−

b2

2τ2

2(τ 2)3/2

 db (4.21)

Derivatives inside the integral of (2π)−N/2
(
e
− b2

2τ2

τ

)N
(1−(β0 +b))Z00(β0 +b)Z01(−Z10)(1−

(β0 + β1 + b))Z10−1(β0 + β1 + b)Z11 , the first term of the numerator of ∂
∂β1
l(β, τ 2):

These have been previously derived.

Derivatives inside the integral of (2π)−N/2
(
e
− b2

2τ2

τ

)N
(1− (β0 + b))Z00(β0 + b)Z01(Z11)(1−

(β0 + β1 + b))Z10(β0 + β1 + b)Z11−1, the second term of the numerator of ∂
∂β1
l(β, τ 2):

These have been previously derived.

Derivatives inside the integral of

( 1
2π

)N/2((1 − (β0 + b))Z00(β0 + b)Z01(1 − (β0 + β1 + b))Z10(β0 + β1 +

b)Z11)N( e
− b2

2τ2√
τ2

)N−1

(
b2e
− b2

2τ2

2(τ2)5/2
− e

− b2

2τ2

2(τ2)3/2

)
,

the numerator of ∂
∂τ2
l(β, τ 2):

with respect to β0
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The result including the integral is:

∫
(

1

2π
)N/2N(

e−
b2

2τ2

√
τ 2

)N−1

 b2e−
b2

2τ2

2(τ 2)5/2
− e−

b2

2τ2

2(τ 2)3/2

[− Z00(1− (β0 + b))Z00−1(β0 + b)Z01

(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11 + Z01(1− (β0 + b))Z00(β0 + b)Z01−1

(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11 − Z10(1− (β0 + b))Z00(β0 + b)Z01

(1− (β0 + β1 + b))Z10−1(β0 + β1 + b)Z11 + Z11(1− (β0 + b))Z00(β0 + b)Z01

(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11−1

]
db (4.22)

with respect to β1

The result including the integral is:

∫
(

1

2π
)N/2N(

e−
b2

2τ2

√
τ 2

)N−1

 b2e−
b2

2τ2

2(τ 2)5/2
− e−

b2

2τ2

2(τ 2)3/2

 (1− (β0 + b))Z00(β0 + b)Z01

[
− Z10(1− (β0 + β1 + b))Z10−1(β0 + β1 + b)Z11

+ Z11(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11−1

]
db (4.23)

with respect to τ 2

The result including the integral is:∫
(1− (β0 + b))Z00(β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11)(

1

2π
)N/2

N

[
1

4τ 24

e− b2

2τ2

√
τ 2

N (
b4N − b2τ 2(2N + 4) + τ 22

(N + 2)
)]

db (4.24)

Combining the results

To get the second derivatives we noted that we need to use the quotient rule: ∂
∂t
f(t)
g(t)

=

f ′(t)g(t)−f(t)g′(t)
[g(t)]2

. Below, I note which equations derived above need to be plugged into this

rule to get the second derivatives.
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For ∂
∂β2

0
:

f =

[ ∫
(2π)−N/2

e− b2

2τ2

τ

N

(−Z00)(1− (β0 + b))Z00−1(β0 + b)Z01(1− (β0 + β1 + b))Z10

(β0 + β1 + b)Z11db+

∫
(2π)−N/2

e− b2

2τ2

τ

N

(Z01)(1− (β0 + b))Z00(β0 + b)Z01−1

(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11db+

∫
(2π)−N/2

e− b2

2τ2

τ

N

(−Z10)(1− (β0 + b))Z00

(β0 + b)Z01(1− (β0 + β1 + b))Z10−1(β0 + β1 + b)Z11db+

∫
(2π)−N/2

e− b2

2τ2

τ

N

(Z11)

(1− (β0 + b))Z00(β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11−1db

]

f ′ = (4.10) + (4.13) + (4.16) + (4.19)

g = (4.6)

g′ = (4.7)

For ∂
∂β0β1

:

f =

[ ∫
(2π)−N/2

e− b2

2τ2

τ

N

(−Z00)(1− (β0 + b))Z00−1(β0 + b)Z01(1− (β0 + β1 + b))Z10

(β0 + β1 + b)Z11db+

∫
(2π)−N/2

e− b2

2τ2

τ

N

(Z01)(1− (β0 + b))Z00(β0 + b)Z01−1

(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11db+

∫
(2π)−N/2

e− b2

2τ2

τ

N

(−Z10)(1− (β0 + b))Z00

(β0 + b)Z01(1− (β0 + β1 + b))Z10−1(β0 + β1 + b)Z11db+

∫
(2π)−N/2

e− b2

2τ2

τ

N

(Z11)

(1− (β0 + b))Z00(β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11−1db

]
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f ′ = (4.11) + (4.14) + (4.17) + (4.20)

g = (4.6)

g′ = (4.8)

For ∂
∂β0τ2 :

f =

[ ∫
(2π)−N/2

e− b2

2τ2

τ

N

(−Z00)(1− (β0 + b))Z00−1(β0 + b)Z01(1− (β0 + β1 + b))Z10

(β0 + β1 + b)Z11db+

∫
(2π)−N/2

e− b2

2τ2

τ

N

(Z01)(1− (β0 + b))Z00(β0 + b)Z01−1

(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11db+

∫
(2π)−N/2

e− b2

2τ2

τ

N

(−Z10)(1− (β0 + b))Z00

(β0 + b)Z01(1− (β0 + β1 + b))Z10−1(β0 + β1 + b)Z11db+

∫
(2π)−N/2

e− b2

2τ2

τ

N

(Z11)

(1− (β0 + b))Z00(β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11−1db

]

f ′ = (4.12) + (4.15) + (4.18) + (4.21)

g = (4.6)

g′ = (4.9)

For ∂
∂β2

1
:

f =

[ ∫
(2π)−N/2

e− b2

2τ2

τ

N

(1− (β0 + b))Z00(β0 + b)Z01(−Z10)(1− (β0 + β1 + b))Z10−1

(β0 + β1 + b)Z11db+

∫
(2π)−N/2

e− b2

2τ2

τ

N

(1− (β0 + b))Z00(β0 + b)Z01(Z11)

(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11−1db

]
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f ′ = (4.17) + (4.20)

g = (4.6)

g′ = (4.8)

For ∂
∂β1τ2 :

f =

[ ∫
(2π)−N/2

e− b2

2τ2

τ

N

(1− (β0 + b))Z00(β0 + b)Z01(−Z10)(1− (β0 + β1 + b))Z10−1

(β0 + β1 + b)Z11db+

∫
(2π)−N/2

e− b2

2τ2

τ

N

(1− (β0 + b))Z00(β0 + b)Z01(Z11)

(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11−1db

]
f ′ = (4.18) + (4.21)

g = (4.6)

g′ = (4.9)

For ∂

∂τ22 :

f =

∫
(

1

2π
)N/2((1− (β0 + b))Z00(β0 + b)Z01(1− (β0 + β1 + b))Z10(β0 + β1 + b)Z11)

N(
e−

b2

2τ2

√
τ 2

)N−1

 b2e−
b2

2τ2

2(τ 2)5/2
− e−

b2

2τ2

2(τ 2)3/2

 db

f ′ = (4.24)

g = (4.6)

g′ = (4.9)
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A.3.2 Computational Details

The derivatives are quite complex and involve integrating over the distribution of ran-

dom effects. For reasonable design parameters for the SWD regarding the number of

clusters I , steps J , number of people sampled N , ICC and baseline proportion and risk

difference, we encountered difficulties computing these integrals as numeric overflow

occurs because the values of the integrands are extremely large near b=0 for the random

effect. The standard precision utilized by R is double precision and the largest value al-

lowed before it is labeled as called infinity is 1.797 × 10308. For many of our examples

within the SWD parameter space, we were beyond this capacity. For a SWD with J = 5

and 100 people sampled at each step, N = 500 and for rare outcomes, the value of the

integrand was larger than that allowed in double precision.

We were able to work in quadruple precision rather than double precision, utilizing the R

package Rmpfr, where MPFR is acronym for ”Multiple Precision Floating-Point Reliably”.

In Rmpfr, we are allowed to increase the precision from double precision by increasing the

number of bits. If we set the number of bits to be 53, we would use double precision. This

R package calls to GNU MPFR, a portable C library for arbitrary-precision binary floating-

point computation with correct rounding, based on GNU Multi-Precision Library.

The Rmpfr package uses the Romberg algorithm for integration. Note that in scientific

notation all numbers are written in the form M × 10E or MeE. The exponent is E and

M is called the mantissa. When dealing with these extremely large integrals, set the con-

vergence criteria as follows: (1) when the exponent from the current order E is equal

to the exponent from the previous order E−1 and (2) when the absolute value of the

difference between the mantissa for the current and previous order is less than 10−8 or

|M −M−1| < 10−8. When this occurs we stop at the order that satisfies these criteria and

report the value of the integral.

In addition, we considered Monte Carlo integration to evaluate the integrals that make
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up the derivatives. The results of Monte Carlo integration were very similar to those

obtained by Romberg integration even for relatively large N, but computing time was

significantly decreased for the Romberg method (results not shown).
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