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Abstract

Scattering problem is one of the most fundamental problems in physics, spanning almost all

areas of physics. In this dissertation, we focus on scattering theory in two types of systems:

two dimensional electron scattering in the presence of a random potential and light scattering

by metallic nanoparticles.

The first scattering problem we study is electron branched flow. In this system, electrons

are confined to move in two dimensions while a smoothly changing weak random potential

deflects their trajectories, resulting in the so-called branched flow. A semiclassical theory

based on ray tracing was developed to explain all the observed features of branched flow.

However, this semiclassical theory was challenged by the result of a more recent experiment,

which claims to have uncovered ”unexpected features of branched flow”. We show how these

features can actually be explained by the semiclassical theory.

Besides electron scattering, we also investigate light scattering by metallic nanoparticles.

In this case, we study the multiple scattering effect in the plasmon dimer system and show

that one can use these metallic nanoparticles to put the incoming electromagnetic fields into

different shapes by solving an inverse scattering problem.
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0
Introduction

Scattering theory is one of the most fundamental theories in physics and many problems can

be formulated as scattering problems. In high energy physics, physicists are interested in ex-

ploring what would happen when particles with extremely high energy collide with each other.

This type of problem has important implications for the foundations of theoretical physics and

these high energy colliders are common test ground for new theory or for searching new fun-

damental particles. In condensed matter physics and biophysics, scattering problems are also

ubiquitous. Many experimental probing techniques are based on scattering theory, including

1



electron loss spectroscopy, Raman spectroscopy and Scanning Tunneling Microscopy(STM).

Generally speaking, scattering problems can be divided into two categories: elastic scat-

tering where energy is conserved and inelastic scattering where energy is not conserved. It is

worth mentioning that if one takes into account all possible degrees of freedom, energy is al-

ways conserved. In this sense, all scattering events are elastic. The difference between elastic

scattering and inelastic scattering lies in whether exchange of energy between different de-

grees of freedom is possible. In this dissertation, we will mainly focus on elastic scattering

and we study two types of systems: electron scattering in the presence of random potential and

light scattering by metallic nanoparticles.

The first interesting scattering problem we study is called branched flow1,2, which was first

discovered by Prof. Bob Westervelt in an amazing experiment on two dimensional electron

gases(2DEGs) found at the interface of semiconductor heterostructures. In this system, elec-

trons are cooled to extremely low temperature (4.2 K), so their behavior is dictated by quan-

tum mechanics. Moreover, as the name suggests, the electrons lose one degree of freedom due

to a lateral confinement and can only move in two dimensions. Such 2DEGs is also a com-

mon playground for studying Integer and Fractional Quantum Hall Effect, which leads to two

Nobel Prizes in Physics. In his experiment, Prof. Westervelt was interested in seeing how

electrons would be scattered by a weak random potential due to the donor atoms and the un-

avoidable impurities. The donor atoms contribute to a weakly correlated random potential that

weakly backscatters the electrons, while the potential generated by the impurities can be both

sharp and strong backscatters. Overall, the random potential is weak and the standard devia-

tion of the random potential is only about 8% Fermi energy. Moreover, the sample size is also

smaller than the mean free path of the electrons, so most electron shall be able to fly through

the random potential without much deflection. However, as observed in the experiment, such

weak random potential can nevertheless cast a strong signature on the electron paths.
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As we will explain more in the following chapters, there are at least three very interesting

observations in the experiment. The first one is the main topic of the experiment, branched

flow. When flying through this random potential, electrons tend to move together along a

small number of narrow branches rather than flowing uniformly through the sample. Sec-

ondly, persistent fringing is observed in the experiment, which goes well beyond the thermal

length. The thermal length describes how far away interference shall be masked by the energy

uncertainty due to finite temperature. In the experiment, the thermal length is about five elec-

tron wavelengths, while fringing goes beyond seventy wavelengths. The last surprising ob-

servation is the fine spatial resolution in the experiment. In the experiment, the measurement

is done by holding a scanning gate tip on top of the sample and recording the change in mea-

sured conductance as a function of the position of the tip. The tip has a distance around two

wavelengths above the 2DEGs. Even for a perfect point tip, this would translate into a scatter-

ing potential with width on the order of a few wavelengths. However, the spatial resolution in

the experiment is better than half a wavelength. This fine spatial resolution can be explained

by the so called ”glint effect”.

Following the discovery of branched flow, a semiclassical theory has been developed by

Prof. Eric Heller in collaboration with Prof. Westervelt to explain its formation. According

to this semiclassical theory, the formation of branches is explained by a ray tracing approach

where caustics and stability regions in phase space are cited as the reasons for branch forma-

tion. Latter on, Prof. Heller has also extended this ray tracing approach to explain the for-

mation of freak waves in oceans8 and similar experiment has also been done in microwave

cavities4.

The semiclassical theory was widely applied until it was challenged by a new experiment by

a group of researchers from Stanford University. In this experiment, the researchers reasoned

that if the semiclassical theory is correct, the classical dynamics of electrons moving in a ran-
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dom potential is chaotic, meaning that a small perturbation in initial condition would lead to

large changes in the subsequent electron flow patterns. In the popular culture, this is known as

the ”butterfly effect”, which says that the flipping of a butterfly’s wings in New Mexico could

potentially lead to a hurricane in a far region like China.

In their experiment, the Stanford researchers first measured the branched flow pattern with

one set of initial conditions and they were then able to shift the initial conditions by a large

distance such that the two initial conditions have no overlap to begin with. They then mea-

sured the shifted branched flow pattern over the same random potential. Much to their sur-

prise, the two sets of branched flow patterns look almost identical far away from the injection

regions. This stability seems to contradict the semiclassical theory given the chaotic nature of

the semiclassical dynamics and thus is termed ”the unexpected features of branched flow”. In

this dissertation, we will show why such stability arises and how it could be explained within

the semiclassical interpretation.

In latter chapters, we switch gear to study a different type of system, namely Localized Sur-

face Plasmon. Plasmons are the collective excitation of electrons in metallic structures. De-

pending on the different boundary conditions, plasmons can be categorized into three types:

volume plasmons, Surface Plasmon Polaritons and Localized Surface Plasmons. Volume plas-

mons are probably most familiar to the condensed matter physics community as one of the

most well known examples of collective excitation. Volume plasmon is essentially the col-

lective movement of electrons in an infinite metal where boundary conditions do not matter.

It is essentially a bulk state and has routinely been observed using electron energy loss spec-

troscopy.

Surface Plasmon Polaritons and Localized Surface Plasmons are more well known in the

nanophotonics community. They are essentially volume plasmons in the presence of differ-

ent boundary conditions. Surface Plasmon Polaritons arise at the interface of a semi-infinite
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dielectric material and a metallic structure. It is essentially the coupling between light and

the electrons on the interface. Surface Plasmon Polaritons can not in generally be directly

excited by laser beams and require near field excitation. Localized Surface Plasmon, on the

contrary, can directly couple to exciting light and are the result of the coupling of light and

the volume plasmon subject to the boundary conditions set forth by the shape of a nanoparti-

cle. In its essence, the Localized Surface Plasmons can be thought as a resonant electric dipole

moment. In this dissertation, we will mainly focus on Localized Surface Plasmons.

For most types of scatterers, its scattering cross section is roughly on the same order of

magnitude as its physical cross section. This is especially true for classical hard wall scat-

terers. One of the surprising consequence of quantum mechanics is that for hard-wall s-wave

scatterers, its scattering cross section is twice its physical cross section. This gets more inter-

esting when the scatterers have internal degrees of freedom. For instance, the magnetic res-

onance imaging(MRI) is based on the scattering of electromagnetic wave by the nucleus of

atoms. In that case, the internal degree of freedom is due to the nuclear spin, which has differ-

ent energy levels in the presence of a magnetic field. In general, when the energy of the object

being scattered matches the energy difference between the internal degree of freedom, one

should expect resonance to take place. One interesting property of resonant scatterers is that

its scattering cross section as λ2, where λ is the wavelength of the object being scattered, usu-

ally electrons or photons, under the resonant condition. For small gold nanoparticles, the res-

onance wavelength is around 540nm, while the radius of the gold nanoparticle can be as small

as 5nm. As a result, the scattering cross section of such gold nanoparticles can be four orders

of magnitude larger than its physical cross section. If one places two such gold nanoparticles

well within one wavelength, but outside of each other’s physical range, we can expect to see

a regime where multiple scattering has the main effect. In quantum scattering theory, if one

places two resonant s-wave scatterers under such conditions, one should expect to observe
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a symmetric mode with increased damping rate and an antisymmetric mode with reduced

damping rate. This is known as the quantum proximity resonance37. For gold nanoparticles,

the physics is similar, but also different due to the existence of resistive loss. In this case, we

show that one can get an antisymmetric mode with reduced damping instead.

For the last part of this dissertation, we solve an inverse scattering problem involving these

gold nanoparticles and show how this approach can be used to control the shape of electro-

magnetic fields.

In recent years, tremendous interest has been put towards controlling electromagnetic fields.

In 2000, Sir John Pendry proposed to use left-hand materials to build a perfect lens76, which

could in theory eliminate the diffraction limits set upon traditional lens. Of course, left-hand

materials with negative refractive index does not exist in nature. However, with the successful

fabrication of meta- materials, such material with negative refractive index was finally demon-

strated experimentally in 200128.

Later on, Prof. Pendry moved on to propose another genius idea that again spurred tremen-

dous interest in the nanophotonics community, namely transformation optics73. In the original

paper, Prof. Pendry showed that if one can accurately engineer the electromagnetic proper-

ties of a material on the subwavelength, one can then shape electromagnetic fields at will. As

a proof of concept, he showed that one can realize an invisibility cloak by using a shielding

shell made of metamaterials.

The key to transformation optics is to use materials with heterogeneous electromagnetic

properties in a controlled manner. Prof. Pendry demonstrated a mathematically equivalence

between shaping electromagnetic field and varying the electromagnetic response of the mate-

rial in a heterogenous manner. According to transformation optics, one can achieve any elec-

tromagnetic pattern if one has perfect control over the electromagnetic properties of the con-

stituent unit of the materials. However, this also implies that sometimes one needs to change

6



the permeability and permittivity of a material rapidly on the sub-wavelength scale and also

achieve certain extreme values at the same time in order to achieve certain functionality, such

as cloaking.

In the last part of this dissertation, we propose a different approach to achieve the control

of electromagnetic field on the sub-wavelength scale without the need to engineer a material’s

electromagnetic properties. Instead, the control over the electromagnetic field is achieved by

controlling the positions of the metallic nanoparticles. We reformulate this problem of control-

ling the electromagnetic fields as an optimization problem, where the free variables to adjust

are the positions of the metallic nanoparticles. With only 80 gold nanoparticles, this combi-

natorial optimization problem has a configuration space of size of 10235, which is even larger

than the total number of atoms in the observable universe. This enormous configuration space

presents both challenge and promise for finding a solution for the optimization problem. We

solve this optimization problem by employing a heuristic algorithm known as the simulated

annealing and we are able to put the electromagnetic fields into the shapes of the alphabetical

letter ”H”.
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1
Discovery of Branched Flow

Branching is a universal phenomenon of wave propagation in a weakly correlated random

medium. It is observed in 2DEGs with wavelength on the scale of nanometers1,2, in quasi-

two-dimensional resonator with microwave4 and used to study sound propagation in oceans

with megameter length scales5. It has significant influence on electron transport in 2DEGs6,7

and is found to be implicated in the formation of freak waves in oceans8.
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1.1 First Discovery of Branched Flow

Branched flow was first observed in an experiment by Prof. Westervelt1,2 on two dimen-

sional electron gases(2DEGs) in GaAs heterostructure. The experimentally observed branched

flow pattern1 is shown in Fig. 1.1 below.

There are at least three surprising features of this observed pattern. The first surprise is

of course the branched flow pattern itself. It was estimated that the random potential due

to charged donor atoms and impurities is only about 8% the energy of the electrons. If one

naively looks at this number and thinks in terms of a perturbation theory, one wouldn’t expect

such a week random potential to lead to such significant changes in the electron flow pattern.

The second surprising observation is the persistent fringing observed here. As one can see

from the figure, all the branches are decorated with fringes, which persist for a few microm-

eters. However, a simple calculation based on the thermal length10 at this experimental tem-

perature would indicate that the fringes should be wiped out by thermal averaging within a

micron or so.

The final surprise is related to the spatial resolution of the experiment. The branched flow

pattern is observed using a charged tip held about 60nm above the 2DEGs. This indicates that

the tip has to be at least more than 60nm in width. However, the spatial resolution in the ex-

perimental result is on the order of 10nm or so, which is smaller than the width of the probing

potential as generated by the measuring tip.

All these surprises can be explained within a thermal wave packet approach as developed in

Ref.10.

9



Figure 1.1: Experimentally observed branched flow. This figure is taken fromRef. 2. In this figure, we see the experimen-

tally observed branched flow pattern. The two patterns in (b) correspond to two different random potential. This figure

is obtainedwith the copyright permission fromNature Publishing Group.
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1.2 Experimental Setup

In Fig.1.2, we show the experimental setup used to probe branched flow. In the experiment,

a Quantum Point Contact(QPC)(Blue regions) is formed by fabricating metallic gates on top

of the sample. The QPC is negatively charged, so it behaves just like a waveguide and for

this specific waveguide, usually only one or two modes will be open for conduction in the

experiment. This QPC is used as the injector for the electrons.

The measurable in the experiment is the two terminal conductance. In the ideal case where

one mode is open in the QPC, the measured conductance should approach the ideal value

G =
2e2

h
. (1.1)

However, backscattering due to the charged donor atoms and impurities will in general

make the measured conductance smaller than this ideal value.

In the experiment, two sources of backscattering exist and they have different strengths in

backscattering the electrons. The first source of backscattering is due to the random poten-

tial generated by the charged donor atoms. The donor atoms are usually separated from the

2DEGs by a spacer layer, so they generate a weakly correlated random potential that do not

strongly backscatter the electrons. The second source of backscattering is due to the unavoid-

able impurities introduced in sample preparation. These impurities can get very close to the

2DEGs and thus can become very sharp and strong backscatterers. The weakly correlated

random potential is in general believed to be responsible for the formation of branched flow,

while the strong backscattering impurities are responsible for the persistent fringing.

In the experiment, an additional source of backscattering is introduced to help decide the

electron flow pattern. A metallic tip is held on top of the sample. The metallic tip is nega-

tively charged, so it creates a potential barrier for all the electron flow impinging on it. This

11



Figure 1.2: Experimental setup to observe branched flow.This figure shows the experimental setup used to probe

branched flow. Themeasurable in the experiment is the two terminal conductance and a chargedmetallic tip(red dot) is

held on top of the 2DEGs, which backscatters the electrons flow through the regions underneath. When the tip is held on

top of region with high electron flux, more electron fluxwill be backscattered, leading to a larger change in themeasured

conductance. On the other hand, if the tip is placed on top of a region with relatively low electron flux passing through, it

leads to a smaller reduction in themeasured conductance. Thus, bymoving the tip across the sample and recording the

change in conductance, one can get a pretty good picture of how electronsmove though the sample.

potential barrier will backscatter the electrons moving through it. The more electron flow

moves through that region, the more electron flow will be backscattered towards the QPC.

Thus, if the tip is held on top of a region where a large electron flux is moving through, it

will lead to a large reduction in the measured conductance and if it is held on top of a region

where almost no electron flux passes through, it creates a small conductance reduction. Thus,

by moving the tip across the two dimensional sample and recording the changes in measured

conductance, one can get a good picture of how electrons move through the sample. This es-

sentially constitutes the results reported in Fig.1.1.

1.3 Formation of Branched Flow

Since its discovery, classical theory has been put forward to explain the formation of branches.

For instance, in the original published paper, Prof. Westervelt and Prof. Heller reported a clas-

sical branched flow pattern simulation that closely resembles the quantum flow simulation. In
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the classical simulations, electrons are propagated according to Newton’s equations and the

initial conditions for the electrons are chosen to populate the whole classical phase space.

According to the classical theory14,15, two reasons can lead to branched flow: caustics in

phase space and stable regions in phase space.

Caustics forms after electrons pass through a potential dip, which focuses parallel elec-

tron trajectories. Immediately after the focal points, one caustics forms where electrons travel

along with high density.

One theory of the origin of branched flow is called the ”kick and drift” model15, which is

closely based on the idea of caustics. According to this ”kick and drift” model, the effect of

the random potential is to give each electron a random kick in the phase space, after which

electrons are allowed to drift freely. Then another kick and another drift. This kick and drift

process gets repeated many times and in the process, random caustics appear, which accounts

for the formation of branches.

For electrons moving in two dimensions, the phase space should in general be four dimen-

sions, with two dimensions for positions and two dimensions for momentum. Energy conser-

vations reduce this four dimensional phase space to three dimensions. A further reduction in

dimension can be achieved by the so-called quasi-one dimensional approximation. For the

branched flow system, the random potential is very weak (8%EF). Since most of the electron

energy is focused in the longitudinal direction(direction of propagation), the quasi-one dimen-

sional approximation is essentially saying that one can ignore the changes in the momentum in

the longitudinal direction and assume it is a constant. With this assumption, the original three

dimensional phase space becomes two dimensional.

For a detailed analysis of the distribution of caustics in a random potential, we refer the

readers to Ref.14.

Besides caustics in phase space, another mechanism could also lead to the formation of

13



branched flow, which is known as stable regions in phase space11,15. In a nutshell, stable re-

gions in phase space form by chance. This idea is best illustrated in Fig.1.3.

In Fig.1.3(a), the stuffed circles correspond to regions in phase space. Those are the initial

conditions taken by the electrons. In Fig.1.3(b), electrons are allowed to propagate in the ran-

dom potential for five correlation lengths. Different circles get distorted by different amount.

For the regions circled by the red line, the initial stuffed circle was less distorted when com-

pared with the others and these are possible candidate for branches. In short, stable regions in

phase space correspond to regions that do not get distorted much when compared with the rest.

These regions, when projected into the real space, correspond to places where one observes

high electron flux density.

One way to understand those stable regions in phase space is like this: one fundamental

property of the phase space structure is that the total electron counts do not change. As long

as the total area being occupied do not expand exponential, as it shouldn’t in this case due to

the fact that the sample size is smaller than the mean free path, when certain regions’ electron

density is diminished, this decrease in electron density has to be compensated with a higher

electron density somewhere else. These more densely populated regions are stable regions.

One way to characterize the stable regions is called the rarefaction exponent11,15, which is a

variant of the Lyapunov exponent. The definition of the rarefaction exponent is

r(t) = log|Mt⃗d|, (1.2)

where Mt is the stability matrix as introduced below and d⃗ is a unit vector in a direction of

interest in the phase space.

The stability matrix is defined on a per classical trajectory basis and it is essentially a map-

ping function from a small perturbation to the initial condition of a fixed classical electron

trajectory to subsequent changes.
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The mathematical definition is

δ⃗x(t, x⃗(0)) = Mt(⃗x(0))δ⃗x(0). (1.3)

In the above definition, x⃗ is a vector in the four dimensional phase space, that is x⃗ = (x, y, px, py)

and x⃗(0) is an initial condition for a given classical electron trajectory. Suppose we give a

small perturbation to the initial condition such that the perturbed initial condition is x⃗(0) +

δ⃗x(0), then at a latter time t, the perturbed trajectory is defined relative to the unperturbed

classical trajectory as x⃗(t) + δ⃗x(t, x⃗(0)), where x⃗(t) is the classical trajectory for the unper-

turbed initial condition and δ⃗x(t, x⃗(0)) is how large the initial perturbation is magnified up till

time t.

By this definition, we can write down each element of the stability matrix as

Mi,j(t) =
∂δxi(t)
∂δxj(0)

. (1.4)

In its strict sense, each element of the stability matrix should be calculated numerically.

One should keep track of two classical trajectories whose initial condition differing by a tiny

amount and calculate their difference at each time. This is of course more exact, but clearly

is also not very numerically efficient. One alternative method commonly used to character-

ize and calculate the stability matrix is by assuming local dynamics, that is by assuming that

even though the classical dynamics is chaotic, two trajectories with infinitesimal difference in

initial conditions will stay infinitesimally close to each other’s neighborhood. Thus, one only

need to keep track of one classical trajectory and calculate all the elements of this stability

matrix based on that single classical trajectory. The detailed derivation is given in Ref.11 and

we shall only present the result here. The result is that one can derive a dynamic equation for
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Figure 1.3: Stable regions in phase space. (a) The initial conditions in phase space for electrons. The unit circles are uni-

formly populated. The horizontal axis corresponds to the position in the horizontal direction and the vertical axis cor-

responds to themomentum in the same direction. (b) The structure in phase after moving five correlation lengths in the

random potential. The region circled by the red line is what we call a stable region and is a candidate for the branches.

calculating the stability matrix:

dMt(⃗x(0))
dt

= K(t)Mt(⃗x(0)), (1.5)

where

K(t) =

 0 I

−I 0

[
∂2H
∂xi∂xj

]
, (1.6)

and H is the classical Hamiltonian of the system.

Thus, in order to calculate the stability matrix, one only needs to keep track of one single

classical trajectory. By choosing the different measures of convergence, one probably could

even make this argument mathematically sound. However, in any realistic situation, only a

stability matrix with small eigenvalues will have interesting physical meaning.

For more information on this rarefaction exponent, we refer the readers to Ref.11 and Ref.15.

It is also worth noting that in plotting Fig.1.3, we do not necessarily need to assume the

quasi-one dimensional approximation as assumed before. Here the dimension reduction is
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due to a different reason. As before, energy conservation reduces the four dimensional phase

space to three dimensions. If we label this three dimensional phase space by three independent

variables (x, y, px), then the further dimensionality reduction comes from fixing y. So what we

essentially are plotting in Fig.1.3 is a slice of this three dimensional phase space.

Strictly speaking, the kick and drift model also does not require the quasi-one dimensional

approximation. However, the quasi-one dimensional approximation could make the thinking

process much easier. When one assumes the quasi-one dimensional approximation, the prop-

agation time from y to y + δy is the same for all electrons and the random potential is then

essentially contributing to a momentum kick and subsequent shift to the electron’s trajectories.

If one takes into account the effect of the random potential onto the momentum in the longitu-

dinal direction, the analysis is much harder since each electron will travel different amount of

time from y to y+ δy and there might also be some cumulative effect involved as well.

The real advantage of this quasi-one dimensional approximation lies in how it could sim-

plify analytic analysis. For more on this, we refer the readers to the materials presented in

Ref.14. Also Dr. Jakob J. Metzger’s PhD thesis includes most of the classical analysis of

branched flow based on this approximation. If the readers are interested in learning more

background on branched flow and its explanation, we also refer the readers to the PhD thesis

by Dr. Scot Shaw11 and Dr. Mark Topinka18.

To sum up this chapter, branching is a universal phenomenon of wave propagation in a

weakly correlated random medium. Since its discovery, much effort has been put towards de-

veloping a theory to explain its origin. One of the most promising theory is based on the clas-

sical dynamics of electrons in a random potential. According to the classical theory, branches

form as a result of both caustics and stable regions in phase space.
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2
Unexpected Features of Branched Flow

Branched flow was discovered in 2000 and much theoretical work and experimental work

have been done in the following decade. The main contribution of this chapter is to explain

the results of a more recent experiment9. A significant portion of the materials in this chapter

has been published in Ref.3.
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2.1 What does the experiment say?

Since the main contribution of this thesis to branched flow is to explain the results of this

experiment, it is worthwhile to spend a section explaining what is exactly done in this experi-

ment.

There are two major results of this experiment done by Prof. David Goldhaber-Gordon’s re-

search group at Stanford University. First of all, it verifies an existing theory that says branched

flow is caused by the random potential and fringing is caused by the unintentional impurities.

Secondly, it unveils some ”unexpected” features of branched flow which seem to contradict

the existing semi-classical theory of branched flow. It is this second observation that is the

main topic of this chapter and we will demonstrate how this unexpected feature can actually

be explained within the existing theory.

2.1.1 Origin of Fringing

As mentioned previously, one of the most striking observations of the first experiment on

branched flow is the persistent fringing beyond the so called thermal length. This observation

was already explained theoretically using a thermal wave packet approach in Ref.10, which we

will also discuss in later sections.

According to the thermal wave packet approach, fringing occurs due to the interference of

the backscattered wave from the tip and the backscattered wave from the unintentional impu-

rities. A more detailed explanation will be presented in later sections, but for now, let’s accept

this as it is and show how this experiment validates this theory.

The reasoning behind the results of the experiment can be summarized as the following: if

fringing is indeed caused by the interference between the backscattered wave from the scan-

ning tip and the backscattered wave from the impurities, then if one is able to reduce the den-

sities of the impurities, one should also be able to see suppressed fringing in the measured

19



branched flow pattern.

Thus what Prof. David Goldhaber-Gordon’s group was able to achieve is to find very high

quality samples with varying amount of impurities and compare the different fringing patterns

across different samples.

The quantitative measure of the quality of a sample is the mobility or the mean free path

of the electrons in the sample. The reason this is correlated with the density of the impurities

is because impurities are the major source of backscattering in these samples. The weakly

correlated random potential is not very effective in backscattering the electrons due to both

their weak strength and their broad scope compared with the wavelength of the electrons. The

impurities, on the other hand, can be both sharp and strong scatterers.

In the experiment, the mobility of the three samples differs by one order of magnitude and

it is indeed observed that samples with high mobility tend to show suppressed fringing. Thus,

this experimental observation agrees with the thermal wave packet approach.

2.1.2 Unexpected Stability of Branched Flow

Before we go into details of this part of the experimental results, it is better to first discuss

a little bit more about the motivation and reasoning behind. This part of the experiment is es-

sentially trying to test how chaotic the quantum branched flow pattern is or how sensitive it is

in response to a large perturbation in initial conditions. If the semiclassical theory of branched

flow is correct, the classical dynamics of electrons moving in a random potential is actually

chaotic, meaning that a small change in initial conditions will be exponentially magnified over

time. Thus, one might assume that if the classical theory can accurately explain the formation

of branched flow, then the branched flow pattern will differ significantly from the original

branched flow pattern if a large perturbation to the initial conditions is created.

To create a large change in initial conditions, the QPC or the injector of the electrons was
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Figure 2.1: A figure take fromRef. 9 with its original captions.This figure is reproducedwith the copyright permission

from the Nature Publishing Group.
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shifted by a large distance with regards to each other. The branched flow patterns were then

measured over the same random potential with the shifted initial conditions. The results are

shown in Fig.2.1. As we can see, the branches pointed to by the red arrow are present in all

the four figures. Moreover, if one looks closely at the experimental results, the branches are

actually at exactly the same location seventy correlation lengths away from the injection point.

This lack of sensitivity even at long range was termed “the unexpected features of the branched

flow”.

It is also worth noting that new branches do appear when the QPC is shifted, as pointed to

by the blue and green arrow, and these new branches reappear when the second mode is open

for conduction as shown in Fig.2.1(d).

These features were not satisfactorily explained in the original experimental paper and it

was suspected that the observed stability is of pure quantum origin with no classical origin. As

part of the proof of the claim, the authors also did both classical and quantum simulations that

show how such stability can only be reproduced using quantum simulations.

However, we will show that the above claim is not true and we will also show how such sta-

bility could even be reproduced using only classical trajectories. The key difference between

our simulations and the simulations done by the experimental group lies in how we handle the

QPC.

In the following sections, we will develop a coherent picture that explains all these observed

features.
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2.2 Why was the observation surprising?

As mentioned before, we will show that the so called ”unexpected” features of branched

flow could be explained using existing theory, so the question is then ”Why was the observa-

tion interesting in the first place?”

Of course, it is generally true that once we truly understand something, it is no longer sur-

prising. But before anyone has an explanation and when a simple contradiction between the

observation and the existing explanation exists, it is a surprise. So let’s briefly go over why

the observation was a surprise and what the contradiction is.

In classically chaotic systems, small differences in initial conditions are exponentially mag-

nified over time. However, it was observed experimentally that the (necessarily quantum)

“branched flow” pattern of electron flux from a quantum point contact (QPC) traveling over

a random background potential in two-dimensional electron gases(2DEGs) remains substan-

tially invariant to large changes in initial conditions. The random potential in the experiment

is classically chaotic and unstable to changes in initial conditions. So if one believes in the

classical interpretation of branched flow, it seems likely that the branched flow pattern should

also be substantially unstable to perturbations and no long-range stability shall be expected.

Before we move on to the explanations, we need to first to explain why the changes in ini-

tial conditions are indeed significantly both classically and quantum mechanically.

To create a large change in initial conditions, the QPC was shifted by about one correlation

length of the underlying random potential, which is also roughly the width of the QPC. Classi-

cally, a one correlation length shift is indeed very significant for the chaotic dynamics, making

the trajectories very different, as seen in the classical simulations of reference9.

For quantum dynamics, if one launches two separate quantum wavepackets10 through QPCs

differing by this amount, the coherent overlap between the two initial wavepackets is esti-

mated at less than five percent. As a Gedanken experiment, consider a pair of side-by-side
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QPCs differing by a shift. This could not be in the experiment, which had only one QPC,

which however was able to be shifted relative to the rest of the device and the branched flow

imaged again. In the Gedanken experiment, suppose we put wavepacket A though one QPC

and wavepacket B through the other. Can the coherent overlap between the initially nonover-

lapping A and B wavepackets increase over time and distance from the QPC’s? The answer is

of course no, both classically (considered as overlap in phase space) and quantally. It is ele-

mentary to show that the coherent overlap must remain the same over time if the wavepackets

are propagated under the same Hamiltonian. This is true whether or not disorder is present. So

this change in initial conditions is also significant for the quantum dynamics.

Thus, the experimental result can be summarized as the following: the experimentally ob-

served branched flow has a long range stability against changes in initial conditions even

when the underlying classical dynamics is chaotic and exponentially unstable to perturbations.

In the experiment, it is observed that some branches remain at almost exactly the same loca-

tions seventy correlation lengths away from the injection points, with the only observed differ-

ence being the relative strength of each branch. This lack of sensitivity even at long range was

termed “the unexpected features of the branched flow”.
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2.3 Thermal wave packet approach

The thermal wave packet approach is a coherent theory developed to explain many of the

observed features of branched flow10. It establishes a theoretical equivalence between the

conductance in the system, which is essentially an eigenstate problem, and the solution of a

time dependent dynamical problem.

In the experiments, the electron flow pattern is measured through the change in conductance

as a function of the position of the scanning tip. Thus the starting point for the theory is the

Landauer formula at finite temperature, which is given by

GT =
2e2

h

∫
−∂fT(E)

∂E
Tr[t(E)t(E)+]dE, (2.1)

where GT is the conductance at temperature T, fT(E) is the corresponding Fermi distribution

and t(E) is the transmission matrix. In the presence of a QPC, there will only be a discrete

number of modes open for transmission at any given energy E. Since we only care about the

trace in (2.1), we can choose to work with the eigenmode of the QPC and add up the contri-

bution from each mode separately, which is the underlying idea for the ”thermal wavepacket”

approach.

When only one mode is open in the QPC, equation (2.1) reduces to

GT =
2e2

h

∫
−∂fT(E)

∂E
τ1(E)dE, (2.2)

where τ1(E) is the only nonzero eigenvalue of t(E)t(E)+.

In this case, we can create an initial wavepacket of the following form

ψ1,T(x, y, 0) =
∫

dE exp(iϕ(E, y0))aT(E)ψ1(x, y,E) , (2.3)
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where ψ1(x, y,E) is the scattering eigenstate with transmission probability τ1(E), ϕ(E, y0) is

chosen such that it is a compact wavepacket centered at y0 and aT(E) represents the energy

distribution.

The time evolved thermal wavepacket is

ψ1,T(x, y, t) =
∫

dE aT(E) exp(−iEt/ℏ+ iϕ(E)) ψ1(x, y,E). (2.4)

Far to the right side of the injection point, the back-scattered part of the wave packet sepa-

rates from the transmitted wave packet and we can replace ψ1(x, y,E) by t1(E)ψout
1 (x, y,E),

where ψout
1 (x, y,E) is a unit flux outgoing wave and t1(E) is the transmission coefficient.

Thus, the total transmitted flux is given by the following formula

FT =
4πe2ℏ
m

∫
|aT(E)|2 τ1(E)dE. (2.5)

If we choose aT(E) = ℏ−1
√

− m
2π

∂fT(E)
∂E , we would get FT = GT, which shows that one can

get all the information about the experimental conductance map by propagating this wavepacket

through the scattering region.

For any given point, the time dependence of the flux can be calculated by applying the fol-

lowing flux operator to the wavepacket:

f̂s =
1
2
[n̂ · v̂δ(⃗r− r⃗s) + δ(⃗r− r⃗s)n̂ · v̂], (2.6)

where n̂ is the direction of interest, which is chosen to be the y direction in the simulations. r⃗s

is the point of interest and v̂ = − iℏ
m▽ is the velocity operator. For our quantum simulations,

we report the total flux through a given point, which is
∫
ψ∗
1,T(x, y, t)̂fsψ1,T(x, y, t)dtdxdy.

When the second transmitting mode of the QPC is also open, we need to propagate a second
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wavepacket separately to include its contribution. The total quantum flux will be an incoher-

ent sum of the flux from both wavepackets. This is so because equation (2.1) only involves

the trace of the scattering matrix.

Just as what we do for the first mode, we can prepare a second initial wavepacket of the

following form:

ψ2,T(x, y, 0) =
∫

dE exp(iϕ′(E, y0))aT(E)ψ2(x, y,E) , (2.7)

where ψ2(x, y,E) is the scattering eigenstate corresponding to the second eigenmode of the

QPC , ϕ′(E, y0) is chosen such that it is a compact wavepacket centered at y0 and aT(E) =

ℏ−1
√

− m
2π

∂fT(E)
∂E . To reproduce the experimental results, one just needs to add up the contribu-

tions from ψ1,T(x, y, 0) and ψ2,T(x, y, 0) incoherently.

This approach is of course not just limited to the first two modes in the QPC and in theory

could be used to solve the electron flux pattern at any energy. However, for each mode, one

needs to prepare a separate initial wave packet for each open mode in the QPC and then add

up their contributions incoherently.

2.3.1 Thermal length

The width of the thermal wave packet is decided by the amplitude of each eigenstate at the

given energy, which is

w(E) =
√

−∂fT(E)
∂E

= (4kBT)−1/2sech[(E− EF)/2kBT]. (2.8)

One simplification comes in handy when we realize that the experiment is performed at ex-

tremely low temperature and the energy fluctuation is small. In this particular system, the en-

ergy of the electron is mostly distributed to its kinetic energy. Combined with the fact of small
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energy fluctuations, this implies a very narrow wave packet in the momentum space.

With this intuition in mind, we can approximate the above formula by a Gaussian weight

as11

−f′(E) =
[
1+ e(E−EF)/kT

]−2 1
kT

e(E−EF)/kT

≈ 1
4kT

e−(k−kF)2ℓ2T .

(2.9)

The standard deviation of the Gaussian in Eq.(2.9) was chosen to match both the value of

−f′(E) at E = EF and its approximate width while making sure that it is properly normal-

ized11. ℓT is the thermal length, and it is given by ℓT = ℏ2kFπ1/2/4mkT.

This thermal length decides the spatial scope of the thermal wave packet and clearly, the

lower the temperature, the larger the thermal length. At 1.7K, ℓT =0.4 μm and 0.16 μm at

4.2K in a sample with EF = 0.016eV and νF = 2.86 × 105 m/s10. When compared with

the wavelength of the electron, the thermal length divided by the wavelength is ℓF/λF =

EF/π2kBT ∼ 5 in this example.

For numerical simulations, this Gaussian approximation is not necessary and the exact ini-

tial wave packet can be prepared using Fast Fourier Transform. However, this Gaussian ap-

proximation can be very useful in developing an intuitive understanding of the physical pic-

ture of the underlying physical process.
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2.4 Fringing

As promised before, we will now use the thermal wavepacket picture to explain the per-

sistent fringing. Nearly all the explanation given in this subsection is nothing more than a

rephrasing of what was said in Ref.10 and we strongly recommend the interested readers to

read that paper and get a more comprehensive understanding of the physics.

We can imagine that the thermal wave packet is launched from one side of the QPC and as

it emerges from the QPC, it encounters both the random potential due to the donor atoms and

the sharp potential due to the impurities. The random potential due to the donors can only de-

flect the wave packet’s initial trajectory, but the impurities can send part of the thermal wave

packet back towards the QPC. The samples used in the experiment are usually of high mo-

bility/quality such that the density of impurities is low and we can assume them as isolated

scatterers not worrying about multiple scattering effect.The charged metallic tip used to probe

the electron flux can also backscatter part of the thermal wave packet towards the QPC and if

the backscattered wave from the impurities and that from the tip return to the QPC at the same

time, they could interfere and it leads to the observed fringing.

For the two backscattered wave to return to the QPC at the same time, the impurities have to

be within half a thermal length of the charged tip. In the experiment, only the position of the

charged tip is changing, so we can assume that the backscattered wave from the charged impu-

rities that can interfere with the backscattered wave from the charged tip is a fixed background

as one moved the charged by a small distance.

The width of the thermal wavepacket at a typical experimental condition is about five wave-

lengths. As a result, the main effect of moving the tip by a small distance is to cause a phase

shift of its amplitude. However, if one moves the thermal wave packet or the tip by a distance

larger than the width of the thermal wave packet, the backscattered wave from the tip is then

interfering with the backscattered wave from a completely new set of impurities. Thus, the
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fine structure of the fringes can be different when radially separated. This physical picture

also explains why the fringes seen in the experiment is approximately radially oriented to-

wards the QPC. If one moves the tip along a trajectory of constant radius with regards to the

QPC, the backscattered wave from the tip will have approximately the same phase. Given that

the backscattered wave from the impurities does not vary significantly, small movement of the

tip along the arc will lead to approximately the same interference amplitude.

This thermal wave-packet picture also explains why the thermal averaging does not destroy

the fringes. Thermal averaging destroys interference by adding up waves with different k⃗,

which have different nodal structures. When one adds up different waves with different nodal

structures, it could potential destroy each other’s nodal structure, leading to the destruction

of interference patterns. In this case, the thermal wave-packet moves across the sample and

waves get backscattered towards the QPC. The backscattered wave arriving at the QPC will

interfere irregardless of the finite temperature.

However, even though the interference pattern will not be destroyed, the magnitude of the

backscattered wave will decay as 1/r2, where r is the radial distance away from the QPC. This

is because only 1/r of the initial wave packet will be impinging on the impurities in general

and the impurities pretty much acts as a s-wave scatterer, so it scatters uniformly in all direc-

tion, causing an additional decay factor of 1/r.
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2.5 Quantum Explanation of the Observed Stability

In this section, we will provide a quantum interoperation of the observed stability based on

the thermal wavepacket approach and we will also introduce a classical interpretation at a later

section.

Going back to the Gedanken experiment mentioned before, consider a pair of side-by-side

QPCs differing by a shift. Suppose we put wavepacket A though one QPC and wavepacket

B through the other. Can the coherent overlap between the initially nonoverlapping A and B

wavepackets increase over time and distance from the QPC’s? The answer is of course no,

both classically (considered as overlap in phase space) and quantally. It is elementary to show

that the coherent overlap must remain the same over time if the wavepackets are propagated

under the same Hamiltonian. This is true whether or not disorder is present.

However, in the experiment as performed, the Hamiltonian of a single QPC and the Hamil-

tonian with the QPC shifted over are not the same. Therefore, no theorem constrains the evo-

lution of the coherent overlap between the two different initial wavepackets. As it will become

clear, this is exactly what leads to the observed stability.

In order to show this, we first consider the ideal case where the QPC is perfectly adiabatic

and provide an analytical solution of the coherent overlap between the two wavepackets launched

from two different QPCs as a function of time. We show the correlation reaches almost one at

sufficiently large distance even if the initial coherent overlap is negligible. We then choose a

more realistic QPC potential and also add smooth disorder of the type causing the branching

into the system. The coherent overlap in this case still reaches 85%. Finally, we show that the

same mechanism works for classical trajectories. For the classical case, we calculate an over-

lap of 79% in the phase space. Both results prove that the stability in the experiment is due to

the nature of the experimental QPC shift. In the last part of the chapter, we also make a pre-

diction on the stability of the branched flow when the second mode in the QPC is open.
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For a QPC with harmonic confinement, the Hamiltonian is

Ho =
p⃗2

2m
+
1
2
mω2(y)x2, (2.10)

where ω(y) is a slowly varying function of y and decreases monotonically as the QPC opens

up. According to the thermal wavepacket approach10, we can reproduce the experimental re-

sults by propagating an initial wavepacket of the following form through the system.

Ψo(x, y, 0) =
∫

dE exp(iϕ(E, y0))
√

− m
2πℏ2

∂fT(E,EF)

∂E
Ψ1(x, y,E) , (2.11)

where Ψ1(x, y,E) is the scattering eigenstate at energy E , ϕ(E, y0) is chosen so that it is a

compact wavepacket centered at y = y0, and fT(E,EF) is the Fermi distribution with temper-

ature T and Fermi energy EF. This is the thermal wavepacket at temperature T. For one mode

open in the QPC, the thermal wavepacket gives the correct thermally averaged conductance,

by propagating the wavepacket through the scattering region and counting the total flux that

passes through a given point. Because of the low energy uncertainty at low temperature, the

thermal wavepacket is usually very broad. In order to make the numerical simulation more ef-

ficient, we create a waveguide with one open mode in front of the QPC and channel it through

the center of the QPC. y0 is chosen to be inside the waveguide such that majority of the ther-

mal wavepacket lies inside the waveguide before the QPC.

First we consider a perfect QPC and assume that disorder is absent. Numerical results in-

cluding both disorder and an imperfect QPC follow. For a perfectly adiabatic QPC satisfying
ω′(y)
ω2(y) ≪ m

ℏkF and
ω′′(y)
ω2(y) ≪ m

ℏ , where kF is the Fermi wavevector, Ψ1(x, y,E) can be approxi-

mated by

Ψ1(x, y,E) =
A(y0)√

ℏk(y,E)
√
πσ(y)

exp(i
∫ y

y0
k(y′,E)dy′ − x2

2σ(y)2
), (2.12)
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x
Figure 2.2: Quantum simulations of the total flux in the y direction that passes through a given point. (a) plots the case
where theQPC is not shifted and (b) shows the case where theQPC is shifted by λF to the right . The white reference
grid(10λF) denotes the same location in both images. The color axis shows the normalized density of flux per wavelength.
Both images start at y=y0 + 15λF. (c) A schematic plot of theQPCs used in the simulations(Red in (a) and blue in (b)).

where σ(y) =
√

ℏ
mω(y) ,

ℏ2k2(y,E)
2m + 1

2ℏw(y) = E and A(y0) is the normalizing constant.

The effect of shifting the QPC is incorporated in the initial wavepacket as

Ψs(x, y, 0) = L̂(x0)Ψo(x, y, 0), (2.13)

where L̂(x0) = e−ix0p̂x/ℏ is the translation operator, x0 is the displacement of the QPC and p̂x is

the momentum operator in the x direction.

The two wavepackets evolve under the influence of their respective QPC and the coherent

overlap between them at a later time t is given by

Co,s(t) =
∣∣∣∣∫ dxdy Ψ∗

o(x, y, t)Ψs(x, y, t)
∣∣∣∣

=

∣∣∣∣∫ dy H(y, t)S(y)
∣∣∣∣ , (2.14)
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and

H(y, t) =
∫

dEdE′ |A(y0)|
2 a∗(E′)a(E)

ℏ
√
k(y,E)k(y,E′)

exp(−i(E− E′)t/ℏ)

× ei(ϕ(E,y0)−ϕ(E′,y0)+
∫ y
y0
(k(y′,E)−k(y′,E′))dy′)

S(y) = exp(−
x20

4σ(y)2
)

. (2.15)

H(y,t) is essentially a function needed for normalization and the integral can be estimated by

considering only S(y). When x0 is 0, S(y) = 1 and normalization guarantees that Co,s(t) = 1.

Initially, the wavepackets are centered around y = y0 and we could choose an initial displace-

ment x0 ≫ σ(y0) such that S(y0) ∼ 0 and Co,s(0) ∼ 0 . As time increases, the wavepacket

will move away from the injection point and broaden. At typical experimental temperatures,

the broadening is small compared with the distance it travels in y10. When the centers of the

wavepackets reach a region far from the the injection point, σ(y) around the new centers will

grow to be much larger than x0 and we have S(y) ∼ 1, Co,s(t) ∼ 1. In other words, even

though we start with two almost nonoverlapping(incoherent) initial wavepackets, the QPCs

increase the coherent overlap as the wavepackets move away and this coherent overlap can

reach unity in the far region. This overlap is of coherent nature and is different from the trivial

spatial overlap one might expect. Spatial overlap is not enough to explain the experimentally

observed stability due to the fluctuating phase in chaotic systems. However, our result shows

that the overlap is large even if one takes into account the phases of the wavepackets and this

coherent overlap can not be destroyed by disorders. This large coherent overlap only exists

because the two different QPCs represent two different Hamiltonians. If propagated under the

same Hamiltonian, the coherent overlap will always remain small.

In the experiment, both the finite size of the QPCs (making them not perfectly adiabatic)

and the disorder can degrade the coherent overlap. We numerically estimate the coherent over-

lap under these conditions. The QPC’s size is estimated from the Scanning Gate Microscopy
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data in9 and the random potential has a correlation length of 0.9λF and standard deviation of

8%EF, where λF is the Fermi wavelength and EF = 7.5meV is chosen to match that in the

experiment. The random potential is generated to match both the sample mobility and the dis-

tance from donors to 2DEGs9. The numerical results show that Co,s(t)= 85% when the QPC is

shifted by λF as in the experiment. Thus the degradation of the coherent overlap at long range

from the QPC is modest.

Starting with two almost nonoverlapping(incoherent) initial wavepackets, and evolving sep-

arately under the influence of two different QPCs, their coherent overlap increases with time

and distance, increasing fastest close to the QPCs. The coherent overlap eventually saturates

to some constant value far from the QPCs. The two wavepackets now evolve effectively un-

der the same Hamiltonian and their coherent overlap cannot be changed by the presence of

disorder, for example. This is why we measure 25λF downstream from the injection point,

where the potential due to the QPC has died off. Given the large coherent overlap between the

two wavepackets, we should expect the same set of branches far from the injection point even

though the flow patterns look different close to the QPC, as shown in our quantum simulations

in Fig.2.2.

Another kind of disorder can reduce the overlap: backscattering from hard impurity scatter-

ers. However, backscattering was suppressed in the original experiment due to the high purity

of the samples used9.

One can also formulate this problem in the language of the traditional scattering theory in

the follwing way:

Ψo(x, y, t) =
∫

dE a(E)e−iEt/ℏ
∑
l

To,l(E)Ψl(x, y,E)

Ψs(x, y, t) =
∫

dE a(E)e−iEt/ℏ
∑
l

Ts,l(E)Ψl(x, y,E)
, (2.16)
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where Ψl(x, y,E) is one of the scattering eigenstates labeled by l in the asymptotic region with

energy E and To,l(E) and Ts,l(E) are the transmission coefficients. The overlap is given by

Co,s(t) =

∣∣∣∣∣
∫

dE |a(E)|2
∑
l

T∗s,l(E)To,l(E)

∣∣∣∣∣, (2.17)

and it is mainly generated by the QPCs rather than the random potential.

2.6 Classical Explanation

Reference9 included both classical and quantum simulations and discussion. Does our ex-

planation of the branch stability also apply to classical simulations? Indeed it does, but the

proper classical initial conditions to represent the QPC are subtle and require care. A choice

that closely resembles the quantum initial conditions is to use the Wigner quasiprobability dis-

tribution13, defined as

P(⃗x, p⃗) =
1
πℏ

∫ ∞

−∞
d⃗s e2i⃗p·⃗s/ℏΨ∗(⃗x+ s⃗)Ψ(⃗x− s⃗). (2.18)

The advantages are twofold: a) it produces the correct quantum spatial distribution P(⃗x) =∫
P(⃗x, p⃗)d⃗p = |Ψ(⃗x)|2 and momentum distribution P(⃗p) =

∫
P(⃗x, p⃗)d⃗x = |Ψ(⃗p)|2; b) it

properly accounts for the momentum uncertainty due to the confinement of QPC. Keeping y

fixed at y0, applying (2.18) to (2.12) in x yields

P(x, px) =
1

πσpxσx
exp(− p2x

σ2px
− x2

σ2x
), (2.19)

where σ2px = mℏω(y0) and σ2x = ℏ/mω(y0).

When ω(y) changes sufficiently slowly compared to the motion in y, (2.19) holds approx-

imately true for any y > y0(where the y0 should be replaced by y in the equation), which
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implies that momentum distributions are highly correlated at any position no matter which

QPC the electron originates from. The only difference is the overall probability of arriving at

that point. This already hints as to why branches remain at the same positions with a modified

strength.

As in the quantum case, we use a realistic QPC potential, and weak random potentials in

the open regions of the 2DEGs. We sample according to (2.19), with the keeping energy fixed

at EF by eliminating trajectories with larger energy in the Wigner distribution, and boosting

those with less in py. These details may be omitted and do not change the conclusions about

branch populations and overlap. We propagate the electrons classically. We show Poincare’

surface of section plots11,17 in Fig.2.3. In the absence of disorder(Fig.2.3a and b), the adia-

baticity of the QPC ensures that when the electrons emerge, most energy is transferred from

the x (transverse) direction to the y (longitudinal) direction, which is also expected in the

quantum case. The results when disorder is present is shown in Fig.2.3c&d. As can be seen,

very similar regions in phase space are occupied, with different relative strengths, when the

QPC is shifted. To quantify the overlap in phase space, we define the correlation to be

C(Po,Ps) =

∫
dxdpx

√
Po(x, px)Ps(x, px), (2.20)

where Po corresponds to the distribution in the original QPC and Ps the shifted one. Twenty

five wavelengths away from the injection point, it is measured that C(Po,Ps)=79%, which is

comparable to our quantum result.

The classical approach to branching is based on caustics which develop in coordinate space

due to focussing effects, and stable regions in phase space14,15,16 which persist some distance

away from the injection point. (Eventually, stable regions, which form by chance so to speak

in the random potential, are also subject to destruction further on in the random potential).

Each branch corresponds to a localized region in phase space with its strength determined by
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Figure 2.3: Poincare Surface of Section at y=y0+25λF. (a)& (b) are calculated in the absence of disorder, but disorder is
present in (c)& (d). (c) is plotted before theQPC is shifted and (d) is when theQPC is shifted by λF to the right. The color
axis shows

√
P(x, vy) in (a) and

√
P(x, vx) in the rest, all in unit of 1/

√
vFλF, where vF is the Fermi velocity and vx and vy

are the velocity in the x and y direction respectively.

the electron density in those regions. After shifting the QPC, similar regions in phase space

are occupied with only a changed relative density, which means in coordinate space that the

same branches are occupied with a different strength. This explains the observation in the ex-

periment9.

In Fig.2.4, we present our simulations of the total classical flux that passes through a given

point, which confirms that classical trajectories can indeed reproduce the observed stability. It

is worth noting that the same stable regions could in principle be populated from both QPCs,

causing some similarity of branch appearance, but this will not be a generic effect for all ran-

dom potentials and QPC shifts. If we have a stable region in phase space that happens to be

cut into halves by the shifting of the QPC, it will produce close branches with similar strength

even with zero overlap at all times. However, there are two reasons why this will only have

marginal effect in producing the experimentally observed stability. First, the probability of

cutting a stable regions in halves such that both regions have appreciable strength is negligi-

ble. Therefore, it is not reproducible by experiment. Secondly and most importantly, any clas-

sical stable regions will decay with distance. Thus, any close branches, if exist, will separate

eventually and contribute only marginally to the experimental stability.
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Figure 2.4: Classical simulations of the total flux in the y direction that passes through a given point. (a) shows the case
where theQPC is not shifted and (b) shows that when theQPC is shifted by λF to the right. The white reference grid is at
the same location in both images and the plots start at y=y0 + 15λF. In both figures, the branches labeled by the red and
yellow arrows are clearly visible.

2.7 Additional Stability with regards to different modes of QPC

One advantage of a classical interpretation is that it can provide intuition in cases where the

quantum dynamics is less intuitive. One example would be to consider what happens when

the second mode of QPC is open. According to reference10, we need to independently prop-

agate two wavepackets where one corresponds to the first mode and the other corresponds to

the second mode. Their contributions to the flux are then added up incoherently to produce the

experimental measurements. Since the contribution from the first mode is added incoherently,

it is no surprise that the same set of branches recurs when both modes are open. However, it is

interesting to ask what happens if one looks at the contribution from each mode alone. Quan-

tum mechanically, the first and second mode are orthogonal to each other, and, therefore have

zero overlap at all time since the Hamiltonian is the same. However, the classical phase space

regions corresponding to the second mode alone would still overlap more or less with that due

to the first mode. This doesn’t depend on the choice of the Wigner quasiprobability distribu-
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Figure 2.5: Quantum simulations of total flux in the y direction that passes through a given point when the secondmode

of theQPC is open. (a) corresponds to the first mode of theQPCwhile (b) shows contribution from the secondmode

alone. The starting point and length scale are the same as in Fig.2.2, but the flux strength is presented in log scale instead.

In both figures, the branches pointed to by the red, yellow and purple arrows are clearly visible.
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Figure 2.6: Quantum simulations at different temperature. The temperature is 0K in a& b, and 20K in c. a is plotted
when theQPC is not shifted. b and c show the pattern when theQPC is shifted by λF to the right. The grid spacing
is 10λF and the color axis shows the normalized denisty of flux per wavelength. All plots start at y=y0 + 15λF.(d) A
schematic plot of theQPCs used in the simulation(Red in a and blue in b and c.

tion. It is simply due to the fact that both modes have to live in the same region in coordinate

space and maintain considerable amount of momentum uncertainty due to the confinement.

As a result, the second mode alone should still produce some similar branches that appear in

the first mode with a different strength. In order to see this effect, we take the logarithm of the

quantum flux due to each mode alone and present the results in Fig.2.5. As we can see, some

of the strongest branches are clearly preserved, which verifies our prediction.

2.8 Additional Stability: Energy Changes

For an individual classical electron in a chaotic system, its classical trajectory is exponen-

tially unstable to perturbation. In the previous sections, the perturbation comes from the changes

in the initial positions of the electrons. A different type of perturbation comes from the uncer-

tainty in the electron’s energy.

For experimental setup, the electron’s energy is determined from the electron density, which

depends on the density of charged atoms. One way to add energy uncertainty into the system

is by changing the temperature of the system.

In the experiment, the random potential in the simulation is generated using screened donor

potential with standard deviation 8%EF and correlation length lc = 0.9λF 9,11. The original
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Figure 2.7: Classical simulations at different energies. Energy is fixed atEF in a& b. In c, the energy distribution is cho-
sen tomatch that of a thermal wavepacket at T=20K. a is plotted when theQPC is not shifted. b and c show the pattern

when theQPC is shifted by λF to the right. In all three figures, the branches labeled by red and black arrows are clearly
visible. The grid spacing is 10λF and the color axis shows the normalized denisty of flux per wavelength. All plots start at
y=y0 + 15λF.

experiment was performed at 4.2K9 with thermal length 2.8λF 10. At 20K, the thermal length

is reduced to 0.6λF < lc. For different scattering amplitude to interfere effectively, the scat-

terers need to be within half thermal length10. If quantum interfence from multiple scatter-

ing off disorders is involved in producing the stable flow pattern in experiment as originally

suspected9, we would expect thermal averaging to change the flow pattern significantly and

smooth away the stability at 20K. However, except for strength changes, finite temperature

does little damage to the location and shape of branches in Fig.2.2c, which also holds true for

classical trajectories in Fig.2.4c.

This additional stability to thermal averaging is different from the experimentally observed

stability and can’t be explained by the overlap idea. In this case, the Hamiltonian is the same

and the only difference is temperature or equivalently the intial thermal wavepacket. For two

initial thermal wavepackets with T = T1 and T = T2, their overlap is not changing over

time since they evolve under the same Hamiltonian. Holding T1 fixed and greater than 0, the

overlap can be made arbitrarily small as T2 → 0. Thus, this additional stability is not produced

by overlap and different from the experimentally observed one.

More surprisingly, this stability is even shared by classical branched flow as well. In this
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case, the electrons start at different places in the classical phase space and they remain sepa-

rated in the phase space through the whole process. This is because now the Hamiltonian is

the same and electrons with different energy remain separated in the phase space and their

path in the phase space will never cross.

Classical theories can be used to explain this additional stability. As a result of energy quan-

tization in the transverse direction, energy uncertainy due to finite temperature is completely

borne by the logitudinal direction. However, caustics and stable regions are mostly related

to the motion in the transverse direction16 and changes in vy has little effect on the struc-

ture in phase space. In Fig.2.8, we start with trajectories that have the same distribution in

vx, but with 22% energy variation(kT/EF = 22% at 20K), and plot the surface of section at

y = y0 + 5lc. As expected, changes in vy only slightly shift the surfaces and does little damage

to where the density builds up.

2.9 Summary

Branching is a universal phenomenon of wave propagation in a weakly correlated random

medium. It is observed in 2DEGs with wavelengths on the scale of nanometers1,2, in quasi-

two-dimensional resonator with microwave4 and used to study sound propagation in oceans

with megameter length scales5. It has significant influence on electron transport in 2DEGs6,7

and is found to be implicated in the formation of freak waves in oceans8. In all these studies,

classical trajectory simulations show closely similar branch formation.

However, the classical interpretation was challenged by a recent experiment on 2DEGs9,

where it was observed that the (necessarily quantum) branched flow pattern even far away

showed stability of the branches against the changes in the QPC. This stability was conjec-

tured to be of quantum origin9. To our best knowledge, no insights into this stability have

been provided since, and it remains a puzzle in the literature. In this chapter, we provide an
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Figure 2.8: Poincare Surface of Section for different energies. Poincare Surface of section at y = y0+ 5lc. The respective
energy is 0.78EF(Blue),EF(Red) and 1.22EF(Black), and all initial manifolds start with vx uniformally distributed between
[−0.05vF, 0.05vF] and x ranging from−10λF to 10λF. In this simulations, theQPC is absent and the electrons are ini-

tially placed in free space before the random potential(y = y0). In the figure, we only take a snapshot of the phase space
structure with x between [0, 5λF] and the curves are shifted from each other vertically by one unit.

44



explanation for the observed stability. Moreover, we provide numerical simulations to show

that it can indeed be reproduced by using only classical trajectories.

In conclusion, we have successfully explained the stability of branched flow against large

changes in initial conditions using both quantum and classical simulations, which agree on

the fact of the stability of branches against shifts of the QPC injection point. This resolves a

puzzle raised by a recent experiment9 and shows the role of the QPC in enhancing the stabil-

ity of branched flow in 2DEGs. Our classical interpretation predicts a further stability of the

branched flow of the second mode in the QPC that can not be readily inferred from the experi-

ment. The interpretations in this chapter can provide useful insights into future applications in

the coherent control of electron flow, branch management and probing local random potential.
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3
Light Scattering by Metallic Nanoparticles and

Three Types of Plasmon: Background

In this chapter, we will switch gear to talk about the second main topic of this thesis: Local-

ized Surface Plasmon.

In a nutshell, the study of Localized Surface Plasmon is about light scattering by metallic

particles whose dimensions are at nanoscales. What makes it interesting is that the scattering

here is due to the resonant coupling between the incoming light and the collective excitation

of the conduction electrons in the metallic nanostructures.
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In this chapter, we give a brief review of the physics background of plasmons and for more

detailed information, we refer the readers to the book written by Prof. Stefan Maier19.

3.1 Brief Review of Electromagnetism

The theory of plasmons can be divided into two parts: a microscopic theory explaining the

electromagnetic response of the electrons in the metallic nanostructure, which gives rise to a

macroscopic dielectric constant that characterizes the nanostructure, and a macroscopic theory

describing the electromagnetic response of the nanostructure to an incident light. This macro-

scopic theory is based on the classical Maxwell’s equations.

3.1.1 Maxwell’s equations

The Maxwell’s equations are among the most fundamental and elegant equations of physics

and they are the foundation of classical electromagnetism. In its differential form, they are

given by44

▽ · D⃗ = ρext

▽ · B⃗ = 0

▽× E⃗ = −∂B⃗
∂t

▽× H⃗ =
∂D⃗
∂t

+ J⃗ext

. (3.1)

E⃗ is the electric filed, D⃗ is the dielectric displacement, B⃗ is the magnetic induction and H⃗

is the magnetic field. ρext is the external or free charge density and J⃗ext is the external current

density. These two terms can be thought as the source of the electromagnetic fields.
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For a homogenous material with linear response, we can express H⃗ and D⃗ as

D⃗ = ϵ0ϵE⃗

B⃗ = μ0μH⃗
. (3.2)

Given the above six equation, together with the appropriate boundary conditions, one can

in theory solve any problems in electromagnetism. In its essence, Maxwell’s equations are a

phenomenonical approach to solving scattering problems in electromagnetism where the mi-

croscopic response of the materials is summarized by ϵ and μ. In order for one to solve the

problem, one needs to be given both ϵ and μ. This could be either obtained from an experi-

mental measurement or a theoretical calculation taking into account the atomic structure of the

material.

In general, a material’s electromagnetic response will depend on both the frequency and the

wave vector of the incident wave, so Eq.(3.2) is better rewritten as

D⃗(⃗k,ω) = ϵ0ϵ(⃗k,ω)E⃗(⃗k,ω)

B⃗(⃗k,ω) = μ0μ(⃗k,ω)H⃗(⃗k,ω)
, (3.3)

where E⃗(⃗k,ω) is the amplitude of the normal mode with wave vector k⃗ and frequency ω.

Since metallic nanoparticles are non-magnetic materials, we shall focus only on the electric

part of the equations. In other words, we shall assume that μ(⃗k,ω) = 1 for the case we are

interested in.

For metal, we can further write the current density as a linear response of the electron mo-

tion to the total electric field by introducing a coefficient called conductivity, that is

J⃗(⃗k,ω) = σ(⃗k,ω)E⃗, (3.4)
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where σ(⃗k,ω) is the dynamic conductivity of the material.

There is a deep connection between the dynamic conductivity of a material and its dynamic

polarizability. This should make intuitive sense since both are directly related to the motion of

the conduction electrons.

To see this connection, we can express the current density as a function of polarization den-

sity:

J⃗(⃗k,ω) =
∂P⃗
∂t

, (3.5)

where P⃗ is the polarization density. This relation is most easily understood when one consid-

ers a single electron with position x⃗, such that P⃗ = −e⃗x. Thus, dP⃗
dt = −e⃗v. Multiplying both

sides by the electron density will give the relation in (3.5).

In terms of the dielectric constant, P⃗ can be related to E⃗ as

P⃗ = D⃗− ϵ0E⃗

= (ϵ − 1)ϵ0E⃗
. (3.6)

Furthermore, for normal modes, we can replace ∂
∂t by −iω. Combining (3.4), (3.5) and

(3.6), we get a relation between the conductivity and polarizability

σ(⃗k,ω)E⃗(⃗k,ω) = −iωP⃗

= −iω(ϵ − 1)ϵ0E⃗(⃗k,ω)
. (3.7)

Thus,

ϵ(⃗k,ω) = 1+
iσ(⃗k,ω)
ϵ0ω

. (3.8)

As one probably remembers from his introductory electromagnetism class, the real part of

the dielectric constant decides the dispersion relation in the case of small dissipation, while the

imaginary part of the dielectric constant determines the dissipation. This makes more intuitive
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sense when looking at (3.8). In (3.8), the imaginary part of the dielectric constant is propor-

tional to the real part of the conductivity.

When the conductivity is purely real, it means that the current is always in phase with the

driving electric field. Since current is nothing more than electrons moving with a velocity,

this translates into the fact that electrons moves in phase with the electric field such that the

electric field always acting as an energy source trying to accelerate electrons. This energy in-

put has to be balanced by an energy output due to relaxation process such as electron phonon

scattering. If one uses a relaxation time to characterize this relaxation process, it leads to the

simple yet usually sufficient Drude model for conductivity. Thus, it is not hard to see why the

real part of the conductivity will lead to dissipation. This loss is essentially resistive loss as

one encounters in everyday life: the light bulb heats up as one sends electricity through it.

On the other hand, when the dielectric constant is purely real, we can see from (3.5) that

the current and the electric field will differ by a phase of π/2. In one optical cycle, the elec-

trons will be in phase with the electric filed and out of phase with the electric filed in the other

half of the cycle. When they are in phase, the electrons pull energy from the electric field and

when they are out of phase, the electrons convert its gained kinetic energy into the potential

energy. On average, there is no energy exchange between the electric field and the electrons in

this perfect dielectric material. However, the light will still interact with the electrons, leading

to changes in the velocity of the light propagating through the sample, i.e. a different disper-

sion relationship.

For most materials, the dielectric constant/conductivity will not be purely real and it is in

general a complex number involving both dielectric type of behavior and conductor type of

behavior.

Also, for the frequency range we are interested in, the wavelength of the incident light is

usually much larger than atomic spacing. In this long wavelength regime, we can assume that
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the material is isotropic and homogenous, and take the limit that k⃗ = 0. As a result, we can

rewrite (3.8) as

ϵ(ω) = 1+
iσ(ω)
ϵ0ω

. (3.9)

In the following sections, we will only discuss in terms of ϵ(ω).

3.1.2 Drude model for conductivity

One popular and powerful model for conductivity is the Drude model. It is specifically de-

signed to characterize the response of free electron gas to an external driving electric field.

Assuming weak electron-electron interaction, the equation of motion for a single electron in

an external electric field is given by

m
..

x⃗+ m
.

x⃗
τ
= −eE⃗, (3.10)

where τ is the relaxation time.

If we focus on the electric response to normal modes, we can replace the time derivative

with −iω by assuming x⃗(t) = x⃗0e−iwt. The solution to (3.10) then becomes:

x⃗(t) =
e

m(ω2 + iω/τ)
E⃗(t). (3.11)

By definition, if we have electron density n and each electron is displaced by the same

amount x⃗(t), the polarization density becomes

P⃗(t) = −ne⃗x(t) =
−ne2

m(ω2 + iω/τ)
E⃗(t). (3.12)
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Thus, the dielectric constant is given by

ϵ(ω) = 1−
ω2
p

ω2 + iω/τ
, (3.13)

where

ωp =
ne2

mϵ0
. (3.14)

Surprisingly, this simple model works very well in practice. Part of the reason is that the

relaxation time τ, which describes how fast the electron can lose energy it obtained from the

electric filed, can usually be chosen to match experimental measurements.

3.2 Volume Plasmon

In this section, we introduce the first type of plasmons, the volume plasmon.

Volume plasmon is more popularly known as the ”plasmon” in the condensed matter com-

munity. It is the collective excitation or movement of electrons in an electron gas. Here, in-

stead of going into the process of trying to quantizing the excitation, we will instead show

how it arises naturally just from the Maxwell’s equations.

According to Maxwell’s equations, when there are no external currents, we find, by taking

the curl of the first equation in the Maxwell’s four equations, the following relation

▽×▽× E⃗ = −▽×∂B
∂t

= −μ0
∂2D⃗
∂t2

. (3.15)

Noting that

▽×▽× E⃗ = ▽(▽ · E⃗)−▽2E⃗, (3.16)

52



Figure 3.1: A simplifiedmodel to explain the formation of Volume Plasmon. The red cloud corresponds to the fixed ion

cloud and the blue cloud corresponds to the electron cloud. The electron cloud is displaced from the positively charged

ion cloud by a distance of u.

the previous equation can be simplified to

k⃗(⃗k · E⃗)− k2E⃗ = −ϵ(ω)
ω2

c2
E⃗. (3.17)

There are two possible solutions to this equation, a transverse mode and a longitudinal

mode.

For the transverse mode, k⃗ · E⃗ = 0 and (3.17) reduces to

k2 = ϵ(ω)
ω2

c2
, (3.18)

which is the familiar dispersion relation we expect to see in a nonmagnetic effective medium.

There is also a possible longitudinal mode, where k⃗ · E⃗ = kE. The only way to satisfy (3.17)

in this case is to set

Re[ϵ(ω)] = 0. (3.19)

The solution to this corresponds to the so-called volume plasmon and the solution to (3.19)

is ω = ωp.
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One can understand the physical origin of this volume plasmon by looking at a potentially

oversimplified model19. As shown in Fig.3.1, the material is charge neutral. Suppose now that

all the electrons are displaced from the positively charged ion cloud by the same distance u,

it will leave behind a positively charged background of ions. If we assume that the positively

charged ions are immobile, then it will create a restoring force acting on the electrons trying to

pull them back to the change neutral positions.

The restoring force can be easily calculated with the assumptions that 1) the sample is large

so we do not need to worry about the boundary conditions; 2) all the electrons are displaced

by the same distance. With these two assumptions, the electric field is uniformly and constant

inside. Its value is

E⃗ =
ne
ϵ0
u⃗. (3.20)

This electric field uniformly acts on all the electrons and serves as the source of the resort-

ing force. Each electron experiences the same restoring force and as a result, they move in a

collective fashion. Their motion is driven by the following dynamic equation:

m..u = −ne2

ϵ0
u⃗, (3.21)

which is the familiar equation for a harmonic oscillator with frequency

ωp =
ne2

mϵ0
. (3.22)

This is the simplest, maybe oversimplified model to explain the existence of volume plas-

mon. For more sophisticated models and the quantization of the plasmon, the reader could

consult the book by Prof. Giuseppe Grosso and Prof. Giuseppe Pastori Parravicini42.

Experimentally, the volume plasmon is usually probed using electron energy loss spec-

troscopy.
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3.3 Surface Plasmon Polariton

In this section, we introduce the second type of plasmon, the Surface Plasmon Polariton(SPP).

Unlike volume plasmon, which is a bulk state, SPP is essentially a surface state that exists

only at the interface between a metallic material and a dielectric material.

3.3.1 Dispersion Relation

In the absence of external charge sources and current sources, the Maxwell’s equations re-

duce to
▽ · D⃗ = 0

▽ · B⃗ = 0

▽× E⃗ = −∂B⃗
∂t

▽× H⃗ =
∂D⃗
∂t

. (3.23)

If we take the curl of the third equation, we get

▽×▽× E⃗ = ▽(▽ · E⃗)−▽2E⃗ = −μ0
∂2D⃗
∂t2

. (3.24)

Also the first equation can be written as

▽ · D⃗ = ▽ · (ϵ0ϵE⃗)

= ϵ0ϵ ▽ ·E⃗+ ϵ0 ▽ ϵ · E⃗

= ϵ0ϵ ▽ ·E⃗ = 0

, (3.25)

assuming a homogeneous material with linear response.

Thus, (3.25) reduces to

▽2E⃗+ ϵk20E⃗ = 0, (3.26)
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Figure 3.2: DielectricMetal interface where SPP arises. It is the simplest geometry where SPP arises. The top half is a

semi infinite dielectric material with dielectric constant ϵ1 and the lower half is a semi infinite conductor with dielectric
constant ϵ2 .

where k0 = w
c is the wave vector of light in free space.

To derive the SPP modes, we need to make assumptions about the geometry of the sys-

tem. For introductory purpose, we only consider a single layer system, where we assume that

SPP arises in the interface between a semi-infinite dielectric material(usually air) and a semi-

infinite conductor as shown in Fig.3.2. Multilayer systems are considered in Ref.19.

We look for evanescent waves bound to the interface. By choosing the coordinate system,

we can assume that the wave takes the following form

E⃗ = E⃗(z)exp(iβx), (3.27)

and (3.26) simplifies to

▽2E⃗(z) + (ϵk20 − β2)E⃗(z) = 0. (3.28)

Also, the third and fourth equations in (3.23) can also be written out explicitly in the follow-
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ing form by assuming lack of dependence on y:

iμ0ωHx = −
∂Ey

∂z

−iμ0ωHy = iβEz −
∂Ex
∂z

iμ0ωHz = iβEy

, (3.29)

−iϵ0ϵωEx = −
∂Hy

∂z

iϵ0ϵωEy = iβHz −
∂Hx
∂z

−iϵ0ϵωEz = iβHy

. (3.30)

It can be shown44 that once Ex and Hx are given, one can solve for the y and z components

of the electromagnetic field.There are two sets of possible solution to the above six equations.

One set is called the transverse magnetic(TM) mode, where Hx = 0, and the other set is called

the transverse electric(TE) mode, where Ex = 0.

We first look for TM modes. Setting Hx = 0, we find that Ey = 0 and Hz = 0. The above

six equations then reduce to

Ex = − i
ϵ0ϵω

∂Hy

∂z

Ez = − β
ϵ0ϵω

Hy

. (3.31)

To determine Hy , we go back to (3.26) and it yields the following differential equation

∂2Hy

∂z2
+ (ϵk20 − β2)Hy = 0. (3.32)

Since we are looking for evanescent waves bound to the interface, we can assume that

Hy ∝ exp(iβx− k2z), (3.33)
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for z > 0 and

Hy ∝ exp(iβx+ k1z), (3.34)

for z < 0.

Taking advantage of (3.31), we get the following equations for z > 0:

Hy = A2exp(iβx− k2z)

Ex =
ik2

ϵ0ϵ2ω
A2exp(iβx− k2z)

Ez = − β
ϵ0ϵ2ω

A2exp(iβx− k2z)

. (3.35)

Similarly, for z < 0, we have

Hy = A1exp(iβx+ k1z)

Ex = − ik1
ϵ0ϵ1ω

A1exp(iβx+ k1z)

Ez = − β
ϵ0ϵ1ω

A1exp(iβx+ k1z)

, (3.36)

where k1 and k2 are the imaginary wave vector/decay constant in the z direction inside the

conductor and the dielectric respectively.

To get the dispersion relation, we need to match the boundary conditions at the interface,

which are given by the continuity of ϵEz, Ex and Hy at the interface.

The condition Hy(z = 0−) = Hy(z = 0+) requires that A1 = A2.

Similarly, Ex(z = 0−) = Ex(z = 0+) requires

k2
k1

= − ϵ2
ϵ1
. (3.37)
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The two other equations needed to solve for k1, k2 and β are given by

k21 = β2 − k20ϵ1

k22 = β2 − k20ϵ2. (3.38)

Combining these with (3.37), we find that

β = k0
√

ϵ1ϵ2
ϵ2 + ϵ1

. (3.39)

In the limit that ϵ1 → 0, this gives β = 0, which is the long wavelength limit of the disper-

sion relation. According to (3.38), k1 = 0 as well, meaning that the field can penetrate inside

the metal without being decayed. Recalling that ϵ1(ω) = 0 is exactly the condition required

for the volume plasmon, this means that SPP becomes the volume Plasmon in this long wave-

length limit.

The other set of solution is called the transverse electric mode(TE), where Ex = 0. Given

Ex = 0, one can show that Ez = 0 and Hy = 0.

The above six equations then reduce to

Hx =
i

μ0ω
∂Ey

∂z

Hz =
β

μ0ω
Ey

. (3.40)

The equation governing Ey is given by

∂2Ey

∂z2
+ (ϵk20 − β2)Ey = 0. (3.41)

59



Similarly to the TM modes, we look for surface states of the form

Ey ∝ exp(iβx− k2z), (3.42)

for z > 0 and

Ey ∝ exp(iβx+ k1z), (3.43)

for z < 0.

For z > 0, the solution should take the following form because of the constraint set by

(3.31)

Ey = A2exp(iβx− k2z)

Hx = − ik2
ϵ0ϵ2ω

A2exp(iβx− k2z)

Hz =
β

ϵ0ϵ2ω
A2exp(iβx− k2z)

. (3.44)

Similarly, for z < 0, we have

Ey = A1exp(iβx+ k1z)

Hx =
ik2

ϵ0ϵ1ω
A1exp(iβx+ k1z)

Hz =
β

ϵ0ϵ1ω
A1exp(iβx+ k1z)

, (3.45)

where k1 and k2 are the wave vector in the z direction inside the conductor and the dielectric

respectively.

Similarly, the continuity condition for Ey at the interface requires that A1 = A2 and the

continuity condition for Hx requires that

A1(k1 + k2) = 0. (3.46)
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This condition could only be satisfied if A1 = 0. Thus, for normal conductor, there is no TE

SPP. However, for graphene, it is shown in Ref.59 that one can find TE type of SPP modes.

This is mainly due to the fact that graphene is a two dimensional metallic sheet that can pro-

vides external surface charges at the interface when graphene is sandwiched between two di-

electric materials.

SPP modes can also be found in multilayer systems as well. The derivation is a little bit

more complicated, but the spirit is the same.

3.3.2 Excitation Methods

One advantage of SPP is that it can compress the wavelength of the light. This can be in-

ferred from (3.39). At high enough frequency, ϵ1 can be made smaller than ϵ2, leading to a

compression in the wavelength of the SPP when compared to its wavelength in the dielectric

material.

However, for silver and gold, there is a fundamental tradeoff between the field confine-

ment and loss19. Usually, modes offering high confinement support only small propagation

lengths, while modes offering high propagation lengths suffer from worse confinement. It is

proposed60 that the SPP modes in graphene can offer both large propagation lengths and large

field confinement at the same time.

Due to the wavelength compression effect, there is an inherent wave vector mismatch be-

tween SPP and light in the dielectric material. Thus, SPP modes can not in general be excited

by just shedding light onto the interface. There have been several methods proposed to resolve

this wave vector mismatch19.

The first method is called prism coupling19. This method takes advantage of the total inter-

nal reflection, where only evanescent waves get transmitted. Such evanescent waves can have

high-k Fourier components, so it can excite the high-k SPP modes.
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The secnd method is called grating coupling. The physics behind this method is very similar

to Bragg scattering and one can excite the SPP modes resonantly when the following condi-

tion is satisfied

β = ksinθ ± ng, (3.47)

where g = 2π/a and a is the spacing between the grating and n is an integer.

The final method, which is probably the most popular method for both excitation and prob-

ing, is called Scattering-type Scanning Near-field Optical Microscopy(s-SNOM). It works by

placing a metallic tip on top of the interface between the metallic material and the dielectric

material. A focused laser beam is then guided to illuminate the metallic tip. This laser beam

will excite a local electric dipole within the metallic tip and this electric dipole will then be

able to excite the SPPs in the interface below through its near field. Compared with the previ-

ous method, s-SNOM enjoys the benefits of being able to excite both locally and also usually

with high efficiency due to near field enhancement.

Another advantage of s-SNOM over the previous methods is its ability to be used as the

probe as well. This is used to probe the SPP modes in graphene as done in Ref.61 and Ref.62.

The way this works is by probing the back scattered wave locally through exciting the metallic

tip. In the experiment, an additional apparatus is usually employed to collect the backscattered

wave from the tip. The collected backscattered wave is then brought to interfere with another

reference beam to decide its amplitude and phase. As in the experiements61,62, the graphene

is cut into wedge shape and the edges can backscatter the SPP modes. When the backscattered

SPP wave returns to the area below the tip, it could couple to the tip through near field cou-

pling, which excite additional electric dipole field that can potentially reduce or enhance the

original dipole field depending on its relative phase to the incoming light.

By moving the tip across the two dimensional interface and recording the phase and strength

of the backscattered SPP wave, one can get information on the SPP modes. For instance,
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in61,62, the authors were able to determine the wavelength of SPP and its propagation length.

3.4 Localized Surface Plasmon

Finally, we will introduce the last kind of plasmons, Localized Surface Plasmon(LSP). LSP

is the only type of plasmon we study in this thesis. It also arises from the interaction between

light and the collective excitation of electrons in metal. The difference between LSP and SPP

is that SPP is a surface state existing at the interface between a conductor and a dielectric ma-

terial, while LSP is more like a resonant electric dipole. In some sense, SPP is more like a two

dimensional surface state, while LSP is more like a zero-dimensional state.

LSP arises when one sheds light onto metallic nanostructures. As one of the simplest ex-

amples, we can consider light scattering by a single gold nanosphere. When the frequency of

the incoming light coincides with the resonance frequency of the electrons moving inside the

nanosphere, one can drive up a resonant scattering mode known as LSP.

Usually, for gold nanoparticles, the resonance wavelength of the light is on the order of

540nm, but the radius of the gold nanoparticles can be as small as 5nm. Since the wavelength

of the light is two orders of magnitude larger than the size of the gold nanoparticles, one can

employ what is known as the quasi-static approximation19.

According to the quasistaitc approximation, one can solve for the scattering problem as an

electrostatic problem, which ignores the phase fluctuation of the light across the gold nanosphere.

The problem then becomes solving the Poisson equation with the appropriate boundary condi-

tions set by the shape of the gold nanosphere

▽2ψ = 0, (3.48)

where ψ is the static electric potential.
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Figure 3.3: LSPwithin the quasi-static approximation. The green lines denote the static electric field and the yellow

sphere is the gold nanosphere.
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The incoming light can then be modeled as a uniform electric field. This problem can be

solved analytically using the method of images44. The solution is given by

ψin = − 3ϵm
ϵ + 2ϵm

E0rcosθ

ψout = −E0rcosθ +
ϵ − ϵm
ϵ + 2ϵm

E0a3
cosθ
r2

,

(3.49)

where ψin is the electric potential within the nanosphere, ψout is the electric potential outside

the nanosphere and a is the radius of the nanosphere. ϵm is the dielectric constant for the en-

vironment while ϵ is the dielectric constant of the metal, which can be a complex number. E0

is the incoming electric field and θ is the angle defined in relation to the axis passing through

the center of the nanosphere and parallel to the the direction of the electric field as shown in

Fig.3.53.

(3.49) can be transformed into more physical form by noticing that the electric potential due

to an electric dipole p⃗ is given by

ψp =
p⃗ · r⃗
4πϵ0r3

. (3.50)

Noticing the similarity between the second term of ψin and ψp, we can define an electric

dipole moment as

p⃗ = 4πϵ0ϵma3
ϵ − ϵm
ϵ + 2ϵm

E⃗0, (3.51)

and we then can rewrite ψout as

ψout = −E0rcosθ +
p⃗ · r⃗

4πϵ0ϵmr3
. (3.52)

This formula has a very simple physical interpretation. When we shed light onto the metal-

lic nanosphere, the light induces an electric dipole moment within the metallic nanoparticles

and the total electric field is essentially a summation of the contribution from the exciting field
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and the scattering field due to the induced electric dipole moment.

Methods taking into account phase retardation and higher order modes can be employed to

solve this scattering problem including Mie theory and Finite Difference Time Domain(FDTD)

methods, but in general it is shown numerically that this simple quasistatic approximation

works reasonably well for gold nanoparticles with characteristic length smaller than 100nm41,43.

From (3.51), we can also see that one can get a resonance whenever the following condition

is satisfied

Re[ϵ] + 2ϵm = 0. (3.53)

In general, ϵ is a function of the frequency of the light, so we shall write it as ϵ(ω). The

frequency at which (3.53) is satisfied is called the LSP resonance frequency.

For the Drude model, ϵm(ω) is given by

ϵ(ω) = ϵ∞ −
ω2
p

ω2 + iω/τ
, (3.54)

where ϵ∞ is the correction for interband correction.

If the damping rate is small when compared with ωp, the LSP resonance frequency after

solving (3.53) is

ωLSP =
ωp√
2+ ϵ∞

, (3.55)

assuming that the dielectric environment is air.

Another quantity that is of relevance to experiments is the extinction cross section, which is

a summation of the scattering cross section and the absorption cross section. They are given

separately by

σscattering =
8π
3
k4a6

∣∣∣∣ ϵ − ϵm
ϵ + 2ϵm

∣∣∣∣2
σabsorption = 4πka3Im[

ϵ − ϵm
ϵ + 2ϵm

]

. (3.56)
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One important point to notice here is that the scattering cross section scales as a6, while

the absorption cross section scales as a3. Since the metallic nanoparticles are usually of small

radius, it is therefore true that in most experimental setups, the extinction cross section is dic-

tated by the absorption cross section.
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4
Quantum Proximity Resonance and Linewidths

of Localized Surface Plasmons

The previous chapter discusses the background for light scattering by metallic structures

and introduces the three fundamental types of plasmons: volume plasmon, Surface Plasmon

Polariton(SPP) and Localized Surface Plasmon(LSP).

In the rest of this thesis, we will focus only on LSP. We will draw an analogy between an

interesting quantum multiple scattering phenomenon, known as the quantum proximity reso-

nance, and plasmon dimer scattering.
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4.1 Quantum Proximity Resonance

One of the key differences between quantum physics and classical physics in understand-

ing electrons is that quantum mechanics interprets electrons as both wave and particles while

classical mechanics interprets electrons as only particles.

For scattering theory, one consequence of the wave nature of electrons is that, besides the

physical size of the scatterer, one has an additional metric for understanding the scattering

strength of a scatterer and this metric is known as the scattering cross section. For classical

scattering, what matters for a hard wall scatterer is its physical cross section. This makes intu-

itive sense. In the classical interpretation, an electron is modeled as a point mass, whose tra-

jectory is a one dimensional topological line. For a hard wall potential, if the electron shoots

in a direction that misses the physical cross section of the scattering ball, the scattering poten-

tial should not have an influence on this electron’s trajectory.

However, the story is different according to quantum mechanics. It is known from most

introductory quantum mechanics courses that the total scattering cross section for a hard wall

sphere scattering is twice the physical cross section of the sphere.

The difference in the case of a hard wall sphere is due to the nonlocal wave nature of the

electron scattering. Such difference can be made more significant when one adds resonance

into the system. For a classical system with resonance in the sense of energy matching, the

scattering cross section is still the same as its physical cross section. Imagine for instance a

three dimensional harmonic oscillator, the classical scattering cross section is decided by the

magnitude of the oscillation. If the point mass misses this physical cross section, it won’t be

scattered even in the presence of energy matching.

For quantum mechanics, electrons are interpreted as waves and as a wave, it also has a

wavelength λ. Suppose that the scatterer( a three dimensional harmonic oscillator) has phys-

ical size of a << λ. The classical cross section is on the same order of magnitude as a2 no
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matter whether the resonance condition is satisfied or not. For quantum scattering without

satisfying the resonance condition, the scattering cross section will be on the same order of

magnitude as a2, differing from the classical cross section by only a constant. However, if the

resonance condition is satisfied, the scattering cross section in the quantum scattering case will

scale as λ2 37.

Even if the wavelength is only one order of magnitude larger than the radius, the scattering

cross section is two orders of magnitude larger. If one places two such ”small” scatterers well

outside each other’s physical range, but within each other’s scattering range, one can expect

multiple scattering to take place. The phenomenon arising from this is known as the quantum

proximity resonance37, where if one places two resonant s-wave scatterers within one wave-

length, it yields a sharp p-wave scattering mode with extremely small damping and a symmet-

ric mode which is highly damped. Intuitively, for the p-wave scattering mode, the two s-wave

scatterers are excited with exactly the opposite phase, so it almost will exactly cancel each

other’s far field, thus resulting in significantly reduced damping. However, for the symmetric

mode, the two s-wave scatterers are excited in phase, so they enhance each other’s far field

through constructive interference, hence stronger damping.

4.2 Plasmon Dimer System

The collective excitation of conduction electrons in subwavelength structures is known as

the Localized Surface Plasmon(LSP). Such plasmon modes have been intensively studied us-

ing noble metal nanoparticles20,21,22,23. More recently, the possibility of building terahertz

metamaterials supporting such LSP modes is explored using graphene microribbons24 and mi-

crodisks25. LSP holds promise for applications in ultrasensitive biosensing27, nano-optical

tweezers29 and improved photovoltaic devices30.

LSP arises when a subwavelength metal nanosphere is illuminated by light resonant with
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Figure 4.1: Schematic of the system setup. Two nanoparticles with diameter D are separated by a distance d.

the plasmon frequency. This problem can be solved analytically within the quasistatic ap-

proximation19 as shown in the previous chapter, where one ignores the phase retardation and

solves the problem using electrostatics. Due to its simplicity, the quasistatic approximation

has been widely applied to study systems involving LSPs21,22,23,24,32 and powerful theoretical

methods including transformation optics33,34 and the hybridization model23,36 are developed

under this approximation. However, by ignoring the phase retardation, one misses many po-

tentially interesting effects arising from multiple scattering.

As in the quantum proximity resonance case, we study such multiple scattering effect in

systems consisting of two weakly interacting LSPs, which is popularly known as the dimer

system.

The dimer system is being actively explored in the literature due to its richness of funda-

mental physics and many potential applications . Three regimes have been intensively studied:

1. The Photonic regime31, where d ∼ λ. d, as defined in Fig.4.1, is the center to center

distance between the two nanoparticles supporting the LSPs and λ is the wavelength of
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the incident light.

2. The strong coupling regime34, where D < d ≾ 2D ≪ λ and D is the diameter of the

nanoparticles.

3. The quantum tunneling regime40, where d− D ∼ 0.1nm(atomic spacing).

Each regime has different interesting physics. For the photonic regime, the spacing between

the dimer is comparable to the light wavelength, so one can potentially control the relative

phase between the two nanoparticles. As a matter of fact, it is actually more interesting to con-

sider in this regime what happens when one arrange such nanoparticles into a periodic lattice.

In that case, a photonic crystal63 forms and a transmission gap can also form depending on the

different lattice spacings.

For the strong coupling field, the two nanoparticles couple through each other’s near field

and it is no longer valid to assume each other as a individual electric dipole. Since the two

gold nanoparticles are so close to each other, they get to influence each other’s electric field

distribution inside the nanoparticles and we can no longer ignore the fine details of the elec-

tric field distribution. In this regime, one can get an antisymmetric mode as well a symmetric

mode. The antisymmetric mode starts with a small amplitude, but it increases as the distance

between the two nanoparticles decreases.

In the classical limit where the two nanoparticles approach, the amplitude of the symmetric

mode can potentially diverge due to the building up of charges of opposite signs on the two

sides facing each other, which clearly is not physical. Quantum mechanically, before the two

nanoparticles even touch, tunneling will kick in. Tunneling of the electrons from one nanopar-

ticle to the other will eliminate this divergence and prevent the charges from building up fur-

ther. Beyond this tunneling regime, one also can get a kissing dimer regime where the two

nanoparticles do touch each other. This is of course a very different story for both classical
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theory and quantum theory. Classically, this kissing dimer case could be handled using the

transformation optics34.

4.3 Intermediate Regime for the Dimer System

In this section, we propose a new simplifying regime for this dimer system, the intermediate

regime, which arises when 2D < d < 0.1λ.

This regime was previously named the weak coupling regime in Ref.34 where it was argued

(within the quasistatic approximation) that the dimer system should exhibit the same behavior

as individual LSPs. This implies that only a single symmetric mode can be observed in a light

scattering experiment.

This quasistatic argument would be correct if the two nanoparticles are non-resonant scat-

terers of the incident light. However, the LSPs are by nature resonant scattering modes19 with

scattering cross section scaling as λ2 19,37. Thus, the scattering cross section can be orders of

magnitude larger than the physical cross section of the nanoparticles. To get a sense of how

large this difference is, we consider a typical example involving gold nanoparticles.

For gold nanoparticles, the resonant wavelength is around 540nm. For nanoparticles with

D<20nm, the scattering cross section can be 1000 times larger than their physical sizes1. If

two such nanoparticles are placed within one wavelength, one can expect multiple scattering

to yield new interesting physics in certain regimes. In quantum scattering theory, multiple

scattering between two resonant scatterers gives rise to the proximity resonance37. Due to the

distinctive resonant properties of LSPs, multiple scattering displays a different signature in

this plasmonic dimer system34.

In the following, we first consider the dimer system illuminated by an incoming plane wave

polarized in the y direction and propagating in the x direction. For nanoparticles with D <

20nm, the LSPs can be well described by two resonant dipoles, p⃗1(⃗r1), p⃗2(⃗r2)19,34,41, where
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r⃗1, r⃗2 are the positions of the two nanoparticles. These two dipoles have to satisfy the follow-

ing self-consistent equations:

p⃗1(⃗r1) = α(ω)[E⃗0(⃗r1) + G(⃗r1 − r⃗2)⃗p2(⃗r2)]

p⃗2(⃗r2) = α(ω)[E⃗0(⃗r2) + G(⃗r2 − r⃗1)⃗p1(⃗r1)]
, (4.1)

where α(ω) is the dynamic electric polarizability tensor of a single gold nanoparticle, E⃗0(⃗r) is

the incoming wave and G(⃗r) is the interaction tensor defined as41,44

G(⃗r) = (k2 +▽▽)
eikr

r
, (4.2)

and k is the light momentum in free space.

A direct expansion of (4.1) yields

p⃗1(⃗r1) = α(ω)E⃗0(⃗r1) + α(ω)G(⃗r1 − r⃗2)α(ω)E⃗0(⃗r2)

+ α(ω)G(⃗r1 − r⃗2)α(ω)G(⃗r2 − r⃗1)α(ω)E⃗0(⃗r1) + · · · ,
(4.3)

from which it is clear that p⃗1(⃗r1) includes contributions from both the incoming wave and all

the waves that are scattered by the nanoparticle at r⃗2 and eventually return to r⃗1. These include

all the possible multiple scattering paths between the two nanoparticles.

For our setup, the solutions to (4.1) can be written as the sum of a symmetric part and an

antisymmetric part:

p⃗s =
1
2
αyy(ω)[E⃗0(⃗r1) + E⃗0(⃗r2)]
1− αyy(ω)Gyy(⃗r1 − r⃗2)

p⃗as =
1
2
αyy(ω)[E⃗0(⃗r1)− E⃗0(⃗r2)]
1+ αyy(ω)Gyy(⃗r2 − r⃗1)

, (4.4)

where αyy(ω) and Gyy(⃗r) are the diagonal elements corresponding to the y directions, of the

polarizability tensor and the interaction tensor respectively.
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With this definition, the solutions are given by

p⃗1(⃗r1) = p⃗s + p⃗as, p⃗2(⃗r2) = p⃗s − p⃗as. (4.5)

As is clear from (4.4), new resonant modes arise when Re[αyy(ω)Gyy(⃗r2 − r⃗1)] = ±1, corre-

sponding to a symmetric and an antisymmetric mode respectively. The interpretation of such

modes is straightforward. When Re[αyy(ω)Gyy(⃗r2 − r⃗1)] = 1, the two dipole moments tend

to enhance each other in the same direction and the multiple scattering of the wave between

them helps build up a resonant mode where the two dipole moments are polarized in the same

direction. On the contrary, the two dipole moments tend to enhance each other in the oppo-

site direction when Re[αyy(ω)Gyy(⃗r2 − r⃗1)] = −1, which in turn leads to a resonant mode

where the two dipoles are oriented in the opposite directions. This is better illustrated in Fig-

ure 4.2(b) and (c).

The excitation mechanism of these two resonant modes is different from those in the pho-

tonic regime and the strong coupling regime. In the photonic regime, an antisymmetric mode

could arise if d = λ/2, which corresponds to a phase matching condition. However, the an-

tisymmetric mode in this intermediate regime arises when d < 0.1λ. In this case, the phase

accumulation due to multiple scattering enables the excitation of the antisymmetric mode for

subwavelength separation between the two nanoparticles. In the strong coupling regime, the

antisymmetric mode arises as a result of the hybridization of the individual dipole modes23,

which requires the separation d to be smaller than twice of the diameter of the nanoparticles

for the measured extinction cross section to be appreciative in a scattering experiment with

plane wave incidence34. This condition corresponds to λ/d > 27 for D = 15nm20 and this

mode gains strength as this ratio increases35. However, the antisymmetric mode in the in-

termediate regime can arise for λ/d <= 15 and loses strength as this ratio increases. More

importantly, the antisymmetric mode in the strong coupling regime can arise within the qua-
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a

b

c

Figure 4.2: Physical Origins of the twomodes. (a) Schematic of the system setup. Two objects of characteristic length

ro are separated by a distance d. The incoming wave propagates along x and is polarized along y. (b) Building up of the
symmetric resonant mode. WhenRe[αyy(ω)Gyy(⃗r2 − r⃗1)] = 1, the dipoles tend to enhance each other in the same
direction. Starting with two dipoles in the same direction, the red dipole on the left induces an extra red dipole on top of

the original blue dipole on the right, as indicated by the red dotted line in themiddle. Similarly, the original blue dipole

induces an extra blue dipole on top of the original red dipole, indicated by the blue dotted line. These induced dipoles

induce further dipoles as shown on the right and the whole process repeats until a resonance is built up. (c) Building up
of the asymmetric resonant mode. WhenRe[αyy(ω)Gyy(⃗r2 − r⃗1)] = −1, the dipoles tend to enhance each other in the
opposite direction. Similar process as in (b) leads to an asymmetric resonant mode.
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a b c

Figure 4.3: (a)Extinction cross sections for the single LSP(black), the antisymmetric mode(red), and the symmetric
mode(blue). In this plot, λp/d is chosen to be 15 and the cross section for the symmetric mode is multiplied by a factor
of 0.1. (b) The resonance frequencies of the antisymmetric mode and the symmetric mode as a function of λp/d. The red
dashed line corresponds to the antisymmetric modewhile the blue dashed line corresponds to the symmetric mode. The

resonance frequencies aremeasured in the units of the LSP resonance frequencyωp. (c)The damping rates of the anti-
symmetric mode and the symmetric mode as a function of λp/d. The red dashed corresponds to the antisymmetric mode
while the blue dashed line corresponds to the symmetric mode. The damping rates aremeasured in terms of the damping

rate of the single LSP damping rate κ. In all three plots, κr/κ is fixed to be 10% andωp/κ is assumed to be 20.

sistatic approximation34 where phase retardation is completely ignored. However, as we will

demonstrate below, the antisymmetric mode in the intermediate regime won’t couple to the

incident light in the quasistatic limit, which clearly points to a different origin from that in the

strong coupling regime.

For nanoparticles supporting LSPs, αyy(ω) can be written as

αyy(ω) =
3c3κr
2ω2

p

1
ω2
p − ω2 − iκω3/ω2

p
, (4.6)

where ωp is the single LSP resonance frequency, κ is the total damping rate and κr is the ra-

diative contribution to κ. This form has the merits of satisfying both the optical theorem and

causality in the absence of absorption38,39.

If we define ωo =
√
3c3κr/2ω2

pd3 and keep only the leading terms, we find the follow-

ing simplified expressions for the resonant frequency and damping rate for the antisymmetric
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Figure 4.4: Left: The resonance frequency of the symmetric mode as a function of λp/d, measured in units ofωp. Right:

The damping rate of the symmetric mode as a function of λp/d, measured in units of κ.
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mode:

ω− =

√
ω2
p − ω2

o cos
ωpd
c

Γ− =
ω2
o

ω− sin
ωpd
c

+
κ(ω−)2

ω2
p

= κ +
ω2
o

ω− sin
ωpd
c

− κω2
o

ω2
p
cos

ωpd
c

.

(4.7)

For the symmetric mode, the results are

ω+ =

√
ω2
p + ω2

o cos
ωpd
c

Γ+ =
κ(ω+)2

ω2
p

− ω2
o

ω+
sin

ωpd
c

= κ +
κω2

o
ω2
p
cos

ωpd
c

− ω2
o

ω+
sin

ωpd
c

.

(4.8)

The above formula implies that, under certain conditions, the damping rate of the antisym-

metric mode can increase above the single LSP damping rate κ, while the damping rate of the

symmetric mode can drop below κ. These conditions are

ωpd
c

>
ω−

ω2
p
κ

ωpd
c

>
ω+

ω2
p
κ
, (4.9)

which can be easily satisfied by gold nanoparticles as shown below.

The total extinction cross section for this system is found to be

σtot(ω) = σs(ω) + σas(ω), (4.10)
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where
σs(ω) =

8πωIm[αyy(ω)]
c
∣∣1− αyy(ω)Gyy(⃗r1 − r⃗2)

∣∣2
σas(ω) =

8πωIm[αyy(ω)]
c
∣∣1+ αyy(ω)Gyy(⃗r1 − r⃗2)

∣∣2
. (4.11)

We define σs(ω) as the extinction cross section for the symmetric mode and σas(ω) as that

for the antisymmetric mode. In order to show how effective this multiple scattering mech-

anism is in exciting the two modes, we plot the two extinction cross sections separately in

Fig.4.3(a), using the extinction cross section of the single LSP mode as the reference. Also

plotted in Fig.4.3 are the resonance frequencies ω±/ωp and the damping rates Γ±/κ as a func-

tion of λp/d, where λp = ωp/c is the light wavelength at the single LSP frequency. In these

calculations, κr/κ is fixed to be 10% and ωp/κ is assumed to be 20, which are chosen based

on a previous experiment on gold nanoparticles with D = 15nm20. When λp/d = 15, the

damping rate of the antisymmetric mode is boosted by a factor of 1.8, while the damping rate

of the symmetric mode is reduced by a factor of 5. Combined with a 10% ωp splitting in the

resonant frequencies, the two modes can be easily distinguished in an experimental setup.

Even though the antisymmetric mode is weaker than the symmetric mode, it is nonetheless

greatly enhanced by multiple scattering. As one can see from Fig.4.3a, the resonance peak

for the antisymmetric mode is only smaller than the single LSP resonance peak by a factor of

about two. Since the single LSP resonance is strong enough to enable single molecule detec-

tion46, the antisymmetric mode in this intermediate regime can certainly lead to observable

effects.

One way to understand the strange behavior of the linewidths of the two resonant modes in

this regime is by thinking about what a small or large linewidth means in this case. Taking the

symmetric mode for instance, the symmetric mode is calculated to have a sharpened resonance

when compared with the single nanoparticle case. What this reduced linewidth means is that if
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one changes the incident light frequency to be slightly away from the resonance condition, the

symmetric resonance dies off much faster than in the case with the same amount of frequency

change for a single nanoparticle resonance. This is because of the asymmetry in the expres-

sion for the dynamic polarizability (4.6). For higher frequency/energy, the single nanoparticle

resonance is more quickly damped than that for a lower frequency/energy, which makes intu-

itive sense. For the symmetric mode, the resonance frequency is shifted up when compared

with the single LSP resonance due to dipole-dipole interaction. This increased resonance fre-

quency means that the polarizability for each individual nanoparticle at the new resonance

frequency is now more sensitive to frequency changes than in the single nanoparticle case.

The symmetric mode is excited essentially through a phase matching condition(two dipoles

polarizing each other in the same direction). Compared with the case of the antisymmetric

mode, which has a reduced resonance frequency, the polarizability changes more in the sym-

metric mode case for the same amount of frequency change, destroying the phase matching

condition much faster than that for the antisymmetric mode. This explains why the linewidth

of the symmetric mode should be larger than that of the antisymmetric mode and the single

LSP mode.

As mentioned above, what distinguishes this antisymmetric mode in the intermediate regime

from that in the strong coupling regime is its reliance on the phase retardation in the inci-

dent field. If the phase retardation is removed by changing the polarization of the incident

light(E⃗0//x and k⃗//y), the antisymmetric mode is completely suppressed and only the sym-

metric mode can be excited. The resonance frequency and the damping rate for the symmetric

mode in this case are found to be The real and imaginary parts of the resonance frequency for
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the symmetric mode are found to be

ω′+ =

√
ω2
p − 2ω2

o cos
ωpd
c

Γ′+ =
κ(ω′+)2

ω2
p

+
2ω2

o
ω′+ sin

ωpd
c

= κ − 2κω2
o

ω2
p

cos
ωpd
c

+
2ω2

o
ω′+ sin

ωpd
c

.

(4.12)

These relations are plotted in Figure 4.4 using the same parameters as before. In this case, the

symmetric mode instead displays enhanced damping.

4.4 Plasmon Wavguiding

The integration and miniaturization of modern electronic devices is rapidly approaching

its fundamental limit. One proposal is to replace the electronic signals with optical signals56.

However, diffraction prohibits the localization of electromagnetic waves below one wave-

length, limiting the minimum size of photonic devices to be 1000 times larger than that of

electronic devices57. Plasmonics, which merges photonics and electronics at the nanoscale,

has emerged as a promising solution to this dilemma56,57,59,19.

One fundamental problem in plasmonics is how to transfer the electromagnetic energy at

the nanoscale with both low loss and large field compression. Existing proposals are either

based on Surface Plasmon Polaritons(SPPs) bound at the metal-dielectric interfaces60,61,62,63,

or the resonant modes in chains of Localized Surface Plasmons(LSPs) supported by metallic

nanostructures64,65,66,67. However, a basic trade-off exists between field localization and prop-

agation loss for SPPs. Long-range SPP modes experience only small dissipation, but have

poor subwavelength localization, while short-range SPP modes have large dissipation but

strong field localization56,57. Similarly, the resonant modes in chains of LSPs can compress

the electromagnetic field into nanoscale regions, but also exhibit very strong dissipation66,67.
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Figure 4.5: Schematic of the system setup for plasmonwaveguiding.The nanoparticles are arranged in an infinite one-

dimensional linear chain in the x-y plane, with two nanoparticles per unit cell(labeled as A(blue) and B(red)). The lat-

tice spacing is dl and the inter-particle distance within each unit cell is dc, both of which are significantly smaller than
the wavelength of the incident light, which is linearly polarized in the z direction and propagating in the x-y plane with

wavevector k⃗.
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a b c

Figure 4.6: Dispersion relation and damping rates for the infinite chain.(a)Resonance frequencies for the symmetric
mode(ω+) and the antisymmetric mode(ω−) as a function of λp/dl. (b)Damping rates for the symmetric mode(Γ+) and

the antisymmetric mode(Γ−) as a function of λp/dl. (c) The extinction cross section for eachmodewhen λp/dl = 15.
The extinction cross section for the symmetric mode is normalized for five unit cells, while the extinction cross sec-

tion for the antisymmetric mode is for fifty unit cells. In all the calculations, the following ratios are used: κr/κ = 0.1,
κ/ωp = 1/20, dl/dc = 2 and ky/kx = 1.

In this section, we propose an alternative structure based on LSPs and show that a new reso-

nant mode arises with both large field compression and weak dissipation. This mode exists in

an intermediate regime where the multiple scattering of the electromagnetic waves between

the LSPs has the dominating effect, and is beyond the prediction of the quasi-static approx-

imation, which was previously shown to be able to explain the resonant modes in arrays of

graphene microdisks24. Even though the strong coupling regime23,34 and the quantum tunnel-

ing regime40 have been extensively investigated in the literature, this intermediate regime, to

our best knowledge, is less explored and deserves more attention.

The setup of our system is shown in Fig.4.5. Nanoparticles supporting the LSPs are ar-

ranged in a linear periodic chain in the x-y plane, two per unit cell. The lattice spacing is dl

and the inter-particle distance within each unit cell is dc, both of which are assumed to be sig-

nificantly smaller than the wavelength of the incoming light. The incoming light is a plane

wave linearly polarized in the z direction and propagating in the x-y plane with wavevector

(kx, ky, 0). We first consider an infinite chain and numerical results involving a finite chain

follow.

We index each unit cell by an integer q and the two nanoparticles in each unit cell are la-
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beled either as A(blue in Fig.4.5) or B(red in Fig.4.5). One can then write the total electric

field at any position r⃗ in terms of the contribution from each nanoparticle:

E⃗(⃗r) = E⃗0(⃗r) +
∞∑

q=−∞

∑
i=A,B

Gzz(⃗r− r⃗q,i)αzz(ω)E⃗(⃗rq,i), (4.13)

where r⃗q,i is the location of the nanoparticle i(A or B) in unit cell q. Each E⃗(⃗rq,i) satisfies a

self-consistent condition:

E⃗(⃗rq,i) = E⃗0(⃗rq,i) +
∑

(p,j)̸=(q,i)

Gzz(⃗rq,i − r⃗p,j)αzz(ω)E⃗(⃗rp,j). (4.14)

In theory, one has such an equation for every pair of (q, i) and those equations need to be

solved simultaneously. However, the solution can be significantly simplified if the incoming

wave is translation invariant41. When E⃗0(⃗r) = E0ei(kxx+kyy)ẑ, we can relate E⃗(⃗rq,i) to E⃗(⃗r0,i) by

E⃗(⃗rq,i) = E⃗(⃗r0,i)eiqkydl , (4.15)

where dl is the lattice spacing as defined in Fig.4.

Plugging (4.15) into (4.14), we are left with only two equations:

E⃗(⃗r0,A) = E⃗0(⃗r0,A) + TA′→AE⃗(⃗r0,A) + TB→AE⃗(⃗r0,B)

E⃗(⃗r0,B) = E⃗0(⃗r0,B) + TB′→BE⃗(⃗r0,B) + TA→BE⃗(⃗r0,B),
(4.16)

where TA′→A(TB′→B) describes the interaction between the A(B) nanoparticle in the unit cell

zero and all the other A(B) nanoparticles, and TB→A(TA→B) describes the interaction between

the A(B) nanoparticle in the unit cell zero and all the B(A) nanoparticles. These four terms
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summarize all the possible multiple scattering effects in this system and they are given by

TA′→A =
∑
p̸=0

Gzz(⃗r0,A − r⃗p,A)αzz(ω)eikypdl

TB′→B =
∑
p̸=0

Gzz(⃗r0,B − r⃗p,B)αzz(ω)eikypdl

TA→B =

∞∑
p=−∞

Gzz(⃗r0,B − r⃗p,A)αzz(ω)eikypdl

TB→A =

∞∑
p=−∞

Gzz(⃗r0,A − r⃗p,B)αzz(ω)eikypdl

. (4.17)

For our system, TA′→A = TB′→B, TA→B = TB→A, and the solution to (5.3) is

E⃗(⃗r0,A) =
1
2
(
E⃗(⃗r0,A) + E⃗(⃗r0,B)
1− TA′→A − TB→A

+
E⃗(⃗r0,A)− E⃗(⃗r0,B)
1− TA′→A + TB→A

)

E⃗(⃗r0,B) =
1
2
(
E⃗(⃗r0,A) + E⃗(⃗r0,B)
1− TA′→A − TB→A

− E⃗(⃗r0,A)− E⃗(⃗r0,B)
1− TA′→A + TB→A

)

. (4.18)

Resonance arises when either one of the following conditions is satisfied

Re[TA′→A + TB→A] =1

Re[TA′→A − TB→A] =1
, (4.19)

corresponding to a symmetric mode and an antisymmetric mode respectively.

If Re[TA′→A + TB→A] = 1, E⃗(⃗r0,A) = E⃗(⃗r0,B), corresponding to a symmetric mode where

the two LSPs in each unit cell are polarized in the same direction, and it is an enhanced dipole

mode. If Re[TA′→A − TB→A] = 1, E⃗(⃗r0,A) = −E⃗(⃗r0,B) and it corresponds to an antisym-

metric mode, where the two LSPs in each unit cell are polarized in the opposite directions.

This is better seen in Fig.4.7, where we plot the electric field distribution for each mode. For

the symmetric mode, the real part of the electric field is enhanced in the middle of each unit

cell, while a minimum is instead achieved for the antisymmetric mode . For both modes, the
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Figure 4.7: Electric Field Distribution for the infinite chain.(a) Real part of the electric fieldEz in the z=0 plane for each

mode in the infinite chain. Left: the symmetric mode. Right: the antisymmetric mode. (b)The amplitude |Ez| in the z=0
plane for the infinite chain. Left: the symmetric mode. Right: the antisymmetric mode. In all the simulations, the follow-

ing ratios are used: κr/κ = 0.1, κ/ωp = 1/20, λp/dl = 15, dl/dc = 2 and ky/kx = 1.

amplitude of the electric field is a periodic function in y with period dl. From the real part of

the electric field, we can also infer that the antisymmetric mode has a longer wavelength and

smaller resonance frequency.

The resonance frequencies can be found by solving (4.19) numerically and they depend

only on the ratios of λp/dl, dl/dc and ky/kx. Once we find the resonance frequencies, we can

plug them back into (4.18) and find the corresponding damping rates and extinction cross sec-

tions. These results are shown in Fig.4.6.

Unlike the dimer case, the antisymmetric mode has a significantly reduced damping rate(by

a factor up to ten), while the symmetric mode is strongly damped. This reversal in behavior

is due to the competition between the short-range near field coupling and the long-range ra-

diative coupling. For the dimer case, the near field coupling dominates while the long-range

radiative coupling dominates for the infinite chain.
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Figure 4.8: Dispersion relation and damping rates for the finite chain.(a) Extinction cross sections for a finite chain con-
sisting of 20 unit cells. The extinction cross section for the antisymmetric mode is normalized for fifty unit cells, while

the cross section for the symmetric mode is normalized for five unit cells for comparison with Fig.4.6. (b) Real part ofEz

for the symmetric mode(left) and the antisymmetric mode(right). (c) The amplitude |Ez| for the symmetric mode(left)
and the antisymmetric mode(right). In all the calculations, the following ratios are used: λp/dl = 15, κr/κ = 0.1,
κ/ωp = 1/20, dl/dc = 2 and ky/kx = 1.

If we define a compression ratio as λ/dl, where λ is the light wavelength at the resonance

frequency, it can reach up to 30 for the antisymmetric mode. Thus, this antisymmetric mode

has the merits of both very weak dissipation and large field compression.

We plot the electric field distribution in Fig.4.7. As expected, the field distribution is peri-

odic and one can easily spot the difference between the symmetric mode and antisymmetric

mode.

In all the above calculations, we have assumed the following ratios: κr/κ = 0.1, κ/ωp =

1/20, dl/dc = 2 and ky/kx = 1. These values are chosen to match the experimental measure-

ments on gold nanorods with aspect ratio 3:1 and radius 7.5nm20.

For finite chains, translational symmetry is broken and (4.15) no longer holds. In this case,

the boundary could have a significant influence on the excited modes.

To study this finite case, we numerically simulate a chain consisting of only twenty unit

cells using the method in Ref.58 and the results are presented in Fig.4.8.

As we can see from Fig.4.8, the antisymmetric mode remains a sharp resonance with a com-
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pression ratio approaching 30 and its damping rate is reduced by a factor of five. The electric

field distribution for each mode is plotted in Fig.4.8(b) and (c).

It is worth mentioning that the reversal in behavior of the two resonant modes in terms of

linewidths when compared with the previous case is due to the long range radiative coupling

in the chained system, which has the dominant effect, while only near field matters in the plas-

mon dimer case.

4.5 Summary

To summarize, we introduce a new simplifying intermediate regime for studying the plas-

mon dimer system, where multiple scattering has the dominant effect. We show that one can

excite the antisymmetric mode by direct light illumination. It was previously believed that this

antisymmetric mode, important for plasmon-induced transparency49 and three-dimensional

plasmon rulers50, can’t be excited by the incident light in this ”weak coupling” regime and

one has to resort to either electron beam45 or designed structures with broken symmetry47,48,49,50

to activate it. More importantly, we show that multiple scattering can lead to significant changes

in the damping rates of the plasmon modes in this new regime. The damping rate of the sym-

metric mode, a highly radiating mode, can be reduced by a factor of five, while the damping

rate of the antisymmetric mode, a subradiant mode, is enhanced above the single LSP damp-

ing rate. The opposite behavior is observed for both the infinite and finite one dimensional

chains of LSPs with two LSPs per unit cell. In this case, multiple scattering and the long-

range radiative coupling give rise to an antisymmetric mode with both subwavelength field

compression and low dissipation. This could be important for many practical applications,

such as Surface-Enhanced Raman Scattering51, three-dimensional plasmon rulers50, improved

photovoltaic devices5, ultrasensitive biosensing27, optical emitters35,26 and plasmon waveg-

uides52. But most importantly, manipulating plasmon modes and their damping rate are of key
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importance in the field of plasmonics, and our results provide a new route to explore to this

end.
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5
Putting the Electromagnetic Fields into Shapes

The ability to manipulate electromagnetic fields on the subwavelength scale could offer un-

precedented opportunities in many fields of science, ranging from ultrasensitive biosensing27,

data processing38 to new platforms for probing many-body physics40. Enabled by the great

freedom of design provided by artificially engineered metamaterials70,71,72, transformation

optics73,74 offers a way to obtain control over electromagnetic fields through locally varying

a material’s permittivity and permeability, leading to exciting functionalities such as cloak-

ing71,75, optical illusion77 and metamaterial analog computing79.
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Here we demonstrate another possibility for manipulating electromagnetic fields, without

the need to engineer a material’s electromagnetic properties. Our design takes advantage of

the enormous size of the configuration space in combinatorial problems80 and the resonant

scattering properties of metallic nanoparticles, which, when illuminated by light with the

right frequency, give rise to resonant scattering modes known as the Localized Surface Plas-

mons(LSPs)19. These LSP modes bridge the gap between photonics and electronics56,57, and

in many ways behave like the atomic/molecular point scatterers used to build quantum cor-

rals81,82. Our design does not require the spatial engineering of a material’s electromagnetic

properties and can be made effective in the whole visible spectrum. Moreover, one can easily

extend the approach to other spectra by replacing the metallic nanoparticles with other scatter-

ers of light.

5.1 Quantum Corral

Quantum corral is one of the most successful products of the Scanning Tunneling Microscopy(STM)

technology. In a nutshell, quantum corral forms by confining electron surface wave inside a

corral formed by densely populated scatterers.

The first set of experiment probing the electron wave pattern insider a quantum corral was

reported in 199383 and the first multiple scattering theory explaining the formation of quan-

tum corral was proposed by Prof. Heller in the following year84. In the experiment83, iron

atoms were moved by a STM tip onto a Cu(111) surface. The iron atoms are densely spaced

around the perimeter of a circle and these iron atoms serve as the scatterers of the electrons

underneath inside the copper substrate.

On the copper substrate exists a type of surface states known as the Shockley surface states

and these are the only electron states available for scattering at the Fermi energy. In a typi-

cal experimental setup81, the wavelength of these surface states is around 29.5
o
A, which is

92



much larger than the size of the scatterers, iron atoms. When the physical size of the scatterer

is much larger than the wavelength of the electrons, one can make the s-wave scattering ap-

proximation.

In the experiment, the STM tip is raster scanning across the surface and recording the sig-

nal measured in each position. This pattern was observed to be a standing wave pattern in the

initial experiment83 and the authors used an ”electron in the box” model to explain the for-

mation of the standing wave pattern. This explanation works reasonably well when the iron

atoms are densely packed around the perimeter, but it does not account for the wave pattern

outside the box. In the subsequent year, a multiple scattering theory based on s-wave scatter-

ing was proposed to explain both the observed standing wave pattern , resonance energies and

the linewidth83. In the multiple scattering approach, a theoretical equivalence is established

between the Local Density of States(LDOS), the measurement in the STM, and the backscat-

tered amplitude, the quantity calculated using the theory.

5.2 Optical Corral

For quantum corrals, the multiple scattering of electron surface waves by the point scat-

terers leads to ”standing” wave patterns that could be probed by a scanning tunneling micro-

scope(STM). The optical analogy of quantum corral was theoretically predicted86 and experi-

mentally probed using a scanning near field optical microscope87.

For the optical corral, metallic nanoparticles are used as scatterers of the incident light. As

discussed in the previous chapter, the size of each metallic nanoparticle is much smaller than

the wavelength of the incident light. Thus, each nanoparticle responds to the incident light

very much as a point electric dipole moment. This makes the physics very much similar to the

quantum corral case, where each iron atom serves a point s-wave scatterer. In both case, the

scatterer’s size is much smaller than the wavelength of the wave being scattered and the way
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they scatter the incident wave involves only one mode, which makes the calculation much

easier.

For the optical corral, the metallic nanoparticles are arranged on the surface of a two dimen-

sional dielectric substrate. Given their configuration on the two dimensional surface, one can

solve a simple forward scattering problem86 to find out the resulting measured wave pattern.

Different configurations of nanoparticles lead to different wave patterns. In our project, we

answer the question:” Given a desired wave pattern, can we find a way to arrange the metallic

particles that will yield this pattern?”

5.3 Scattering-type Near-field Optical Microscopy

Before we get into the details of the setup for solving the inverse problem, we will first give

a brief introduction to the experimental technique for probing the electromagnetic field at the

nanoscale.

The state of the art technique is called scattering-type Near-field Optical Microscopy(s-

SNOM) and it was reported that the best spatial resolution it could achieve is 1nm85.

The setup is shown in Fig.5.1. A metallic tip is held on top of a surface being probed and

this tip is at the same time illuminated by a focused laser beam. The measurement in the ex-

periment is the amplitude being backscattered towards the tip. By recording the signal mea-

sured at each position, this can provide information about the electromagnetic properties of the

two dimensional surface.

The metallic tip is usually modeled as an electric dipole polarized in the z direction and it

sends out light in all direction. The response of the dielectric substrate is modeled within the

quasi-static approximation, since the distance between the tip and the surface is usually orders

of magnitude smaller than the wavelength of the light. That is, the substrate responds to the

electric dipole by generating a mirror point dipole with a polarizability equal to αβ, where α is
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Figure 5.1: A focused light beam illuminates ametallic tip , which is held on top of a two dimensional surface to be

probed. The scattered light is collected and brought to interfere with a reference laser beam to determine its ampli-

tude and phase. Bymoving the tip around and recording themeasured signal, one gets a two dimensional map of the field

distribution.

the polarizability of the tip and β is

β =
ϵs − 1
ϵs + 1

, (5.1)

where ϵs is the dielectric constant of the substrate88,89.

Overall, the effective polarizability of the metallic tip together with the substrate is

αeff =
α(1+ β)

1− αβ/(16π(a+ z)3)
, (5.2)

where a is the radius of the tip, which is modeled as a metallic sphere and z is the distance

from the center of the tip to the surface of the substrate.

Thus, one can just assume that overall electric response of the tip and the substrate is to gen-

erate an effective electric dipole in the z direction. When there are additional structure existent

on the surface, some of the wave will be backscattered towards the tip and the backscattered

wave will be interfering with the incoming field and also contributes to the signal. The col-

lected total backscattered wave is then brought into interference with a reference beam. The
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interference pattern is used to determine both the phase and amplitude of the backscattered

wave. In the experiment, the second harmonics is usually measured instead to reduce the noise

level from background scattering88,89.

By moving the tip across the two dimensional surface and recording the corresponding

backscattered wave, one can thus obtain a two dimensional image of the local electric re-

sponse of the material.

At first sight, it seems that s-SNOM operates based on very different physical principles

when compared with STM: STM is based on electron tunneling, but s-SNOM is based on light

scattering. However, if one takes a multiple scattering perspective, the two stories are actually

quite similar in flavor.

According to the multiple scattering understanding of the quantum corrals84, the STM tip

can be understood as an electron source that emits electrons in all direction. The emitted elec-

tron then moves freely on the two dimensional surface until it is scattered by some scatterers.

Some of the scattered electron wave will be directed back towards the tip and the interference

between the backscattered electron wave and the incident wave constitutes the signal being

measured by the STM tip.

Similarly in the case of s-SNOM, the metallic tip acts as an electric dipole source that sends

light in all directions. The light moves free in the free space until it gets scattered by whatever

obstruction there is on the surface. Some of the light will be backscattered towards the tip it-

self and will interfere with the incoming field. This interference amplitude is being recorded

and constitutes the signal being probed.

Thus, according to this multiple scattering formulation, both STM and s-SNOM can be un-

derstood within the same physical picture.
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5.4 Approach for shaping electromagnetic fields

Our approach for shaping electromagnetic fields relies on solving an inverse scattering

problem where the resulting wave pattern is prespecified and the configuration of nanoparti-

cles leading to that wave pattern needs to be determined.

A simple calculation reveals the enormous size of this configuration space. For 80 gold

nanoparticles(each with diameter 20nm) arranged within a two dimensional square of side

length 3.4μm(about six light wavelengths at the LSP resonance frequency), the number of all

possible configurations is more than 10235. This is even orders of magnitude larger than the

total number of atoms in the observable universe.

This enormous configuration space presents both challenges and promise for a possible so-

lution of the inverse problem. In terms of challenges, dealing with such a huge configuration

space is not easy. Given limited computing resources, one can only sample a small portion of

this configuration space and it is not guaranteed that one can find a given configuration with

limited amount of time. On the other hand, since the configuration space is so huge, one has

also a high chance of finding any pre-specified pattern.

In the following, we consider two possible schemes for solving this inverse problem and in

both cases, the control over the electromagnetic field is obtained through the manipulation of

the nanoparticles’ positions. Precise control of a nanoparticle’s position can be achieved using

either a near field optical nanotweezer99 or Atomic Force Microscope tip78.

Our first setup closely mimics that for the quantum corral81,82 and can be thought of as

a two dimensional plasmonic hologram. In this setup, gold nanoparticles are arranged on

the two dimensional surface of a dielectric substrate and a scattering type near field optical

microscope(s-SNOM)88,89,90,91 tip is raster scanning across the surface while being illumi-

nated by a focused laser beam at the LSP resonance frequency. The tip acts both as an illumi-

nation source and a probe that reads out the optical signal.
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As the source, the tip sends out light in all directions, which then propagates freely in space

until being scattered by the gold nanoparticles. Some of the scattered light will be directed

back towards the tip and they constitute the signal being read out. As one moves the tip across

the surface and records the signal at every position, it yields a two dimensional wave pattern.

It is this wave pattern that we will reverse engineer.

In the second setup, the sample is assumed to be illuminated by a plane wave with the LSP

resonance frequency. In this case, we do not necessarily need to probe the electric field dis-

tribution on top of the sample(even though one can still use s-SNOM in the probing mode to

measure the field distribution if one wants to) and instead we engineer the illumination pattern

itself. This setup is more relevant to the design of flexible optical traps.

5.5 Solving the forward problem

Our solution of the inverse problem relies on an efficient method to solve the forward scat-

tering problem, that is, given the positions of the metallic nanoparticles on the substrate, we

need to find the resulting pattern being probed by the s-SNOM tip or the illumination pat-

tern(incoming field plus scattered field without the tip).
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a.u.

Figure 5.2: Plasmonic Corral.The signal measured by a raster scanning s-SNOM tip in the illuminationmode(the tip is

polarized in the out of plane direction) when ten nanoparticles are uniformly arranged around the perimeter of a circle

with radius 3λ, where λ is the wavelength of the incident light at the LSP resonance frequency.

For this forward scattering problem, we adopt the same multiple scattering approach that

successfully explains both the quantum corral81,82 and the optical corral86,87. In this approach,

one first solves for the total electric field at each nanoparticle’s position using a set of self-

consistent equations:

E⃗(⃗ri) = E⃗0(⃗ri) +
∑
j̸=i

G(⃗ri, r⃗j)α(ω)E⃗(⃗rj), (5.3)

where r⃗i is the position of the ith nanoparticle(out of a total of N nanoparticles). E⃗0(⃗r) is the

incident electric field and α(ω) is the electric polarizability tensor that characterizes the scat-

tering properties of the nanoparticles.

G(⃗r, r⃗′) is the interaction tensor that describes how the electromagnetic field propagates in

the absence of the nanoparticles, and it includes contributions from both free space and the
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substrate. Therefore, we can decompose it into two parts:

G(⃗r, r⃗′) = G0(⃗r, r⃗′) + GS(⃗r, r⃗′). (5.4)

G0(⃗r, r⃗′) is the interaction tensor in free space and it is given by

G0(⃗r, r⃗′) = (k2 +▽▽)
eik|⃗r−⃗r′|

|⃗r− r⃗′|
, (5.5)

where k is the light momentum in free space.

GS(⃗r, r⃗′) is the interaction tensor generated by the substrate alone and it is provided in Ref.94.

Alternatively, one can also handle this term within the quasi-static approximation with the

methods of image charges44.

Once we find all the E⃗(⃗ri) after solving (5.3), the total electric field at any position r⃗ can be

found using:

E⃗(⃗r) = E⃗0(⃗r) +
N∑
i=1

G(⃗r, r⃗i)α(ω)E⃗(⃗ri). (5.6)

This method is shown to reproduce both the experimental results87 and more accurate nu-

merical solutions43,34,41 when the minimum separation between the nanoparticles is larger

than twice their diameter, which we impose as a constraint in our algorithm. As an exam-

ple, we apply this method to calculate the wave pattern probed by a s-SNOM tip in the illu-

mination mode when ten gold nanospheres, each with diameter 20nm, are placed around the

perimeter of a circle of radius 3λ, where λ is the incident light wavelength at the LSP reso-

nance frequency.
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5.6 Simulated Annealing

Simulated Annealing is one of the best examples where a physical phenomenon can be used

to solve very hard optimization problems80,96.

The best way to describe an annealing process is by giving an example. Suppose now we

have a glass full of small ice cubes and our target is to turn this glass of small ice cubes into

a whole large ice cube. A glass of small ice cubes is usually considered to be a higher energy

state since it is less ordered while a large whole ice cube, given the constraint of the shape of

the glass, can be thought as the ground state, which has the lowest energy. So in the words of

applied mathematician, we have got an optimization problem to solve here. We are essentially

trying to go from a high energy state, a glass of small ice cubes, to the lowest energy state, a

whole ice cube. The traditional way to solve an optimization problem is by an iterative ap-

proach. In an iterative approach, the configuration space or the parameter space is explored in

such a way that the value of the objective function to be minimized decreases monotonically.

However, the way Nature solves this problem is actually kind of interesting, at least quite

different from what a traditional applied mathematician would solve it. Instead of sampling

the configuration space in ways that monotonically decrease the energy, ”Nature” actually

heats up the system to a very high temperature state, which in the example of the ice cubes

means that the glass of the small ice cubes got heated such that the ice cubes melt into wa-

ter. Once we are in the high temperature state, one can then gradually lower the temperature.

At each temperature, the system is let to explore the configuration space in such a way that

it reaches a thermal equilibrium before going into a lower temperature. As one lowers the

temperature, the water molecule’s motion gets limited little by little and it gets to explore a

smaller subset of the whole configuration space. Physically, if one lowers the temperature

slowly enough, the system will eventually reach the ground state, a whole ice cube. Thus, in

this annealing process, Nature solves this complicated optimization problem by allowing con-
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trolled uphill energy changes. How many such changes are allowed and how far it can explore

depends on the temperature parameter.

Simulated annealing is essentially an algorithm designed to mimic this physical process. In

this algorithm, the objective function to be minimized is defined as the energy of the system

and we also need to introduce an artificial temperature into the system to tune the number of

uphill changes accepted.

The criterion for a thermal equilibrium in the physical sense is that the system reaches a

state such that its distribution can be described by a Boltzmann distribution:

P(E) ∝ exp(− E
kT

), (5.7)

where k is the Boltzmann constant.

The way a computer can simulate such a thermal equilibrium state is by using a Monte

Carlo method known as the Metropolis-Hastings algorithm98. It works by generating a Markov

Chain whose equilibrium state converges to the Boltzmann distribution.

One can describe a Markov Chain completely by its transition matrix or graph. For a Markov

Chain, the state at the next time step only depends on the immediate previous state and is inde-

pendent of all the other previous state, that is

P(xt+1|{xi : i < t+ 1}) = P(xt+1|xt)
def
= P(xt → xt+1). (5.8)

This transition probability can in general also be time dependent, but for our case, it is inde-

pendent of time. The idea behind the Metropolis-Hastings algorithm is completely based on

detailed balance. Suppose the target equilibrium distribution is P(xi), where xi is one of the
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possible state in the configuration space, the condition for detailed balance is then given by

P(xi)P(xi → xj) = P(xj)P(xj → xi). (5.9)

In physical terms, (5.9) says that the probability outflow going from state xi to xj is the same

as the probability inflow going from xj to xi in an equilibrium state. If the above condition

holds for all possible pairs of i and j, one can make sure that the equilibrium distribution is

given by P(xi). Detailed balance is a sufficient condition to achieve the equilibrium/target

distribution, but it is not a necessary condition.

In the design of such a Markov chain, the target distribution is given a prior, up to a normal-

izing constant. This is actually a very appealing property of this algorithm, since the normal-

izing constant for high dimensional system or the partition function as in statistical physics is

not always known or easy to obtain. Given this unnormalized target distribution, the task is

then to obtain a transition matrix that will satisfy the detailed balance condition.

If we go back to the case of a thermal equilibrium, we know that the desired equilibrium

distribution is proportional to exp(−E/T) (In the following, we will set k = 1.)and one transi-

tion probability that satisfies the detailed balance condition is

P(E1 → E2) = min(1, exp(−E2 − E1
T

)). (5.10)

It is straightforward to verify that

P(E1)P(E1 → E2) = min(exp(−E1
T
), exp(−E2

T
))

= min(exp(−E2
T
), exp(−E1

T
))

= P(E2)P(E2 → E1).

(5.11)
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Thus, detailed balance is satisfied and one can simulate the thermal equilibrium state at tem-

perature T by generating a Markov Chain with such transition probability.

One technical detail that is worth pointing out is that in order for a stationary distribution to

exist, the Markov Chain needs to be irreducible and positive recurrent. ”Irreducible” means

that the states in the Markov Chain are all fully connected, so if one starts at one state, it can

get to any other states with positive probability. This would not be possible if there are cy-

cles. The other condition, ”positive recurrent” means that if one starts at one states, there is

always a positive non-vanishing probability that it will return to the original state in the long

run, no matter how long the Markov Chain has been propagated. This would not be possible if

there are absorbing states in the state space. When such a limiting distribution exists, it is also

unique.

To summarize, the simulated annealing can be implement in four steps.

The first step is initialization. In this step, one starts with a random initial state and also

needs to decide an initial temperature. This temperature can in general be determined by tak-

ing the average energy fluctuation or standard deviation of the energy for a series of randomly

generated states. The reason behind this is that one wants to start at a high temperature state,

where all possible configuration is equally likely and the temperature is just a measure of the

underlying energy fluctuations.

The second step is the thermalization step. At each temperature, one needs to establish

a thermal equilibrium at that temperature. This is accomplished by using the Metropolis-

Hastings algorithm and designing a Markov Chain satisfying the detailed balance condition.

The third step is the cooling step. One needs to come up with a cooling schedule for this

step. The cooling schedule is essentially a plan on how one would lower the temperature. In

practice, two ways are in general used to decrease the temperature. One way is to decrease the

temperature by a fixed amount, usually a small fraction of the initial temperature. The other
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way is to decrease the temperature by a fixed percentage. In the first case, the temperature

decreases linearly, which can be a little bit dangerous near the phase transition point, where

one should spend more time on. In the second case, the temperature is lowered exponentially

slowly and the decrease in temperature is getting smaller and smaller. Of course, one needs a

ratio near one for this schedule to not miss the phase transition point as well. The second and

the third step has to be repeated many times before going to the fourth step.

The final step is the termination step. In this step, one needs a criterion to stop the above

two steps. Usually, there are a few heuristic criteria one can use to terminate the process. One

of them is to set a target temperature, usually a small fraction of the initial temperature, such

that whenever this temperature is reached, the process is terminated. Another way is to set a

lower bound on the average energy change. If the average energy decrease falls under a cer-

tain value, the process shall be terminated. A third method is to keep track of the fraction of

changes accepted at each temperature. If this fraction falls under certain threshold, the process

is terminated.

It is worth mentioning that as the temperature gets smaller and smaller, the number of changes

accepted will also get smaller and smaller if one stay at each temperature for a fixed amount

of steps. However, as true for the physical annealing process as well, one needs to spend more

time at lower temperature, especially near the phase transition temperature. One way to do

this is to set up a lower bound to the minimum number of changes to be accepted before one

moves to another temperature.

Before we conclude on this simulated annealing, we want to mention another point about

simulated annealing: Simulated annealing is nothing more than a heuristic algorithm and there

is no guarantee that it will ever find the global minimum in a finite number of time. Mathe-

matically, it was shown96 that in the limit where one lower the temperature infinitely slowly,

simulated annealing will converge to the true global minimum. However, the proof usually
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relies on the assumption that one reaches a perfect thermal equilibrium at each temperature

such that the whole configuration space gets sampled according to the Boltzmann distribution.

However, it is far from being a reasonable assumption in our case. If one really achieves a true

thermal equilibrium, there is no point in doing a cooling schedule then. One should just start

with a low enough temperature and find the equalbrium state at that temperature. In our case,

as we mentioned above, the configuration has a size on the order of 10235, but the simulated

annealing is finished in about ten millions steps, so one explores almost zero percent of the

whole configuration space in the whole annealing process. Thus, it is far from being true to

even claim the system is in thermal equilibrium at any temperature.

A better way to think about simulated annealing is to compare it with the iterative approach.

As mentioned before, iterative algorithms usually only permit changes in the energy down-

ward direction. Thus, if the function to be minimized is not convex and is multimodal, as in

most combinatorial optimization problem, which local minimum is found depends highly on

the initial condition. When the objective function or the energy function is multimodal, which

it usually is in higher dimensional space, this can be a very significant problem. The simu-

lated annealing is an improvement to this iterative approach in the sense that it does not just

allow changes that decrease the energy, but it also allows changes that increase the energy

while maintaining an overall downward trend in energy in the process. By accepting changes

that will increase the energy, it prevents the system from getting stuck in a shallow minimum,

which nevertheless is impossible to escape in the iterative approach.
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5.7 Genetic Algorithms

Genetic algorithms97 are another type of heuristic algorithms used to solve hard optimiza-

tion problems where the problem consists of a number of small basis units analogous to genes

in a biological system.

This type of algorithm is motivated by the Darwin’s natural selection theory. In its essence,

it says that if one individual is more likely to be considered of merit according to a given cur-

rent environment, it is more likely that his/her genes will be kept in the reproductive process.

On the contrary, if an individual is perceived to be of bad merits, it is less likely that his/her

genes will be preserved from generations to generations. As a result, after years of selections,

good genes have a higher relative probability being carried over from generations to gener-

ations and it should have a larger presence in a given generation. While for a bad gene, it is

less likely to be carried over, so it is less likely to be present or have a smaller ratio in a given

generation.

Thus when a given optimization problem contains basic units that take the roles of genes,

one can assign a merit value to each such gene. This merit function will in general be posi-

tively correlated with the objection function one tries to maximize. For instance, if one gene

is generally positively correlated with a high value of the object function, then it should be

assigned a high merit value. In the next generation/iteration, one should sample it more fre-

quently.

In general, a genetic algorithm can be divided into four steps: initialization, selection, ge-

netic operators and termination. In the four steps, selection and genetic operators are repeated

many time.

In the initialization step, a bunch of individuals are generated with random gene configura-

tions. Each of them will have a merit value. This merit value is different from the merit value

for genes. In this case, the merit value is assigned on an individual level and it decides how
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likely a given individual is selected in the selection step. As before, this merit value for each

individual will be decided by the objective function as well. These individuals make up the

first generation of the species.

In the selection steps, a subset of the individual from the previous generation is selected to

breed the next generation. The probability a given individual is selected depend on its own

merit value. Individuals with high merit values can be selected more than once, while individ-

uals with low merit values might not be selected at all.

The next step in this algorithm is called the genetic operators. There are in general two

types of genetic operators, known as crossovers and mutations. Both operators closely mimic

the DNA replication in the reproductive process. For crossovers, the genes from the two par-

ents are merged in a deterministic or random way such that the child contains part of the genes

from each parent. Mutations are different. It is generally a step that prevents the process being

stuck in a local optimum. In this step, part of the child’s gene is randomly modified or mu-

tated.

The selection step and the genetic operators are repeated many times until a certain termina-

tion criterion is satisfied. This termination criterion usually specifies that the process should

stop either when a local maximum is reached or when the process has been repeated long

enough.

5.8 Solving the inverse problem

Similar inverse problems were previously solved in the context of quantum mirages95 us-

ing optimization methods including simulated annealing96 and genetic algorithms97. Our

approach is primarily based on simulated annealing, with the addition of an adaptive updat-

ing step. The simulated annealing algorithm is based on the annealing process in statistical

physics, where a solid system is first melted at a high enough temperature and the tempera-
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ture is then gradually lowered until the system reaches the ground state. During the annealing

process, the energy of the system is gradually being decreased as the temperature is being low-

ered. For optimization problems, one just needs to define the function to be minimized as the

effective energy and ”simulate” the annealing process by introducing an effective temperature.

Without loss of generality, we engineer a pattern resembling the alphabetical letter ”H”.

This letter ”H” is first put onto a discretized grid as shown in Fig.5.3(A), where a red box rep-

resents a high signal measured in the s-SNOM tip while a blue box corresponds to a low sig-

nal(the meaning of ”low” and ”high” will become clear later). We define an effective energy

function that measures the ”distance” between any wave pattern from the desired wave pat-

tern. One convenient choice is

E = max
i∈Blue

mi − min
j∈Red

mj, (5.12)

where mi is the signal measured at the center of the ith box. This energy function will be grad-

ually decreased as one lowers the system ”temperature” and the resulting wave pattern will

approach the desired wave pattern during this annealing process.

The system is initialized with a random configuration and a high enough temperature T such

that all possible configurations are equally likely. Simulated annealing is then implemented in

an updating step and an acceptance step. In the updating step, a random change to the current

configuration is proposed, while in the acceptance step, the change in energy ΔE is calculated

and the current configuration is replaced by the proposed configuration with the following

probability:

P(ΔE) =

 1, ΔE ⩽ 0

exp(−ΔE/T), ΔE > 0
. (5.13)

This is the Metropolis-Hastings algorithm98 and it leads to the Boltzmann distribution in equi-
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Figure 5.3: Plasmonic Hologram. (A) The desired wave pattern discretized on a grid with grid spacing λ/4. (B)The con-
figuration of the nanoparticles that gives rise to the wave pattern ”H”. The black reference bar denotes onewavelength

of the incident light. (C) Thewave pattern asmeasured by the s-SNOM tip when the nanoparticles are arranged as in (B).

This whole region corresponds to the region inside the red rectangle in (B). (D) The energy function at each time step.

librium. After a target number of changes are accepted for a fixed temperature, the system is

cooled down to a lower temperature80 and the whole process repeats until a target temperature

is reached or when no more changes are accepted.

We slightly modify the updating step to incorporate information of low energy configura-

tions that have appeared before the current time step. We divide the position space into a finite

number of regions and each region is associated with a frequency weight that determines how

likely it is going to contribute a nanoparticle. Initially, all regions are equally weighted. At

every time step, each nanoparticle is assigned a frequency weight equal to the value of a merit

function, and this frequency weight is added to the region that nanoparticle belongs to. After

a few time steps, this builds up a frequency profile in space where more frequent regions are

more likely to contribute nanoparticles that yield low energy configurations. If one imagines

each region as a gene, the merit function then measures the quality of that gene and more fre-

quent regions correspond to genes with higher qualities. We use the following merit function

for our simulations:

f(E) =


(1− E

2T)
2, 0 < E < 2T

min(exp(−E/T), exp(5)), E ⩽ 0

0, otherwise

. (5.14)
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In the updating step, we randomly pick a nanoparticle from the current configuration. With

probability p, we uniformly generate a new random position for it and with the other 1-p prob-

ability, we generate a random position in its neighboring regions according to the current fre-

quency profile, favoring ”genes” with higher qualities.

The resulting configuration of the nanoparticles is shown in Fig.5.3(B) and the correspond-

ing signal pattern is plotted in Fig.5.3(C). When plotting Fig.5.3(C), our algorithm finds a

threshold signal value mc such that when the signal measured at the current tip position is

smaller than mc, it is colored blue(low signal), and red(high signal) otherwise. In these simu-

lations, we use 80 gold nanospheres with diameter D=20nm and resonance wavelength λ =

563nm20. The s-SNOM tip is assumed to be polarized in the z direction. To guarantee the

generality of the algorithm, we do not impose any symmetry constraint on the configuration

of the nanoparticles in the simulations. Interestingly, a quasi-symmetric pattern emerges in

Fig.5.3(B).

A plot of the energy at each time step is shown in Fig.5.3(D). As one can see, the energy on

average decreases over time with diminishing fluctuations. The average energy for random

configurations in this case is 11.9(arbitrary unit) with standard deviation 4.78. The final en-

ergy for the configuration in Fig.5.3(C) is -18.03, which is more than six standard deviations

below the average.

In the above case, the s-SNOM tip acts both as a signal probe and an illumination source.

Since the source itself is moving, the signal being read out is not the scattering wave pattern

itself, but a result of the interference between the incident wave and the backscattered wave at

each tip position81,82,88,90,86,87.

In Fig.5.4, we show the frequency profile that builds up at the end of the simulations. It

clearly shares certain similarity to Fig.5.3(B). This is comforting in the sense that the result is

converging. However, it by no means guarantee that we have found a global minimum. Also
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Figure 5.4: Frequency profile and temperature dependence of the number of changes accepted. Left: The frequency

profile that builds up at the end of the simulations. Clearly, it shares certain similarity to the profile in Fig.5.3(B). Right:

The number of changes accepted at each temperature.

Figure 5.5: Number of changes accepted at each ”thermal equilibrium”. The number of changes accepted at each thermal

equilibrium. Here t labels the temperature and a kink is clearly visible. In the simulations, we decrease the temperature

either when 4000( T
T0
)
1
4 changes have been accepted, where T0 is the initial temperature, or when 80000 changes have

been proposed.
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a b c

x
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Figure 5.6: Engineering the illumination pattern. (A) The configuration of the nanoparticles that gives rise to a scattering
wave pattern resembling the letter ”H”. We have imposed aminimum spacing constraint on each nanoparticle’s position

in the algorithm, so no two nanoparticles are overlapping. The blue circles in this plot is significantly enlarged for better

visualization.(B) The scattering wave pattern(|Ez|/|E0|) that is generated given the configuration in (A) and a plane wave
incident from the x direction. (C) The energy function at each time step.

shown in Fig.5.4 is the number of changes accepted at each temperature. The data here is a lit-

tle bit more misleading because we require a certain number of changes to be accepted at each

temperature, so the total number of proposals is not the same for each temperature. However,

a kink still develops at lower temperature as shown in the figure below.

A possibly more interesting problem is to engineer the illumination pattern itself, that is, to

engineer the scattering wave pattern given a fixed incident wave. Subwavelength control of

this illumination pattern can be relevant for a wide range of scenarios, including but not lim-

ited to the design of more flexible platforms for probing many body interaction40,99,100,101,102.

Consider an incident plane wave of the form E⃗0(⃗r) = E0eikxẑ. The same approach applies

with modified incident conditions. The results are shown in Fig.5.6. In this case, the average

energy(normalized by the magnitude of the incident wave) for completely random configu-

rations is 0.2 with standard deviation 0.06. The final energy for the pattern in Fig.5.7(B) is

-0.38, which is 9.7 standard deviations below the average. Moreover, the shaped electromag-

netic fields are spatially separated from the scatterers themselves. Thus, one can potentially

employ this approach to build optical traps for manipulating ultracold atoms’ interactions

without introducing undesired sources of decoherence. The corresponding frequency profile
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Figure 5.7: Frequency profile and temperature dependence of the number of changes accepted for the illumination

pattern case. Left: The frequency profile that builds up at the end of the simulations. Clearly, it shares certain similarity

to the profile in Fig.5.6(B). Right: The number of changes accepted at each temperature.

Figure 5.8: Number of changes accepted at each ”thermal equilibrium” for the illumination pattern case.The number

of changes accepted at each thermal equilibrium. Here t labels the temperature and a kink is clearly visible, possibly

indicating a phase transition.
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and accepted changes are shown in Fig.5.7 and Fig.5.8.

5.9 Summary

In summary, we have shown that one can gain a considerable amount of control over elec-

tromagnetic fields by solving the inverse scattering problem. In our examples, we use metal-

lic nanoparticles as the scatterers of light. By engineering their shapes and sizes, this design

could be made effective in the whole visible spectrum103. To extend this approach to other

spectra, one needs to use different types of scatterers. For instance, one can replace the metal-

lic nanoparticles with graphene nanostructures/microstructures for the infrared spectrum24,25.

Our design does not require spatial engineering of a material’s electromagnetic properties and

has relevance to developing more flexible platforms for probing light matter interaction or

many body effects.
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A
Random Potential Generation

There are two major kinds of disorders in the experimental system15. The first one is from

the charged donor atoms in the donor layer, whose distance to the 2DEGs can be controlled

experimentally. This distance is related to the correlation length of the random potential.

These randomly placed donor atoms contribute to a weakly correlated random potential which

barely does any backscattering.

The second one is from the impurity atoms, which can lie very close to the 2DEGs, result-

ing in a sharp potential that strongly backscatters.
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It is established both theoretically9,15 and experimentally11 that the random potential from

the donors is mainly responsible for branching while the impurity potential is responsible for

fringing, which is another striking observation of the experiment2,10. For the experimental

results11 we are interested in, fringing is significantly suppressed by using very high mobility

samples11. Thus, we shall focus only on the random potential due to donor atoms.

One simple model that takes into account screening yields the following result1 for the po-

tential due to one charged donor atom:

V(r) = −q
ℏ2

2m
d

(r2 + d2)3/2
, (A.1)

where q is the charge on the donor atom, d is the donor to 2DEGs distance and r is the distance

measured in-plane.

Given an estimate of donor density in the experiment, one can then generate a random po-

tential using the above model. However, in order to match the mobility of the experimental

samples, one needs to adjust the standard deviation of the strength of the random potential. As

estimated by both us and the experimental group in their supplementary material11, the result-

ing random potential has a standard deviation of 8%EF.

To characterize the legnth scale in the random potential, we define a correlation length

through the autocorrelation function of the potential. Given a random potential V(⃗r), the au-

tocorrelation function is defined to be < V(⃗r′ − r⃗)V(⃗r′) >, where the bracket means sample

or ensemble average over r⃗′. It is approximately true that the autocorrelation function has the

following scaling relation:

< V(⃗r′ − r⃗)V(⃗r′) >∼ e
− r2

l2c , (A.2)

where lc is defined to be the correlation length. For our sample, the correlation length is esti-
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mated to be lc = 0.9λF.
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B
Classical Simulation Methods

The classical simulations are based on the Newton’s equations and the only trick lies in how

to choose the initial conditions.

For the classical simulations, we use Monte Carlo method to generate 107 classical particles

with the following initial distribution in position and momentum, which is a transformation of

the initial quantum wav packet using the Wigner’s quasi-probability distribution:

P(x, px) =
1

πσpxσx
exp(− p2x

σ2px
− x2

σ2x
), (B.1)
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where σ2px = mℏω(y0) and σ2x = ℏ/mω(y0).

The advantages of this transformation, as mentioned in the main text, are: (1) it properly

accounts for the uncertainty principle and (2) it reproduces the quantum marginal position and

momentum distribution.

Additionally, to keep the matters simple, the energy of each particle is chosen to be fixed at

EF. This is guaranteed by eliminating trajectories with larger energy and boosting those with

less in py.

The time evolution of those particles is governed by the classical equation of motion and

the results are presented by the method of Poincare’s surface of section at fixed y. Essentially,

the idea behind Poincare’s surface of section is to reduce the dimension of phase space to two

by fixing y. Each classical particle can be represented in the four dimensional phase space by

(x, y, px, py). Since we are dealing with classical particles of fixed energy, the constraint im-

posed by the conservation of energy reduces the phase space structure to three dimensions.

The two dimension plots shown in the main text are done by further fixing y, which decreases

the degree of freedom by one. If one is interested in recovering the full three dimensional

structure in phase space, one can plot many two-dimensional plots at different y and com-

bine them. For our purpose, we are only interested in the saturated overlap produced by the

QPC. Therefore, we only show plots at a y that is sufficiently far away from the QPC, where

the overlap has saturated to a constant value.

For the classical flux simulations shown in the main text, we use the same Monte Carlo

methods to sample the distribution given by (B.1) and calculate the total flux through a given

point by counting the total number of classical particles that pass through a small neighbor-

hood of that point with weights determined by their momenta in the y direction.

From a numerical point of view, the most tricky part of this classical simulation is to guar-

antee energy conservation. The Newton’s equations, in its continuous form, guarantees energy

120



conservation, but when one converts it to the finite difference form, energy is no longer con-

served. Thus, one needs to reenforce energy conservation at each time step.
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