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Abstract

This dissertation examines the history of three early computer programs that were

designed to prove mathematical theorems: The Logic Theory Machine, the Program

P, and the Automated Reasoning Assistant, all developed between 1955 and 1975. I use

these programs as an opportunity to explore ways in which mathematical knowledge

and practice were transformed by the introduction of modern computing. The prospect

of automation generated disagreement about the character of human mathematical

faculties like intuition, reasoning, and understanding and whether computers could be

made to possess or participate in them. It also prompted novel discourse concerning

the character of mathematical knowledge and how it should be produced. I track how

the architects of each program built their beliefs about minds, computation, and proof

into their theorem-proving programs and, in so doing, crafted new tools and techniques

for the work of mathematics.

The practitioners featured in this dissertation were interested in whether or not

computers could “think.” I, on the other hand, am interested in how people think

differently when they work with computers. And in particular how they thought dif-

ferently about mathematics as they crafted a place for computers in the work of proof.

I look for traces of their new ways of thinking in how they implemented their software.

This is a new historiographical approach from existing history of computing that, for

the most part, does not engage software at all or engages high-level descriptions or

models of software.
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I argue this: what were for my actors implementation concerns are in fact signif-

icant epistemological issues for the history of mathematics. Especially in the early

decades, actually getting programs to run on computers was no small feat. In imple-

menting programs practitioners had to craft many new tools, both formal and material

- from programming languages and data structures to punched card encodings and user

interfaces. The work of implementation spans multiple media - from paper to transis-

tor - and involves many practices - from diagramming to coding - demonstrating that

the media of the “digital age” are multiple indeed. Moreover, implementation is the

site where we see practitioners rethinking their objects of interest, their disciplines,

their theories, through the lens of computation - what is possible and impossible for

computers to do. Implementation is the practice of automation.

In implementing their theorem-proving software, the actors in this dissertation gave

new formulations and had new experiences of mathematical intuition, logical rules of

inference, and other key tenets of twentieth-century notions of proof. The communi-

ties explored here were among the most influential and celebrated early contributors

to automated theorem-proving. Each had quite a different relationship to the postwar

American academic landscape relative to their disciplinary, institutional, and political

makeup. Most importantly for they fundamentally and explicitly disagreed with each

other about how the automation of proof should be done. Because of this, they devel-

oped very different automated theorem-proving programs – one seeking to simulate the

human mind, another seeking to surpass it, and another seeking to develop theorem-

proving software that would collaborate with a human user. Each of these projects

intervened in the history of mathematics by introducing new forms – both social and

technical – of proof.
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Introduction: Reformalism

Thinking (With) Machines

Alan Turing wanted to make an intelligent machine.1 In 1948 he speculated that the

‘surest way’ would be to “take a man as a whole and to try to replace all the parts of

him by machinery.”2 Turing imagined that this machine-man would become intelligent

in the same way that its flesh and bone counterparts do, namely, by engaging with the

world: “He would include television cameras, microphones, loudspeakers, wheels and

‘handling servomechanisms’ as well as some sort of ‘electronic brain.’ [...] In order that
1Turing (1912 - 1954) was a British mathematician and a pioneer of modern computing. In the

1930s, he developed some of the fundamental theoretical tenets of computation, and in the 1940s,
he was instrumental in the development of some of the earliest modern computers. See Turing, “On
Computable Numbers with an Application to the Entsheidungsproblem” in Proceedings of the London
Mathematical Society, Vol. 42 (1937): 230 - 265. See also Charles Petzold, The Annotated Turing:
A Guided Tour Through Alan Turing’s Historic Paper on Computability and the Turing Machine
(Indianapolis, IN: Wiley Publishing Inc., 2008). For a biography of Turing, see Andrew Hodges, Alan
Turing: The Enigma (Princeton, NJ: Princeton University Press, 2012 [1983]).

2Alan Turing, “Intelligent Machinery,” AMT/C, Unpublished Manuscripts and Notes, 11
http://www.turingarchive.org/viewer/?id=127&title=1, image 20. This essay was never published.
Turing was on sabbatical at Cambridge University at the time he wrote the paper, having just no-
tified the National Physical Laboratory (NPL) that he was leaving their employ for the University
of Manchester. He was obligated to send copies of his work to Charles Galton Darwin, then head
of the NPL. Darwin reported in an Executive Committee meeting that the essay “although not suit-
able for publication, demonstrated that [Turing] had been engaged in rather fundamental studies.”
(See “Minutes for the Executive Committee of the National Physical Laboratory” for 28 Septem-
ber 1948, http://www.alanturing.net/turing_archive/archive/l/l100/L100-001.html). According to
Robin Gandy (as cited by Jack Copeland) Darwin also referred to the paper as a “school boy’s essay”
(Copeland, Turing: Pioneer of the Information Age (Oxford, U.K.: Oxford University Press, 2012):
p. 190).
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the machine should have a chance of finding things out for itself it should be allowed to

roam the countryside.”3 This approach to making intelligent machinery was plagued

with many difficulties, however. For one thing, if composed of late 1940s technology

this machine-man would be of “immense size” and if allowed to roam the countryside

“the danger to the ordinary citizen would be serious.” Moreover, Turing observed that

“the creature would still have no contact with food, sex, sport, and many other things

of interest to the human being” and its ability to develop like a person would be limited.

Ultimately, Turing concluded that “although this method is probably the ‘sure’ way

of producing a thinking machine” it would be too slow and impractical. Instead, he

proposed to “try and see what can be done with a ‘brain’ which is more or less without

a body.”4

The “electronic brains” that Turing had in mind were modern digital computers
3Alan Turing, “Intelligent Machinery,” image 20 - 21.
4Alan Turing, “Intelligent Machinery,” image 21. In this essay, Turing was agnostic about what

precisely intelligence is. He neither defines intelligence nor suggests a method by which we might know
if intelligence had been achieved in a machine or not. Instead he takes for granted that machines could
become intelligent and explores different mechanisms by which this might be accomplished. Two years
later he published one of his most influential papers, “On Computing Machinery and Intelligence,”
that took the exact opposite approach. In that later paper, he proposed a test for deciding whether
or not a machine should be said to be thinking - a test that concerns only the behavior, specifically
text-based and discursive behavior, of the machine and cares nothing for the mechanisms that produce
this behavior. Also of note is Turing’s emphasis on embodiment in relation to intelligence. He suggests
in the unpublished 1948 paper that the production of intelligence is tied to a particular form - namely
the human body - and to particular kinds of experience - roaming the world, sex, sport, food, and so
on. “Embodied” rather than “embrained” conceptions of intelligence were not common in the 1940s.
This suggestion of a relationship between body and intelligence is also different from Turing’s 1950
paper in which he explicitly excludes bodies from his test for intelligence. Turing’s test for intelligence
was actually a variation of a parlor game concerning gender. In the original game, a man and a woman
try to convince a judge of either sex that they are the woman (the man pretending, the woman as
herself). The judge can ask them questions, answered on paper to hide their form, and must guess.
Turing proposes that the computer be swapped for the man in this game, and it and a human try to
convince the judge that they are the human, again with text-based discourse. Turing indicates that
if the computer can fool the human judge that it is the person as often as the man can fool the judge
that he is the woman, that machine should be said to think. One explanation for the original gender
formulation of the Turing Test is that Turing was persecuted throughout his life for being gay. He was
criminally prosecuted in 1952, imprisoned, and eventually chemically castrated, transforming his own
body in several ways. The 1948 unpublished paper complicates the purely behaviorist and text-based
“Turing Test” for which he became most famous by pointing to bodies, form, experience as vectors in
intelligence. See Turing, “Computing Machinery and Intelligence” in Mind, Vol. 49 (1950): 433 - 460.
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that he and others had been working to develop throughout the mid-1940s.5 But

what exactly could “electronic brains” do without bodies? What kind of intelligent

behavior might they be capable of developing or exhibiting without being able to roam

and engage the world? Luckily, Turing believed that there were a few domains of

human intelligence that could be attained by a disembodied brain alone, because “they

require little contact with the outside world.”6 Mathematics, he proposed, was one

such domain.7

5The vocabulary of “electronic brains” was common among early descriptions of computers. See, for
example, C. Dianne Martin, “ENIAC: Press Conference That Shook the World” in IEEE Technology
and Society Magazine, (Winter 1995/1996): 3 - 10; Bernadette Longo, “Metaphors, Robots, and the
Transfer of Computers to Civilian Life” in Comparative Technology Transfer and Society Vol. 5, No.
3 (December 2007): 253 - 273; Ted Friedman, “Filming the “Electronic Brain” ” in Electric Dreams
(New York, NY: NYU Press, 2005): 47 - 78. The computers that this language was crafted to describe
emerged in the mid-1940s, though historians of computing hesitate to identify any definitive “first” such
machine. A discussion of the contentious discussion surrounding “firsts” in computing, see Thomas
Haigh, Mark Priestley, Crispin Rope, “Reconsidering the Stored-Program Concept” in IEEE Annals
of the History of Computing, Vol. 36, No. 1 (2014): 4 - 17. General histories of early computing
machines include Paul Ceruzzi, A History of Modern Computing (Cambridge, MA: The MIT Press,
2003 [1998]); Martin Campbell-Kelly, Computer: A History of the Information Machine (New York,
NY: Basic Books, 1997); Larry Owens, “Vannevar Bush and the differential analyzer: The Text and
Context of an Early Computer” in Technology and Culture, Vol. 27, No. 1 (1986): 63 - 95; Raúl
Rojas, Ulf Hashagen, The First Computers; History and Architectures (Cambridge, MA: The MIT
Press, 2000).

6Alan Turing, “Intelligent Machinery,” image 21.
7He also included game playing and language translation in this category. These three domains

became central focuses for Artificial Intelligence research throughout the second half of the twenti-
eth century. There are different accounts of why AI practitioners converged upon these fields. For
example, Alison Adam argues in Artificial Knowing: Gender and the Thinking Machine (New York,
NY: Routledge, 1998) that each of these domains was thought to epitomize “intelligence” because
they were male-dominated fields traditionally thought to epitomize “rationality,” and “reason.” These
traits were historically gendered male and opposed to feminized “emotion” and “sensitivity” in schemes
where women were associated with the body and men were associated with the mind. Harry Collins
has argued, in Artificial Experts: Social Knowledge and Intelligent Machine (Cambridge, MA: The
MIT Press, 1992) that because machines are not social beings, much of human knowledge will be in-
accessible to them as knowledge is inherently social in character. According to Collins, machines will
only ever be capable of participating in knowledge-making in domains where human activity in them
has been mechanized and rule bound already in advance. Game playing and mathematics were such
domains and that is what made them viable choices for Artificial Intelligence research. Pamela Mc-
Corduck offers an actor-informed narrative account of the emergence of Artificial Intelligence and the
early choices of domains in Machines Who Think: A Personal Inquiry into the History and Prospects
of Artificial Intelligence (New York, NY: A K Peters, 2004). Early AI drew from an longer older
historical tradition in which mind and reasoning processes - especially in mathematics - have been
theorized, modeled, and understood in terms of machines and mechanisms. Examples of literature
that explore the history of mechanism and mind include: Phil Husbands, Owen Holland, Michael
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Early computers were used primarily for calculation - they were both functionally

intended and conceptually understood as numerical data processing machines that

could add, divide, solve differential equations, and so on.8 This is not what Turing

had in mind. Turing wanted intelligent behavior from these electronic brains, and

calculation had long been stripped of that distinction and relegated to the domain

of the merely “mechanical.”9 Turing hoped computers could operate in nonnumeric

domains of mathematics - in logic, geometry, set theory, algebra, and so on in which

problems and their solutions were not numerical.

Over the next two decades, it seemed that Turing’s vision had been realized - be-

ginning in the mid-1950s computers were hailed by some as “artificial mathematicians,”

“mathematical colleagues,” and “mathematical assistants.” These computers had been

programmed to participate in one of the central activities of mathematical research -

they were producing proofs.

As conceived in the twentieth century, proofs are deductive arguments that certain

consequences must follow from certain premises. Proofs are meant to show that those

Wheeler, The Mechanical Mind in History (Cambridge, MA: The MIT Press, 2008); Roberto Corde-
schi, The Discovery of the Artificial: Behavior, Mind and Machines Before and Beyond Cybernetics
(Berlin: Springer, 2002); Margaret Boden, Mind as Machine: A History of Cognitive Science, Volume
1&2 (Oxford, UK: Oxford University Press, 2002).

8Especially in the United States, early computing machines were used for the calculation of ballistics
trajectories, numerical simulations of weather systems, nuclear weapons explosions and so on. See
for example Harry Polachek, “Before the ENIAC” in IEEE Annals of the History of Computing, Vol.
19, No. 2 (1997): 25 - 30; Peter Galison, “Monte Carlo Simulations: Artificial Reality” in Image
and Logic: A Material Culture of Microphysics (Chicago, IL: University of Chicago Press, 1997):
689 - 780; Thomas Haigh, Mark Priestley, Crispin Rope, “Betting on ENIAC: Nuclear Monte Carlo
Simulations, 1947-50) in IEEE Annals of the History of Computing (forthcoming); Paul Edwards, A
Vast Machine: Computer Models, Climate Data, and the Politics of Global Warming (Cambridge,
MA: The MIT Press, 2013); Kristine Harper, Weather by the Numbers: The Genesis of Modern
Meteorology (Cambridge, MA: The MIT Press, 2012). The transition from numeric computing to
nonnumeric computing will be discussed further in the section “The Possibilities of Computing” below.

9Lorraine Daston has argued that at one time the ability to perform complex calculations was
associated with a kind of virtuoso cognitive ability - it was held up as a hallmark of intelligence.
However, once calculating machines were developed that could perform the same tasks faster and
more effectively, calculation became identified as rote, mechanical, and base rather than exceptional,
and remarkable in people. See Daston, “Enlightenment Calculations” in Critical Inquiry, Vol. 21, No.
1 (Autumn, 1994): 182 - 202.
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consequences are true, that they are theorems. Proofs and the logical infrastructure

thought to support them have often been thought to epitomize the powers of deductive

reasoning and with it, a significant facet of human intelligence. If computers were

proving theorems, then these so-called “electronic brains without bodies” would have

made their way successfully into a domain long reserved exclusively for human thinking

and human intelligence.

But were these computer programs really proving theorems? Were they actually

intelligent? What exactly is a proof ? Computers made possible new and powerful

methods of theorem-proving but they also raised some fundamental questions. Some

so-called computer proofs are too long for any person to read all the way through.

Others make use of operations too complex for the human mind to easily understand

and follow. Not everyone agreed that these should count as proofs. Not everyone

agreed that computers were thinking. Not everyone agreed that thinking was required

for theorem-proving.

These and related questions have been debated by mathematicians, philosophers

of mathematics, and computing researchers since the advent of automated theorem-

proving research in the mid-1950s.10 The possibility of automating proof motivated
10The most infamous so-called “computer proof,” and the one that motivated much of this disagree-

ment, was that of the Four Color Theorem. The Four Color Conjecture asked a deceptively simple
question: can every map be colored such that no two neighboring countries share the same color (with
some caveats, e.g. all countries must be contiguous, barring disconnected pieces like Alaska)? The
problem remained open for more than a century, in spite of sustained efforts on the part of numerous
mathematicians. A proof was announced in 1976, by Kenneth Appel and Wolfgang Haken who en-
listed the assistance of a computationally adept graduate student John Koch, and several computers
in service of the proof. The proof was controversial for a number of reasons, but most especially
because the computer contributions were not surveyable: no person could or has ever read through
them all the way. As such, something other than a step by step reading of the proof would have
to suffice to convince mathematicians that the result was correct - they had to trust the program,
they had to trust the programmers, and they had to trust the computers. Readers interested in this
proof and the surrounding controversy can consult Kenneth Appel, Wolfgang Haken, “Every Planar
Map is Four Colorable” in Illinois Journal of Mathematics, Vol. 21, No. 3 (1977): 429 - 490; Appel,
Haken, “The Four Color Proof Suffices” in The Mathematical Intelligencer, Vol. 8, No. 1 (1986): 10
- 20; Appel, “The Nature of Proof: Limits and Opportunities” in The Two-Year College Mathematics
Journal, Vol. 12, No. 2 (1981): 118 - 119; Donald Albers, “Polite Applause for a Proof of One of the
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practitioners to revisit the idea of “proof” itself, through the lens of computers and

their perceived abilities and constraints. It also prompted novel and explicit debate

about the character of human mathematical faculties like intuition, imagination, and

reasoning, and whether or not computers could be made to possess them.11

This question - “can computers think” or how they might be made to do so - has been

explored by many people.12 That is not the question that motivates this dissertation.

Instead I ask, how do people think differently with computers? And in particular how

did they think differently about mathematics as they crafted a place for computers in

the work of proof. This dissertation is a history of early automated theorem-proving

programs. I am interested in how these programs were developed and in the new formal

and material tools that were crafted in tandem. I ask - what happened to proof when

these practices and tools, these programs, were introduced?

Mathematics is often held up as the most abstract of disciplines. Its truths are

thought to obtain always and everywhere, its objects defy the confines of the physical

world, and its deductive character is thought to escape the uncertainty of experiment

Great Conjectures of Mathematics: What is a Proof Today?” in The Two-Year College Mathematics
Journal, Vol. 12, No. 2 (1981): 82; Donald MacKenzie, “Slaying the Kraken: The Sociohistory of
a Mathematical Proof” in Social Studies of Science, Vol. 29, No. 1 (1999): 7 - 60; Stuart Shanker,
“The Appel-Haken Solution of the Four-Colour Problem” in Ludwig Wittgenstein: Critical Assess-
ments (New York, NY: Routledge, 2004): 395 - 412; Michael Detlefsen, Mark Luker, “The Four Color
Theorem and Mathematical Proof” in The Journal of Philosophy, Vol. 77, No. 12 (1980): 803 - 820;
Thomas Tymoczko, “The Four-Color Problem and Its Philosophical Significance” in New Directions in
the Philosophy of Mathematics (Princeton, NJ: Princeton University Press, 1998): 243 - 266; Rudolf
Fritsch, Gerda Fritsch, The Four-Color Theorem: History, Topological Foundations, and Idea of Proof,
trans. Julie Peschke (Berlin: Springer, 1998).

11The field of automated theorem-proving is thus a “powerful disclosing agent” for beliefs about
minds, computers, and proof. This phrasing comes from Lucy Suchman, who proposes that emotive
robotics is a “powerful disclosing agent” for assumptions about the nature of human emotions. See
Lucy Suchman, Human–Machine Reconfigurations: Plans and Situated Actions (Learning in Doing:
Social, Cognitive, and Computational Perspectives) (Cambridge: Cambridge Univ. Press, 2006), p.
226.

12To name just a few, Alan Turing, “Computing Machinery and Intelligence” in Mind, Vol. 59
(1950): 433 - 460; Edward Feigenbaum, Julian Feldman eds., Computers and Thought (New York,
NY: McGraw Hill, 1963); Harry Collins, Artificial Experts: Social Knowledge and Intelligent Machines
(Cambridge, MA: The MIT Press, 1992); Hubert Dreyfus, What Computers Still Can’t Do: A Critique
of Artificial Reason (Cambridge, MA: The MIT Press, 1992).
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and empiricism. Even Thomas Kuhn assigned a special status to mathematics, ex-

cluding it from his discrete model of revolution and rupture in the history of scientific

knowledge.13 I use automated theorem-proving as a way to suggest that even ab-

stract objects have histories. I use it to explore the relationship between abstraction

and materiality, between theorems and technology. I use it to emphasize that the

way mathematics is done - by whom and with what - gives rise to particular abstract

worlds, offers up particular questions and concerns, and ultimately shapes the character

of mathematical knowledge and its objects.

It is a twentieth-century story. I trace how early work in automated theorem-

proving produced different forms of proof than those of early twentieth-century math-

ematicians and logicians. In the early twentieth century, a particular culture of proof

emerged that sought to reduce all of mathematics to logic - logicians wanted to for-

mulate the branches of mathematics as deductive systems in which all truths could be

produced by the application of clearly articulated inference rules to primitive princi-

ples, or axioms. This tradition of proof also had a particular material culture. It was

a written, paper-based tradition - elaborate written symbol systems were designed to

make the writing and reading of deductive proofs accessible and standardized. Proofs

were collected in the pages of books meant to collect and consolidate mathematical

knowledge in opposition to worry that its many branches were growing too far from

one another through increasing specialization.14

Automated theorem-proving intervened in both the formal and the material dimen-

sions of this early twentieth-century culture of proof. Early theorem-proving programs

worked within formal deductive systems, often even proving the same theorems as those
13Thomas Kuhn, The Structure of Scientific Revolutions, third edition (Chicago: University of

Chicago Press, 1996), p. 15.
14I discuss this tradition of proof at greater length in the section “Proving Theorems in the Twentieth

Century” below, and in the section “A Mathematical World on Paper” in Chapter One.
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penned by their human counterparts earlier in the century. But as we will see, they

proved them differently. They made use of different rules of inference and different

representation systems that were devised by their architects. They weren’t proving

theorems on paper but rather in the various electromagnetic media of early digital

computation. When automated theorem-proving practitioners took elements of early

twentieth-century proof and “put them into the computer,” they changed them.15 By

the late twentieth century proof came in new and different forms.

To track this trajectory, I examine the development of three theorem-proving com-

puter programs in particular: The Logic Theory Machine, developed by Herbert Simon,

Allen Newell, and John Clifford Shaw in the mid-1950s at the RAND Corporation in

Santa Monica, CA; the Program P, developed in the late 1950s by Hao Wang at Bell

Systems Laboratories and later at the IBM Research Laboratory in Poughkeepsie, NY;

and the Automated Reasoning Assistant, or AURA, developed in the early 1970s by

Larry Wos, Stephen Winker, Ross Overbeek, John Alan Robinson, and others in the

Applied Mathematics Division at the Argonne National Laboratory near Chicago, IL.16

I chose these three programs because they were among the most influential and

celebrated early contributions to automated theorem-proving. I also selected them be-

cause, as we will see, their architects had quite different relationships to the postwar

American academic landscape relative to their disciplinary, institutional, and political
15This phrase comes from Michael Mahoney, “What Makes the History of Software Hard,” in IEEE

Annals of the History of Computing, Vol. 30, No. 3 (2008): 8 - 18, p. 9.
16For published descriptions of these programs, see: Allen Newell, Herbert Simon, John Clifford

Shaw “Empirical Explorations of the Logic Theory Machine: A Case Study in Heuristics” in Proceed-
ings of the Joint Western Computer Conference (1957): 218 - 230; Hao Wang, “Toward Mechanical
Mathematics” in IBM Journal of Research and Development, Vol. 4, No. 1 (1960): 2 - 22; Wang,
“Proving Theorems by Pattern Recognition I” in Communications of the ACM Vol. 3, No. 4 (1960):
220 - 234; Larry Wos, “Solving Open Questions with an Automated Theorem-Proving Program” in
Proceedings of the Conference on Automated Deduction (1982): 1 - 31; Larry Wos; Stephen Winker,
“Open Questions Solved with the Assistance of AURA” in Automated Theorem-Proving After 25
Years, Vol. 29 of Contemporary Mathematics, eds. Woody Bledsoe, Donald Loveland (Providence,
RI: American Mathematical Society, 1984): 73 - 88.
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makeup. But primarily, I selected them because they were developed by practitioners

who fundamentally and explicitly disagreed with each other about how the automation

of proof should be done. Because of this, they designed and implemented very differ-

ent automated theorem-proving programs which in turn introduced different forms of

proof. These three programs came to serve as exemplars of the different approaches to

theorem-proving adopted throughout the twentieth century.

The dissertation tracks their chronological development and the overarching debate

in which each was situated. That debate concerned the central question of whether

computers could or should prove theorems in the same way that their human coun-

terparts do. The Logic Theory Machine was intended to simulate a human mind - its

architects, Newell, Shaw, and Simon believed that at least in principle, the computer

was capable of acquiring any faculties employed by human mathematicians when they

proved theorems.

Wang disagreed. He believed that computers neither could nor should be made

to simulate human reasoning practices, but instead their real contribution would be

in performing mathematical analysis that was beyond the capacities of their human

counterparts. The Program P was therefore designed to follow paths that the human

mind was incapable of pursuing, and possibly that people would be incapable of even

reading.

The Argonne team disagreed with both approaches, believing that computers would

not be able to prove theorems on their own at all. Instead, they thought that significant

results in mathematics would always require the direction and guidance of human

insights and efforts. However, they also thought that there was room to capitalize on

the power of computation to enlarge the world of mathematical exploration. As such,

they designed theorem proving programs that could collaborate in real time with a

human user to prove theorems. They thought they would capitalize on computers’ and

9
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humans’ unique and different mathematical talents.

Each of these theorem-proving programs embodied different answers to questions

about the character of human mathematical faculties, about the possibilities and lim-

itations of computers, and about what kind of knowledge mathematical knowledge

should be. These communities of automated theorem-proving practitioners operated

with different beliefs about minds, computers, and proof - they were reconfigured in

tandem.17 Because of their different beliefs, these practitioners also developed very dif-

ferent theorem-proving programs. It is there, in the translation of belief and motivation

into running program, that I believe some of the most interesting transformations in

the character of proof took place.

I mean to invoke three distinct meanings of “after math” in the title of this dis-

sertation. First, the dissertation itself is “after math” in the sense of being in pursuit

of it. I want to know about mathematics - to understand its social, material, and

historical character. I am following mathematics into a particular historical moment

- one in which computers have become a new technological and conceptual resource

for the work of proof. I follow mathematics into the media of digital computing, the

sites where computing takes place, and into the hands of computing practitioners to

see what became of it there.18

17I borrow this language of “reconfiguration” from Lucy Suchman, Human-Machine Reconfigura-
tions: Plans and Situated Actions (Cambridge, UK: Cambridge University Press, 2007). I describe
how my project corresponds to hers in more depth in the section “(Re)configuring Minds and Com-
putation” in the Conclusion of the dissertation.

18I use this phrase “computing practitioner” to refer to all manner of people who worked on the
design, operation, and programming of computing machines. I do not call them “computer scientists”
since its eponymous discipline did not exist until the 1970s and the term also excludes certain people
that I seek to include in my story, including engineers and operators of various kinds who were instru-
mental to the history of computing. For discussion of the various kinds of people and communities
involved in early computing history, see John Alan Grier, When Computers Were Human (Princeton,
NJ: Princeton University Press, 2005); Jennifer Light, “When Computers Were Women” in Technol-
ogy and Culture, Vol. 40, No. 3 (1999): 455 - 483.; Nathan Ensmenger, The Computer Boys Take
Over: Computers, Programmers, and the Politics of Technical Expertise; Thomas Haigh, “Inventing
Information Systems: The Systems Men and the Computer, 1950 - 1968) in The Business History
Review, Vol. 75, No. 1 (Spring 2001): 15 - 61
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In another regard, the three computer programs on which the dissertation focuses

are “after math” in the sense of being in its image. Each of the three computer programs

were built to resemble mathematics - to embody ideas about what mathematics is, how

it works, and how new knowledge is made within it. My historical actors were also

“after math” when they encoded and translated it into new material forms.

Finally, in certain significant ways, we are living after math, in the sense of be-

ing “post” mathematics. Long held beliefs about what mathematics is, how we know

in mathematics, how the work of mathematics is done, by who or what, have been

challenged and continue to be challenged in light of the advent of computing. Math-

ematics has been opened up to include elements of other disciplines, like engineering,

other ways of knowing, like experimentation and empirical exploration, and to new

agents, like computers. Mathematics has changed, and in the aftermath of comput-

ing traditional foundations and epistemologies no longer suffice to define the work of

proof.19

The Argument

I argue this: what were for my actors implementation concerns are in fact significant

epistemological issues for the history of mathematics. There is no automation without

invention, nor is automation merely an exercise in mere representation. Especially in

the early decades, actually getting programs to run on computers was no small feat.
19In this regard, I follow Marilyn Strathern who in After Nature pursues a similar three-part explo-

ration of the concept of “nature.” Strathern is after nature in the sense of seeking to understand that
word and its associated concepts, practices, and beliefs. She is also interested in perceptions of the “so-
cial” as being built “after the image” of nature which was long thought to provide the irrefutable facts
of reproduction and kinship upon which culture was built. She is also interested in how the concept
of “nature” has been troubled and dismantled in the face of assisted-reproductive technologies that
throw into question the immutability of reproduction and kinship, long taken to the be the bedrock of
natural facts to support cultural development. In this sense, she believes we are “after nature” in the
sense of living in a world “post” irrefutable kinship infrastructure. Strathern, After Nature: English
Kinship in the Late Twentieth Century (Cambridge, UK: Cambridge University Press, 1992).
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In implementing programs practitioners had to craft many new tools, both formal -

like programming languages - and material - like punched card encodings. The work of

implementation spans multiple media - from paper to transistor - and involves many

practices - from diagramming to coding - that constituted early “programming.” Im-

plementation is the site where we see practitioners rethinking their objects of interest,

their disciplines, their theories, through the lens of computation.

My argument runs counter to existing accounts for example from, Jon Agar, that

suggest that computing was not epistemologically significant in the early decades be-

cause it was introduced only to replace existing paper-based practices, in “contexts

of pre-existing material practices of computation” (e.g. on paper, or with tabulat-

ing machines).20 Early scientific computing was aimed at the automation of existing

techniques and it was not until later that practitioners began to imagine radially new

possibilities for knowledge-production with computing.

Agar was writing to temper enthusiastic claims of “revolution” in the sciences af-

forded by the advent of digital computing, and we should heed that analysis. I argue

not for “revolution” in which the advent of computers caused sudden and dramatically

different forms of knowledge-production. Rather I argue that communities had to over-

come significant obstacles in making computers useful and usable, even as surrogate

agents for existing practices, and that we should attend to those efforts when situating

computers within historical epistemology.

I argue that existing paper-based techniques, or actually any existing techniques,

can’t be automated without the development of epistemically novel tools, the adoption

of new perspectives, and the fashioning of new practices. But in order to recognize this,

you have to look at implementation, a site usually neglected by historians of computing
20Jon Agar, “What Difference Did Computers Make?” in Social Studies of Science, Vol. 36, No. 6

(2006): 869 - 907, p. 899.
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who tend to focus on high-level descriptions of computer programs or models rather

than the practices that actually get them going. So this dissertation is in part meant

to make a historiographic intervention - I advocate for implementation as a site that

we should attend to when asking after the historical significance of computing.

The epistemological significance of implementation of the three programs I study

here is related, in part, to the “displacement” of human mathematical agency involved

in each. In making programs that would run on computers, the communities that

developed the Logic Theory Machine, the Program P, and the AURA crafted new

material and formal tools for the work of proof. And in every case, these were tools

that people could not use because of their complexity, their size, or their structure.

They were not tools with which people proved theorems, they were tools that enabled

computers to prove theorems. In developing theorem-proving software, practitioners

endowed mathematical objects with computational properties - they were translated

into dynamic, algorithmic, discrete things.21 They were stored and manipulated in

the digital media of computing and there became electromagnetic and invisible and

inaccessible to the human eye and hand. Their development involved a step back, an

indirect perspective in which control of the objects of mathematics and the practices

of proof were assigned to quite different agent.

In addition to non-human oriented tool development, each program also produced

new and surprising results. The Logic Theory Machine produced a previously unknown

proof of a logical theorem. The Program P revealed that certain branches of logic had

a shared structure, a result of interest to logicians but previously unknown. And the

AURA-user team from Argonne produced solutions to open problems from branches of

mathematics about which the users did not have extensive knowledge - it enabled them
21For an interesting discussion of the “dynamism” and processual behavior of things in digital

computing, see Brian Cantwell Smith, On the Origin of Objects (Cambridge, MA: The MIT Press,
1998): e.g. 34 - 37.
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to work in problem domains beyond their training. Each result surprised its developers

and users. Each result represented a different kind of computer contribution, aligned

with the approach to automation that motivated its design. And each result was

produced with the non-human oriented toolkit described in its implementation. The

computer programs produced new results and new insights about mathematics.22

In developing and using their programs, practitioners came to know different things

about mathematics and know them differently. New ways of asking and answering

questions about proof became possible with those tools in hand. These tools endowed

existing mathematical systems and ideas with new and different meaning. As anthro-

pologist Stefan Helmreich writes, “when abstractions are realized in particular media,

the media make a difference to how the abstractions are understood.”23 In taking seri-

ously the relevance of materiality for abstraction, I also follow Peter Galison who has

explored the complex relationships between different material cultures and epistemic

traditions in twentieth century physics.24 To capture the process by which mathemat-

ics was given new formal and material properties through translation to computing, I

have coined the term “reformalism” to accompany the existing term, “remediation” due

to Jay Bolter and Richard Grusin.25 The term is meant to capture the relationship of

abstraction and materiality which transform in tandem in the hands of practitioners
22I discuss these results in the concluding section of each chapter, and also in the section “The

Possibilities of Computing” below.
23Stefan Helmreich, Sounding the Limits of Life: Essays in the Anthropology of Biology and Beyond

(Princeton, NJ: Princeton University Press, forthcoming)).
24Galison, Image and Logic: A Material Culture of Microphysics (Chicago, IL: University of Chicago

Press, 1997); Galison, Einstein’s Clocks and Poincaré’s Maps: Empires of Time (New York, NY:
Norton, 2004).

25See Jay Bolter, Richard Grusin, Remediation: Understanding New Media (Cambridge, MA: The
MIT Press, 1999). This idea also resonates with the work of Jonathan Sterne, especially in MP3: The
Meaning of A Format (Durham, NC: Duke University Press, 2012). in which he proposes that any
“media theory” should be accompanied by “format theory” in which format “denotes a whole range of
decisions that affect the look, feel, experience, and workings of a medium” and a “set of rules according
to which a technology can operate” (p. 7). Format and form are not the same thing, and Sterne is
not primarily interested in relationships of abstraction and materiality. However, we share an interest
in understanding the complex networks of practices, ideas, and people that make new media work.
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who work at their interface.

Each chapter in what follows explores how certain pieces of the world of mathemat-

ics were put “put into computers” and in the process took on aspects of their formal

and material character. The abstract and the concrete, the material and the formal,

the technological and the human can be seen, on the ground, to develop in and through

one another. In Chapter One, “Rewriting Principia: Implementing Intelligence” I ex-

plore how the architects of the Logic Theory Machine developed a model of human

theorem-proving practice as “heuristic search” through a branching tree of problems

and related subproblems. In order to program that model, they devised a new rep-

resentation system for logic - one based on what were called “linked list” information

structures and list processing operations. In so doing, they introduced new structures,

new properties, and new processes to logic and to the work of proof.

In Chapter Two, “Mathematical Objects in Action: Implementing Herbrand’s The-

orem” I explore how Hao Wang transformed an an existing logical theorem about logical

proof into a set of tools for actually doing logical proof. Like the Logic Theory ma-

chine, the Program P was designed to prove theorems from Principia but it did so in

a completely different way. Wang developed a set of what he called “pattern recog-

nition” tools or the “method of sequential tables” to enable the computer to prove

theorems. These new tools were inspired by an existing result from mathematical logic

called Herbrand’s Theorem, one of the fundamental early twentieth-century results

from proof theory. The theorem establishes a particular abstract relationship between

two branches of logic. In doing so, it provides an “in principle” method for deciding

if a statement in the former is a theorem using statements from the latter. However,

it would actually be impossible for a person to use Herbrand’s theorem to actually

prove theorems except in a very small number of cases given that it would involve the

analysis of huge (trillions) numbers of cases, even for a simple example. Wang devised
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a method for putting Herbrand’s theorem to work in the form a computer program

and in so doing gave a computer-oriented reformalization to Herbrand’s theorem and

introduced a new set of computational tools to proof theory.

Finally in Chapter Three, “A New Collaborator: Implementing Intuition and Infer-

ence,” I track how two traditionally central tenets of mathematical practice - intuition

and inference - are given new computer-oriented formulations in the design of a col-

laborative theorem-proving program. The Argonne team reserved “intuition” for the

human user to provide, believing that it could never be automated and would always

be required for important mathematics. However, in order to input intuitions to a

computer, to make them useful for the program, they developed a “Weighting Mech-

anism” in which their intuitions were translated into quantitative templates. Even in

cordoning off intuition as something uniquely human, they had to translate it into the

vocabulary and technical affordances of computing in order to actualize their vision

of collaboration. The Argonne team also developed a new inference rule, called the

“Resolution Principle.” Where traditional laws of inference were created to capture the

basic and primitive units of human reasoning and cognition, Resolution was designed

to capitalize on the computers’ speed and efficiency. It was a machine-oriented rule.

In each program, some component of mathematics - a written symbol system, an ex-

isting theorem, intuition, and inference - were translated so as to accommodate the

affordances of computing, and in tandem, given new material and formal characters.

In Search of Software

Software in general, has only recently begun to attract the attention of historical re-

search. Early histories of computing were instead focused on the machines themselves
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or on handfuls of famous practitioners.26 In large part following the prescriptions

of historian Michael Mahoney, however, recent scholarship has turned increasingly to

historical explorations of computing communities. Mahoney argued that, unlike tech-

nological artifacts that preceded it like the steam engine and printing press, “the com-

puter” has no intrinsic character but that the behavior and significance of computing

depends on how it is used by different communities. And those communities harness

the computer for their ends by designing or using software that transforms the “protean

machine” into a particular kind of tool.27 They “put their portion of the world into

the computer.”28 As such, according to Mahoney the history of computing should be

a history of communities and their software, and I agree.

However, especially in the early decades of computing, the distinction between hard-

ware and software - now usually associated with “material” and “abstract” respectively

- was not well defined. As we will see, the abstract and the concrete, the hardware

and the software, the formal and the material were not easily teased apart in the work

of early computing practitioners. In designing and implementing automated theorem-

proving programs, the practitioners I study here developed both abstract and concrete

tools - they designed abstract algorithms and formal structures that were informed by

the material limitations of their computers’ storage devices. I focus on implementation

because it stands at the intersection of the material and the abstract of computing - it

is where ideas and technology meet, it is where formal abstraction becomes executable

program - it is where the computer both enables and constrains its users.

Mahoney was right that different computing communities fashioned the computer
26Nathan Ensmenger offers an excellent survey of the historiography of history of computing in “The

Digital Construction of Technology: Rethinking the History of Computers in Society” in Technology
and Culture, Vol. 53 (2012): 753 - 776.

27Mahoney, “The Histories of Computing(s)” in Interdisciplinary Science Reviews, Vol. 30, No. 2
(2005): 119 - 135, p. 122.

28See Mahoney, “What Makes the History of Software Hard,” p. 8.
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into all kinds of different things, but he may go too far in writing that “whereas other

technologies may be said to have a nature of their own and thus to exercise some

agency in their design, the computer has no such nature.”29 It certainly is the case

that computers were wielded differently in the hands of different communities by way

of their programs, but it is also the case that those communities encountered at every

turn the obtuse material limitations of their machines.30 Encounters with those con-

straints can be clearly seen when practitioners address the question - so how do we

actually make this run? How can this be done with this machine’s limited storage and

processing resources? Implementation is where we see practitioners accommodating

the affordances of computing while harnessing it for their design.31

By emphasizing implementation, I diverge from existing historiography. Implemen-

tation has not been prioritized in histories that explore the significance of computers in

knowledge-making. This may stem in part from the fact that computer scientists them-

selves tend to emphasize abstract algorithms and high-level descriptions of programs
29Mahoney, “The Histories of Computing(s),” p. 122.
30I think Mahoney also appreciated this fact. Elsewhere, he wrote the following: “The history

of software is the history of how various communities of practitioners have put their portion of the
world into the computer. That has meant translating their experience and understanding of the world
into computational models, which in turn has meant creating new ways of thinking about the world
computationally and devising new tools for expressing that thinking in the form of working programs,”
in “What makes the history of software hard” p. 8. I suspect Mahoney emphasized the social dimension
- the significance of user communities for determining the character of computing - and the abstract
dimension - the creation of new models and ways of thinking, over the the production of “working
programs” on the ground, because he was writing against a number of technologically determinist
accounts in which the computer came along and “impacted” the way people operated. I, of course,
also do not subscribe to technological determinist accounts of the history of computing, but I do think
it is important to investigate how the physical design of computers, the limitations of computing
resources, the kinds of operations particular computers could perform efficiently, etc. as well.

31An excellent discussion of the “ephemerality” and software and the associated difficulty of iden-
tifying where and how to write its history can be found in Wendy Chun, “Introduction: Software, a
Supersensible Sensible Thing” in Programmed Visions: Software and Memory (Cambridge, MA: The
MIT Press, 2011): 1 - 11. A historical survey of early changing conceptions of “software” can be found
in Thomas Haigh, “Software in the 1960s as Concept, Service, and Product” in IEEE Annals of the
History of Computing, Vol. 24, No. 1 (2002): 5 - 13. Michael Mahoney also writes about the difficulty
of writing the history of software in Mahoney, “What Makes the History of Software Hard.”
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over low level implementation details.32

Today, high-level models and algorithms might be implemented in any number of

existing programming languages equipped with libraries of ready-made variables and

functions. The increasing availability of implementation resources makes the separa-

tion of higher and lower level program development easier. But in the early decades

of computing, implementation often involved the creation of computational tools from

scratch - the high level algorithms and the programming languages, data structures,

and punched card encodings, were created by the same people, at the same time, and

in service of the same project. While I advocate for a historiographical attention to

implementation throughout the history of computing, I argue that it is a particularly

important concern for histories of the early decades of computing of which this disser-

tation is a study.

My emphasis on the implementation of software comes with a question about

sources. Any history of software is complicated from the start by the slippery on-

tological character of computer programs themselves. What are they? Where do we

look for them? Are programs reducible to their source code? Do they live inside the

memory of the computers that store and run them? Do they live on the screen, in the

interface crafted for meaningful use, feedback, and interaction? Are they constituted,

at heart, by abstract algorithms or concrete technologies?
32One explanation for this tendency is historical. During the 1960s and 70s, when some computing

practitioners argued for an academic discipline of “computer science,” they highlighted the theoretical
tenets of their work - the study of algorithms and of the limits of computation - over the more practical
and low-level elements of program development. They argued that computation ought to be the subject
of scientific inquiry for its own sake, rather than a tool used only in service of other domains. And
more, they themselves didn’t want to be seen as mere technicians but as scientist. The emphasis on
higher-level elements of computation was related to this professionalization moment, and seems to
have been adopted by historians as well. For a discussion on the emergence of computer science as an
academic discipline, see Dick, “Computer Science” in A Companion to the History of American Science
(Hoboken, NJ: Blackwell Publishing, forthcoming). See also the discussions in Nathan Ensmenger,
The Computer Boys Take Over: Computers, Programmers, and the Politics of Technical Expertise
(Cambridge, MA: The MIT Press, 2010); Michael Mahoney, Histories of Computing, ed. Thomas
Haigh (Cambridge, MA: Harvard University Press, 2011).
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The supposed dichotomy between “software” and its opposite “hardware,” lends

itself to a treatment of the former as immaterial, abstract, ephemeral. Software has

been associated with the abstract, in part, because it is associated with mathematics -

the study of abstract formalism, objects, and relations. Indeed, in its first deployment,

the word “software” was used to designate the “mathematical and logical instructions

for electronic calculators.”33 But just as some historians of mathematics are working

to demonstrate that the abstract worlds of mathematics are always and everywhere

tethered to material tools and techniques, so too have some media and computing

historians sought to materialize software.34

By exploring implementation, I seek to open up software as a practice. This ap-

proach displaces the object, the “program” itself, and points instead towards the pro-

cesses and tools that accompany their development and use. This is a story about the

work that was done to make computers useful and usable for mathematical theorem-

proving. By focusing on practice, rather than on programs themselves, several sites

and materials become visible. Software, it turns out, is multimedia. From page to tran-
33Matthew Fuller, “Introduction,” in Software Studies: A Lexicon, ed. M. Fuller (Cambridge, MA:

The MIT Press, 2008): 1 - 13, p. 2.
34For example, Reviel Netz has shown how the ancient Greek tradition of deductive reasoning was

tied to a particular set of writing and diagramming practices. See Netz, The Shaping of Deduction
in Greek Mathematics: A Study in Cognitive History (Cambridge, UK: Cambridge University Press,
2003). Lorraine Daston has explored the relationship of physics and mechanics to a nineteenth century
traditions of synthetic geometry in “The Physicalist Tradition in Early Nineteenth Century French
Geometry” in Studies in History and Philosophy of Science, Vol. 17, No. 3 (1986): 269 - 295. Herbert
Mehrtens has explored the changing meaning and use of mathematical models in “Mathematical
Models” in Models, The Third Dimension of Science, ed. S. De Chaderevian, N. Hopwood (Stanford,
CA: Stanford University Press, 2004): 276 - 304. One might also include Brian Rotman’s semiotic
work on mathematics as text in, for example Mathematics As Sign; Writing, Imagining, Counting
(Stanford: Stanford University Press, 2000). On the materiality of software, see for example, Matthew
Kirschenbaum who has explored “traces” left behind when digital information has been erased or
destroyed in order to emphasize the material robustness of that information, so often imagined to
be ephemeral and immaterial. Matthew Kirschenbaum, Mechanisms: New Media and the Forensic
Imagination (Cambridge, MA: The MIT Press, 2008). See also, for example, historian of computing
Michael Mahoney who alternatively emphasizes the dynamism of software: “In essence [software] is
the behavior of the machines when running. It is what converts their architecture into action, and it
is constructed with action in mind.” Michael Mahoney, “The History of Computing in the History of
Technology” in IEEE Annals of the History of Computing, Vol. 10, No. 2 (1988): 113 - 125, p. 121.
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sistor, from diagram to data structure, the work of implementation mobilizes thought-

experiments, metaphors, correspondence networks, thousands of pages, hand-drawn

experiments, technical reports.

My account is based upon the traces my actors left behind while doing the work of

implementation. They left a paper-based trail that reveals how and why they crafted

each computational tool the way they did to actualize their visions of automated proof.

My research was primarily archival - I work with hand-written notes in which my actors

experimented on paper, looking for different structures and operations to include in

their programs. I explore the technical reports in which they circulated descriptions of

their program designs and justifications for particular design choices. I also study their

“dictionaries” in which practitioners collected, named, and specified the various op-

erations that constituted their programs, programming languages, and representation

systems.

Where they existed, I also explore the reference guides and user’s manuals that

describe how programs or their associated programming languages can be used. I also

rely heavily on the surrounding documentation in which automated theorem-proving

practitioners corresponded with one another, trying to make sense of or improve the be-

havior of their programs. I also explore the extensive correspondence and publications

in which aligned their work with other research programs, with particular disciplines,

and with other fields of computing. This surrounding documentation often reveals why

practitioners believed that a particular implementation best fulfilled their overall vision

for a mathematics that included computing.

Given that my methodology was largely paper-based, I should note that I claim no

direct access to the materiality that I propose was central for my actors’ rethinking

and retooling of mathematics. I do not work with their computing machines or the

programs they ran. I am rather interested in evidence of their encounters with those
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machines. I look for traces of that materiality in the remaining records of their work.

I would not expect to have the same experiences as my actors were I to encounter the

material artifacts themselves, but rather want to recover and reconstruct the specificity

of their encounters through the archive.

Proving Theorems in the Twentieth century

I am interested in how early theorem-proving programs intervened in the history of

mathematical proof. In particular, I explore how the developers of each program were

both drawing from and transforming a particular tradition of proof that emerged in the

early twentieth century. That tradition embodied a desire to reduce mathematics to

logic: to construct the branches of mathematics as formal axiomatic systems. Proofs in

this tradition were meant to have a particular form: they consisted of the application

of deductive rules of inference to the axioms or primitive principles of a formal logical

system.

In 1895 Giuseppe Peano, an Italian mathematician and early developer of math-

ematical logic, first published a work called Formulaire de Mathematique.35 It was

intended as a catalogue of all mathematical knowledge consisting, literally, of num-

bered lists of mathematical theorems. Peano’s goal was to collect and circulate “all
35Peano, Formulaire de Mathematique, (Rivisita di matematica, 1985). The text was published in

five editions, each an elaboration and expansion of the previous. The fifth edition bears a different
name - Formulario Mathematico - and was published in 1905. A helpful introduction to the work is
available from Hubert Kennedy, Peano: The Life and Works of Giuseppe Peano (Berlin: Springer,
1980), esp. Chapter 6 “The Formulario Project”, pp. 44 - 50 and Chapter 17 “Completion of the
Formulario”, pp. 118 - 124. Peano is perhaps best known for his contributions to the development
of symbol systems and notations in mathematical logic. He is also well known for his development
of an axiom system for the natural numbers. Histories of the emergence of mathematical logic in
the late nineteenth century that discuss Peano’s life and work is Ivor Grattan-Guinness, The Search
for Mathematical Roots, 1870 - 1940: Logics, Set Theories and the Foundations of Mathematics from
Cantor through Russell to Gödel. (Princeton, NJ: Princeton University Press, 2002), esp. pp. 219 -
267 and N. I. Styazhkin’s traditional account of the history of logical “ideas and attitudes”, History of
Mathematical Logic from Leibniz to Peano (Cambridge, MA: The MIT Press, 1969).
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established results from all branches of mathematics.”36 He wanted to standardize and

organize mathematical knowledge in one place.

The work was motivated in part by a growing concern on the part of mathemati-

cians, logicians, and philosophers of mathematics in the late nineteenth and early

twentieth century that the mathematical knowledge they inherited may be inconsis-

tent and rife with contradictions. These sentiments emerged in part because of the

discovery of certain contradictions and paradoxes within mathematics, and especially

set theory. It also emerged as mathematicians were becoming increasingly distributed

among fields and subfields of research that often adhered to different standards and

that often did not speak to another.37

36Alex Csiszar, “Poincaré and Peano: bibliographer vs. natural philosophy,” [unpublished excerpt]
p. 1.

37This period has often been called “The Foundations Crisis”, following Herman Weyl’s publication
“Über die neue Grundlagenkrise der Mathematik” in Mathematische Zeitschrift, Vol. 10 (1921): 39 -
79. Bertrand Russell himself constructed a paradox within Georg Cantor’s set theory. Andrew Irvine
summarizes it as follows: “Some sets, such as the set of all teacups, are not members of themselves.
Other sets, such as the set of all non-teacups, are members of themselves. Call the set of all sets that
are not members of themselves “R.” If R is a member of itself, then by definition it must not be a
member of itself. Similarly, if R is not a member of itself, then by definition it must be a member
of itself.” See Irvine, “Russell’s Paradox” in Stanford Encyclopedia of Philosophy, ed. E. Zalta (Sum-
mer 2009): http://plato.stanford.edu/archives/sum2009/entries/russell-paradox/) on p. 1. That such
contradictory cases were constructable within Cantor’s set theory and elsewhere in mathematics was
worrisome to the community. Large scale efforts to find solid grounding for mathematics were pursued
in continental Europe, England, and the emerging mathematical community in the United States. See
Ivor Grattan-Guinness, The Search for Mathematical Roots, 1870 - 1940: Logics, Set Theories and
the Foundations of Mathematics from Cantor through Russell to Gödel. (Princeton, NJ: Princeton
University Press, 2002); Paolo Mancosu, From Brouwer to Hilbert: the Debate on the Foundations of
Mathematics in the 1920s (Oxford, UK: Oxford University Press, 1998); Loren Graham, Jean-Michel
Kantor, Naming Infinity: A True Story of Religious Mysticism and Mathematical Creativity (Cam-
bridge, MA: Belknap Press, 2009), esp. pp. 19 - 32; Morris Kline, “The Foundations of Mathematics”
in Modern Mathematics, Vol. 3 (1972): 1182 - 1211; Apostolos Doxiadis and Christos Papadimitriou,
Logicomix: An Epic Search for Truth (London, U.K.: Bloomsbury: 2009); David Rowe, “Anxiety and
Abstraction in Nineteenth-Century Mathematics” in Science in Context, Vol. 17, No. 1/2 (2004):
23 - 47. Several accounts of the foundations crisis are given in tandem with historical biography of
key participants. Including: Ray Monk, Ludwig Wittgenstein: The Duty of Genius (London, U.K.:
Jonathan Cape: 1990); Monk, Bertrand Russell: The Spirit of Solitude 1872 - 1921 (New York, NY:
Free Press, 1996); Dirk van Dalen, Mystic Geometer, and Intuitionist: The Life of L.E.J. Brouwer
(Clarendon Press, 1999); Constance Reid, Hilbert (Berlin, Germany: Springer-Verlag, 1970); Joseph
Dauben, Georg Cantor: His Mathematics and Philosophy of the Infinite (Princeton, NJ: Princeton
University Press, 1990). I am very grateful for conversations with Alma Steingart and Joan Richards
about this material and the Foundations Crisis during out general exam in history of mathematics.
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In order to salvage mathematics from these troubling contradictions and diffusions,

certain communities of mathematicians and logicians set out in search of new founda-

tions that could be used to build mathematics from the bottom up, eliminating the

possibility of contradiction, and providing justification for mathematical truth claims.

They wanted to put mathematics in one place and use the same grounding to justify

and present all mathematical truths. Peano, and a community of other mathematicians

working at the turn of the twentieth century, believed that logic was the answer.38 It

was a formal system in which they hoped all of mathematics could be reliably put

together and justified.39

Two English mathematicians - Alfred North Whitehead and Bertrand Russell -

became influential advocates for this view. Early in the twentieth century, they took

Peano’s project of theorem-collection one step further. They sought not only to collect,
38Mathematical logic has a rich and complex history - intimately bound up with the history of

algebra - and it consists of many subfields, each carved out through the definition of the basic logical
units in question and the operations that can be applied to them. Gregory Moore offers an account of
how first-order logic (the propositional calculus with the addition of quantification of the from “for all” -
8 - and “there exists” - 9- in “The Emergence of First-Order Logic” in History and Philosophy of Modern
Mathematics, Vol. 11 (1988): 95 - 135. Kline offers a succinct account of the origins of mathematical
logic in the nineteenth century, drawing on developments from as far back as Renée Descartes and
Gottfried Wilhelm Leibniz. (see Kline, “The Rise of Mathematical Logic” in Mathematical Thought
From Ancient to Modern Times, Vol. 3 (New York: Oxford University Press, 1972): 1187 - 1192).
Joan Richards offers an account of the cultural and ideological complexity of Augustus de Morgan’s
contribution to algebra and logic in “Augustus de Morgan, the History of Mathematics, and the
Foundations of Algebra” in Isis, Vol. 78, No. 1 (March 1987): 6 - 30. Richards also explores
some relations between the development of mathematical logic and the changing field of geometry
in the nineteenth century in Mathematical Visions: the Pursuit of Geometry in Victorian England
(Academic Press, 1988). See also Ernst Nagel, “The Formation of Modern Concepts of Formal Logic
in the Development of Geometry” in Osiris, Vol. 7 (1939): 142 - 224; N. I. Styazhkin’s traditional
account of the history of logical “ideas and attitudes”, History of Mathematical Logic from Leibniz to
Peano (Cambridge, MA: MIT Press, 1969).

39A view now called “logicism.” This view of mathematics was not shared by all mathematicians.
Csiszar, for example, explores Henri Poincaré’s objection to the project of “cataloguing” mathematical
knowledge on utilitarian grounds. However, this imagination of mathematics was profoundly influen-
tial in the early twentieth century. Famously, David Hilbert advanced this program in his emphasis
on the axiomatization of mathematics and his identification of central open problems in 1900. See
Hilbert, “Mathematical Problems” in Bulletin of the American Mathematical Society, Vol. 8, No. 10
(1902): 437 - 479. Russell, Whitehead, and Peano were also engaged in a longer history of mathe-
matics and logic that ran through Frege, Boole, and even Leibniz, that sought a universal system for
representing and working in mathematics.
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standardize, and circulate just theorems but proofs of those theorems as well. Their

hope was to construct a “complete enumeration of all ideas and steps in reasoning em-

ployed in mathematics.”40 They wanted an explicit and comprehensive compendium

of the “primitive ideas” and “primitive propositions” that ground mathematical reason-

ing, and to represent each established mathematical result as a “chain” of those basic

elements.

The product of their efforts was the still-canonical text in mathematical logic, Prin-

cipia Mathematica.41 It’s three volumes were first published by Cambridge University

Press in 1910, 1912, and 1913. In them, Whitehead and Russell attempted (though

never succeeded) to provide fully formalized deductive proofs of existing mathematical

truths within their formal deductive system so that they could be known with logical

certainty.42 They outlined six “primitive ideas” and ten “primitive propositions” that
40Alfred North Whitehead, Bertrand Russell, Principia Mathematica, Vols. I - III. (Cambridge, UK:

Cambridge University Press, 1910, 1912, 1913). I am here relying on Whitehead, Russel, Principia
Mathematica, Vols. I - III (Rough Draft Printing, 2011 [1910 - 1913]). The Rough Draft editions
are published digitizations - unedited and unabridged - of the first edition of the three volumes of
Principia originally published in 1910, 1912, and 1913 respectively. The digitization work was done
by Watchmaker Publishing. Whitehead, Russell, Principia Mathematica, Vol. 1: p. 3.

41Whitehead, Alfred North; Bertrand Russell. Principia Mathematical, Vols. I - III. Cambridge,
U.K.: Cambridge University Press, 1910, 1912, 1913. In what follows, I worked with a reprinting of
the first edition of Volume One digitized by Watchmaker Publishing and printed by by Rough Draft
Printing, 2011. The pagination and typesetting of this volume is a replication of the original.

42Principia was never completed as it was originally envisioned. Whitehead and Russell intended
to include a section on the logical foundations of geometry that was never written. See Russell, My
Philosophical Development (London, U.K.: Allen and Unwin, 1959), on p. 99. The project laid out
in Principia was perhaps most famously taken up by German mathematician David Hilbert. Hilbert
also advocated for the translation of the branches of mathematics into formal, deductive, axiomatic
systems. The project he laid out, often called “Hilbert’s Program” became a central tenet of modern,
twentieth century mathematics. See Richard Zach, “Hilbert’s Program” in the Stanford Encyclopedia
of Philosophy (July 2003: http://plato.stanford.edu/entries/hilbert-program/) for a discussion of the
program. See also David Hilbert, Ackermann, Principles of Mathematical Logic, trans. L. Hammond,
G. Keckie, R. Steinhardt (New York, NY: Chelsea Publishing Company, 1950 [1928]). The view
that logic was the proper and complete foundation for mathematics was irreparably undercut in
the 1930s by the likes of Turing and mathematician Kurt Gödel who studied crucial limitations of
formal systems. They showed that the hope of reducing all of mathematics to logic was, in fact,
impossible. Nonetheless, many mathematicians and logicians continued to ask questions about what
can be deduced from what, and what kinds of problems could be solved within what kinds of formal
systems. Principia and Hilbert’s Principles of Mathematical Logic were and remain canonical texts
grounding these studies. Kurt Gödel, “Über formal unentscheidbare Sätze der Principia Mathematica
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would serve as the definitions, axioms or premises of their logical system.43 Among

the primitive ideas were included basic concepts like “elementary proposition” and “as-

sertions” as well as the definitions of the basic logical operators that would constitute

their system, like “disjunction” and “negation”. The primitive propositions were meant

to be the clear and basic consequences of the primitive ideas including, for example,

propositions like “Anything implied by a true elementary proposition is true” and “If q

is true then “p or q” is true.”44

From these primitives, Whitehead and Russell craft the basic rules for transforming

and manipulating propositions: the rules of logical inference. They were designed to be

immediately obvious, capturing the basic steps of deductive reasoning.45 Included here,

for example, is the so-called “principle of simplification” presented in their notation as

“` : q . �. p � q” which reads “q implies that p implies q, i.e. a true proposition

is implied by any proposition.”46 Also included here is the famed logical “syllogism”

stated in their notation as “`: . q � r . �: p � q . � . p � r” which reads “if

r follows from q, then if qfollows from p, rfollows from p.”47 After laying out these

primitives, Russell and Whitehead “proceed to formal deductions” which occupy the

rest of their three volumes. These primitive ideas, propositions, and rules of inference

constitute the formal infrastructure of Principia that constituted a particular approach

und verwandter System I.” Monatshefte für Mathematik Vol. 38, No. 1 (1931): 173 - 198; Turing,
“On Computable Numbers with an Application to the Entscheidungsprobelem” in Proceedings of the
London Mathematical Society Vol. 42 (1936): 230 - 265; Alonzo Church, for example “An Unsolvable
Problem in Number Theory” in American Journal of Mathematics Vol. 58, No. 2 (1936): 345 - 363.
I discuss their work in more depth in Chapter Two “Mathematical Objects in Action.”

43These are detailed in Section A “The Theory of Deduction,” Part 1 “Primitive Ideas and Propo-
sitions,” pp. 94 - 101. In the second edition of Volume One, the ten “primitive propositions” were
distilled to seven, and presented with markedly less exposition.

44Whitehead, Russell, p. 98 - 99.
45Presented in Whitehead, Russell, Principia Mathematica, Volume One, Part A, Section 2 “Imme-

diate Consequences of the Primitive Propositions,” pp. 101 - 113. These rules are also distilled in the
second 1963 edition of Principia, published on pp. 13 - 14.

46Whitehead, Russell, Principia Mathematical, Vol. 1, p. 103.
47Whitehead, Russell, Principia Mathematical, Vol. 1, p. 103.
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to theorem-proving.48

Whitehead, and Russell’s project reflected a particular philosophy of mathematical

knowledge - that it could be fully formalized, axiomatized, and standardized within

mathematical logic. For them, proofs were chains of deductive steps that began with

the axioms of their logical system and concluded with a true and interesting logical

statement, and they believed the whole of mathematical knowledge could be formulated

in this way.

As will be discussed in the section “A Mathematical World on Paper” in Chapter

One, Principia was also constituted by a particular set of material tools and practices.

The formal system just described was also accompanied by a written symbol system

meant to make those primitive ideas easy to see, easy to read, easy to follow line by line

on the page. Logical propositions and inference rules were tethered to a hand-written

and typeset symbol system, designed to enable the heads and hands of mathematicians

to pursue the work of proof-as-logical-deduction envisioned by people like Whitehead

and Russell. These pages of proofs would be compiled in books. Principia, like Peano’s

Encyclopedia of proofs that preceded it, were mean to collect mathematical knowledge,

written down, standardized both formally and representationally and circulated to the

growing community of professional mathematicians. It was a paper-based culture; a

book culture.

Automated theorem-proving was one of the inheritors of this early twentieth cen-

tury tradition of mathematics. This culture of proof came with a set of particular

formal and material tools. And these, I claim, were precisely what is at stake in the
48These basic elements of logic would be distilled and given a more “modern” formulation by David

Hilbert and Wilhelm Ackermann in Grundzüge Der Theoretischen Logik. Berlin, Germany: Springer
Verlan, 1928 [Principles of Mathematical Logic, trans. L. Hammond, G. Keckie, R. Steinhardt. New
York, NY: Chelsea Publishing Company, 1950]. Many of those working on the automation of proof
in the 1950s and 60s made use of the the later Hilbert-Ackermann formulation rather than working
directly from Principia.
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proof automation attempts examined in this dissertation. New rules of inference, new

representation systems, new formalisms, new materials would be introduced to the

work of logical proof, intervening in the character of deduction and logic itself, though

perhaps not in the way one would expect.

Computers could only do what they could be explicitly instructed to do. As such,

the project outlined in Principia seemed a perfect place to introduce computers to the

work of proof - Principia came with a ready made set of axioms and explicit rules of

inference. As such, an intuitive way to approach the automation of proof would be to

provide those axioms and permissible inference rules to the computer. The computer

could then be programmed to apply the inference rules to the axioms in order to

deduce any provable logical consequences. Users could then input some mathematical

proposition, P , and run the computer to see if any permitted sequences of inference led

to P . If so, the series of steps taken by the program in that sequence would constitute

a proof of P .

However, in spite of the incredible speed and efficiency with which computers (even

in the second half of the 20th century) could execute instructions, automated theorem-

proving practitioners quickly discovered that this method of proof-seeking on its own

was so inefficient as to be unusable. Not only did it lead to an exponential explosion

of data given how many inferences could be made, but there was also no way to know

when or if a proof would ever be found. This exhaustive method guaranteed that every

provable statement P would eventually be proven, but it was not clear that this would

happen during the lifetime of mathematicians who actually cared about the problem.

Larry Wos, a member of the automated theorem-proving team at Argonne, wrote

the following of this approach in 1964: “All permissible substitutions were made in a

systemic, exhaustive manner, guaranteeing that if a proof existed of the desired theo-

rem, it would be captured in the steadily expanding sets of instances. The disastrous
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rate of growth of these sets, due to the inclusion of numerous unprofitable inferences,

spelled the doom of exhaustive instantiation”.49 Merely instructing computers to apply

inference rules to axioms was not a feasible way to harness the power of computing for

theorem-proving. Principia could not be automated as-is.

As such, automated theorem-proving practitioners instead sought to develop mech-

anisms that would restrict exhaustive search and cut down on the number of ‘unprof-

itable inferences’. But the mechanisms they designed took quite different forms: some

were inspired by human practice and others were based in the structure of logical

systems themselves. The three programs I discuss in the dissertation each followed a

different set of protocols to avoid an intractable explosion of data.

Newell, Shaw, and Simon designed the Logic Theory Machine in the image of a

human mathematician. They believed that people rely on their intuitions to choose

particular paths of deductive and avoid the overwhelming explosion of data that comes

from deducing all possible conclusions. They wanted to identify, formalize, and ulti-

mately automate the kinds of intuitions or, heuristics, they believed people used in

selecting paths of inference.

Hao Wang was uninterested in human tricks because he believed computers and

humans to be capable of quite different ways of searching for a proof. Instead he

wanted to know what possible tricks might come out of the study of logic itself. In

particular, he developed a method by which computers could look for patterns that

could only be recognized at scales that were inaccessible to human perception. It would

use those patterns to cut through the explosion of consequences in search of proofs.

The team at the Argonne National laboratory agreed and disagreed with both of

these approaches. They wanted to make use of human intuitions, but they believed
49Larry Wos. “The Unit Preference Strategy in Theorem Proving”, in The Collected Works of Larry

Wos, Vol. 1 (Hackensack, NJ: World Scientific Publishing Company, 2001), pp. 17 - 28 [originally
American Federation of Information Processing Society, Proceedings 26 (1964), pp. 615 - 621].
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computers could never be made to possess them. They also believed that computers

could wield more powerful rules of inference than their human counterparts. So they

designed collaborative theorem-proving programs in which human intuitions would

point the computer down certain deductive paths but the computer would follow those

paths by executing inferential steps that would be difficult for people to take.

These three approaches also served as exemplars of the way that later research would

address this problem. They were formalized by automated theorem-proving researchers

in the early 1980s as categories for organizing early work in the field. In reflecting on

the first quarter-century of automated theorem-proving work, David Loveland identi-

fied two approaches - the “Logic” approach and the “Human Simulation” simulation

approach, with collaborative programs situated in between them.50 The logical ap-

proach looked for new logically sound ways of looking for deductive proofs that might

be impossible for people to use because of their complexity. The human simulation

approach looked instead to identify and automate what people do. And the collabora-

tive approach sought to combine complex logical processing with un-automated human

intuiting.

These approaches were also intended to produce different kinds of proof. The human

simulation approach was intended to produce proofs of the kind people might make,

following paths that people might follow and taking steps of the kind that people take.

The logic approach, on the other hand, produced proofs that might be difficult for

people to understand because they are constituted by steps that people may not be

able to take and because they might be so long people would not be able to read them.

The former proofs were to be trusted because people could read them and see how

they work. The latter proofs were to be trusted if the computer could be trusted to
50Donald Loveland, “Automated Theorem-Proving: A Quarter-Century Review” in Automated

Theorem-Proving: After 25 Years [Contemporary Mathematics, Vol. 29] (Providence, RI: The Amer-
ican Mathematical Society, 1983): 1 -46.
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accurately execute rules known to be sound, even if they were not surveyable to a

human reader. Both kinds of proof diverged from the step by step deductive chains

presented in Principia and thought to epitomize the soundness of inferential reasoning.

But some people didn’t trust proofs of one or the other (or either) kind.

Historian of science and technology Donald MacKenzie has argued that automated

theorem-proving animated a debate about what proofs should be like.51 In particular,

he argues that new cultures of proof emerged along two axes. The first axis concerned

the kind of proof being produced, which could be either “formal” or “rigorous,” the

latter also known as “informal.” MacKenzie, drawing from the earlier work of Eric

Livingston, differentiates between these two kinds of proof as follows:

A formal proof is a finite sequence of ‘well-formed’ (that is, to put it loosely,
syntactically correct) formulae leading to the theorem, in which each for-
mula is an axiom of the formal system being used or is derived from previ-
ous formulae by application of the system’s rules of logical inference. [...]
Rigorous arguments, in contrast, are those arguments that are accepted by
mathematicians (or other relevant specialists) as constituting mathematical

51See MacKenzie, “Computing and the Cultures of Proving” in Philosophical Transactions of the
Royal Society A: Mathematical, Physical, and Engineering Sciences, Vol. 363 (2005): 2335 - 2350.
MacKenzie also explored several early automated theorem-proving programs and the debates that
emerged surrounding their design and their results. Much of MacKenzie’s work, especially in Mech-
anizing Proof: Computing, Risk and Trust, is in fact about a particularly important application of
automated theorem-proving software to a field called “program correctness proof” in which the goal
was to prove theorems about programs. Computers came to occupy increasingly important positions
in military, aerospace, banking, and political infrastructure in the United States, it became increas-
ingly important that computer programs behave as they were intended. Trial and error testing -
the dominant method in early computing - was limited by the programmers’ ability to accurately and
comprehensively foresee possible failings. This method was deemed unreliable, and many communities
around the United States aimed instead to represent computer programs as mathematical structures
and then to prove that they behaved in the desired way, e.g. would always terminate, or could
never reach an undesirable state, etc. Computer programs would be as reliable as the mathematical
knowledge that could be forged about them. However, MacKenzie suggests that in fact mathematical
knowledge is not the bedrock of self-evident certainty that it has often been held up to be, but is rather
the product of complex social negotiations of credibility, trust, and risk. See MacKenzie, Mechanizing
Proof; Computing, Risk, and Trust. MacKenzie also explores how the emergence of computer proof
led to the establishment of novel trust relations between mathematicians, programmers, government
officials, the public, and military personnel as computer proof was mobilized as a guarantor of proper
software function.
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proofs, but that are not formal proofs in the above sense.52

Formal proofs are often characterized as showing that a theorem is true - showing

that it follows from a given set of axioms. Rigorous proofs are often characterized

instead as showing why something is true - foregrounding some crucial insight that

convinces readers that the theorem is true even in the absence of an exhaustive deduc-

tion. These two kinds of proof existed before computers, but MacKenzie argues that

mathematical communities polarized around them in new ways when computers came

on theorem-proving scene. Certain automated theorem-proving practitioners tried to

harness computing to produce one kind of proof or the other. And mathematicians,

philosophers, and other technical practitioners would accept and reject computer proofs

based on allegiance to one or the other kind of proof. Proof, as MacKenzie has com-

pelling shown time and again, is inherently social in character: different communities

decide what does and does not convince them.53

This dissertation builds on MacKenzie’s account to show that the constituent el-

ements of those two kinds of proof - form and rigor, inference rules, intuitions and

crucial insights - came to mean different things with the introduction of computers.

In implementing their software, theorem-proving practitioners gave new meaning and

new manifestations to some of the existing central tenets around which debates about

proof emerged in their wake.

New inference rules were devised. Intuitions were both represented in new ways and
52MacKenzie, “Computing and the Cultures of Proving,” p. 2338.
53Other important accounts of the social character of mathematics include David Bloor, “What Can

the Sociologist of Knowledge Say About 2 + 2 = 4” in Mathematics, Education, and Philosophy: An
International Perspective, ed. Paul Ernest (London, UK: The Falmer Press, 1994): 21 - 32; Bloor,
“The Living Foundations of Mathematics” in Social Studies of Science, Vol. 17, No. 2 (1987): 337-
358; and Henk Bos, Herbert Mehrtens, “The Interactions of Mathematics and Society in History and
Some Exploratory Remarks” in Historia Mathematica, Vol. 4, No. 1 (1977): 7 - 30; Charles Fisher,
“The Death of a Mathematical Theory: A Study in the Sociology of Knowledge” in Archives for
History of Exact Sciences, Vol. 3 (1966): 137 - 159; Sal Restivo, Mathematics in Society and History:
Sociological Inquiries (Dortrecht, Netherlands: Kluwer, 1992).
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generated by new experiences. In practice, the automation of proof changed the formal

and material character of the concepts around which cultures of proof materialized.

By focusing on implementation I show how the introduction of computing to proof not

only prompted the emergence of communities newly polarized on the axis of formal

vs. informal proofs. It also changed the meaning and the constitution of concepts like

form, rigor, intuition, and inference that informed those two cultures of proof.54

For example, each of the three programs included a different formalization of the

four canonical rules of inference presented in Whitehead and Russell’s Principia.55 In

the Logic Theory Machine, the four canonical rules of inference from Principia were

translated into forty-two variations of eight computer operations for manipulating what

were called “linked list data structures,” which were in turn a new representational

system for the logical propositions contained in Principia. Hao Wang, in designing
54More generally, MacKenzie and sociologist Claude Rosental have explored the advent of so-called

“computer proof” as a window into the irreducibly social character of mathematical knowledge and
both demonstrate how computers changed the stakes of existing social practices of mathematical
knowledge-making. See Claude Rosental, Weaving Self-Evidence; A Sociology of Logic (Princeton,
NJ: Princeton University Press, 2008); Rosental, “Certifying Knowledge: The Sociology of a Logical
Theorem in Artificial Intelligence” in American Sociological Review, Vol. 68 (2003): 623 - 644; Donald
MacKenzie, Mechanizing Proof: Computing Risk and Trust (Cambridge, MA: The MIT Press, 2004);
MacKenzie, “The automation of proof: A historical and sociological exploration” in IEEE Annals of
the History of Computing, Vol. 17, No. 3 (1995): 7 - 29; MacKenzie, “Slaying the Kraken: The
sociohistory of a mathematical proof” in Social Studies of Science Vol. 29, No. 1 (1999): 7 - 60.
Rosental tracks the production, debate about, and ultimate accreditation of a computer proof of a
logical theorem, attributed to the programmer Charles Elkan in the 1990s. He argues ultimately that
what is thought to be “self-evident” in logic - immediately accessible to any mind capable of “right
reasoning” - is in fact the product of complex social negotiations. The theorem “was not evaluated
collectively through the aggregation of attentive readings of the proof presented in [the] article” nor
by the “systematic application of universal criteria for evaluating a proof” (Rosental, “Certifying
Knowledge,” p. 639, 640). Instead, the participants were “social actors, part of long-term and large-
scale conflicts, sometimes engaged in rival activities and projects, endowed with variable resources
and competencies.” (p. 640). Crucially, the debate about Elkan’s proof was also a debate about how
best to approach the field of Artificial Intelligence (AI). Elkan was an advocate for what was called
“Classical AI” and many of his critics and doubters of his result came from emerging “rival theories”
like “fuzzy logic,” “neural networks,” “genetic algorithms,” and so on (p. 628). Rosental demonstrates
how competing approaches to AI, competition for AI funding resources, and underlying disagreements
about the character of the computer and the prospects of computer thinking were incorporated into
existing processes of accreditation in mathematics.

55See also Hilbert, Ackermann, Principles of Mathematical Logic. Most automated theorem-proving
researchers used Hilbert’s formulation rather than the original.
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the System P (predecessor to the Program P), translated those rules of inference into

eleven computer operations for iteratively removing logical operators. And John Alan

Robinson invented a new rule of inference called the Resolution Principle which, all on

its own, could replace all four of Principia’s inference rules. That rule was build in

to the computer side of the collaborative AURA program to be discussed in Chapter

Three. To be sure, at a high enough level of abstraction these sets of rules are all

equivalent. They can be shown

The question that motivates me here is, in a sense, prior to the one MacKenzie

asked. For him, what is interesting is how inclusions and exclusions were performed

by different communities in response to so-called computer proofs - how new priorities

and cultures developed around computers as potential contributors to mathematical

knowledge. I propose that something was already happening to proof before there were

any so-called computer proofs on the table to negotiate and disagree about.

I want to know what was actually involved in introducing computers to the work

of proof in the first place - when early theorem-proving software was being initially

designed and implemented. Relevant mathematical objects had to be turned into things

that could be input to computers and stored and manipulated in its electromagnetic

storage systems. Processes of theorem-proving had to be translated into algorithmic,

rule bound, electronic computational operations. And that meant taking what was

written in the pages of Principia and the Principles of Mathematical Logic and, to

borrow again from Mahoney, “putting them into the computer.”

The new forms of proof that emerged were constituted by practices, including ob-

viously programming, but also new ways of writing, diagramming, thinking, and doing

that went into the design and implementation of theorem-proving programs. These

new forms of proof were also constituted by new materials - those that constituted

computing technology. And these new forms of proof were constituted by new for-
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malisms - those algorithms, programming languages, and representation systems that

translated the work of proof into computable processes.

Each of the three theorem-proving programs I explore here took up the early

twentieth-century tradition of mathematical logic. They work within logical systems,

they engage in logical inference, they even prove the same theorems as Whitehead and

Russell prove in their canonical logical texts. They were designed to do the work of

logical proof. However, each program also intervenes in that tradition and that is my

focus in the discussions to follow. The elements of proof - intuition, inference principles,

form, symbolism - were given new meaning in the work of automated theorem-proving.

And they were given different new meanings in the hands of practitioners who wanted

to use computers in different ways. Through their efforts, proof came in new forms.

The Possibilities of Computing

In spite of their many differences of opinion, automated theorem-proving practitioners

also shared certain key perspectives. None of them wanted to use computers as mere

brute force “deducers” but rather wanted to use them to find more interesting or more

effective ways to search for proofs. This belief was part of a more general perspec-

tive: like many early computing practitioners, automated theorem-proving researchers

believed the computer was a more interesting kind of tool than it was at first imagined.

The first reprogrammable digital computers were built to calculate: they were both

functionally intended and conceptually understood as numerical data processors.56

Computers were used for the calculation of complex ballistics trajectories, for solv-
56This was especially true in the United States. In Britain, practitioners like Alan Turing imagined

and actualized nonnumeric uses for computers very early on. Even the language decryption work
Turing and his colleagues engaged in at Bletchley Park during the Second World War could be seen as
nonnumeric in character. This was less the case in the United States where the early computers were
designed and used with numerical calculation in mind. I am grateful to conversations with historian
of computing Marie Hicks for this difference in national computing styles.
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ing differential equations, for the numerical simulations of nuclear chain reactions, and

so on.57 Very much in keeping with their closest technological ancestors - tabulating

machines, punched card readers, and other electric and mechanical calculators - this

was the case overwhelmingly for early computing machines. Numbers were input to

the computer, instructions were given for the functional and arithmetic manipulation

and storage of numbers, and numeric values were the output as well.

Recall that Turing wanted a more “intelligent” kind of behavior from his computers

than mere calculation. So too did practitioners of automated theorem-proving. They

were among those computing research pioneers from certain other fields who developed

a different understanding of what computers could do, of what kind of thing they

were. These practitioners pursued a vision of computers as symbol processing machines,

capable of manipulating any formal system whatever - whether it referred to numbers

or not.58

57In fact, the earliest mainframe computers were designed to replace human computers who per-
formed complex numerical calculations through systems of labor division. See David Alan Grier,
When Computers Were Human (Princeton: Princeton, 2005) for a discussion of the original human
meaning of the word “computer.” See also Harry Polachek, “Before the ENIAC” in IEEE Annals of
the History of Computing Vol. 19 No. 2 (1997): 25 - 30. His account focuses on the human calculators
that preceded the ENIAC and unpacks the complexity of the calculations and the labor distribution
in response to which the ENIAC was designed. Examples of practitioner reports that detail early
mainframes explicitly as numerical entities designed to accept numerical data as input and to perform
numerical calculations include Herman Goldstine, Adele Goldstine. “The Electronic Numerical Inte-
grator and Computer (ENIAC)” in Mathematical Tables and Other Aids to Computation, Vol. 2, No.
15 (1946) 97 - 110: 98; Douglas Hartree, “The ENIAC, An Electronic Computing Machine” in Nature
Vol. 158 (1946): 500 - 506; John von Neumann, “First Draft of a Report on the EDVAC” Contract
No. W-670-ORD-4962 between the United States Army Ordnance Department and the University of
Pennsylvania. Document dated June 30, 1945. Document has been transcribed and edited by Michael
D. Godfrey, November 1992.

58It bears noting that in one sense, digital electronic computers are unavoidably numerical at base.
Information is always stored in memory in numeric form, e.g. hexadecimal notation, which is specified
by bits capable of having one of two possible states. Computers operate according to binary oper-
ations based on the presence and absence of electrical current, or the orientation of magnetic fields,
understood as corresponding to the 1s and 0s, or True’s and False’s of Boolean logic. In both of these
senses, the mechanism for computing is numerical. This transition from numeric to nonnumeric pro-
cessing does not claim otherwise. Rather, this transition opens up possibilities that what is referred
to by those numbers in memory or by those bits of information is not numeric. Systems of correspon-
dence are worked out and interfaces are devised that enable users to input nonnumeric information
(even typing on a keyboard is an example of this) and to receive nonnumeric information out of the
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This was an ontological issue. It was about what kind of thing the computer is

and what kind of work it could do. Automated theorem-proving practitioners and

others like them turned computers into a new kind of thing by thinking about them

and using them as machines that could do nonnumerical mathematical work. In their

retooling of the computer, in their translation of objects and processes of mathematics

into computable form, in their conceptualizing and crafting of the computer as a tool,

an object, an agent - these practitioners are all seeking to articulate and implement a

new vision of the computer-as-object.59

This perspective was also related to the emergence of computer science as an aca-

demic discipline. Nonnumeric and symbolic computing was historically bound up

with the development of programmatic and theoretical studies of algorithms and data-

structures.60 In that capacity, it was also entwined with the emergence of practitioner

claims that the computer was a thing worthy of study in its own right, rather than a

mere handmaiden or tool for other discipline’s data processing needs.

Automated theorem-proving was therefore not merely an esoteric niche of automa-

tion research but, it rather participated in the development of perspectives, tools, and

vocabularies that were enlisted in the program of elevating computer science to the

status of a discipline. In fact, many practitioners that worked on the automation of

mathematics were very active participants in the establishment of computer science

computer (all graphical user interface - including the appearance of words on the screen - are examples
of this). For example, computers could be “word processors”. Users input alphabetical information
to the computer through a keyboard and the computer can display and manipulate it through a
graphical user interface. Even though “under the hood” the information was represented by numerical
data, the computer was performing more than numerical processing - it performed “word processing”.
The crucial insight is that in nonnumeric processing, the instructions given to the computer do not
correspond to well-defined mathematical functions for numbers.

59For a synthetic account of the emergence of symbolic computation, see Edward Ng, “Symbolic-
Numeric Interface: A Review” NASA Jet-Propulsion Lab, Technical Report N80-16768 (January 1,
1980).

60For example, see Peter Brillinger, Doran Cohen, Introduction to data structures and non-numeric
computation (Prentice-Hall Series in Automatic Computation, 1972); Patrick Hall, Computational
Structures: An Introduction to non-numeric computing (MacDonald and Janes, 1975).
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departments.

Moreover, all practitioners of automated theorem-proving believed that comput-

ers could surprise us. Some early skepticism about the possibilities of computing

were grounded on the observation that computers can only do just exactly what they

are instructed to do, and that they would therefore never perform beyond what their

programmers could imagine for them. However, most early computing practitioners in-

sisted that it was often not possible to know what the consequences of their instructions

would be. Indeed, if they could, they would have had little need for fast computing

machinery to carry them out. Herbert Simon wrote in 1960 that “This statement -

that computers can only do what they are programmed to do - is intuitively obvious,

indubitably true, and supports none of the implications that are commonly drawn from

it.”61

In response to those erroneous implications, two early Artificial Intelligence prac-

titioners Edward Feigenbaum and Julian Feldman summarized the position of most

computing practitioners like this:

[I]t is wrong to conclude that a computer can exhibit behavior no more
intelligent than its human programmer and that this astute gentleman can
accurately predict the behavior of his program. These conclusions ignore
the enormous complexity of information processing possible in problem-
solving and learning machines. They presume that, because the program-
mer can write down (as programs) general prescriptions for adaptive be-
havior in such mechanisms, he can comprehend the remote consequences of
these mechanisms after the execution of millions of information processing
operations.62

These sentiments were shared by the practitioners I discuss in this dissertation and in
61Herbert Simon, The New Sciences of Management Decision (New York, NY: Harper & Row,

1960), p. 25.
62Edward Feignebaum, Julien Feldman, “Artificial Intelligence” in Computers and Thought (New

York, NY: McGraw Hill, 1963), p. 4. This book is a volume of early contributions to Artificial
Intelligence compiled and edited by Feigenbaum and Feldman to serve as a kind of early text book of
fundamentals. It included a section on “machines that prove theorems,” in which were featured the
Logic Theory Machine and its closest descendent, the Geometry Theorem Proving Machine.
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early computing fields more generally.

Computers, it seemed, were something of a paradox. On one hand they were the

most “disciplined” of technologies - they were rule bound to a fault, executing human-

crafted instructions to a T. And at the same time, their ability to execute human

instructions exceeded the capacity of the human instructors to anticipate. This is both

why experimentation and empiricism came hand in hand with the use of computers -

often it is not until actually running a program that one discovers what consequences

lurk in a set of instructions. Moreover, it is another reason why implementation is

significant - because abstract algorithms and computational models don’t run on com-

puters they do not offer up any of those unforeseeable consequences.

In this regard, computers resemble “experimental systems” as formulated by Hans-

Jörg Rheinberger - the material and physical systems that enable scientific research.63

That concept captures the way in which even the most disciplined of scientific instru-

ments or material apparatuses possess “inherent unpredictability” - they go beyond

formal prescriptions, they can surprise their users, “they contain the possibility of an

excess. They contain more and other possibilities than those to which they are actually

held to be bound.”64 For Rheinberger, the production of novel scientific knowledge is

incumbent upon that unpredictability belonging to “material objects” the latter being

“driving forces in the process of knowledge acquisition.”65

63Hans-Jörg Rheinberger, “Experimental Systems: Historiality, Narration, and Deconstruction” in
Science in Context, Vol. 7, No. 1 (1994): 65 - 81; Rheinberger, Toward a History of Epistemic Things:
Synthesizing Proteins in the Test Tube (Stanford, CA: Stanford University Press, 1997).

64Here he notes the seeming tension between formalization and unpredictability for scientific
knowledge-production in general, proposing that “Although unpredictability is in the nature of scien-
tific undertakings, their movement and performance can be characterized in a formal - i.e., structural
- way,” Rheinberger, “Experimental Systems,” p. 70, p. 71, emphasis in original.

65Rheinberger, “A Reply to David Bloor: ‘Toward a Sociology of Epistemic Things” ’ in Perspectives
on Science, Vol. 13, No. 3 (2005): 406 - 410, p. 406. Rheinberger’s claim should be understood as part
of a broader discussion concerning the role of nonhuman agency in scientific knowledge production. He
allies his project with actor network theory, proposed most famously by Bruno Latour, which resists
accounts that seek to reduce scientific knowledge-production to social (read, human) factors alone.
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However, Rheinberger seeks to differentiate experimental systems, and the epistemic

things that are manipulated and produced within them, from technical things. These

latter are “transparent, confined,” stable, not unpredictable, or as Rheinberger puts it

“not transcendent.”66 Once they have run out of productive indeterminism, epistemic

things can be made in to technical things, secondary and stable, and these in turn

can be built into new experimental systems. Here, I diverge from Rheinberger. I

argue that technical things can be epistemic things, and that the project of producing

technical things, like computer programs, can produce novelty and surprise like work in

an experimental system. Indeed, this is another way of saying that implementation has

epistemological significance. I identify in computers and computer programs the kind

of indeterminacy that Rheinberger reserves for experimental systems, and in so doing,

I seek to bridge the technical and the scientific, and with it, the history of technology

and the history of science.

Here, I similarly diverge from Bruno Latour, Rheinberger’s colleague in advocating

for nonhuman agency. Within actor network theory, Latour sought to distinguish be-

tween epistemologically significant mediators that “transform, translate, distort, and

modify the meaning or the elements they are supposed to carry” and intermediaries

that transport “meaning or force without transformation: defining its inputs is enough

to define its outputs.”67 Intermediaries are stable, completely defined. They do not

overflow, they do not surprise, they are not epistemologically significant. Latour cites

a “properly functioning computer” as a “good case of a complicated intermediary” -

suggesting that computers need to break down in order for them to become transfor-

mative mediators. I disagree. All three of the properly functioning computers in this

dissertation, and the fully formalized, completely defined computer programs run on
66Rheinberger, “A Reply to David Bloor,” p. 407.
67Bruno Latour, Reassembling the Social: An Introduction to Actor-Network Theory, (Oxford, U.K.:

Oxford University Press, 2005), p. 39.
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them produced unexpected results, overflowed, contained an excess.

As we will see, each of the theorem-proving programs discussed in this dissertation

surprised their developers, but each surprise was different. The Logic Theory Machine

produced a previously unknown proof of a proposition from Principia Mathematica.

Newell and Simon (and Russell) believed that it was more “elegant” than that Rus-

sell and Whitehead provided. They interpreted this as evidence that computers were

capable of producing elegant new proofs of this kind logicians constructed. The Pro-

gram P revealed what Wang called the “rather surprising result” that every proposition

from Principia Mathematica in fact fell into a particular subset of the predicate calcu-

lus, a previously unknown result in mathematical logic. The Argonne team proposed

that working with AURA in fact enabled them, much to their surprise, to collaborate

in solving problems from mathematical domains about which they had only limited

knowledge. They knew they wanted to work with the program to solve open problems

but they didn’t expect to be successful in problem-domains with which they were not

familiar.

These unexpected results had different characters that reflected the different ap-

proaches to automated theorem-proving adopted by each designer. They also reflect

differences in what the designers were looking for. That computers surprise their users

still does not mean they force any particular conclusion or interpretation. The new re-

sults had to be identified, justified, and promoted by the users and developers. It does

mean however, that part of the epistemological significance of computing emerges only

once programs have actually been run and results inspected by programmers. This

is another reason why implementing and running programs, not just modeling them,

matters for the history of computing. Reformalisms produced new and unexpected

results.

The cases discussed here, while specific and localized, speak to the kinds of transfor-
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mations and the epistemic significance that accompanies the overwhelming proliferation

of computing throughout the scientific and academic landscape, where today, it can

be found everywhere. Obstacles that shaped the development of these programs - like

developing tools for the management of very limited computer memory - were faced

by all early computing practitioners. This dissertation thus offers a window into the

character of early computing and the kinds of efforts expended there.

Each chapter that follows discusses one computer program, the approach to auto-

mated theorem-proving that motivated it, the disciplinary and political context that

informed it, and the reformalisms that were enacted in its construction. The central

focus is on the design and the implementation of each program and what I claim to

the be epistemological novelties and associated forms of proof that emerged in tandem.

I explore new ways of doing proof, and new tools for doing it with, that were devel-

oped as part of the implementation of those programs. I explore how different ideas

about mind, about proof, and about computing were built into the infrastructure of

each program and at how those ideas were in turn related to broader political, institu-

tional, and disciplinary contexts. At the heart of each discussion is the question - what

was known about mathematics and how was it known when practitioners thought and

worked with the formal and material tools of modern digital computation.

The Logic Theory Machine, the Program P, and the AURA are sites in which proof

was being translated into computing. This is a story about implementation. It is a

story about how punched cards, algorithms, computer memory, user interfaces, pro-

gramming languages, and data structures - the formal and material tools of computing

- were mobilized for the purpose of representing mathematical objects, manipulating

and exploring them, and ultimately for producing arguments about them whose status

would ultimately be negotiated by mathematical communities. I track how mathemat-

ics and computers were simultaneously retooled in order to make the latter useful and
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usable for the former - how new forms of mathematical proof and practice emerged in

these implementation efforts.
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Chapter 1

Rewriting Principia:

Implementing Intelligence

Introduction: Mathematical Materialities

As I write, there are upwards of 264 exabytes of digital storage, communication, and

computation capacity available on the planet - in hard drives, servers, memory cards,

flash drives, and other new media.68 That is a number with twenty zeroes and one that

exceeds the estimated number of grains of sand on the earth by more than 300 percent.

This digital capacity exceeds our ability to store and circulate information using other

media, like paper, by orders of magnitude. This is one reason why we are so often said

to live in a digital age. A great deal of our world is housed in digital media.

These bytes and their constituent bits are used to encode, store, and manipulate

all kinds of things from avatar gaming characters, photographs, and texts to scientific
68This number was put forward in 2011, and describes estimated digital storage capacity - including

hard drives, memory cards, DVDs and so on, up to 2007. Martin Hilbert, Priscila Lopez, “The World’s
Technological Capacity to Store, Communicate, and Compute Information” in Science Vol. 332, No.
60 (April, 2011): 60 - 65, p. 60. This number was calculated using the modern standard in which
each byte consists of eight bits.
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models and massive databases. But on their own, bits are not meaningful. Bits don’t

tell us anything or do any work for us unless we know how they are being used to

encode photos, texts, models, or anything else. In order to make computers useful for

a given task, communities of users, programmers, and software designers must first

develop ways of reformulating that task and its constituent elements so that they can

be stored, accessed, and controlled in and by the computer. We only live in a digital

age insofar as people have devised ways of storing and accessing the things they care

about using digital media. As Michael Mahoney put it, the history of computing is in

part a history of how different communities have “put their portion of the world into

the computer.”69 And there is never any single way that communities must digitize

their world. Instead, each community crafts or selects a particular set of encoding tools

with which to translate pieces of their world into computational objects.

This chapter explores how one community put a small piece of the world of math-

ematics “into the computer.” In particular, I investigate the development of an au-

tomated theorem-proving program called the Logic Theory Machine that ran on the

Johnniac mainframe at the RAND Corporation in Santa Monica, California in the

mid-1950s. The Logic Theory Machine was designed to produce proofs of theorems

taken from the pages of an early twentieth-century canonical text in elementary math-

ematical logic - Principia Mathematica. In order to make this automation project

possible, researchers at RAND transformed the elements of logic and the processes of

theorem-proving into computational artifacts and operations.

I ask - what kind of work was involved in this transformation? What motivated this

automation attempt? What kinds of obstacles and possibilities informed the process?

How did these practitioners understand proof and think about mathematics in the
69Michael Mahoney, “What makes the history of software hard” in IEEE Annals of the History of

Computing Vol. 30, No. 3 (2008): 8 - 18, p. 8.
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context of computation? Ultimately, this chapter aims to recover and reconstruct new

ways of representing the elements of logic that were devised in order to transport the

world of Principia into the digital media of the Johnniac mainframe.

At bottom, this chapter is about the materials with which the work of mathematics

is done. Traditionally, mathematics has been characterized as dealing with highly

abstract and immaterial things. In fact, throughout history myriad material tools

have been developed to make mathematics possible. From systems of written symbolic

notation and diagramming to physical models and mechanical calculators, different

technologies have equipped the heads and hands of mathematicians to formulate and

explore their domain in different ways. Indeed, the world of Principia Mathematica

that was “put into the Johnniac” in the context of the Logic Theory Machine was not

simply an abstract immaterial world of logic that lay in wait of representation. It was

a world on paper - a book world in which proofs were constructed on the page, typeset,

bound, and circulated to communities of reading mathematicians.70

This chapter tracks a transformation from a human-oriented representational sys-
70In imagining the paper world of Principia I have in mind the rich and exciting scholarship that ex-

plores media, print, communication, and publication in history of science. I am particularly indebted
to conversations with Alex Csiszar from whom I have learned a great deal about cultures of print,
publication and the classification of mathematical knowledge at the turn of the twentieth century. See
Adrian Johns, The Nature of the Book: Print and Knowledge in the Making (University of Chicago
Press: 2000); Jim Secord, Victorian Sensation: The Extraordinary Publication, Reception, and Secret
Authorship of Vestiges of the Natural History of Creation (University of Chicago Press: 2003); Lisa
Gitelman, Scripts, Groves, and Writing Machines: Representing Technology in the Edison Era (Stan-
ford University Press, 2000). Some scholars are interesting in looking at digital storage and recording
mechanisms as episodes in history of writing - taking seriously the metaphor that information is
“written” to discs and drives. I follow them in exploring digital storage as an episode in mathematical
inscription and representation. In this regard, I follow media theorist Matthew Kirschenbaum, Mech-
anisms: New Media and the Forensic Imagination (The MIT Press, 2012) - he treats digital storage
as a form of literal writing. More I am eager to explore new forms of paper and pencil writing and
diagramming that were developed in the process of designing and implementing computer programs.
I was excited to learn of similar work from like-minded historians of computing Mark Preistly, David
Norfre, and Gerard Alberts in “When Technology Became Language: The Origins of the Linguistic
Conception of Computer Programming, 1950 - 1960” in Technology and Culture, Vol. 55, No. 1 (Jan-
uary 2014): 40 - 75, who explore different types of writing and representation in early programming
practice. I explore some of these ideas in Dick, “Machines Who Write,” in IEEE Annals of the History
of Computing, Vol. 35, No. 2 (April-June 2013): 85 - 87.
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tem to a machine-oriented one, keeping an eye on where and how materiality matters

for questions of mathematical agency and knowledge-production. In the context of

Principia Mathematica, logical propositions were inscribed on the page using a symbol

system intended explicitly to capitalize on the human powers of vision and pattern

recognition. I begin the chapter with an exploration of this paper world. The rest of

the chapter tracks how new ways of representing logical propositions were developed -

ones that accommodated a computer rather than a human practitioner.

In the context of the Logic Theory Machine, logical propositions were transported

into the magnetic drum and core magnetic storage systems of the Johnniac mainframe

in the form of what were called “Linked List Information Structures.” These were

an early example of what we now call “data structures” - one of the tools computing

practitioners have devised to “put their portion of the world into the computer.”71 They

are ways of organizing information in computer memory, of encoding things as digital

things, of assigning meaning to underlying bits, of making digital media do work for us.

Linked lists were crafted to overcome the significant memory management issues that

plagued early computing machines whose storage capacity was very limited. Linked

lists were one new form of materiality and representation designed to make logical

propositions into digital things.

Anthropologist Jack Goody asked - “What’s in a list?”72 He proposed that the

evolution of human thinking was tied to the development of literary technologies like

tables, charts, and lists. He wanted to know what ways of thinking, what forms of
71Where now “data” occupies a central position in our computational vocabulary, the word “infor-

mation” used to be the catch-all for what was inside computers and what they were representing in
the world. The transformation from the language of “information” to the language of “data” hasn’t
been thoroughly historicized. Relevant works include Thomas Haigh “Inventing Information Systems:
The Systems Men and the Computer, 1950 - 1968” in The Business History Review, Vol. 75, No. 1
(Spring 2001), pp. 15 - 61; Daniel Rosenberg, “Data before the Fact,” in “Raw Data” Is an Oxymoron,
ed. Lisa Gitelman (Cambridge, MA: The MIT Press, 2013): 15- 39.

72Jack Goody, The Domestication of the Savage Mind (Cambridge, UK: Cambridge University
Press, 1977): 74 - 111.
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social organization, and what relationships to temporality and history were made and

made possible with the development of written lists. I ask - “What’s in a linked list?”

Where did that structure come from and what were its consequences for the material

history of mathematics? What and how do linked lists represent? To whom or to

what?

Linked lists are a window into the kind of work that was involved in putting mathe-

matics into the computer. Part of this story is about the displacement of paper and of

the human hand - a displacement of Principia and the moment in the material history

of mathematical practice that it embodies. However, as we will see in the concluding

section of this chapter - the computer seldom replaces paper and it never replaces the

human hand. Rather, computing displaces paper, displaces human labor, directs them

towards different goals and problems.

A Mathematical World On Paper

In the section “Proving Theorems in the Twentieth Century” in the Introduction to

this dissertation, I introduced Whitehead and Russell’s canonical text Principia Math-

ematica. It was part of a particular mathematical tradition that sought to reduce

mathematics to logic. Whitehead and Russell aimed to craft formal systems consisting

of sets of axioms and rules of inference for deriving consequences from them.73 Their

project reflected a particular philosophy of mathematical knowledge - that it could be

fully formalized, axiomatized, and standardized within mathematical logic. For them,

a proof consisted of a chain of deductive steps that began with the axioms of their

logical system and concluded with a true and interesting logical statement, and they

believed the whole of mathematical knowledge could be formulated in this way.
73These are laid out in Whitehead, Russell, Principia Mathematica, Volume One, pp. 94 - 101.
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However, the project also demonstrated a commitment to a particular medium as

the site where mathematical knowledge should be produced and circulated - namely,

paper and the book. Proofs were not just sequences of deductive steps in the abstract,

but literally written sequential lists of logical propositions, each step marked by the

principle of inference that permitted one to follow from the next. Mathematical knowl-

edge was not hovering in the platonic ether, it was collected, catalogued, and circulated

as lists of theorems, lists of inferences, and lists of proofs on the page and collected in

the three volumes of Principia were first published by Cambridge University Press in

1910, 1912, and 1913.

In order to equip the heads and hands of mathematicians to do the work of proof,

on paper, within their logical system, Whitehead and Russell also crafted a particular

notational system - a way of writing, representing, and exploring logic on the page.

Proof would be standardized not just formally but symbolically as well.74 In their

account, the notation was not merely an incidental or arbitrary tool used to access the

truths of logic, but a necessary condition for the exploration of logic in the first place:

The symbolic form of the work has been forced upon us by necessity: with-
out its help we should have been unable to perform the requisite reasoning.
It has been developed as the result of actual practice, and is not an ex-
crescence introduced for the mere purpose of exposition. [...] No symbol
has been introduced except on the ground of its practical utility for the
immediate purposes of our reasoning.75

They started with the notational system developed by Peano - an Italian mathemati-

cian who worked on the project of providing an axiom system for the natural numbers76

74A helpful introduction to the notational system in Principia, including a compari-
son with more contemporary logical notation is available in Bernard Linksy, “The No-
tation in Principia Mathematica” in Stanford Encyclopedia of Philosophy (Fall 2011):
http://plato.stanford.edu/archives/fall2011/entries/pm-notation/.

75Whitehead, Russell, Principia, viii.
76See, for example, Peano, [1889] "The principles of arithmetic, presented by a new method" in

Jean van Heijenoort, A Source Book in Mathematical Logic, 1879–1931. (Cambridge, MA: Harvard
University Press, 1967): 83–97.
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- and praised him for showing “how symbolic logic was to be freed from its undue ob-

session with the forms of ordinary algebra, and thereby made it a suitable instrument

for research.”77 Algebra was typically interpreted such that the symbols and variables

stand in for unknown numerical values or quantities, whereas the symbols of logic in

Peano’s rendering and Russell and Whitehead’s work are taken to stand in for proposi-

tions or entities of any kind, making it a more powerful language. Part of the project of

the Principia was to establish this more powerful potential of symbolic formalism, and

to enlarge the scope of algebra-like symbol systems beyond the numerical domain.78

In the Introduction to Principia, they go to even greater lengths, emphasizing the

importance of their notational system for the work of mathematical logic by offering

five justifications of their symbol system in relation to the limitations of both natural

language and numerically-bounded symbol systems. Of particular interest here are

the third and fourth reasons: “The adaptation of the rules of the symbolism to the

processes of deduction aids the intuition in regions too abstract for the imagination

readily to present to the mind the true relation between the ideas employed.”79 That

is to say, the symbol system makes possible more abstract cognition and imagination

than natural languages while still capitalizing on the sequential, left to right form of
77Whitehead, Russell, viii.
78There is an interesting parallel for this shift in history of mathematics from numerical to non-

numerical symbol systems in history of computing. As discussed in “The Possibilities of Computing”
in the Introduction, automated theorem-proving practitioners were among those who wanted to use
computers to perform nonnumeric tasks, where they were first used primarily for calculation. Both
historical moments call for a new way of mobilizing a set of tools - written symbolism in the former
and computing machinery in the latter - for new domains. Both begin with a set of tools crafted
for numerical work, and fashioned new uses and new interpretations of them that enabled additional
domains of application. Both transformations also have ontological stakes concerning what a formal
system is - be it deductive or algorithmic. Both answer that formal systems are not limited to numer-
ical domains. Natural language, cognition, medial diagnosis, face recognition - all manner of domains
- are then opened up to representation and exploration with formal tools like that of algebra or cal-
culation, de-numericized as logic and computation. However, bringing formal tools to bear on these
many domains transforms them - they are understood and practiced differently as they are fashioned
in terms of deduction or algorithm.

79Whitehead, Russell, Principia, p. 2.
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natural language for readability.

They go on to attribute this potential precisely to the visual properties of the

symbol system - which renders abstract ideas and relations concretely and succinctly

to the human eye: “The terseness of the symbolism enables a whole proposition to be

represented to the eyesight as one whole, or at most in two or three parts... This is

a humble property, but is in fact very important in connection with the advantages”

of the symbol system for the intuition of very abstract objects.80 The centrality of

symbolism in mathematical logic was also emphasized by Peano and Frege before them

and David Hilbert and Wilhelm Ackermann after them. Hilbert and Ackermann, for

example, wrote that their logic employs “a symbolic language like that which has long

been in use to express mathematical relations. [...] The great advances in mathematics

since antiquity, for instance, in algebra, have been dependent to a large extent upon

success in finding a usable and efficient symbolism.”81

Principia thus combines a formal system (propositional logic), a medium (paper

and the book), and a way of writing mathematics (their notational system) to embody

the turn of the twentieth century logicist vision of mathematics. As seen in Figure 1.1

and Figure 1.2, the notational system was both a handwritten part of the production

of Principia and was reproduced in its typesetting for publication.

On those pages, each line is created by the application of an accepted rule of

inference to the proposition on the line before. Each line contains a single proposition

with implication, written as �, as the main logical operator. The left hand implies the

right hand. The topmost statement is the theorem to be proved. The proof follows,
80Whitehead, Russell, Principia, 3, my emphasis. The other justifications can be paraphrased as

follows: 1) Natural language is insufficiently abstract and precise for the work of mathematical logic;
2) The grammar of natural language is too flexible for mathematical logic; 5) In order to attain the
“complete enumeration of all the ideas and steps in reasoning employed in mathematics,” a formal,
rigorous symbol system is required. The justifications are enumerated on pp. 2 - 3.

81Hilbert, Ackermann, Principles of Mathematical Logic, p. 1.
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Figure 1.1: Manuscript leaf from Principia Mathematicia. MU-BR, c.a. 1907.

Figure 1.2: Typeset page from Principia Mathematica, first edition, 1910.
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and is meant to be read from top to bottom. This kind of symbolic system is taken

largely for granted today, but it is worth noting that it has a particular spatiality and

materiality and that these have built in assumptions about mathematical agents and

mathematical practice.

Principia represents a particular moment in the history of mathematical writing,

mathematical materiality, and mathematical practice.82 Here, the agent of proof is

assumed to be a reasoning, seeing, writing, reading person and the notation system

is developed accordingly. Material representational systems are tools for thinking, for

making, and for communicating mathematical knowledge. The notational system with

which Russell and Whitehead make the propositional logic manifest in their work is

neither secondary to the project, nor arbitrarily construed. Rather they understood

the notation as the enabling condition for constructing and cognizing the deductive

system upon which they wanted to ground all of mathematics. It was not possible to

transport this written system, unaltered, into the context of computation. A different
82The relationship between notational systems and cognition has recently become a subject of

interest for science studies scholars. For example, Ursula Klein has explored the role of “paper tools”
in the knowledge-practices of nineteenth century organic chemistry in Experiments, Models, Paper
Tools: Cultures of Organic Chemistry in the Nineteenth Century. (Stanford, CA: Stanford University
Press, 2003). Hans Jörg Rheinberger makes a compelling case that way in which scientists take notes
during their experimental work shapes the conclusions they will later make concerning what that
work was about and what it revealed. See in particular, “Scrips and Scribbles” in MLN, Vol. 118,
No. 3 (April, 2003): 622 - 636. Bruno Latour suggests that a study of the making, circulation,
and reproduction of “inscriptions” would go a long way to understanding knowledge-production in for
example, “Visualization and Cognition” in Knowledge and Society: Studies in the Sociology of Culture
Past and Present, eds. Henrika Kuklick and Elizabeth Long (Jai Press Inc., 1986): 1 - 40. An interest
in notational systems has also become an interest for certain historians of mathematics. Notably,
the work of Reviel Netz on origin of deductive reasoning practices with the lettered diagram and
certain linguistic formulations in ancient Greek mathematics. See, for example, Netz, The Shaping
of Deduction in Greek Mathematics: A Study in Cognitive History (Cambridge, UK: Cambridge
University Press, 1999); Netz, “Linguistic Formulae as Cognitive Tools” in Pragmatics and Cognition,
Vol. 7, No. 1 (1999): 147 - 176. Rotman, as discussed earlier in Part One, also has a pointed
interest in mathematical notation systems in so far as he wants to reduce mathematics to writing
and associated semiotic practices. See especially Rotman, Mathematics as Sign: Writing, Imagining,
Counting (Stanford, CA: Stanford University Press, 1993); and Rotman, “Thinking Dia-Grams :
Mathematics and Writing” in ed. Mario Biagioli, Science Studies Reader (New York: Routledge,
1999): 430 - 441.
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notational system and representational structure would be needed if Principia was to be

automated. It would have to accommodate quite a different mathematical agent, abled

and limited in significantly different ways than the imagined readers of Principia. I

now turn to the development of Herbert Simon, Allen Newell, and John Clifford Shaw’s

Logic Theory Machine to explore how that was done.

Proof As Information Processing

The Logic Theory Machine was intended to simulate a human mind. The program

developed between 1955 and 1958 at the RAND Corporation in Santa Monica, Cali-

fornia. The character of the program and the beliefs about minds and computers that

were built into it reflect this institution. RAND was founded in 1946 as Project RAND

at Douglas Aircraft Company but soon split off to become the non-profit RAND Cor-

poration, distancing itself from product-oriented work.83 The funding for RAND came

from the Air Force who tasked RAND to develop “a robust general science of warfare

in which winning strategies and necessary tactics could be derived to achieve global

superiority over an aggressor.”84 That is to say, the Air Force wanted to know what

future wars would look like and how they should be fought, a difficult task especially

in light of uncertainties concerning the ever changing technological landscape of war.85

RAND researchers approached this mandate through the study of management,

organization, and decision making during war-time especially in the face of uncertain
83The emergence and early history of Project RAND and the RAND Corporation is explored in

Martin Collins, Planning for Modern War: RAND and the Air Force 1945 - 1950 (Dissertation
submitted to the Department of History, University of Maryland, College Park, MD: 1998); Agatha
Hughes and Thomas Hughes, eds., Systems, Experts, and Computers: The Systems Approach in
Management and Engineering, World War II and After (Cambridge, MA: MIT Press, 2000).

84Hounshell, “The Medium is the Message, or How Context Matters: The RAND Corporation Builds
an Economics of Innovation, 1946 - 1962” in Systems, Experts, and Computers: 255 - 310, p. 259.

85This mandate following WWII in which the development of radar, computing, and nuclear
weapons had dramatically altered outcomes and experiences of war strategizing.
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knowledge. The overall approach to research at RAND was unified under the rubric of

“systems analysis” - in which weapons, surveillance and intelligence equipment, com-

mittees, political organizations, and other technological and human components were

understood as holistic and dynamic systems that could be mapped and optimized.86

Systems engineering was clearly informed and transformed by the emergence of cyber-

netics during World War II in which vocabulary and tools for studying certain humans,

animals and machines as self-regulating, dynamic systems was formalized. At RAND,

the systems engineering approach was applied to military strategy, economics, Soviet

Studies, and to the human mind and the idea of artificial minds.

Newell left a graduate program in mathematics at Princeton in 1950 and came to

RAND as a consultant. Once there, he was inducted into the systems engineering

approach to problem solving almost immediately, being tasked upon arrival with par-

ticipation in a then-ongoing project to model and understand the American air-defense

system as manifested in McChord Field Air Defense Direction Center in Tacoma. This
86The systems approaches to engineering have their origins in Word War II. While no single set of

properties unified the approach into a single whole, a common feature was the treatment of technolo-
gies, people, and organizations of both as systems with common properties. This approach of inte-
grating human and machine elements as parts of hybrid systems bears the mark of cybernetics - the
study of organic and inorganic entities according to the same interests of feedback and self-regulation.
Peter Galison has explored the origins of cybernetics in the context of WWII era anti-aircraft gunnery
development in (Galison, “The Ontology of the Enemy” in Critical Inquiry, Vol. 21, No. 1 (1994): 228
- 266). Roberto Cordeschi also provides an account of the development of cybernetics within a longer
history of interest and concern in studies of teleology in organic and inorganic systems in Discovery
o the Artificial: Behavior, Mind and Machines Before and Beyond Cybernetics (Dortrecht, Kluwer:
2002), esp. pp. 153 - 186. The systems approach to engineering problems was enabled by the cyber-
netic proposition that humans, animals, and machines are regulated by the same processes and can
therefore be integrated into holistic systems. David Mindell identifies a changing notion of “system”
emerging during World War II in particular in the development of radar technologies. The Rad Lab
at MIT, in particular, engaged with a notion of system as a “dynamic entity” rather than a stable
sum of constituent parts. See Mindell, “Automation’s Finest Hour: Radar and System Integration in
World War II” in Systems, Experts, and Computers, pp. 27 - 56. Ideas of system, cybernetics, and the
context of WWII are also the subject of Paul Edwards, The Closed World: Computers and the Poli-
tics of Discourse in Cold War America (Cambridge, MA: MIT Press, 1996), esp. Chapter One ““We
Defend Every Place”: Building the Cold War World” (pp. 1- 42) and Chapter Four “From Operations
Research to the Electronic Battlefield” (pp. 113 - 146). This new idea of a system expanded with
cybernetic notions of feedback and self regulation and through these related trajectories, especially in
the hands of RAND consultants and employees, systems engineering came into being.
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project also afforded Newell and Simon their first meeting when the latter began con-

sulting for the project in 1952.

Simon arrived with an interest in human decision making, in organizations, and in

reason already in mind from his previous work.87 As an economist, psychologist, and

business management researcher, Simon was invested in processes of decision making

and judgement in individuals and organizations. His dissertation project of the late

1930s, for example, came out of the application of logic to the study of administra-

tive behavior - a work for which he eventually won the Nobel prize in economics in

1978. The air-defense experiments also landed Newell in the RAND basement where

he encountered John Clifford Shaw, who would become the lead computer practitioner

who did much of the work implementing the Logic Theory Machine. Shaw was then

working in the numerical analysis department (later to be called the “programming de-

partment”) providing various computational services to other departments and projects

at RAND.

The crux of the air-defense experiments - based in RAND’s Systems Research Lab-

oratory (SRL) - focused on understanding human-machine interaction and human de-

cision making processes in the air defense command and control systems. The project

studied how the human elements in the system made decisions to, e.g. scramble anti-

aircraft planes based on technological information from, e.g. radar. The ultimate goal

was to understand this systemic behavior, to model it, and then to optimize it through

the development of specialized training programs.88

87At that time, he held a faculty position at Carnegie Technical Institute, soon to become Carnegie
Mellon University. He would be instrumental in the creation of the latter’s department of Computer
Science and robust artificial intelligence research community during the 1960s.

88Newell produced one RAND report related to this project: “Description of the Air-Defense Ex-
periments II. The Task Environment.”Newell, Description of the Air-Defense Experiments, II. The
Task Environment” RAND publication No. P-659 (October 17, 1955). Simon also wrote one primary
RAND report on the subject: Simon, “Observations and Comments on the Organization Studies of
the Systems Research Laboratory” RAND publication No. RM-922 (1952). Newell’s thinking about
systems even precedes this project somewhat. While still at Princeton, Newell had already begun to
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By the time Newell, Simon, and Shaw began work on the Logic Theory Machine in

1955, they had been working for several years on projects like this one - thinking about

human decision making processes, man-machine systems, and the nature of systems

in general.89 In the systems approach, learning, deciding, reasoning, and judging were

attributable to man, to man-machine organizations, and eventually to machines them-

selves. All were understood as “species of the genus information processor” - they took

symbolic information as input and manipulated it in order to solve problems, formulate

decisions, and otherwise navigate the world.90

Newell, Simon, and Shaw’s conception of information and of symbols drew together

rich and complex historical trajectories that become increasingly tied to technology

through the twentieth century. Information in the twentieth century is perhaps most

readily identified with the theory that Claude Shannon developed in the 1940s.91 Shan-

non was interested in the study of information in itself, independent of specific content

move away from pure mathematics, taking up a research assistantship with German-born economist
Oskar Morgenstern (of game-theory fame). Morgenstern was, at that time, interested in using logic
to model rail-yards as systems. Although Newell claims to have found that work uninteresting, his
earliest RAND report documented that subject “The Capacity of a Railroad Freight Yard (A Survey
of the Problem – Not the Solution)” RAND Document, No. RM-555 (June 14, 1950). Here, we can
see evidence of early systems thinking in Newell’s work, but with a somewhat more stochastic and
game-theoretic methodology than in this work on air-defense in the early years at RAND. For other
discussions of the project, see Edwards, The Cold World, esp. pp. 121 - 124; McCorduck, Machines
Who Think, esp. pp. 139 - 145; and Hounshell, “The Medium is the Message, or How Context Matters:
The RAND Corporation Builds an Economic Innovation”. Newell was the most actively involved in
the project and Simon acted as a sometimes visiting consultant. Shaw (who also arrived at RAND in
1950), was then working in the numerical analysis department who provided computational services
to other labs and groups at the corporation. Shaw recalls having first met Newell in conjunction with
the air defense experiments for which he provided assistance creating the necessary simulations. See
McCorduck, J. C. Shaw Interview, June 16, 1975, (CMU_PM, Series III, Transcripts).

89Early signs of a more general interest in learning and reasoning - in humans, but in other systems
as well - are clearly visible there. For example, in reporting the progress of the air defense experiment
task environment, Newell wrote that “After the first few sessions the problems were not difficuLogic
Theory Machine at all. In fact, the organization learned its way right out of the experiment.” Newell,
“Description of the Air-Defense Experiments”, p. 1, my emphasis. His language reveals a belief that
the organization could learn, not merely the individuals within it.

90Allen Newell, Herbert Simon, Human Problem Solving (Upper Saddle River, NJ: Prentice Hall,
1972).

91His work culminated with the foundational paper “A Mathematical Theory of Communication”
in Bell Systems Technical Journal, Vol. 27 (October 1948): 379 - 423.
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or semantics. He was also interested in understanding information as a physical thing

- transmitted in signals, stored, compressed, moved, etc. - whose limits and behaviors

could be modeled and quantified.92 In both regards, Newell and Simon’s notion of

“information” is influenced by Shannon. In fact, some of their earliest work develop-

ing a programming language to realize the Logic Theory Machine was presented at

a July 1956 Symposium on Information Theory. Indeed, Shannon’s information the-

ory underlay the development of cybernetics and, in turn, systems engineering that

so dominated the Systems Research Laboratory at RAND within which Newell and

Simon were working.93

However, while Shannon’s information theory focuses on syntax it is not explicitly a

theory of symbols or of formal logic - both of which dominate the character of informa-

tion in Newell and Simon’s work. Crowther-Heyck suggests that Newell and Simon’s

experience with logic predisposed them “to conceive of decision-making as a logical pro-

cess of drawing conclusions based on certain premises.”94 They drew from that turn of

the century tradition in which human reasoning was associated with deductive logic,

itself deeply tied (as we have seen) to the development of particular symbol systems.

Their vision of information processing drew together those two traditions - information

theory and mathematical logic.

In attributing the same form of symbolic information processing to the computer

and the mind, Newell and Simon drew from post-cybernetic resources in which humans,

non-human animals, and certain machines were understood as examples of the same
92A history of the origins Shannon’s information theory can be found in Samuel Thomsen, “Some

evidence concerning the genesis of Claude Shannon’s information theory” in Studies in the History
and Philosophy of Science Vol. 40 (2009): 81 - 91.

93Hunter Crowther-Heyck offers a more in depth survey of the influence of Shannon’s information
theory on Newell and Simon and on systems engineering in both “Defining the Computer: Herbert
Simon and the Bureaucratic Mind – Part I” in IEEE Annals of the History of Computing, Vol. 30,
No. 2 (2008): 42 - 51 and “Defining the Computer: Herbert Simon and the Bureaucratic Mind – Part
II” in IEEE Annals of the History of Computing, Vol. 30, No. 2 (2008): 52 - 63.

94Crowther-Heyck, Herbert A. Simon, p. 219.
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kind of thing - self-guided or goal-directed systems, governed by the same sets of

rules. Even before Wiener, Rosenblueth, and Bigelow published their famous paper

“Behavior, Purpose, and Teleology,” psychologists, behavioral scientists, and even some

engineers were theorizing, exploring, and experimenting with the idea of purposive and

intentional behavior. They asked what mechanisms and rules enable feedback with the

environment and engender purposive behavior?95

One answer to this question came from psychologist Kenneth Craik. According to

Cordeshi, his work had a visible and traceable impact on those working in early artifi-

cial intelligence, including Newell and Simon. Craik proposed that purposive behavior

was made possible when an entity (man, animal, or machine) could generate a sym-

bolic representation of its environment.96 Within Craik’s “symbolic theory of thought,”

intentional agents would engage with their model of the environment through feedback

processes that would enable and shape intentional behavior. It was through a feedback

processes within a symbolic representation of the world that Craik explained human,

some animal, and automata purposive behavior without theorizing teleologically.

Newell and Simon were among the early AI practitioners that identified Craik as

a guiding influence, and Craik’s theory serves to illuminate the emphasis on symbol

systems in their work. “Information processing” for Newell and Simon mobilized the

idea of signals from Shannon, the notion of reasoning as logical deduction, and the idea

that symbolic representations of the world can enable intentional behavior. Their idea

of a system was informed by systems engineering, cybernetics, and operations research
95Concern with goal-directed behavior was wide spread in Europe and the United States throughout

the twentieth century, before the emergence of cybernetics proper just before the second word war.
Purposive behavior was taken to include those actions that seemed to be in service of some future
outcome, and it became a concerning phenomenon as scientists became increasingly distrustful of
“teleological” explanations. Corseschi suggests, in Discovery of the Artificial, that the search for laws
and mechanisms that could explain purposive behavior and “explain away” its seemingly teleological
character were long sought among behavioral scientists and psychologists throughout the century. See,
especially “Chapter Four: Behavior, Purpose and Teleology.”

96Cordeschi, Discovery of the Artificial, p. 141 - 142.
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that were deployed everywhere around them.

All of these influences are present in the notion of a “complex information processing

system” - a notion that included the Logic Theory Machine and that the Logic Theory

Machine was meant to illuminate further through empirical research. And for Newell

and Simon, human reasoning was also a complex information processing system (though

manifested in a different physical system). By way of that similarity, Newell and

Simon famously believed that the Logic Theory Machine, once in operation, was in

fact a simulation of human thinking because for them, that faculty was precisely the

manipulation of symbolic information:

When we say that these programs are simulations of human problem solv-
ing, we do not mean merely that they solve problems that had previously
been solved only by humans - although they do that also. We mean that
they solve these problems by using techniques and processes that resemble
more or less closely the techniques and processes used by humans.97

In fact, Newell and Simon went so far as to say that the best way to understand human

behavior was in terms of a computer program that specified the rules underlying the

information processing at work in it:98

We wish to emphasize that we are not using the computer as a crude analogy
to human behavior. We are not comparing computers with brains, nor
electrical relays with synapses. Our position is that the appropriate way
to describe a piece of problem-solving behavior is in terms of a program:
[...] in terms of certain elementary information processes it is capable of
performing. [. . . ] Digital computers come into the picture only because
they can, by appropriate programming, be induced to execute the same

97Newell, Shaw, Simon, “The Processes of Creative Thinking,” RAND Corporation Technical Report
P-1320 (1959), p. 6. Here they also document some of their later work developing chess-playing
programs and a so-called “General Problem Solver.”

98The notion that all human reasoning was rule-bound was of course tied in part to turn of the
century efforts to formulate reason as a logical deductive system consisting of axioms and inference
rules. For discussion of where this rule-bound conception of human reasoning came from and its
significance for postwar theories of mind, see Paul Erickson, et al, How Reason Almost Lost its Mind
(Chicago, IL: University of Chicago Press, 2013): esp. pp. 27 – 51.
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sequences of information processes that humans execute when they are
solving problems.99

Newell and Simon explicitly situated the Logic Theory Machine project in the broader

RAND goal of studying complex systems: “One tactic for exploring the domain of com-

plex systems is to synthesize some and study their structure and behavior empirically.

This paper provides an explicit specification for a particular complex information pro-

cessing system - a system that is capable of discovering proofs for theorems in elemen-

tary symbolic logic.”100 The systems approach enabled them to talk about reasoning

as a property of certain kinds of systems; cybernetics enabled them to identify the

computer as such a system; and RAND air defense research afforded them both the

opportunity to meet one another and provided the resources required to pursue the

Logic Theory Machine.

Although RAND was funded by the Air Force and had an overarching mandate

to prepare that organization for future wars, the research environment was, by nearly

all counts, quite flexible and liberal.101 Indeed, independent research was encouraged

and expected of its employees and consultants. Throughout the 1950s, RAND moved

away from research with immediate relevance for military strategy and towards a more

general mantra of applying systems engineering to important problem domains. In fact,

RAND historian Martin Collins suggests that the philosophy of independent research

was as prominent as the sense of urgency in “fighting the Russians” that was behind

RAND and other so-called Cold War institutions’ research.102

99Newell, Shaw, Simon, “Elements of a Theory of Human Problem-Solving” in Psychological Review,
Vol. 65, No. 3 (1958): 151 – 166. For a more in depth exploration, see Crowther-Heyck, Herbert A.
Simon, esp. “A New Model of Mind and Machine” (pp. 184 – 214) and “The Program Is the Theory”
(pp. 215 – 232).

100Newell, Simon, “The Logic Theory Machine: A Complex Information Processing System”, p. 3.
101See, for example, Paul Armer’s account, cited in McCorduck, Machines Who Think, p. 139.
102Martin Collins, Planning for Modern War: RAND and the Air Force, 1945 - 1950 (PhD disser-

tation submitted to University of Maryland, History Department: 1998), p. 2.
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This position was defended on the grounds that, because of the expansive and

scientific character of warfare in the twentieth century, “modern war, more than in

previous periods, was a contest between whole societies, not just between opposing

military forces”.103 The mobilization of technology and knowledge required to win

such wars could not be directed by military expertise alone. Although the overall

RAND approach to research was characterized by an basic interest in military sys-

tems management and was deeply characterized by ties by cybernetics and weapons

development, RAND employees and consultants were free to work on projects without

immediate defense applications.

The Logic Theory Machine is an exemplar of this kind of Cold War research project -

its character is inextricable from the systems engineering methodology of 1950s RAND

research which is, in turn, deeply tied to fear of a Soviet threat, World War II era

weapons design, and future armed conflict strategizing - but it was not directly or

easily applicable to immediate weapons design or war planning. In this sense, the Logic

Theory machine echoes what Hounshell describes as the “new frontier” of problems and

concerns offered up by the Air Force, but enabling and engendering myriad different

projects and research trajectories.

The Logic Theory Machine was made possible by the Cold War. Not only were

the required institutional and financial resources a product of the increasingly inte-

grated military-academic-industrial complex. The kinds of questions being asked and

problems being solved by such Cold War institutions made possible new ways of think-

ing about cognition, humans, machines, decisions, and so on that made it possible to

imagine a machine that could prove mathematical theorems. In this sense, the Logic

Theory Machine is an example of the simultaneous constraining and enabling influence

of Cold War concerns and intellectual focuses.
103Collins, Planning for Modern War, p. 2.
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The program was an experiment within a particular research methodology aimed

at providing opportunities for empirically investigating a rather abstract and multi-

faceted concept - a “complex system.”104 It was, in a sense, of the same kind as the

air defense system simulation experiments pursued at RAND earlier in the 1950s - an

attempt to construct a complex system, and then to study its behavior in pursuit of

better models and understanding of what complex systems are. It is also the case that

a certain model of reasoning was already built in to the program, namely, a theory

of reasoning-as-information-processing - but this theory was informed by the broader

experimental research context of systems engineering in air defense.

Trick or Tree: A Heuristic Theorem Prover

Newell and Simon approached the prospect of automated theorem-proving with an

interest in automating what human mathematicians do when they prove theorems.

Their interest was not in finding new ways to prove theorems or in the improvement

of mathematical research prospects by way of digital computing but rather in bringing

computers up to the task of what human mathematicians already do. Their interest

in mathematics was as a window into the mind - a paradigmatic example of human

reasoning to be mapped and understood in the service of a broader effort to model the

mind.105

104Newell and Simon define their meaning of “complexity” relative to systems engineering in “The
Logic Theory Machine: A Complex Information Processing System”, on p. 2.

105Logic was not the first problem domain to which Newell and Simon turned with their in-
terest in automating human reasoning processes. Newell and Simon also worked extensively
on the automation of chess playing. In the summer of 1954, Oliver Selfridge visited RAND
and presented his work on developing so-called “pattern recognition skills” for simple alphabets.
See, for example, Selfridge, Dineen, “Pattern recognition and modern computers” in Proceedings
of the 1955 Western Joint Computer Conference (March 1 - 3, 1955): 91 - 93. Newell re-
ported in an interview with Pamela McCorduck in 1974 that Selfridge’s work led to his initial
revelation that the computer could be treated as a system for manipulating symbolic informa-
tion. (McCorduck interview with Allen Newell, September 30, 1974. From CMU-PM: Series II:
http://doi.library.cmu.edu/10.1184/pmc/newell/box00088/fld06028/bdl0002/doc0001, p. 18). In-
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They were in the business of theorizing reasoning in general as a property of certain

kinds of systems that was thought to include both the human mind and the modern

digital computer. Newell and Simon’s posture toward the project of automation of

logic as a means and not an end differs from the position adopted by many automated

theorem-proving researchers who followed. Many such later researchers hoped their

theorem-proving programs would make contributions to mathematics and/or transform

the way that mathematics was done.

One explanation for Newell and Simon’s relative disinterest in mathematical re-

search for its own sake is the fact that, unlike many who followed, Newell and Simon

were not mathematicians.106 Neither was a member of a mathematical community,

nor prioritized mathematical knowledge in itself in their work. Both men received ad-

vanced training in mathematics and in logic and at times in their lives pursued training

spired by Selfridge’s program, Newell designed a program that would play chess - but not by checking
every possible move. See Newell, “The Chess Machine: An Example of Dealing with a Complex Task
by Adaptation” in Proceedings of the 1955 Western Joint Computer Conference (March 1 - 3, 1955):
101 - 108. Newell’s choice of chess as a problem domain may have resulted from the fact that he
himself played, or it may be because of the long history of the automation of chess-playing that pre-
ceded his work. For an account of the centrality of chess to research on the automation of reasoning
see Nathan Ensmenger, “Is Chess the Drosophila of Artificial Intelligence? A Social History of an
Algorithm” in Social Studies of Science, Vol. 42, No. 1 (2012): 5 - 30. Chess, however, created a lot
of practical problems given the huge number of possible moves that can be made at any point, and the
wide range of different “goals” that can prescribe choices between moves (e.g., checking, check mating,
taking the opponent pieces, taking the queen, etc.). During the Fall of 1955, when Newell was work-
ing at RAND and also pursuing graduate studies with Simon at Carnegie Mellon, the two met every
Saturday to discuss chess problems but they also brainstormed other problem domains that might
be more tractable for a full-scale automation attempt. (This account comes from a memoir Simon
drafted in 1957 when reflecting on 1954 and 1955. The account is excerpted in McCorduck, Machines
Who Think, pp. 162 - 163). In these conversations they quickly considered theorem proving. Newell
and Simon first wanted to design a theorem prover for plane geometry, but eventually abandoned this
project given the centrality of diagrams in human pursuits of this field - they imagined this would
be difficult to automate. They then came to Principia’s propositional logic as a domain of human
reasoning, tractable for the project of automation. Simon suggests that they chose Principia simply
because he “had the Principia of Whitehead and Russell at home, and [he] pulled it off the shelf one
day to have some problems.” (McCorduck, interview with Herbert Simon, as cited in Machines who
Think, p. 161).

106Donald MacKenzie suggests a similar possibility when overviewing different approaches to auto-
mated theorem proving in “The automation of proof: A historical and sociological exploration” in
IEEE Annals of the History of Computing, Vol. 17, No. 3 (1995): 7 - 29.
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in pure mathematics - but each decided that mathematics for its own sake was not for

them.

Simon was an undergraduate student at the University of Chicago, majoring in

political science, with concerted interest in economics, business, and psychology.107

His interest in logic and mathematics stemmed from the perceived power garnered by

applying its tools to economics, studies of government, and psychology.108 For example,

while at the University of Chicago, Simon took Rudolf Carnap’s advanced research

seminar on logic, but his final paper offered an account of the “Logical Structure of

a Science of Administration” - a project that later became his PhD dissertation in

economics.109

Simon eventually distanced himself from formal mathematics training, turning in-

stead to self-instruction. In his autobiography, he depicts his undergraduate self as

having been adequately trained in high school to skip most of his classes, choosing

instead to audit higher level courses from an early age.110 This approach to college

education eventually contributed to his distance from mathematics training - “Early

in my second year, I terminated my formal education in mathematics when a calculus

professor insisted that I attend class. From then on, almost all of my knowledge of

mathematics was self-taught, some of it while I was at the university, but continuing

fairly intensively until the early 1950s, carrying through most of the subjects in a doc-
107A comprehensive account of Simon’s university career at the University of Chicago is available in

Crowther-Heyck, “Chapter Two: The Chicago School and the Sciences of Control” in Herbert Simon,
pp. 31 - 59. Simon’s autobiographical account of his university experiences can be found in “Education
in Chicago” and “Encounter with a Scientific Revolution: Political Science at Chicago” in Models of
My Life, pp. 36 - 68.

108Simon attributes his belief in the power of rigorous mathematical analysis for theory-building and
modeling in economics especially to the influence of University of Chicago-based economist Henry
Simons. See Simon, Models of My Life, p. 39.

109CMU-HS: Series II: Schoolwork and Early Career: Abstract: University of Chicago
– Research Seminar in Logic Papers and Rough Drafts, dated July 27. 1937
http://doi.library.cmu.edu/10.1184/pmc/simon/box00002/fld00124/bdl0006/doc0002.

110Simon, Models of My Life, p. 39.
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toral curriculum of that time (lots of higher algebra, analysis, and function theory;

little topology). Self-instruction gave me the courage and skill to master new areas of

mathematics whenever I needed them for my research. It also left me with mathemati-

cal skills that are more rough-and-ready than polished.”111 Simon certainly had respect

for mathematics, and extensive knowledge of it, but was not part of a mathematical

community and did not aim to make contributions to mathematical knowledge for its

own sake.

Newell majored in physics as an undergraduate at Stanford University but later

began a graduate degree in mathematics at Princeton University. However, he too

found a reason to defect. In an interview with popular AI historian Pamela McCorduck

in the 1970s, Newell described discovering the following about himself while studying

at Princeton:

I was a problem solver, and I wanted problems you could go out and solve. I
simply couldn’t understand what motivated pure mathematicians to go on
working, looking at the structure of some mathematical logic. So Princeton
and I just passed in the night. They sort of acted like they’d be glad to
have me back when I left at the end of the year, but what I’d found out
was that I could’t have led that life for anything. None of their concerns
are my concerns, and I learned that, and it took me a year to learn it, and
then I got out of mathematics.112

It was after that first year of graduate work that Newell accepted a summer internship

at RAND - and there he got his wish of going out and solving problems in spades,

being put to work immediately on practical research for the Air Force.

While anecdotal, Newell and Simon’s narration of their relationship to mathematics

reveal a clear characterization of the discipline as a tool for solving other problems, and

also as a means through which the reasoning of the human mind could be recognized

and theorized. For Newell and Simon, mathematics was itself an example domain of
111Simon, Models of My Life, p. 40.
112McCorduck, Allen Newell Interview, as cited in Machines Who Think, p. 140.
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a larger phenomenon that was their ultimate target - human reasoning. They wanted

to automate theorem-proving as an exercise in identifying the symbolic processing

behaviors at work in human reasoning rather than a contribution to mathematical

research for its own sake. They wanted to design a computer program in which would

be codified human mathematical reasoning.

Before they could continue with the design of their program, they needed an ac-

count of what reasoning in the domain of logical problem-solving looked like. To this

end, Newell and Simon’s work on the Logic Theory Machine was informed by one

mathematician in particular: Hungarian George Polya.113 In addition to his influential

mathematical research, Polya had a significant interest in mathematics pedagogy. He

believed, contrary to many myths and idealizations of mathematical work, including

that presented in Principia, that mathematicians don’t just go about deducing con-

clusions from axioms in hopes of inferring true and interesting conclusions. When

mathematicians set out to prove a conjecture they do all kinds of things. They experi-

ment with many cases looking for patterns, they develop analogies with other problems,

they try to formulate related mathematical objects, they work backwards from some-

thing they already believe is true, they look for counter-examples, and so on. It can be

a long way from axioms to desired conclusions by deduction, and mathematicians look

for short-cuts to help them find a proof by other means. As powerful as the modern

project of axiomatizing modern mathematics may have been, it did not embody what

mathematicians actually do.

Polya set about to identify and articulate the actual tricks and practices of math-

ematicians in a two volume work in which he wrote “certainly let us learn proving,”
113Polya was born in Budapest, Hungary in 1887, leaving an academic post in Zurich in 1940 to

emigrate to the United States with so many other Jewish academics. He visited at Princeton and
eventually took a post at Stanford which he held until his death in 1985. See Gerald Alexanderson,
The Random Walks of George Polya (The Mathematical Association of America, 2000).
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- that is, let us learn how to deduce conclusions from axioms - “but also let us learn

guessing.”114 He believed that the “ways of guessing” employed by research mathemati-

cians in their actual practices were not esoteric, tacit secrets of the trade but rather

could be articulated and formalized as rules. He thought they should be taught to

students of mathematics so that they would be better equipped for mathematical re-

search. He called them heuristics - from the Greek word heuriskein for “find”. Central

among Polya’s heuristics was “reasoning by analogy” and also “induction”.115 Here was

an explicit, rule-bound model of what human theorem-proving practices looked like -

precisely the kind of thing Newell and Simon were after.

Newell started out his freshman year in 1946 at Stanford by taking Polya’s course

“How to Solve It” - named after the book published just the year before. He was

so taken with Polya that he then took what he believes to be every course that Polya

offered at Stanford before the end of of that year.116 While Newell characterized himself
114George Polya, Induction and Analogy in Mathematics Vol. I of Mathematics and Plausible Rea-

soning (Princeton, NJ: Princeton University Press, 1954), p. vi, emphasis in original.
115Polya’s two volume work focused on what he called “plausible reasoning” as opposed to certain

reasoning by identifying ways that mathematicians convince themselves that something is probably
true. Volume I of that work focuses in large part on reasoning by analogy, and by empirical deduction
from attempted cases in mathematics. In Volume II he devotes a lot of time to pattern recognition.
Throughout, he aims to identify rules that govern what kinds of plausible reasoning practices engender
what kind and relatively how much insight into the problem at hand. Polya, Induction and Analogy in
Mathematics, Vol. I of Mathematics and Plausible Reasoning and, Patterns of Plausible Inference, Vol.
II of Mathematics and Plausible Reasoning (Princeton, NJ: Princeton University Press, 1954). Before
these extensive volumes, Polya had published a more introductory text on mathematical methods and
heuristics, called How to Solve It:A New Aspect of Mathematical Method (Princeton, NJ: Princeton
University Press, 1945) oriented more towards teaching mathematics, and including many sample
heuristics with examples, and sample problems with solutions. Two other works embody Polya’s work
on pedagogy and heuristics: Mathematical Methods in Science (Washington, DC: The Mathematical
Association of America, 1977); Mathematical Discovery: On Understanding, Learning and Teaching
Problem Solving, Vol. 1 (John Wiley & Sons, 1962); Mathematical Discovery: On Understanding,
Learning, and Teaching Problem Solving, Vol. 2 (John Wiley & Sons, 1965).

116Newell recounted his experiences in Polya’s courses in a talk he gave at the Inter-
national Symposium on the Methods of Heuristic (University of Bern, Switzerland Septem-
ber 15 - 18, 1980): “The Heuristic of George Polya and its Relation to Artificial In-
telligence”. A preprint of the talk for circulation and comments, dated September
1980, is available from CMU-AN, and a later finalized version from 1981 is available at
http://repository.cmu.edu/cgi/viewcontent.cgi?article=3446&context=compsci.
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as uninterested in mathematics he admits that he was very interested in Polya. Newell

and Simon wanted a computer to do what human mathematicians do, and Polya offered

an account of what that was.

If students of mathematics could be taught to prove theorems by following explicit

heuristic rules, why couldn’t a computer also be? Heuristics would avoid the practical

problems of exhaustive instantiation, as discussed in the Introduction to the disserta-

tion, and reflect actual mathematical practice. Newell and Simon adopted the general

position that human mathematicians proceed in theorem-proving by heuristic means

and that heuristics could be formalized and articulated as rules. If they could be ar-

ticulated as rules, they could be automated. Heuristic rules constituted the “symbolic

information processing” model of proof that they were after.

There was one heuristic in particular - outlined in How to Solve It and possibly

introduced to Newell in 1946 when he took the eponymous course - that features in the

design of the Logic Theory Machine, and that in one sense characterizes its behavior.

The heuristic is called “Working Backwards” by Polya, who identifies its origins in

Pappus (c.a. 290 - 350 C.E.) and in experimental psychological studies of problem

solving behaviors in animals.117

Deductive methodology begins from axioms and known theorems and attempts to

deduce a desired conclusion from them. In this heuristic method, instead, one begins

with the end - starting from the thing to be proved and tries to “work backwards” to

the axioms. Citing Pappus, Polya identifies the roots for this heuristic in antiquity:

“Let us start start from what is required and assume what is sought is already found...
117See Polya, How to Solve it, p. 225. Pagination here is from the Expanded Princeton Science

Library Edition (2004). Polya often used empirical examples of his heuristics, sometimes drawn from
the experimental study of the natural world, in order to illuminate and engender intuitions for his
heuristic methods. In this case he cites an example of trying to draw up a specific volume of river
water using two vessels of given size, and demonstrated that (literally) working backwards results in
a simple solution (pp. 226 - 230).
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Let us inquire from what antecedents the desired result could be derived.”118 In order

to prove a proposition, begin by assuming it to be true and then look for antecedent

propositions that, if true, lead in one derivative step to the desired conclusion. If

such antecedents could be constructed in a sequence that eventually led back to the

axioms, then that sequence (run backwards) would constitute a deductive proof of the

proposition from which the process began.

The Logic Theory Machine was designed to work backwards in this way. The pro-

gram included an encoding of the central axioms of Russell and Whitehead’s Principia,

its logical operators, and its rules of inference - substitution, replacement, and detach-

ment.119 However, it was not programmed to apply the rules of inference to the axioms,

seeking the theorems from Principia by brute force deduction. Instead, in most cases,

the Logic Theory Machine would begin with a Principia theorem, and construct a

set of logical propositions that lead to that theorem in one permissible inference step.

Then, the Logic Theory Machine would construct another set of propositions that, if

true, would lead to those propositions in one permissible inference step, and so on. The

hope was the eventually, the axioms themselves would be produced as subproblems.

In that case, the chain of subproblems could be run in reverse, and it would constitute

a deductive proof of the theorem from the axioms. In some cases, this method would

exhaust the JOHNNIAC’s resources before a proof was found, and in other cases, it

would be impossible to find a proof this way.120

118Cited in Polya, How to Solve It, p. 227, emphasis in original.
119See “Proving Theorems in the Twentieth Century” in the Introduction to the dissertation for an

explanation and survey of these elements of Principia.
120As with most heuristic methods, there was no guarantee that a proof would be found this way.

Indeed, that is why Polya was interested in plausible reasoning rather than reasoning with certainty.
However, humans are not guaranteed to discover a proof by any non-mechanical means of search either,
so this was not considered to be a drawback of the program. Neither was their much risk of Logic
Theory Machine running forever, or even for very long, without finding a proof. The JOHNNIAC
computer on which it was implemented had very limited memory, and was also used by many other
practitioners for other purposes. As such, in the absence of a timely proof, the Logic Theory Machine
would stop or be stopped for practical reasons. The JOHNNIAC computer and its contribution to
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This “Working Backwards” heuristic was only one application of the more basic

heuristic method that Newell, Shaw, and Simon called “subproblem generation” - the

construction of logical propositions that were connected to other propositions by way

of one permitted rule of inference. Subproblems could be generated for any proposition

forwards or backwards, and this method was called in general “chaining”:

These methods use the transitivity of the relation of implication to create
a new subproblem which, if solved, will provide a proof of the problem
expression. Thus, if the problem expression is “a implies c,” the method of
forward chaining searches for an axioms or theorem of the form “a implies
b.” If one is found, “b implies c” is set up as a new subproblem. Chaining
backward works analogously: it seeks a theorem of the form “b implies c,”
and if one is found, “a implies b” is set up as a new subproblem.121

The particular case of backwards chaining by the production of sets of subproblems

for the theorem to be proved and seeking a chained path to the axioms was the most

powerful mechanism of the program and was deployed often in Logic Theory Machine

runs.

The development of this method of subproblem chaining led to the development of

some new techniques for thinking about and representing proof. In order to articulate

this method, Newell, Simon, and Shaw represented logical proofs as trees, where gener-

ated subproblems are child nodes and the originary node is the theorem to be proved.122

For example, they included the diagram in Figure 1.3 in an early publication on the

characterizing the Logic Theory Machine will be the subject of later sections.
121Newell, Shaw, Simon, “Empirical Explorations with the Logic Theory Machine: A Case Study in

Heuristic” in Proceedings of the Western Joint Computer Conference (1957): 218 - 230, on p. 222.
122It is difficult to discern where they took this notion of a tree from. Certainly, tree structures had

been deployed in logic in the past, and they were incredibly common in anthropological studies of
kinship and in linguistics. Branching tree structures became completely prolific in computing research
as early as the 1950s but the exact origins are hard to pinpoint. For a historical account of earlier
uses of tree diagrams in logic, see Ian Hacking “Trees of Logic, Trees of Porphyry” in Advancements
of Learning: Essays in Honor of Palo Rossi [Vol. 62 of Biblioteca di Nuncis] (L.S. Olschki, 2007):
pp. 219 - 261. Trees are now used prolifically in computing literature to describe, especially iterative,
algorithmic processes.
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Figure 1.3: Logic Theory Machine Subproblem Proof Tree for Proposition 2.17 from
Principia Mathematica. Newell, Shaw, Simon, “Empirical Explorations of the Logic
Theory Machine: A Case Study in Heuristics,” p. 228.
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Figure 1.4: Tree Diagram of a Logical Expression. Newell, Shaw, “Programming the
Logic Theory Machine,” p. 10b.

Logic Theory Machine to represent the program’s search for a proof.123 At some point

in 1955, Newell and Simon turned to the exploration of individual logical propositions

themselves as trees in which the logical operators that connect literals are the nodes

of the tree, and the connected literals are child nodes. For example, Figure 1.4 is a

diagram of a proposition-tree as published in 1957 and Figure 1.5 shows Simon’s hand

drawn tree formulation of many propositions from Principia Chapter 2.

The tree structure offered a solution to the technical problem of representing “hi-
123An original term Newell and Simon used to talk about the search for proofs in the context of

the Logic Theory Machine was maze, in analogy with behavioral psychological experiments with
rats in mazes. Simon drew on such experiments extensively, and used the metaphor of a maze in
many of his publications about decision making processes in individuals and organizations. For a
discussion of Simon’s use of “maze” metaphors, see Crowther-Heyck, Herbert A. Simon, esp. Chapter
5 “Homo Administrativus, or Choice Under Control”, pp. 98 - 119. The observation that the word
“maze” preceded the use of “tree” in their reasoning about proof search comes from Roberto Cordeschi,
Discovery of the Artificial, p. 179. It is difficult to discern for sure from the archival materials how the
use of the word “tree” replaced or accompanied that of “maze” with any certainty. However, by 1958 in
“The Processes of Creative Thinking” (Presented at a Symposium on Creative Thinking, University of
Colorado, Boulder, Colorado, May 16, 1958., also RAND Technical Report No. P-1320), they retain
the use of the word “maze” to denote a problem search space as a whole in later works, but the tree
appears as the dominant visualization of computational behavior.
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Figure 1.5: Hand-drawn Logical Expression Trees by Simon. CMU-HS, RAND Series,
“Graphic Materials”, “Logic Theorist”, not dated.

erarchy” of operations in a logical proposition without the need for a system of paren-

theses. In Figure 1.4, for example, the operator “implies” is the main operator for the

proposition, whereas “or” is a nested operation. In human-oriented symbol systems,

the hierarchy of operators is typically an implicit property of ordering and parenthesis

or periods. For computers, however, explicit properties are preferable. In a tree, that

hierarchy is built in to the structure explicitly, requiring no parsing operations thus

minimizing the steps a computer would have to take to extract information about a

given proposition. However, the imagining of logical expressions as trees may have

also been facilitated by the fact that Newell and Simon were already thinking about

the Logic Theory Machine as following a tree-like search path according to its heuristic

methods. In some of Simon’s hand-simulations of the Logic Theory Machine we can see

both representational mechanisms at work at once. In the simulated proof of Principia

2.0 shown in Figure 1.6 for example, mini-trees consisting of the main operators of the
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Figure 1.6: Hand-drawn Proof Trees by Simon. CMU-HS, RAND Series, “Graphic
Material”, “Logic Theory Machine.”

relevant propositions are themselves laid out in a tree structure to show the generation

of subproblems.

Polya’s heuristics supplied Newell and Simon with a model of human theorem-

proving practice - proof was a heuristic search by way of backwards, branching, sub-

problem chaining.124 But models don’t compute. This model still needed to imple-
124The identification and implementation of heuristics in the automation of reasoning tasks was taken

up widely within the newly emerging Artificial Intelligence community, in no small part because Newell
and Simon presented their work on the Logic Theory Machine at the now infamous 1956 summer
conference at Dartmouth University. The phrase “Artificial Intelligence” itself was first coined by
John McCarthy in conjunction with the planning of that conference. The Logic Theory Machine was
the only running program presented at that conference and its basic approach was widely emulated
by other early AI researchers. However, in spite of the clear and explicit influence of Polya, his notion
of a heuristic and his belief that heuristics can be made formally explicit, his influence on AI after
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mented. Implementation stands at the interface between models and machines - be-

tween abstraction and materiality. Newell, Shaw, and Simon described it this way:

The Logic Theory Machine, of course, is a program, written for the JOHN-
NIAC computer, represented by marks on paper or holes in cards. However,
we can think of Logic Theory Machine as an actual physical machine and
the operation of the program as the behavior of the machine. One can
identify Logic Theory Machine with JOHNNIAC after the latter has been
loaded with the basic program, but before the input of data.125

That is to say, the Logic Theory Machine lived on paper and on punched cards. But it

could be imagined as a machine in it own right - the JOHNNIAC was transformed into

that machine by the input of the program instructions to its memory.126 Implementa-

the Logic Theory Machine was somewhat tenuous. Of the many heuristics that Polya details in his
many volumes, I have not found a single one besides “working backwards” and “subproblem chaining”
that was actually implemented in any mathematical program. In a talk at a conference on heuristics
in 1980, Newell explicitly addressed and lamented the generally indirect relationship of AI to Polya’s
work. Newell and Simon also primarily used a different source of heuristics than Polya’s volumes in
their own work - introspection on themselves, and the study of humans “reasoning aloud” in their
enactment of cognitive tasks. Simon reports that even prior to their choice of Principia he had been
“doing a lot of introspecting about [his] own problem-solving processes” (see McCorduck, Machines
Who Think, p. 162. Roberto Cordeschi reports on their later adopted research model in which humans
would “reason aloud” during problem-solving, offering a kind of introspective access to their ways of
guessing, judging, and deciding within different problem domains. See Cordeschi, The Discovery of
the Artificial, p. 181. In spite of many obvious problems, introspection is often used as a method for
identifying human reasoning practices in automated theorem proving work. Other examples will be
discussed in future chapters. It is worth noting that, to my mind, all introspection is a narrativization
- a story telling based on the esoteric experience of one’s self. For information on the planning of the
Dartmouth Conference in Artificial Intelligence, see RAC-RF, Record Group 1.2, Series 200, Box 26,
Box 531. For a discussion of this conference see Ronald Kline, “Cybernetics, Automata Studies, and
the Dartmouth Conference on Artificial Intelligence” in IEEE Annals of the History of Computing,
Vol. 33, No. 4 (2011): 5 - 16. See Pamela McCorduck, “The Dartmouth Conference” in Machines Who
Think: A Personal Inquiry into the History and Prospects of Artificial Intelligence (Natick, MA: A K
Peters, 2004): 111 - 136 for a discussion of the conference based on oral histories revealing that many
early AI practitioners perceived Newell, Shaw, and Simon as “ahead” by having a running program
by 1956.

125Newell, Shaw, Simon, “Empirical Explorations with the Logic Theory Machine: A Case Study
in Heuristics” [1957] reproduced in Automation of Reasoning 1; Classical Papers on Computational
Logic 1957 - 1966, eds. J. Sikemann, G. Wrightson (Berlin: Springer-Verlag, 1983): 49 - 73 on p. 50.

126The JOHNNIAC computer was a stored-program computer designed in the image of the IAS ma-
chine, arguable the first to implement John von Neumann’s architecture for storing both instructional
data and input data in the same memory banks of the computer. The questions about the origins
of stored program computing remain contentious. For example, I recently witnessed rather intense
debates about whether the idea is already present in Alan Turing’s 1936 paper “On Computable
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tion, in this view, was the process of turning the JOHNNIAC into the Logic Theory

Machine. Newell, Simon, and Shaw needed a way to represent logical propositions

and inference rules inside the JOHNNIAC that would enable it to perform subproblem

chaining with its bits of memory and basic computational capacities.

Two main features characterized their efforts. The elements of logic – its proposi-

tions, axioms, rules of inference, and so on – had to be given a form that could be input

to the JOHNNIAC and stored in its memory systems. Second, the heuristic rules in

their model of human theorem-proving behavior, had to be translated into computer

operations that manipulated the contents of that memory.

In developing these representations and operations, Newell, Shaw, and Simon had

to navigate the materiality of the JOHNNIAC computer. Here, the analogy between

minds and computer programs began to fall apart. Here, it wasn’t the constraints on

human reasoning that mattered, but the limitations of computing machines. Here, the

programmers had to accommodate the affordances of the computer and in so doing,

abandon, to an extent, the commitment to simulating human practice. Here is where

the model met the machine.
Numbers with an Application to the Entsheidungsproblem” or whether the idea was new with John
von Neumann’s “First Draft of a Report on the EDVAC” in 1945. A very exciting intervention in
these discussions is “Reconsidering the Stored Program Concept” forthcoming in IEEE Annals of the
History of Computing, by Thomas Haigh, Mark Priestly, and Crispin Rope who have been revisiting
the history of the ENIAC computer. They trace the many meanings and dimensions of the concept
of stored program computing, and correct many gross oversimplifications of the term and the sur-
rounding debate. I am very grateful to Thomas Haigh for sharing this work with me, and in general
for discussions of stored-program computing and the history of software and mathematical software
in general. Another helpful resource for this interested in the evolution of storage and data manipu-
lation in early mainframe computing is The First Computers: History and Architectures, eds. Raul
Rojas, Ulf Hashagen (Cambridge, MA: MIT Press, 2000). The edited volume does not have a chapter
devoted to the JOHNNIAC, however the chapter on the IAS Machine (of which the JOHNNIAC was
a copy) describes its overall design: William Aspray, “The Institute for Advanced Study Computer:
A Case Study in the Application of Concepts from the History of Technology”: 179 - 193.
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Reformalism: Linked Lists and Information Processing

It was not clear to Newell and Simon from the start what would be involved in actually

programming the heuristic theorem prover that they imagined. They operated in

the absence of pre-made languages, compilers, libraries of functions, and associated

practices that have streamlined implementation to a large extent today. Starting in

1955, Newell’s notes include a constant return to very basic questions about just how

they should proceed and what was needed for the project. Newell and Simon’s early

work in 1955 and 1956 indicates that two issues quickly became a primary focus in

the development of Logic Theory Machine: the need for a language in which problems

could be formulated, solved, and the results expressed, and the need for memories (i.e.,

ways of storing data) that would make all of the necessary information available to the

program throughout its work.

For example, in January of 1955, Newell wrote the following preliminary notes that

introduce these issues:

The purpose of a problem solving program is to 1. Find out and formulate
what the problem is. 2. Determine what methods might solve the problem.
3. Organize the solution. Several problems here: 1. What is available
to diagnose the problem? retrace program - reading symbols. Storage of
special info. [...] How to express the result when you get it? [...] Need
a set of working memories which provide appropriate content for talking
about problem. [...] What must it be able to do? Accept a problem from
outside. Here a certain language is necessary. A content language would
be preferable here so we could “talk” to the machine.127

Even in this early exploration where it is not yet clear what the basic structure of the

program is going to be, certain key preliminary ideas are visible. Newell identifies the
127CMU-AN, Series I: RAND, Notes, “Logic Theory Machine I”, Early Notes dated January 10, 1955:

all my emphasis. The details of their language will be discussed in what follows, but I want to note
here that from what I understand “content language” for Newell is something akin in spirit to what is
now called a “declarative language” (Prolog is an example). That is to say, he wants a formal language
with which he can convey a problem to the computer - a way of describing the problem to it - without
necessarily involving an algorithm for actually solving the problem at the same time.
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program in a very basic way as a “symbol reader”, for which the processing of symbols

is a part of the problem-solving process. In fact, as I will discuss shortly, information

as Newell and Simon mean it (e.g., in “Complex Information System”) was constituted

by symbols.128

As I suggested in the section “The Possibilities of Computing” in the introduction

to the dissertation, the stipulation that the Logic Theory Machine be able to read

symbolic information was itself something of a novelty in early computing research. The

mainframe computers of the 1950s were all originally built to do numerical work - to

compile ballistics tables, to solve complex differential equations, to perform numerical

simulations of nuclear chain reactions, and so on. Newell and Simon were among the

earliest computer practitioners to imagine the computer as a more abstract agent,

capable of manipulating any formal symbolic system whatever, whether its constituent

symbols referred to a numerical domain or not.

However, the JOHNNIAC was built with numerical calculations in mind and the

machine language with which it was usually programmed in the 1950s was designed with

numerical calculations in mind. Programming the JOHNNIAC to be a symbol reader

in a language whose commands and infrastructure focused on numerical calculations

would have been extremely difficult if it was even possible. Newell, Shaw, and Simon

wanted to turn the JOHNNIAC into the Logic Theory Machine, and to do so they

would have to develop a new set of tools. To transform JOHNNIAC from a numerical

machine to a symbolic machine, they elected to design a new programming language

for communicating with the computer, fashioning the computer’s behavior, and for
128Newell and Simon indicate a particular debt to some early work on the automation of chess playing

by Oliver Selfridge and G.P. Dineen. Selfridge visited RAND in 1954 to demonstrate their work on
chess playing and Newell has described their meeting as something of a revelatory experience (see
Pamela McCorduck, interview with Allen Newell (1976), CMU-PM. In fact, Newell’s first attempt to
specify a symbolic program was in fact a chess player and not a theorem-prover
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formulating problems, results, and practices in nonnumeric domains like logic.129

Newell, Shaw, and Simon developed a new programming language - the Information

Processing Language (IPL) - for propositional logic within which the Logic Theory Ma-

chine would ultimately be realized. The first instantiation (originally called the “Logic

Language”, and later renamed IPL I) was worked out by Newell and Simon without

concern for the technical specifications of the JOHNNIAC computer. IPL I was an ex-

ample of a reformalism - in it, the axioms and permitted inferences of Principia were

translated into what they called “Information Structures” and “Information Processes.”

IPL II was the first language designed by Newell and Shaw to actually program the

JOHNNIAC computer to become the Logic Theory Machine. It was a transformation

of the IPL I into commands and features that would allow the actual programming of

the JOHNNIAC.130

The Logic Language and IPL II are the primary focus of this section, and they

are the site in which Newell, Simon, and Shaw’s reformalism of propositional logic,

the creation of new ways of reading and writing logical expressions, and the changing

materiality of mathematical objects can be most clearly seen. These languages were

a condition of possibility and a constitutive technology for the Logic Theory Machine.

With them, JOHNNIAC could be transformed into the Logic Theory Machine.

The first translation of Principia into an information processing system was exe-

cuted by Newell and Simon, and presented in a relatively complete form for the first

time in September of 1956.131 Their first order of business was to articulate and for-
129A succinct reflection on these early tensions between the numerical intentions of early computing

and the transition to symbolic tasks can be found in Herbert Gelernter, J. R. Hansen, C. L. Gerberich,
“A FORTRAN-Compiled-List Processing Language” in Journal of the ACM, Vol. 7, No. 2 (1960). In
the later 1950s, Gelernter lead a project at IBM research to program theorem proving in elementary
plane geometry That project included an expansion and modification of the IPL language.

130The IPL language is best known for being the immediate predecessor to the LISP language -
developed largely by John McCarthy and the emerging AI community in California later in the 1950s.
LISP borrowed many features of IPL, including list processing which will be a focus in what follows.

131Newell, Simon, “The Logic Theory Machine: A Complex Information Processing System”, RAND
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Figure 1.7: Tree Diagram of Principia Mathematica Proposition 1.7: ⇠ p ! (qvee�p).
Newell, Simon, “The Logic Theory Machine,” p. 9.

malize the representation of expressions as “trees” in which logical operators - including

“OR”, “NOT”, and “IMPLIES” - function as parent nodes for the variables that they

relate as shown in Figure 1.7. However, in the Logic Language, each element in these

expression trees would hold more information than their counterparts in Principia.

Whereas the alphabet for Whitehead and Russell’s logical expressions was limited to

the symbols for variables, constants, and logical operators, Newell and Simon devel-

oped a set of eight additional symbols that would specify an element in the expression.

Newell and Simon’s symbols include the following:

• G : with value 1 it indicates that a variable is negated (like p is above) and with
value 0 it indicates that a variable is not negated.

• V : indicates that an element in an expression-tree is a variable or not.

• F : indicates that an element is “free” for substitution - meaning, free to be re-
placed by definitionally or inferentially equivalent expressions.

• C : indicates that an element is a connective (
W

or !).

• N : is set to the name of every variable. Name here means the symbol that is
used to represent that variable. In Principia 1.7, for example, q and p are the
names of the two variables included.

Publication P-868 (July 12, 1956) [paper was presented at the Symposium on Information Theory,
Sponsored by the Professional Group on Information Theory of the Institute of Radio Engineers,
September 10, 1956].
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• P : is a symbol that keeps track of the position of a given element in the tree.
The parent node for any expression (i.e., the main operator) has no P value but
every other element does. The P values are shown in the diagram above for the
expression-tree of Principia 1.7. “P = RR” means an expression us the right child
of a sub-tree that is the right child of a parent logical connective, for example.

The last two symbols for specifying elements in an expression tree are most important

for my purposes here because both include information about where the expression is

(rather than what it is):

• A: stores the location of the whole expression-tree in memory. In “The Logic
Theory Machine”, where Newell and Simon introduce these symbols, they are
not yet talking explicitly about the JOHNNIAC memory.

• U : specifies whether or not an element is a “unit”. By “unit”, Newell and Simon
mean that an element is held together in memory as a whole. More on this in a
moment.132

In addition to these symbols, Newel and Simon also created three symbols for describing

a tree as whole - H, J, and K - that specified the total number of variables in a tree, the

number of distinct variables in a tree, and the number of “levels” (i.e., logical operators)

in the tree.133

Those who work with traditional logical symbol systems might say that the infor-

mation specified by these symbols is either implicit or visually obvious in notational

systems like Whitehead and Russell’s. And this may be true for trained human practi-

tioners. However, the JOHNNIAC was not equipped with anything like a visual faculty

and it, like all computing machinery, required direct and explicit access to all necessary

information for solving a problem.

JOHNNIAC could not see that there are three variables, two of which are negated in

Principia 1.7. I propose that this transformation of information in logical expressions
132Newell and Simon’s articulation and definition of these symbols can be found in “The Logic Theory

Machine”, pp. 10 - 11.
133See Newell, Simon, “The Logic Theory Machine,” p. 11.
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from visually perceptible and implicit for human practitioners to explicitly represented

by a symbolic alphabet is nontrivial. First, Newell, Shaw, and Simon understood rea-

soning (for humans and for computers) as symbol manipulation - as such, the addition

of new symbols to the formalism of logical work literally changes the stuff of reason-

ing. It adds pieces to the information system that is understood to be logical thought.

It also diverges from the symbolic notation system in Principia, meant to enable a

particular kind of reasoning.

More than that, the addition of this new information - these new symbols - begged

an organizational question: how to keep these expressions-as-trees with all of the sym-

bols that accompany each element organized such that the computer can keep track

of them, manipulate them, and ultimately prove theorems with them? One of the

primary difficulties of implementation in the 1950s was the extremely limited memory

then available. Across its various storage devices, the JOHNNIAC didn’t even have

one tenth of the memory of a floppy disk from the 1980s.

The JOHNNIAC had two different kinds of storage, both extremely limited in

capacity according to today’s standards: the faster memory was the magnetic core

memory. Here, JOHNNIAC would store propositions it was actually working on -

generating subproblems from, and so on. The slower and more abundant memory was

magnetic drum memory where it would store other relevant information like previously

proven theorems.134 When the JOHNNIAC first became operational early in 1953, it

had RCA selectron tubes for memory storage. However, these were replaced with

magnetic core storage commissioned from the International Telemeter Corporation

later in 1953 that was upgraded in 1955. Also in 1955, around the time that Newell
134This dichotomy of storage remains in modern computing technologies (in the form of RAM and

hard drives respectively). This dichotomy was also reflected even in the high level Logic Language
(IPL I). Newell and Simon specified that some memory structures would be “working memories” - in
the magnetic core - and “storage memories” - in the magnetic drums. See Newell, Simon “The Logic
Theory Machine”, p. 11.
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and Simon began work on the Logic Theory Machine, a magnetic drum storage unit

was added to the JOHNNIAC for additional storage.135 The magnetic core offered

4096 words of memory (each consisting of 40 bits), and the magnetic drums provided

9 216 words.136 In total, the JOHNNIAC included 532 280 bits (roughly equivalent to

65 kilobytes by modern measure) in which all Newell, Shaw, and Simon’s reformalized

propositional calculus - all of its protocols, instructions, objects, and processes - would

take up residence.137

Given the extremely limited storage of 1950s computers, practitioners were required

to address many difficult “memory management” problems in the process of implemen-

tation. How to keep track of available memory? How to organize relevant data in

memory? How to reclaim memory once it’s no longer in use? Questions like these

were (and in fact still are) central to the work of implementation. Newell, Shaw, and

Simon needed a way to store and organize all of the relevant information for logic proof

by backwards subproblem chaining in JOHNIAC’s limited capacity. Their solution to

this question is at the heart of what interests me in this chapter: in order to keep all

of these new symbols organized and usable, they devised a new information structure

called a linked list.

Each of the eleven symbols that specified an element in a logical expression (a
135These details are provided in Willis Ware, “Johnniac Eulogy”, RAND document P-3313 (March

1966), pp. 7 - 8.
136In his “Johnniac Eulogy,” Ware indicated that the magnetic drum could store 12 000 words.

However, Newell and Shaw reported that 9 216 words were available to Logic Theory Machine on the
magnetic drums. See Ware, p. 8 and Newell, Shaw “Programming the Logic Theory Machine”, p. 7.

137Magnetic core memory consisted of small rings of magnetic material woven together by electrical
wires. Electrical current running through the wires served as a mechanism for setting the direction
of the magnetic field produced in those rings in one of two possible directions. Those two directions
of magnetic field served as the 1s and 0s of the binary logic that constitutes all digital computation.
A more in depth exploration of the history and functioning of magnetic core memory is available in
Paul Ceruzzi, A History of Modern Computing (Cambridge, MA: MIT Press, 1991 [2003]), esp. pp.
49 - 53. Magnetic drum memory operated according to similar mechanisms, except that drums stored
data on the magnetic drum-surface using read-write heads that would direct discrete magnetic fields.
A more in depth exploration of the history and functioning of magnetic drum memory is available in
Ceruzzi, A History of Modern Computing, esp. pp. 38 - 44.
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Figure 1.8: Diagram of a Linked List Information Structure. Newell, Shaw, “Program-
ming the Logic Theory Machine”, Rand Document P-954 (February 1957), p. 13a.

variable or a logical operator) would be stored in a contiguous set of bits of Johnniac’s

memory. The last of those bits would be used to store the numerical address of the next

element in the list that could be stored anywhere else in Johnniac’s memory. Here,

the elements of a logical proposition were not concatenated in sequence together but

were rather distributed throughout JOHNNIAC memory, held together by a virtual

chain of address pointers. In this form, they could not be registered as a whole by

sight or any other mechanism, but only by the process of traversing the pointers. In

their article devoted to the actual implementation of the Logic Theory Machine on the

JOHNNIAC, Newell and Shaw diagrammatically represent the list structure as seen in

Figure 1.8.

Linked lists solved one particular memory management problem. They enabled

the JOHNNIAC to make use of whatever memory happened to be available when

transforming, manipulating, or storing logical expressions. Rather than finding chunks

of contiguous memory in which to write a whole logical expression, or worse, to create

that contiguous memory, the JOHNNIAC could store new information anywhere that

there was space available and simply point to them with the appropriate address.

Imagine, for example, that you want to keep an updated guest list for a party.

Instead of finding a new sheet of paper and writing the whole list out anew with one

fewer name each time someone replies in the negative, it would be far less resource-
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Figure 1.9: Diagram of Deleting an Element from a Linked List. Newell, Shaw, “Pro-
gramming the Logic Theory Machine,” p. 14a.

consuming to simply cross a name off the list. So it was with linked lists, except that

they were not lined up like on a page: if the JOHNNIAC wanted to remove an element

from a logical proposition, it simply rerouted the address pointer from the previous

element to the following element, as shown in Figure 1.9 rather than rewriting the whole

expression without it, after finding available memory to do so. In this transition, the

element B was removed from a logical expression and all that was required was for the

element A to edit its address indicator to point to C instead. After that, the address of

B would be added to a list of available memory that JOHNNIAC kept track of during

any run of the Logic Theory Machine program. Only two readdressing operations were

required rather than all of the housekeeping computational work of finding or creating

enough memory to rewrite the transformed expression as a whole.

The list structure helped both with the reuse of freed memory and with the project

of keeping memory structures in tact over transformation because the elements in a
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given list need not be spatially together in memory. That is, the actual magnetic

bits within which the elements of a list are stored do not need to be neighbors in the

magnetic core or drums. This is because every unit in a list keeps track of its successor’s

address no matter where it might be.138

This feature of the list structure - that lists need not be physically located together -

points to just how different this formalism for logical propositions is from the notational

system developed in Whitehead and Russell’s Principia. Their symbolic notation rep-

resented logical expressions as concatenated inscriptions meant to reveal patterns and

enable high-level abstraction in the human mind. For them, spatial “togetherness” was

a central feature of their notational system for propositional logic: “The terseness of

the symbolism enables a whole proposition to be represented to the eyesight as one

whole, or at most in two or three parts divided where the natural breaks, represented

in the symbolism, occur. This is a humble property, but is in fact very important in

connection with” developing intuition and cognition of abstract ideas.139

Human practitioners relying on tractable spatiality of logical expressions would be

hard pressed to make the dispersed list structure work for them in the search for a proof.

In fact, Simon - whose many hand-simulations of the Logic Theory Machine survive in

his archive collection - never once simulated the program using linked lists but always

used the tree formalism. Linked lists were computational objects. They were dynamic

and could only be taken in as single objects by way of a process - traversing the address

pointers one after another. They accommodated the computer, not the person.

Human engagement with the list information structure is at the level of diagram-

matic representation and protocol design not the level of use. Newell and Shaw devel-
138The only requirement was that an expression be held entirely in the “working memory” (i.e. the

magnetic core) or in the “store memory” (i.e. the magnetic drums). Lists cannot span those two
memory media.

139Whitehead, Russell, Principia Mathematica, Vol. 1, on p. 3.
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oped the instructions by which JOHNNIAC would construct and use lists, but would

not be able to make more than trivial use of them themselves. In this regard, they

are a technology for understanding and working with computers rather than for un-

derstanding and working with logical expressions.

The linked list structure should be taken seriously and literally as a new repre-

sentation system for propositional logic. Linked lists in magnetic core and magnetic

drum memory were a new mode of material being for the propositions of elementary

logic. And, following the contributions of media scholars like Matthew Kirschenbaum

who propose that digital writing should be understood as literal writing (albeit post

alphabetic), we could go so far as to say that the list represented a new way of writ-

ing mathematics.140 Linked lists were a new formal and material tool devised at the

intersection of incumbent ideas about theorem-proving and the material reality - the

technical capacity - of the JOHNNIAC computer.

If these list structures are understood as a new digital way of writing logical expres-

sion in the memory storage of the JOHNNIAC, how are these inscriptions read? What

does the JOHNNIAC-as-Logic Theory Machine do with this reformalism? Newell, Si-

mon, and Shaw also needed to transform their heuristic rules and the inference rules

from Principia into protocols for the algorithmic manipulation of linked lists. Herein

lay another reformalism.

In Newell, Simon, and Shaw’s reading of Principia there are two primitive inference

rules that are needed for the construction of proofs in propositional logic: the “rule of

substitution” and the “rule of detachment”.141 Additionally, Newell, Simon, and Shaw
140Kirschenbaum, Mechanisms.
141See Newell, Simon, “The Logic Theory Machine”, pp. 25 - 26. See O’Leary,

“The propositional logic of Principia Mathematica and some of its Forerunners” in Rus-
sell: The Journal of Bertrand Russell Studies, Vol. 8, No. 1, (1988): Available at:
http://digitalcommons.mcmaster.ca/russelljournal/vol8/iss1/10, on p. 94. Newell, Simon, and Shaw’s
reading of Principia is expressly informed by the introduction to propositional logic written by Hilbert
and Ackerman, “Chapter One” in Principles of Mathematical Logic (New York: Chelsea, 1950) in which
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had created a model of heuristic search by way of working backwards and subproblem

chaining. These rules, the former taken to be primitive processes of propositional logic,

and the latter, taken to be basic elements of human practice, had to be translated into

the language of linked lists. To this end, Newell, Simon, and Shaw crafted forty-

four primitive “information processes” to specify the full behavior of the Logic Theory

Machine, including the two inference rules. These forty-four rules were designed with

linked list processing in mind and were organized into the following eight types:

• “Find” instructions, that locate addresses in memory;

• “Store” instructions, that move data from the working memory (magnetic core)
to the storage memory (magnetic drums);

• “Put” instructions, that specify the movement of symbols within the working
memory;

• “Numerical” instruction, that execute arithmetic operations, e.g. on the numeri-
cal data involved in the specification of a tree;

• “Assign” instructions, that govern the writing of new symbols in working memory;

• “Compare” instructions that, that enable the Logic Theory Machine to check if
different symbols or values are equal;

• “Test” instructions, that enable the Logic Theory Machine to check different
properties (i.e. values) of list symbols;

• “Brach” instructions, that enable the Logic Theory Machine to enlarge lists and
point to new memories.142

The forty-four variations of these eight types of instruction constitute the information

processing that the Logic Theory Machine was capable of performing. With them,

it would manage the construction, manipulation, and deletion of lists in working and

those distinctions are made explicit (see pp. 28 - 31). They were, in turn, working with an earlier
distillation of the rules of inference offered by David Hilbert and Wilhelm Ackermann in 1928.

142Newell and Simon detail these types of instructions in “The Logic Theory Machine”, pp. 17 - 24.
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storage memory. Here was a “reformalism” in which the rules of inference and heuristic

rules were translated into the formal and material character of computing.

Of course, Newell, Shaw, and Simon recognized that to some extent, JOHNNIAC

was different from a person, conceding that “there are many details of LT that we

would not expect to correspond to human behavior. For example, no particular care

was exercised in choosing the primitive information processes to correspond, point

by point, with elementary human processes.”143 Instead, the “primitive information

process” were chosen to accommodate the computer.

And yet, the Information Processing Language, and with it, linked lists and list

processing, became the main tool kit for their continued work on Artificial Intelligence.

It came to epitomize the “information processing model” that they took to characterize

cognition, reasoning, and (bounded) rationality. Moreover, the low level differences

didn’t prevent the collaborators from claiming that their programs were simulations

of human behavior. The IPL, developed in response to the material constraints of the

JOHNNIAC, became a central frame within which Newell, Shaw, and Simon under-

stood AI and with it, human reasoning. It was not epistemologically neutral. It was

not merely a representation. It shaped how they thought about minds and computers,

it characterized their interactions with computers, and it gave rise to the development

of many other tools that would be used for AI, including its more famous list-processing

descendent, the LISP processing language developed during the 1960s at MIT and put

to work in countless AI programs during the second half of the twentieth century.
143Newell, Shaw, Simon, “Elements of a Theory of Human Problem-Solving” in Psychological Review,

Vol. 65, No. 3 (1958): 151 – 166, p. 154.

90



Stephanie Dick After Math

What’s in a Linked List?

IPL and its constituent elements weren’t just epistemologically significant for the study

of minds-as-information-processors. They mattered for logic as well. Linked lists lived

in JOHNNIAC’s memory, yes. But they also lived on paper where they were invented,

devised, explained, and explored by the human practitioners who imagined them into

being. Indeed, it was in the archives, on paper, where I discovered them as well - it being

impossible for us to ever see a linked list in computer memory at all. The architects of

the Logic Theory Machine surrounded themselves with paper in new ways, they used

paper to represent new things to themselves in new ways.

By asking after the character of linked lists, by looking for their origins, and by

following them to their different sites and instantiations, we saw how complicated it was

to put even a tiny part of the world into a computer. We uncover some of the difficult

involved in rethinking the world through a materiality largely inaccessible to human

experience and sensibility. And we saw new ways that the work of theorem-proving

was done in the early years of this digital age.

At the same time as the program was being worked out and implemented, new

tools for people were also being developed. Computers never replace human labor,

they always transform and displace it. In one sense, the linked list replaced paper.

Logical propositions were no longer inscribed sequentially on the page to be taken in

and compared synthetically by human vision. They were inscribed in JOHNNIAC

memory, dispersed, scattered, held together by a chain of address pointers. There they

could not be seen by a human practitioner and there they could not be taken in as a

whole at a glance, but had to be traversed according to list processing operations into

which the logical rules of inference and demonstration were transformed.

However, they were invented and implemented and explained and described and
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constructed by way of diagramming. The figures from the earlier sections of this chap-

ter are pictures of paper - the ways of drawing and writing that accompanied the

development and implementation of linked list structures. Newell, Simon, and Shaw

did not get rid of paper. They put paper to work in a new way.144 They developed

linked lists diagrammatically on the page.

I claim that linked list diagrams are very interesting relative to the question of

representation. What do linked list diagrams represent exactly? They represent two

things at the same time: they represent both logical propositions and JOHNNIAC

memory. They represent the thing to be digitized and the digital media together. This

hybrid or dual representational scheme points to part of what is involved in carving

out a place for computers in knowledge-production. Practitioners had to find ways

of thinking about what the computer is, of representing it, and of working with it at

the same time as they re-imagined their part of the world, their objects of interest, as

digital things. Linked list diagrams are a trace of how mathematical objects were recon-

ceptualized through the lens of computing at the same time as computing machines

were being re-tooled and outfitted for mathematics. Linked lists were not merely rep-

resentations of logical propositions, they were representations that introduced discrete,

digital, computational, algorithmic, and processual properties to them.145 Linked lists

hybridized properties of logical propositions and Johnniac memory.146

144This is in fact a common phenomenon in the history of computing. Recent media scholars have
shown how the “paperless office” is in fact a myth and that paperless offices are populated with all kinds
of paper and paperwork. See for example, Abigail J. Sellen and Richard H.R. Harper, The Myth of the
Paperless Office (The MIT Press, 2003); Kirschenbaum, Matthew G. "Editing the Interface: Textual
Studies and First Generation Electronic Objects" in Text: An Interdisciplinary Annual of Textual
Studies 14 (2002): 15-51.; Mark Priestly and Thomas Haigh are also currently working on the forms
of flow diagramming that accompanied early uses of the ENIAC computer - often associated with the
“programming by plugging” practices that predated punch tape and punch card programming.

145For a more philosophical exploration of the “dynamism” of computational objects, see Brian
Cantwell Smith, On the Origin of Objects (Cambridge, MA: The MIT Press, 1996).

146A related claim is made by David Nofre, Mark Priestly, and Gerard Alberts in “When Technology
Became Language: The Origins of the Linguistic Conception of Computer Programming, 1950 -
1960” in Technology and Culture, Vol. 55, No. 1 (January 2014): 40 - 75. They explore how early
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Some fascinating scholarship has been produced by anthropologists and historians

who are interested in the role that written symbols and notational systems play in

the history of human cognition. One early study was anthropologist Jack Goody’s

work in The Domestication of the Savage Mind.147 He argued that the minds of tra-

ditional peoples and the minds of Western Europeans were not separated by some

essential difference as had been proposed by his more colonially minded predecessors

and colleagues. Instead, he believed that the cognitive abilities of all peoples were a

product of their “technologies of literacy.” He argued that ways of writing, recording,

manipulating, and circulating information enabled and constrained memory, reason,

and cognition. The “list” is one such literary technology that he identifies as important

in the history of commerce, logical reasoning, and experiences of temporality. In a

section called “What’s in a list?” he writes:

The list relies on discontinuity rather than continuity; it depends on phys-
ical placement, on location; it can be read in different directions, both
sideways and downwards, up and down, as well as left and right; it has a
clear-cut beginning and a precise end, that is, a boundary, an edge, like a
piece of cloth.148

In a different vein, Hans-Jörg Rheinberger has emphasized the epistemological signif-

icance of note-taking and data recording practices among experimental scientists in

determining the outcome and understanding of what was shown in an experiment.149

Some scholars in philosophy have suggested that, in fact, if certain symbol systems are

so inextricable a part of cognition, perhaps they should not be understood as aids to

programming languages had a kind of dual representational function in that they had to represent to
the computer and they had to represent to the programmer. Early languages combined the needs of
programmers and machines.

147Jack Goody, The Domestication of the Savage Mind (Cambridge University Press, 1977).
148Goody, The Domestication of the Savage Mind, p. 81.
149Hans-Jörg Rheinberger, “Scrips and Scribbles” in MLN Vol. 118, No. 3 (2003): 622 - 636.
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cognition but rather as part of cognition itself.150 Lists and other literary technologies

like tables, graphs, and diagrams have received interest more recently as well among

historians of science, technology, and economics. These accounts are often motivated

by an interest in the kind of thinking that particular inscriptions enable or exclude.

Data structures like linked lists can be thought of as new literary technologies that

enable new ways of “thinking with computing.”

The drawing and diagramming techniques deployed by Newell, Simon, and Shaw to

represent logical expressions don’t just point to new materiality for logical expressions

- they point to new thinking about logical expressions. And in particular, Newell,

Simon, and Shaw were not thinking about logical expressions in order to prove theorems

directly, they were thinking about logical expressions in order to program a computer

to prove theorems. The interventions of the technology in the cognitive goals and

resources of its users are reflected in the new tools they design for working with old

objects. Processes of automation seldom, if ever, replace human thought. Instead,

automation attempts rather displace and transform human thinking at the same time

as they enable the construction of new objects of thought - these develop always in

tandem. And, as I will reiterate throughout in the dissertation I am less interested

in the question of whether machines are thinking than I am in the changes in human

thinking that surrounded the use of computing machinery.

Conclusion

Whereas I have elected to focus on the differences between Whitehead and Russell’s

notational system and inference rules and those developed for the Logic Theory Ma-
150This suggested, called the “extended cognition hypothesis” originated with Andy Clark and David

Chalmers in “The Extended Mind” in Analysis, Vol. 58, No. 1 (1998): 7 - 19. Many discussions of and
responses to the hypothesis are collected in Richard Menary, ed. The Extended Mind (Cambridge,
MA: MIT Press, 2010).
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chine, Newell and Simon rather emphasized profound similarity. According to their

vision of reasoning-as-information processing, the human mind and the JOHNNIAC-

as-Logic Theory Machine were engaged in the same kind of deductive reasoning. And,

very interestingly, when the Logic Theory Machine’s proofs were translated back into

the human-friendly notation of Whitehead and Russell (e.g. every Logic Theory Ma-

chine execution of the list-processing routine for the three primitive rules), most of

the Logic Theory Machine’s proofs were the same as those constructed by Whitehead

and Russell.151 The program proved about fifty of the theorems in the early chapters

of Principia. It was most celebrated for producing a previously unknown proof that

Newell and Simon thought was “more elegant” than that presented by Whitehead and

Russell. And Russell, by then Earl Russell, agreed.152

However, I have argued that in spite of their desire to preserve the form of proof

presented in Principia, the development and implementation of the Logic Theory Ma-

chine in fact involved epistemologically significant transformations in the tools and

practices for studying mind and for cognizing and working with logic. Newell, Shaw,

and Simon crafted a new representational system and a new set of operations for prov-

ing theorems in propositional logic, and with them, they endowed that logic with new

properties and behaviors. Heuristic search across linked lists according to forty-four

primitive information processes was a different form of proof than the written, vision-

oriented, paper-based ones of the early twentieth century.

151Newell’s identification of this similarity is also found in his correspondence with Russell. See The
correspondence between Simon and Russell is reproduced in Simon, Models of My Life, pp. 207 - 209.

152Simon documents their correspondence in his autobiography. Simon, Models of My Life (New
York, NY: Basic Books, 1991): 207 - 209.
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Chapter 2

“Mathematical Objects in Action”:

Implementing Herbrand’s Theorem153

Introduction: A Different way to Prove Principia

“There is no need to kill a chicken with a butcher’s knife. Yet the net impression is that

Newell-Shaw-Simon failed even to kill the chicken with their butcher’s knife.”154 This

criticism was directed at the Logic Theory Machine, a mid-1950s program intended

to prove logical theorems from Principia Mathematica.155 The remark came from Hao

Wang, himself the architect of a set of late 1950s programs for proving theorems from
153The phrase “Mathematical Objects in Action” is from Edward Ng, “Introduction” in Proceedings of

the Symposium on Symbolic and Algebraic Computation (Berlin: Springer, 1979): p. 2. In describing
the subject matter of the Symposium on Symbolic and Algebraic Computation, Ng wrote that “There
is presented in this symposium a rich variety of mathematical concepts from number theory, algebraic
geometry, differential algebra, group and field theories. There is a diversity of mathematical objects in
action.” The Symposium was part of a particular approach to computing - one that sought to harness
the computer for nonnumeric and algebraic work rather than numerical computation.

154Hao Wang, “Toward Mechanical Mathematics” in IBM Research Journal, Vol. 4, No. 1 (January
1960): 2 - 22, 4. The paper was received at the end of 1958.

155The Logic Theory Machine is the subject of Chapter One: Rewriting Principia: Implementing
Intelligence.
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Principia.156 His criticism was born, in part, from the numbers. The Logic Theory

Machine successfully proved thirty-eight of the first fifty-two theorems of Principia,

failing in fourteen cases.157 Wang’s programs did much better. His first and least

complex program alone, called the “System P,” proved every one of the more than two-

hundred and twenty theorems in the first five chapters of Principia and in considerably

less time.158 His later program, called the “Program P” “disposed” of the over three
156Wang designed three programs all together, between 1958 and 1960. Each of the programs was

designed to tackle a specific subset of the logic of Principia. The first program was for the propositional
calculus - the domain in which the Logic Theory Machine also worked. The second program was
designed to construct well-formed propositions in the propositional calculus and distinguish trivial
from interesting ones, and the the third was a theorem-prover for all of the predicate calculus with
equality that could prove upwards of 85% of all theorems in the whole of Principia in about an hour.
I will discuss some of these distinctions and the strategies Wang deployed in automating theorem-
proving therein in what follows. Wang developed these programs first while working at IBM research
labs in the summer of 1958, and later at Bell Research Labs in 1959 and 1960. Wang, “Towards
Mechanical Mathematics” in IBM Journal of Research and Development, Vol. 4, No. 1 (1960): 2 -
22; Wang, “Proving Theorems by Pattern Recognition Part I” in Communications of the Association
of Computing Machinery, Vol. 3, No. 4 (1960): 220 - 234; Wang, “Proving Theorems by Pattern
Recognition Part II” in The Bell System Technical Journal, Vol. 40, No. 1 (January 1960): 1 - 42.

157These theorems begin in Part 2 “Immediate Consequences of the Primitive Propositions” of “Sec-
tion A: The Theory of Deduction” in Volume I of Principia, pp. 102 - 113. In most of the fourteen
cases, the Logic Theory machine failed because it encountered limitations of computing resources.
Newell, Simon, and Shaw were able to show that the program was incapable of proving one of those
fourteen theorems, and suspected it was not capable of proving one other. That is to say - there were
theorems in the list such that no possible sequence of Logic Theory Machine operations would produce
a proof. These statistics and their associated running times were reported in Newell, Shaw, Simon,
“Empirical Explorations of the Logic Theory Machine: A Case Study in Heuristics” in Proceedings of
the Western Computer Conference (1957): 219 - 230, on p. 225 and they were reproduced by Wang
in “Toward Mechanical Mathematics” on p. 3.

158It is somewhat difficult to compare computing times in the 1950s. Actual running times varied
in large part because of significant differences between computing machinery. Much of the time
required to run a program was tied up in processes of input and output and these depended on what
mechanisms and media were used; the Johnniac mainframe on which the Logic Theory Machine ran
was, for example, a much slower machine than the IBM 704 on which the System P ran. Comparisons
of actual running time were not, therefore, measures by which to compare the fundamental efficacy
of different programs. Many practitioners reporting their results at this time therefore distinguished
between the “actual computing time” of a program’s execution and the “total running time,” the former
excluding the time taken to input and output relevant data. Around this same time, computing
practitioners were working out formal methods for measuring the running speed and complexity of
algorithms in the abstract, independent particular implementation - here programs are represented as
algorithms that run on an abstract mechanism like a Turing Machine, rather than an actual computing
machine. This provided a standardized way for calculating the number of steps the algorithm would
perform for an input of a given size, and comparing them across algorithms. Usually, this area of
research is traced back to the work done by Michael O. Rabin at IBM Research Labs in 1958, first
circulated as “Degree of Difficulty of Computing a Function and Hierarchy of Recursive Sets,” Technical
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hundred fifty theorems in the first nine chapters of Principia in less than ten minutes.159

Wang’s programs produced more proofs in less time.

Wang was a Chinese-American logician and philosopher, who came to the United

States in 1946 to do a PhD under Willard Quine at Harvard University. He worked

in mathematical logic studying the character of formal axiomatic and deductive sys-

tems. And it was to certain results of mathematical logic that he turned in designing

his theorem-proving programs. Wang wanted to implement results from mathematical

logic on a computer. His programs were based on Herbrand’s Theorem. Herbrand’s

Theorem was a fundamental result of proof theory, a branch of mathematical logic

aimed at proving theorems about proofs themselves by studying the formal properties

of axiomatic, deductive and inferential systems.160 The theorem, which I will discuss at

length in “The Herbrand Universe” below, offers a procedure for proving certain theo-

rems from one branch of logic - the predicate calculus - using another, simpler branch of

Report No. 2, O.N. R., (Hebrew University, Jerusalem: 1960). The study of algorithm running time,
complexity, and efficiency has become a central tenet of theoretical computer science. The ability to
perform generalizable speed comparisons is another reason why implementation has been relegated to
secondary status in computer science, whereas algorithms are considered fundamental. Wang makes no
mention of the complexities of comparing running times, and does not speak to differences between the
Johnniac and the IBM 704. However, in spite of these complexities, there is no question that the Logic
Theory Machine was much slower - an order of magnitude slower - at proving fewer theorems than the
System P. In order to give a sense of the computing time involved in these results, Newell, Simon, and
Shaw reported that the program took twelve minutes to provide a proof of theorem *2.45 and took
twenty-three minutes to report a failure in attempting to prove *2.31 - these being representative of the
times taken for similar cases. Conversely, the System P proved two-hundred plus theorems in twenty
seven minutes total, three minutes of a “actual computing time.” Only thirty seconds were required for
the System P to discharge all fifty-two theorems on which the Logic Theory Machine was tried, three
seconds for *2.45 and six seconds for *2.31. The comparative results were published by Wang himself
in “Towards Mechanical Mathematics”, p. 4 and also reported and analyzed by Donald Loveland in
“Automated Theorem-Proving: A Quarter-Century Review” in Automated Theorem Proving: After 25
Years, [Contemporary Mathematics, Volume 29], ed. Woody Bledsoe, Donald Loveland (Providence,
RI: American Mathematical Society: 1983): 1 - 46, pp. 6 - 7.

159Wang, “Proving Theorems by Pattern Recognition I” in Communications of the ACM, Vol. 3, No.
4 (1960): 220 - 234, p. 225.

160Proof Theory originated with Hilbert’s program of axiomatization in the early twentieth century.
For a historical survey of the emergence of proof theory, see Ivor Grattan-Guiness, The Search for
Mathematical Roots, 1870 - 1940 (Princeton, NJ: Princeton University Press, 2000) esp. 207 - 218.
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logic - the propositional calculus.161 However, when it was first demonstrated in 1930,

the procedure could almost never actually be used for theorem-proving. The theorem

served to establish a particular and surprising relationship between two branches of

logic but it was not actually a tool for proving theorems on the ground. This kind of

procedure was common in twentieth-century mathematical logic. For example, many

logicians aimed to devise what were called “decision procedures” that, given some in-

put statement, would “decide” if the statement was a theorem in a finite number of

algorithmic steps.162 These procedures offered insights into the formal structure of and

the relationships between different domains of logic but few of them were actionable

tools for actually proving that particular statements are theorems.

The basic idea of Herbrand’s Theorem is this: for any given statement P in the

predicate calculus, the theorem tells you how to construct a corresponding infinite

series of statements in the propositional calculus, S1, S2, S3, . . .. It then tells you that

P is a theorem if, and only if, for some number N , the first N statements in that

series connected by the OR operator (S1_S2 _ · · ·_S
N

) is a tautology, meaning that

it is true no matter what values are assigned to the variables in S1, S2, S3, . . .163 So

one way to search for a proof would be to test if S1_S2 _ · · ·_S
N

is a tautology for

N = 1, 2, and so on. If P is a theorem, then eventually a tautology would be discovered

(and therefore a proof), but this method is incredibly costly because N is usually some
161What makes Herbrand’s Theorem powerful is that propositional logic is sufficiently simple as to

be decidable, but predicate logic is not. That the decidable propositional logic can be used to prove
certain statements in the predicate logic is therefore a significant and surprising result.

162One of Alan Turing’s central results was to show that is is provably impossible to create decision
procedures for sufficiently complex domains of logic. See Turing, “On Computable Numbers with an
Application to the Entsheidungsproblem.”

163Each Si contains some variables and for a particular Si to be a tautology, it must be true under
all possible assignments of true/false to those variables. The disjunction S1_S2 _ · · ·_SN , however,
is a tautology if, for under all assignments of true/false to all of the variables, at least one of the Si

is true. So, for example, it is not sufficient to simply check if each Si is a tautology because it is
possible for S1_S2 _ · · ·_SN to be a tautology when no particular Si is independently. For example,
given a single variable x, suppose that S1 = x and S2 =⇠ x (where ⇠ means “NOT”), then S1 _ S2 is
a tautology even though neither S1 nor S2 is.
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astronomical number - for example, two trillion even for a simple example.164 And

worse, if P is not a theorem, then no tautology can ever be found and there is no way

to know when to stop looking for one - you can’t tell when to stop because you never

know if checking just one more will make it a tautology. And although computers could

certainly outpace their human counterparts in the execution of lengthy and complex

operations, not even they could execute a method like this.165 But Wang saw potential.

Wang wanted to implement Herbrand’s Theorem on a computer - he wanted to

transform the theorem from an abstract “in theory” kind of procedure to a tool kit

computers could wield to actually prove theorems in predicate logic. He wanted to

take insights offered by the theorem about logical structures and fashion them into

computer operations. He wanted to make Herbrand’s Theorem useful as more than

a statement about the relationship between the two branches of logic. This would

amount to an epistemic transformation of the theorem, changing what could be known

with and through it. And he succeeded. The Program P is just such an implementation

of Herbrand’s Theorem, and it successfully proved all of the three-hundred and fifty

plus theorems in the first nine chapters of Principia Mathematica in under ten minutes.

Wang devised a method that he called “pattern recognition” with which the computer

would exploit structural properties of S1, S2, S3, · · · to decide if they do not contain a

tautology (which would indicate that P was not a theorem). But these “patterns” were

not ones that people could see and the method of recognizing them was not one that
164Wang offers one such example - a relatively simple problem that would involve checking 248 � 1

cases in “Proving Theorems by Pattern Recognition Part I,” p. 222. For some subsets of the predicate
calculus, it is possible to calculate an upper bound for N - a fact Wang makes use of in designing the
Program P - but this was not included in Herbrand’s original result.

165In 1954, three years before Wang made his programs, Martin Davis attempted to implement
a decision procedure for additive number theory. However, Davis didn’t modify the procedure to
accommodate the affordances of the computer, and the program was only able to solve relatively
simple problems as a result. Davis never published the program, but an account of it is provided in
Davis, “A Computer Program for Presburger’s Algorithm” in Automation of Reasoning 1: Classical
Papers on Computational Logic 1957 - 1966, J. Siekmann, G. Wrightson eds. (Berlin: Springer Verlag,
1983): 41 - 48. Davis went on to become a central figure in automated theorem-proving research.
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people could execute. These patterns lived in the digital memory of the IBM System

704 computer that Wang used at IBM to run his programs and they were processed

by methods that were only possible on paper for the most trivial of examples. Wang

implemented Herbrand’s Theorem as a computer program constituted of operations

that were beyond the reach of human execution.

Wang felt the superior performance of his programs sufficed as “conclusive refuta-

tion” of the Logic Theory Machine’s design - his approach proved more theorems and

faster.166 His criticism would not have bothered it’s creators Newell, Shaw, and Simon,

however. The “proofs” that Wang’s programs produced were not the kind of proofs that

they were looking for. They wanted computer proofs that resembled human proofs.

They wanted proofs that were constructed by steps of inferential reasoning inspired by

human heuristics and intuition. They wanted computer proofs that captured and com-

municated human insight and practice. They wanted “proof in the meaning of Russell

and Whitehead.”167 Indeed, although the Logic Theory Machine only proved a handful

of theorems from Principia, perhaps its greatest success was that most of the proofs

it output followed the same steps as those that Russell and Whitehead themselves

constructed in the first decade of the twentieth century.168 It produced proofs that,

at a high enough level of abstraction, took the same inferential form as those that its

human predecessors had drafted before it (although I argued in the previous chapter

that they in fact introduced quite new forms of proof in spite of this).169 Wang wanted
166See Wang, “Computer Theorem Proving and Artificial Intelligence” in Automated Theorem Prov-

ing: After 25 Years: 49 - 70, p. 53.
167Newell, Shaw, Simon, “Empirical Explorations of the Logic Theory Machine: A Case Study in

Heuristic” in 1957 Western Computer Proceedings, (1957): 218 - 230, p. 220.
168Herbert Simon was quick to identify this feature of the Logic Theory Machine’s work when writing

to Bertrand Russell to tell him of the program and its successes. Their correspondence is available in
Simon, Models of My Life, pp. 207- 209.

169In the previous chapter, I argue that this high-level claim to “sameness” in fact hides significant
differences at the level of implementation, practice, and materiality. However, when these other scales
are ignored, the proofs produced by the Logic Theory Machine have the same form as those published
in Principia in that they follow the same steps of inference rules. Once the “working backwards”
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the computer to produce proofs that humans couldn’t construct - maybe that humans

couldn’t even read. He wanted to usher in new forms of proof. In fact, Wang thought

all of mathematics might be on the verge of transformation because of computers: he

wrote that the “cross-fertilization of logic and computers ought to produce in the long

run some fundamental change in the nature of all mathematical activity.”170 Newell-

Shaw-Simon and Wang simply wanted different things from their computers and from

proof.171

Why did Wang and Newell-Shaw-Simon disagree about proof in this way? Why

did they want different kinds of proof from their computers? First, Wang and Newell-

Shaw-Simon wanted different kinds of proof from computers because they thought very

differently about what computers are. Through the lens of systems analysis (discussed

in the section “Proof as Information Processing” in the preceding chapter), Newell

and Simon perceived a formal similarity between human minds and computing ma-

chines. They wanted to instantiate existing human practices of theorem-proving on

the computer as an example what they called “symbolic information processing” which

they believed to be the defining activity of both human minds and modern computing

machines.

Wang, on the other hand believed that human reasoning and computation were

qualitatively different kinds of things. He agreed that some of what humans do would

turn out to be automatable, but that “we are not likely to succeed in making the

process of the Logic Theory Machine has been successful, it can be presented in the reverse direction
offering an inferential path from axioms to conclusion and many of these paths were the same ones
presented by Russell and Whitehead. This was taken by Newell and Simon as evidence that the Logic
Theory Machine was doing the same thing as Russell and Whitehead in proving theorems.

170Wang, “Proving Theorems by Pattern Recognition,” pp. 232 - 233.
171Wang was quite dismissive of Newell and Simon’s approach in his published writings. Newell and

Simon were less so in press. However, John Alan Robinson (associated with Argonne and a subject of
the next chapter, “A New Collaborator: Implementing Intuition and Inference”) indicated that they
were “quite rude” with respect to the logic approach to theorem-proving at conferences. Robinson,
autobiographical talk, CADE 2012, Manchester England (July 2012).
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machine imitate the man entirely.”172 More, even if computers could be made to

imitate human mathematicians entirely, and Wang was skeptical that this would ever

be possible, this would not be the best way to use them. Regardless of how much

human practice they could be made to enact, computers could also do a great deal

that people can’t do and therein lay their true potential. They were quantitatively

different as well. Computers were faster and more efficient at executing particular

types of combinatorial, logical, and numerical tasks than their human counterparts.

And Wang believed that more is different in this regard:

The human inability to command precisely any great mass of details sets
an intrinsic limitation on the kind of thing that is done in mathematics and
the manner in which it is done. The superiority of machines in this respect
indicates that machines, while following the broad outline of paths drawn
up by man, might yield surprising new results by making many new turns
which man is not accustomed to taking. [...] We are in fact faced with a
challenge to devise methods of buying originality with plodding, now that
we are in possession of slaves which are such persistent plodders.173

In Wang’s telling, mathematics developed so as to accommodate the affordances of

human reasoning which is limited, especially with regard to handling “great masses of

details.” He imagined that new ways doing mathematics would be possible if the dif-

ferent affordances of the computer were admitted and cultivated. Wang wanted to use

computers to pursue proof practices that would be impossible for human mathemati-

cians, but that would yield new insights and ideas about mathematics made visible

only by the processing power of something like a computer. Newell and Simon were
172Wang, “Towards Mechanical Mathematics,” p. 3.
173Wang, “Toward Mechanical Mathematics,” p. 3. It bears noting as well that the provocative

anthropomorphic language Wang and others used to describe the possibilities they perceived in com-
puters open in to complex conversations. Here Wang calls computers “slaves” and elsewhere they
are called “servants,” “assistants,” “colleagues,” “mentors,” and so on. These words invoke existing
or historical experiences of social hierarchy and should not be read as neutral, even if intended as
such. For a discussion of this language in technical fields, see Ron Eglash, “Broken Metaphor: The
Master-Slave Analogy in Technical Literature” in Technology and Culture, Vol. 48, No. 2 (2007): 360
- 369.

103



Stephanie Dick After Math

interested in a sameness between minds and computers. Wang was interested in their

differences.

But - if computers and people were in fact so different, how could people like

Newell and Simon look upon the Johnniac mainframe computer and its cumbersome

1950s brethren and see something akin to the mind?174 Wang thought that one might

mistake the modern digital computer for a human mind because human minds were so

often idealized, abstracted, and theorized as mechanical rule following entities. Wang

wrote: “It seems as though logicians had worked with the fiction of man as a persis-

tent and unimaginative beast who can follow rules blindly, and then the fiction found

its incarnation in the machine.”175 Wang saw in the computer an actualization of a

fictional and idealized model of people with all of their social, physical, and historical

contingencies abstracted away. Computers weren’t like people at all, people could never

do what these machines did, but the machine was built in the image of an imaginary

person.

This “imaginary mathematician” who doesn’t sleep, eat, err, or die has made various

appearances in the history and philosophy of mathematics, and Wang’s reading of the

computer as that fiction incarnate has repercussions for both. For example, philosopher
174I refrain from including John Clifford Shaw in this comparison. Although Shaw was integral to

the implementation of the Logic Theory Machine, he did not himself subscribe to the belief that the
Logic Theory Machine was a simulation of human reasoning processes. See Pamela McCorduck, J. C.
Shaw Interview, June 16, 1975, (CMU-PM, Series III, Transcripts).

175Wang, “Computer Theorem Proving and Artificial Intelligence” in Automated Theorem Proving:
After 25 Years, p. 67. The history of the “persistent and unimaginative beast” mythology of the
mathematician is long and involved and it has many afterlives today. The long history of this vision
would begin at least in the 17th century with the work of Gottfried Wilhelm Leibniz who sought
a formal language capable of delimiting and describing all human thinking. See Matthew Jones,
“Seeing All at Once” in The Good Life in the Scientific Revolution: Descartes, Pascal, Leibniz and the
Cultivation of Virtue (Chicago, IL: Chicago University Press, 2006): 229 - 266. Later, George Boole
described a binary logic that he believed captured the workings of human thinking in a rule bound
formal system - indeed this logic was put to work in the actualization of digital computing machines
and its original association with human thinking is often excluded from that history, See Boole, An
Investigation of the Laws of Thought On Which are Founded the Mathematical Theories of Logic and
Probabilities (1854). Different theorizations of mind as a machine are explored in P. Husbands, O.
Holland, M. Wheeler, eds. The Mechanical Mind in History (Cambridge, MA: The MIT Press, 2008).
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of mathematics Brian Rotman has proposed a model of “mathematical activity” based

precisely on the distinction between ideal, symbolic, and procedural domains.176 He

suggests that the “figure of the mathematician” is in fact an “assemblage of agencies”

including the actual human mathematician, the “Person,” and the “Agent” who is

imagined by the Person to execute procedures beyond his own capacity: “The Person

makes a claim about an imagined task or procedure - counting, inverting a matrix,

etc. - that the Agent will execute.”177 In Rotman’s model, in order to formulate

certain concepts or solve certain problems involving more steps than a person could

execute, mathematicians imagine an “Agent” that could (e.g. count forever). More, for

Rotman, the written symbol systems deployed in mathematical practice make possible

the imagined Agent. It is by working with symbols like: “I II III IIII IIIII IIIIII

...” (including of course the ever-important ellipses) that such an Agent could be

imagined.178 He calls the Agent “a ghost, one that mathematicians invoke though

they don’t describe it so, when they write 1, 2, 3, ... and think infinity.”179 Herbrand’s

Theorem along with logical Decision Procedures, are good examples of how comfortable

modern mathematicians are with the infinite and with procedures and processes that

are not, in actuality, executable. They serve as good examples of Rotman’s “Agent” at

work. However, his model needs to be historicized.

Wang wanted to use the computer to intervene in the boundary between the “in

principle” and the “in practice.” He wanted to transform Herbrand’s theorem into a

set of computer-executable operations. These operations would not be executable by
176Brian Rotman, Becoming Beside Ourselves: The Alphabet, Ghosts, and Distributed Human Being

(Duke University Press, 2008): esp. 59 - 62 and Rotman, Mathematics As Sign: Writing, Imagining,
Counting (Stanford, CA: Stanford University, 2000), esp. 7 - 21.

177Rotman, Becoming Beside Ourselves, p. 61.
178Rotman proposes that other “imagined entities” - like ghosts and God - are also made possible by

certain symbolic and semiotic systems. See, Rotman, “Ghost Effects” in Becoming Beside Ourselves,
esp. 107 - 124.

179Rotman, Becoming Beside Ourselves, p. 130, my emphasis. Here in “The Infinite Mathematical
Agent,” (pp. 130 - 133) he describes how the Agent is tied to a semiotic system.
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Rotman’s “Subject” - the actual human mathematician - because they exceed the tem-

poral and combinatorial limitations of unaided human faculties. But neither would

these operations be the merely imagined actions of the “Agent.” The boundaries be-

tween ideal and actual mathematical agency, between what can be done and what can

only be imagined, are moving targets. They move as new agencies are introduced to

mathematics.180

The way that the mathematician is “idealized” and the way that mathematical ac-

tivity is imagined change through time depending on what metaphors or other cultural

resources are at work. And the character of actual mathematicians and their actual

activities change as well. The historicity of ideals and actuals in the character of math-

ematical agency resists the kind of ahistorical model that Rotman provides. Wang’s

work with the computer was intended to intervene at the boundary between what

could only imagined to be done and what could actually be done. More, Wang read

the computer as an improved approximation of a never-existing ideal mathematician.

Seen this way, Wang’s work also represents an intervention in the history of ideal and

actual mathematicians and ideal and actual mathematical practice.181

In the rest of this chapter, I explore Wang’s work in automated theorem-proving,

focusing on the development of the Program P and its place in Wang’s vision for

a mathematics transformed by computation. I begin with an exploration of Wang’s
180I would seek to historicize Rotman’s “Agent” in part through the addition of perspectives from

Actor Network Theory. Therein, knowledge-production agency is characterized as an emergent prop-
erty of hybrid human-nonhuman networks rather than a stable faculty possessed once and for all in
one way or another by any human or nonhuman entities alone. See, for example, Bruno Latour,
Reassembling the Social: An Introduction to Actor-Network Theory (Oxford, U.K.: Oxford University
Press, 2007).

181Amir Alexander has explored different mythologies and narratives that surround the character
of the mathematician, in “From Voyagers to Martyrs: Toward a Storied History of Mathematics”
in Circles Disturbed: The Interplay of Mathematics and Narrative, eds. Apostolos Doxiadis, Barry
Mazur (Princeton, NJ: Princeton University Press, 2012): 1 - 51, on p. 41. See also, Amir Alexander,
Dual at Dawn: Heroes, Martyrs, and the Rise of Modern Mathematics (Cambridge, MA: Harvard
University Press, 2010).
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professional career, and in particular on his complicated disciplinary affiliations - to

mathematics, philosophy, and logic. He wanted recognition from all three and also

sought to transform all three with computers in hand. Wang imagined a new research

field within mathematics, called “Inferential Analysis” that would focus on the algo-

rithmic study of mathematical problems in search of new, computationally informed

insights. Inferential Analysis, of which automated theorem-proving would be a central

component, was to bridge logic, computing, and mathematics, creating new possibil-

ities for knowledge and practice in those areas. However, ultimately, his hybrid and

transformative disciplinary perspective left him somewhat isolated from all three pro-

fessional communities - standing in opposition to the abundant cases of “successful”

interdisciplinarity that abounded in the 1950s. This disciplinary dimension of Wang’s

work in automated theorem-proving is the subject of the next section “Searching for

Algorithms in the Branches of Mathematics.” In “The Herbrand Universe,” I explore

Herbrand’s Theorem and its intellectual context in more depth, pointing to those el-

ements that were transformed by Wang’s automation attempt. In “Reformalism I:

Ruling Propositional Logic,” I explore briefly the design and implementation of his

first theorem-proving program, the System P, in order to contrast it directly with the

Logic Theory Machine. But his more significant efforts were directed towards designing

and implementing the Program P, discussed in “Reformalism II: Finding Patterns in

the Predicate Calculus.” That program represents his most concerted effort to realize

his vision for mathematics, computing, and logic in the form of working programs.

Throughout this dissertation I argue that implementation has epistemological stakes

for the history of mathematics. This was certainly the case here. Wang took a the-

orem from proof theory and transformed the kind of knowledge it produced. It went

from being an abstract statement about two branches of logic to a practical tool kit

for proving theorems. And more, running the Program P yielded what Wang called a
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“new and surprising discovery” about Principia - namely that every theorem from the

predicate calculus contained in Principia has a particular formal structure, a result

described in the conclusion of this chapter.

“Searching for Algorithms in the Branches of Mathe-

matics”182

Wang was a native of China, and completed his first two academic degrees there during

the years of the Second World War.183 He received a B.Sc. in mathematics from the

National Southwestern Associated University in China and a Master’s in Philosophy

from Tsing Hua University under the advisement of Prof. Shen Youding. Following

Youding’s lead, Wang elected to go to the United States for his doctoral studies in phi-

losophy, and immigrated to Cambridge, MA in 1946 to study for the PhD at Harvard

University under the advisement of Willard Quine. Although Wang became an Ameri-

can citizen and lived most of the rest of his life in the U.S., he carried strong allegiances
182This phrase is taken from Wang, “Computer Theorem Proving and Artificial Intelligence” p. 58, in

which Wang describes his interest in exploring the potentially algorithmic dimension of mathematical
problems.

183Or more specifically, what is known as the “War of Resistance” between China and Japan, between
1937 and 1945. See Wang, “From Kunming to New York,” trans. Richard Jandovitz, Montgomery Link
in Hao Wang: Logician and Philosopher [Texts in Philosophy 16] (London, UK: College Publications,
2011): 39 - 48. Unfortunately, a comprehensive biographical account of Wang’s life is not possible here.
More unfortunately, no comprehensive biography exists elsewhere. His collection at the Rockefeller
Archive Center was only recently opened for research in the Spring of 2012. Some selective discussions
of Hao Wang’s life and translations of some of his early Chinese writings can be found in Charles
Parson, Montgomery Link eds., Hao Wang: Logician and Philosopher [Texts in Philosophy, Vol.
16 ] (London, UK: College Publications, 2011). The volume was compiled before the opening of
Wang’s archive, and consists primarily of students’ and colleagues reflections on Wang’s life and work.
Wang penned portions of an autobiography in Wang, A Logical Journey: From Gödel to Philosophy
(Cambridge, MA: The MIT Press, 1996), esp. “Chapter Three: Religion and Philosophy as Guides
to Action” and “Chapter Four: The Conversations and Their Background.” My knowledge of Wang’s
life is also indebted to oral histories performed with Joyce Friedman, one of Wang’s relatively few
graduate students, and to Juliet Floyd, Philosophy Professor at Boston University, and Martin Davis,
a colleague and fellow pioneer of automated theorem proving.
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to China, to Chinese people, and to Chinese ideas throughout his life. Charles Parsons,

a colleague of Wang’s from Harvard Philosophy, suggested that “Although he became a

US citizen in 1967, Wang would have resisted characterization as an Asian-American.

I believe he thought of himself simply as Chinese, a member of the Chinese diaspora

that has existed for centuries.”184

Wang’s philosophical program took many turns throughout his life. However, one

conviction can be found at work in seemingly every corner of his intellectual career

- Wang was deeply committed to practical philosophy. He wanted philosophy to be

useful, to provide principles for action and daily living. This philosophical posture was

one key motivation, I claim, for his interest in automated theorem-proving. No branch

of philosophy was more isolated from action and utility than mathematical logic. Not

even mathematicians found much use for the foundational formal systems logicians

were so at pains to construct. By transforming an esoteric result of mathematical logic

like Herbrand’s Theorem into an actual actionable toolkit for theorem-proving, Wang
184Charles Parsons, “Hao Wang” in Hao Wang, Logician and Philosopher : 7 - 14, on p. 7. It

will also be unfortunately beyond the scope of this discussion to engage the rich existing scholarship
concerning the experiences of Chinese-American academics in the postwar United States. Interested
readers should consult Zuoyue Wang, “Transnational Science during the Cold War: The Case of Chi-
nese/American Scientists” in Isis Vol. 101, No. 2 (June 2010): 267 - 377. Zuoyue Wang (no relation)
argues that it is a mistake (made all too often) to conflate Chinese science and scientists with Soviet
science and scientists in the Cold War landscape. Zuoyue Wang explores both the work of Chinese
scientists who studied in the United States and stayed there and Chinese scientists who worked or
studied in the United States and then return to China as ways of complicating and enriching our
understanding of the Americanization of international science and the Internationalizing of American
science. See also Zuoyue Wang, “U.S.-China Scientific Exchange: A Case Study of State-Sponsored
Scientific Internationalism during the Cold War and Beyond” in Historical Studies in the Physical
and Biological Sciences, Vol. 30, No. 1 [Physicists in the Postwar Political Arena: Comparative
Perspectives] (1999): 249 - 277. It is also worth noting that another of the significant early pioneers
of Automated Theorem-Proving - Wu Wen-Tsuin - was Chinese - but remained in China. He and
his body of work (not limited to theorem proving) were the subject of a recent dissertation: Jiri
Hudecek, “You fight your way, I fight my way: Wu Wen-Tsun and Traditional Chinese Mathematics”
Dissertation submitted to the Department of History and Philosophy of Science, University of Cam-
bridge (November 2011). I am grateful to Jiri for many conversations about Wu Wen-Tsun’s work
and mechanical mathematics in China which has its own rich and fascinating history. It is not clear
whether Wang and Wen-Tsun ever actually met but Wang was certainly aware of and impressed by
his work.
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hoped to make it a more useful result, as I will discuss later in this section.

There was a political dimension to Wang’s emphasis on action as well. Throughout

his work, Wang lamented the fact that philosophy was woefully distanced from the

the lived experience and daily lives of human beings. This, in part, led him to develop

what he described as an “infatuation” with Marxist philosophy after the rapprochement

between the U.S. and China in the early 1970s. At that time, Wang saw an emphasis

on action and utility in Marxism that he believed was lacking in much of Western

philosophy. After his first visit to China, he reported “Although there was much [in

Marxism] that puzzled me, I felt that I saw a comprehensive philosophy unifying thought

and action in a way that I had not before considered possible.”185 That desire to unify

thought and action, I propose, was also at work in his intention to make Herbrand’s

Theorem useful, to put it to work.

In the 1980s when the extent of the human rights abuses perpetrated under Mao Tse-

Tung became visible to the world, Wang abandoned Marxism and began working on the

development of his own philosophy of action, presented in its most fully developed form

in a work aptly titled Beyond Analytic Philosophy: Doing Justice to What We Know

(which Wang considered to be his mot important contribution to philosophy) in 1988.

In it, he advocates for the role of common sense rather than completely formalized

reasoning, in creating actionable knowledge about the world.186 Marx remained an

icon of the practical philosophy he wanted, however. In Wang’s last (posthumous)

publication he cites Marx’s dictum that “The philosophers have only interpreted the

world, in various ways; the point, however, is to change it,” and argues that the true

purpose of philosophy is to be a “guide to action.”187

185Wang, “From Kunming to New York,” p. 43, my emphasis.
186Wang, Beyond Analytic Philosophy: Doing Justice to What We Know (Cambridge, MA: The MIT

Press, 1996 [1988]).
187Wang, “Religion and Philosophy as Guides to Action” in A Logical Journey: From Gödel to

Philosophy (Cambridge, MA: The MIT Press, 1996): 101 - 127, p. 101.
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It is difficult to ascertain what Wang’s posture towards Marxism and Mao Tse-

Tung’s China was before the early 1970s, in no small part because of the prevalence of

intense anti-communist sentiments and policies throughout American society at that

time. We do know that, under his father’s direction, Wang read certain materialist

texts as a young boy.188 We also know that as soon as it was possible, Wang visited

China in the early 1970s and upon his return he became a very vocal advocate for

Chinese interests and policies. Wang’s colleague Martin Davis believed that Wang, in

fact, became interested in computing in the first place because he wanted to develop a

useful skill set and to “return to China and to participate in the work of the Communist

regime.”189 At that time, he penned multiple “Letters to the Editor” that appeared in

The New York Times and The Washington Post defending Mao and Chinese positions

on foreign and domestic issues against American critics.190 Upon Mao Tse-Tung’s death

in September of 1976, Wang even served as the chair of the memorial service at Hunter

College in New York City, attended by upwards of 2000 people.191

Wang, like many academics from communist countries, did not escape the attention

of the Federal Bureau of Investigation (FBI). On September 12, 1956 (while he was

working on his theorem-proving programs) Wang was preparing to sail on the “Queen

Mary” from New York to Southampton. He was en route to Oxford where he was

then a lecturer after a summer of research at the Burroughs Corporation. The FBI
188He wrote: “During my middle school years, my father wanted me to read some books about

dialectics and materialism, which at the time I felt I did not understand. Later, in the third year of
high school, having read Professor Jin Yuelin’s textbook, Logic, I felt mathematical logic was easy to
understand. I thought if I first studied what was easy, later I might perhaps be able to understand
what was difficult” in “From Kinming to New York,” p. 43.

189See Davis, “Hao Wang’s Contributions to Mechanized Deduction and to the Entscheidungsprob-
lem” in Hao Wang: Logician and Philosopher : 73 - 78, p. 76.

190Wang’s collection of newspaper clippings relating to Chinese affairs, and drafts and clippings of
his editorial pieces are contained in RAC-RU-HW, Series 2 - Office Materials, Box 2, Folder 15.

191The program for this event, drafts of the key address delivered by Prof. Yang Chenning of Stony
Brook University, and newspaper articles describing the event can be found in RAC-RUC-HW, Series
2 - Office Materials, Box 2, Folder 15.
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was advised that Wang was “carrying nuclear physics instruments from US to England

for delivery to Communist Chinese, Charge d’Affairs, and subsequent transmittal to

Chinese mainland.”192 As such, Wang’s luggage was searched upon boarding the ship

and the following results reported:

The subject [...] was in possession of Chinese Passport K714337 and was
traveling as a stateless person under Affidavit in Lieu of Passport issued
December 8, 1955. Customs representatives found a brown leather suitcase
among subject’s possessions which contained various electrical components
which the AEC representative stated could be used in any device using
electronic techniques, although he indicated that no special nuclear mate-
rial was contained therein. [...] In searching subject’s luggage, they also
found three pamphlets entitled “Introduction to Marxism,” “Soviet History
of Philosophy” and “J. Stalin - Concerning Marxism in Linguistics.”193

It turned out that Wang was transporting the computer components as a favor to

Wen-Yu Chang, a visiting professor at Purdue University specializing in the study of

cosmic rays. Chang was returning to China and feared he would not be permitted

to bring the components with him because the FBI had already interviewed him as a

suspicious person.194 The image of Wang with a suitcase full of electronic components

and Marxist pamphlets is perhaps aptly symbolic of the hybrid landscape through

which Wang moved - from the technological tangibles of computing to the theories
192FOI/PA#1193350-0, FBI Report Form (10 October 1956). The report was unclassified on October

9, 2012 but the name of the source was redacted.
193FOI/PA#1193350-0, Letter to the Director of the FBI (September 13, 1956): p. 2. AEC stands

for Atomic Energy Commission, the body responsible for the oversight of nuclear research and de-
velopment following the Second World War. For more on the history of the AEC and programs of
surveillance in the Cold War United States, see Alex Wellerstein, Knowledge and the Bomb: Nuclear
Secrecy in the United States (PhD Dissertation: Harvard University, submitted October 2012), esp.
“Information Control,” “A Very Black Day”, and “Peaceful Atoms, Dangerous Scientists”, pp. 221 -
352.

194Chang indicated to the FBI he “had no place to go but to Communist China” because of “a lack of
possibilities for advancement” at Purdue owing to a speech impediment. FOI/PA#1193350-0 Letter
to the Director, (September 19, 1956), p. 3. It seems the FBI’s suspicion about Chang was related
to his connection with another subject of interest (whose name was redacted from FOIA documents)
who was a member of the openly communist “Chinese Association of Scientific Workers” which was by
then defunct. The electronics components were ultimately confiscated under the auspices that Wang
failed to declare them, their value $1000.00 value exceeding the $25.00 allowance.
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of practical political philosophy. Wang’s work on automated theorem-proving might,

at first pass, seem far afield from his later work on practical philosophy. However, I

propose that both were representative of Wang’s desire to unify thought and action,

and to make philosophy useful, be it political philosophical or mathematical logic which

occupied the early and the late decades of his career respectively.

As a doctoral student at Harvard, Wang’s work his work remained firmly grounded

in that abstract logical project inherited from Whitehead, Russell, and others in the

early twentieth century to reduce mathematics to logic - to formalize mathematics in

terms of the axiomatic and deductive structures of logic. His dissertation in particular

set out to “reduce the classical arithmetic of natural and real numbers to a logistic sys-

tem” - in particular one with weaker axioms and logical principles than had previously

been given.195 This project was very much in keeping with the tradition of analytic

philosophy that Wang inherited from Youding, Quine, and the logicians who proceeded

them, to understand branches of mathematics in terms of the formal structure of logical

systems.

Upon graduation, Wang remained at Harvard first as a Junior Fellow with the

Harvard Society of Fellows for the term between 1948 and 1951, and from 1951 until

1956 as Assistant Professor in the Department of Philosophy. During this time, Wang

remained close with Quine and his work remained focused on the logical formalization of

mathematics. However, beginning in the early 1950s, Wang was becoming increasingly

dissatisfied with this work. In particular, he lamented the fact that analytic philosophy

and logic were of little interest and relevance for the actual practices and interests

of mathematicians. Logicians claimed that their studies revealed the foundations,

justifications and the structure of mathematics - logic was not really of use or even of
195See Wang, “An economical ontology for classical arithmetic” Doctoral Dissertation submitted to

the Department of Philosophy, Harvard University (1948) in Harvard University Archive Collection,
HU 90.5483.2.
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particular interest to many, if not most, practicing mathematicians. As I argued in the

Introduction to this dissertation, Wang was dissatisfied in general with abstractions

that could not be used or put to work in some fashion. He thought that philosophy

in general should have relevance for human life, politics, and experience. And analytic

philosophy should at least be relevant to practitioners of the discipline that it claimed

to ground to illuminate.

Logicians aimed to provide a formalization of all branches of mathematics in terms

of axiomatic, deductive systems - like that Whitehead and Russell sought to lay out

in Principia Mathematica. The ultimate goal was to demonstrate that all proofs in

mathematics could, at least in theory, be presented as comprehensive step by step

deductions within such an axiomatic system. However, mathematicians seldom ac-

tually worked this way. Mathematical proofs seldom consist of exhaustive inferential

deductions. Wang lamented this disconnect between mathematical practice and logical

formalization: “A common complaint among mathematicians is that logicians, when

engaged in formalization, are largely concerned with hairsplitting. It is sufficient to

know that proofs can be formalized. Why should one take all the trouble to show

exactly how such formalizations are to be done, or even to carry out actual formaliza-

tions?”196 Wang wanted logic to be more relevant to mathematicians and more useful

to the production of mathematical knowledge.

Wang believed that computers could be used to forge such connections between

mathematics and logic. In his own telling, it was dissatisfaction with analytic philoso-

phy, or rather “philosophy (as seen at Harvard)” that he became interested in computers

in the first place.197 In 1953 and 1954, he took his first foray out of traditional aca-

demic institutions when he accepted an appointment as a “research engineer” at the
196Wang, “Towards Mechanical Mathematics,” p. 18.
197Wang, “Computer Theorem-Proving and Artificial Intelligence,” p.50.
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Burroughs Corporation research center in Paoli, PA. At the time, however, the Bur-

roughs Corporation center housed only one computing machine and Wang was never

able to use it, and he reports being “discouraged from taking the course for electronic

technicians.”198 As such, Wang’s first attempt to “work with computers” was in fact

another study in abstract formalism pursued on that more familiar medium - paper.

During 1953, he in fact crafted a formally equivalent alternative to Alan Turing’s more

famous “notional machine,” usually called a Turing Machine. Wang designed an equiv-

alent machine that he believed to operate according to more basic principles.199 His

experience at Burroughs unfortunately left him in the world of paper, without either

a technical programming skill set or the tools to forge a bridge between logic and

mathematics.

After this first stretch of time in the United States, Wang began a period of over-

lapping and mixed institutional affiliations. In 1955, he was appointed the John Locke

Lecturer in Philosophy at Oxford University, and he kept an Oxford affiliation as a

Reader in the Philosophy of Mathematics at Oxford from 1956 to 1961. During that

last interval, Wang travelled back to the United States most summers to hold visiting

researcher and consultant positions at two other industrial research institutions - IBM

Research Labs in New York during the summers of 1956 and 1957 and Bell Telephone

Research Laboratories, 1959 - 1960.200 It was during these later visits at IBM and
198Wang, “Computer Theorem-Proving and Artificial Intelligence,” p. 50.
199This work was not published until some time later, in 1957. See Wang, “A Variant to Turing’s

Theory of Computing Machines” in Journal of the Association for Computing Machinery, Vol. 4,
No. 1 (1957): 63 - 92. In spite of not having access to the computer while at Burroughs, Wang
also appears to have worked on the question of “error prevention” in computing: he considered the
kinds of errors that can befall computers and engaged some of John von Neumann’s work on making
computers more reliable than each component. Wang only produced one report on this subject, “The
Control of Errors,” Technical Memorandum No., 54-59, Project No. R5781 (RAC-RU-HW, Series 3,
Box 37, Folder - “John von Neumann”, June 8, 1954).

200Some of Wang’s movements and affiliations in this time are difficult to identify firmly and his
institutional affiliations have been largely glossed over and over-simplified in what little literature
exists that surveys his life and work. My reconstruction of his career trajectory is based on several
mini-biographies and c.v.’s that Wang circulated to different institutions and that remain in his archive
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Bell Labs that Wang finally got his hands on modern digital computing machinery

- specifically IBM System\360s - and went to work trying to design and implement

theorem-proving computer programs for the propositional and predicate calculus.

Two of the three papers in which he details his results were published in the journals

of those industry research centers: “Toward Mechanical Mathematics” was published

in the IBM Research Journal and “Proving Theorems by Pattern Recognition - II”

was published in the the Bell Systems Technical Journal. The third article, “Proving

Theorems by Pattern Recognition I” was published in the Journal of the Communi-

cations of the Association for Computing Machinery. Although Wang had set out

to forge a bridge between logic and mathematics, his work found its home primar-

ily in technical computing presses. This might not have troubled Wang, and indeed

many mathematicians requested preprints of these articles, but it did point to the fact

that Wang’s work in automated theorem-proving occupied a strange disciplinary ter-

ritory at the intersection of logic, mathematics, engineering, computing, and analytic

philosophy. This of course was nothing at all new in the 1950s - interdisciplinary and

trans-disciplinary work was becoming increasingly common during the 1950s, especially

where computers were present. However, most inter-disciplinary stories that are told

in history of science are success stories.201 While it is certainly the case that American

science took on an increasingly collaborative, large scale, and interdisciplinary char-

(though even they contain slightly different pieces of information) including Wang, Letter to David
Smith (12 January 1967) in RAC-RU-HW, Series 2, Box 8, Folder 163; Wang, Award Citation, (1955 -
1956), RAC-RU-HW, Series 2, Box 18, Folder 443; Wang to the Marian Lucius, Rockefeller University
Registrar (c.a. 1980) in RAC-RU-HW, Series 1, Box 1, Folder 2.

201The rise of interdisciplinary work as a new paradigm for scientific research in the postwar United
States is discussed, for example, in Stuart Leslie, The Cold War and American Science (New York,
NY: Columbia University Press, 1993); Peter Galison, Bruce Hevly, eds. Big Science: The Growth of
Large Scale Research (Sanford, CA: Stanford University Press, 1994). Peter Galison has emphasized
elsewhere that interdisciplinarity was not easy, especially where communication practices needed to
forged across communities with very different training and commitments. However, he also points
to the reorganization of postwar science around larger scale and less disciplinarily bounded efforts
throughout the period. See Galison, “Trading Zone: Coordinating Action and Belief” in The Science
Studies Reader, ed. Mario Biagioli (New York, NY: Routledge, 1999): 137 - 160.
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acter throughout the postwar period, not every attempt to build bridges and forge

cross disciplinary interest and collaboration was successful. Wang’s work, and perhaps

automated theorem-proving as a whole might be seen as less successful examples of

this work. This may be in large part because as a community, researchers in this field

continuously struggled to garner the interest of practicing pure mathematicians.

In 1961, on the heels of his work in automated theorem-proving, Wang returned

to Harvard University. Wang’s negotiations with then Dean Harvey Brooks between

1960 and 1961 concerning the his appointment, and the title of his appointment are

surprisingly indicative of the disciplinary terrain that Wang traversed and sought to

reorganize. Wang was offered a faculty position with the Harvard Division of Applied

Science. The Division would sponsor half of his appointment, and after his arrival,

Wang would have the opportunity to establish an affiliation with either Mathematics

or Philosophy to account for the other half.202 It was clear that Wang was enthusiastic

about having an affiliation with the Mathematics department, writing that “I should

be very happy to be a member of the mathematics faculty, if such an arrangement

would be satisfactory to the mathematics department.”203 When Brooks first offered

Wang the position, it came with a particular title: “I am authorized by Dean Bundy

to offer you officially an appointment at Harvard as Professor of Pure and Applied

Mathematics.”204

However, it became clear that without an official affiliation with the Harvard Math-

ematics Department “pure” could not be included in his title. Brooks wrote “After dis-

cussion with the President, we decided to put through your appointment as Professor
202In the meantime, the second half of his salary would be furnished by the general funds of the

Faculty of Arts and Sciences. See Letter from Harvey Brooks to Wang, 23 December 1960 (RAC-RU-
HW, ” Series 2, Box 5, Folder 97 “Brooks etc. 1960 - 1961”).

203Letter from Wang to Brooks 14 January 1961 (RAC-RU-HW, Series 2, Box 5, Folder 97 “Brooks
etc. 1960 - 1961”).

204Letter from Brooks to Wang, 23 December 1960 (RAC-RU-HW, Series 2, Box 5, Folder 97 “Brooks
etc. 1960 - 1961”), my emphasis.
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of Applied Mathematics with the question of the “Pure Mathematics” in the title left

open until it is finally settled after you are here whether your “other half” should be

in Mathematics or Philosophy.”205 The domain of “pure mathematics” as negotiated

at Harvard was reserved for the Mathematics department and Wang would have to

find a place for his divided self there if he would have that title. Brooks couched the

change as a way of keeping things open until Wang could decide “on the scene” how

his affiliation should look. Wang took offense. He truly felt that the work he was in

part “pure mathematics” in spite of its applied dimensions. He responded:

I am surprised and feel very embarrassed by the suggested change of the
originally proposed title. [...] Since, however, this has already come up, I
think I ought to be entirely candid about my own views on this matter. It is
my belief that the slightest misunderstanding or misgiving at the beginning
tends to poison relations in the long run, and my somewhat unorthodox in-
terests add complexity to matters of the kind. In all sincerity, one of the
greatest attractions of Harvard for me is the apparent willingness to en-
courage new experiments and new combinations of different fields [...]. As
a temporary solution, I am not able to see the advantage of “Applied Math-
ematics” over “Pure and Applied Mathematics”: in either case, the title will
presumably have to change if the second department turns out to be phi-
losophy. Would perhaps something like “Professor of Mathematical Logic”
evade all the difficulties and represent my own work more faithfully?206

The negotiations continued. Brooks suggested “Mathematical Logic and Applied Math-

ematics,” to which Wang counter-proposed “Pure and Applied Logic” or “Pure and

Applied Mathematical Logic,” indicating that for Wang, the descriptor “pure” grabbed

a hold of part of his work that he was hesitant to forfeit. Eventually, he agreed to the

title of “Mathematical Logic and Applied Mathematics.”

While the exchange might be disregarded as a superficial or prideful negotiation,

and pride was perhaps part of it, it also signals two very crucial elements of Wang’s
205Letter from Brooks to Wang, 11 March 1961 (RAC-RU-HW, Series 2, Box 5, Folder 97 “Brooks

etc. 1960 - 1961”), my emphasis.
206Letter from Wang to Brooks, 16 March 1961 (RAC-RU-HW, “Hao Wang Papers,” Series 2, Box

5, Folder 97 “Brooks etc. 1960 - 1961”)
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work and experience. Wang thought his work was as much pure as it was applied. It

concerned not just theory or application but instead how application could contribute

to pure mathematics. The second thing signaled by this exchange is that the words

“pure” and “applied” were not free floating labels but were rather tethered to particular

departments and institutional contexts. “Pure” didn’t designate content alone but also

profession and affiliation. Wang conceded: “I have to admit that initially the offer of

an elegant and conventional title came as a pleasant surprise and I was not clear about

the relation of the University to its various departments on deciding such a matter.”207

Wang subscribed to one particular characterization of how the computer would inter-

vene in mathematics, and how it should be studied. He didn’t advocate (as many other

automated-theorem proving practitioners did) for a discipline and associated depart-

ment for “computer science” but rather wanted to work within and around and across

existing disciplines.

Wang ultimately accepted the title “Mathematical Logic and Applied Mathemat-

ics” - which he held, unaltered, until 1967 when he left Harvard University for good.

The second half of his salary continued to be paid by the “general fund” of the Fac-

ulty of Arts and Sciences, indicating that no official secondary affiliation - with either

Philosophy or Mathematics - was ever established. When he left, Wang’s concerns

were in large part financial.208 However, Wang’s concern about departmental affilia-

tion remained a central issue for his professional decisions. After receiving a definitive

offer from the University of Pennsylvania, and what Wang termed “definite feelers”

from Columbia and Stanford, he wrote the following to Dean Brooks: “I believe there
207Letter from Wang to Brooks, 11 April 1961 (RAC-RU-HW, Series 2, Box 5, Folder 97 “Brooks

etc. 1960 - 1961”).
208After extensive correspondence about the possibility of his leaving through 1967, Wang drafted a

note called “Summary of Issues” that he sent to Dean Brooks, highlighting what he perceived as unjust
compensation relative to his colleagues and to offers he had received from other universities, especially
the University of Pennsylvania. Wang, “Summary of Issues,” December 13, 1965 (RAC-RU-HW, Series
2, Box 30, Folder 756).
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are several first-rate universities where I can get distinctly better paid positions than

my present one at Harvard. In fact, I can command such better positions in several

departments (philosophy, mathematics, computer science).”209 And when he left Har-

vard University, he chose to accept a position at the Rockefeller University in which

he would direct his own “Logic Group” that would consist of more and less perma-

nent affiliates from mathematics, philosophy, logic, and computer science (which was

emerging as a discipline in its own right throughout the 1960s). Wang’s Logic Group

experienced moments of excitement with logicians and philosophers like Saul Kripke,

Robert Solovay, Ariel Levy visiting for various terms. And at other times, Wang was

the sole member of the group. He retired in 1991, never having been affiliated with

a mathematics department (excepting the one from which he received his B.Sc. in

China), and having largely retreated from dominant conversations in logic and phi-

losophy. He invested a great deal of time in the later years of his career interviewing

mathematician and Kurt Gödel on his views about mathematics, minds, computers,

and philosophy. Wang is best known outside of automated theorem-proving for his

presentations and interpretations of Gödel’s work and philosophy.210

Throughout his career, Wang was at the same time a member of elite communities

and institutions in mathematics, philosophy, and logic and at the same time was,

often by his own design, operating outside of them. He recognized that his vision for

automated theorem-proving didn’t actually fit into mathematics, engineering, logic,

or philosophy as they existed in the late 1950s. Instead, he proposed the creation

of a new field of research that he called “inferential analysis” that would involve a

“novel combination of psychology, logic, mathematics, and technology.”211 The field
209Wang to Harvey Brooks, November 30, 1965 (RAC-RU-HW, Series 2, Box 30, Folder 756), p. 2.
210In particular see Wang, Reflections on Kurt Gödel (Cambridge, MA: The MIT Press, 1987) and

Wang, A Logic Journey: From Gödel to Philosophy (Cambridge, MA: The MIT Press, 1996).
211Wang, “Computer Theorem and Artificial Intelligence,” p. 56. He first introduced the idea in

“Toward Mechanical Mathematics” but some of the preliminary ideas can be found in his earlier piece
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would serve to institutionalize the the transformational effect Wang believed computing

could offer to mathematics and straddle boundaries between mathematics, logic, and

computing and the theories and applications within them.

Rather than focusing on solving specific problems, Wang wanted a field concerned

with a kind of meta-problem-solving - “inferential analysis” would aim at the explo-

ration and formulation of general processes of problem solving. Wang imagined infer-

ential analysis as a counter-part to the existing field of numerical analysis. Where the

latter aimed to unpack the structures and processes of numerical calculation, the for-

mer would aim to study structural properties of nonnumeric problems and to develop

methods of inference for solving them: “In contrast with pure logic, the chief emphasis

of inferential analysis is on the efficiency of algorithms, which is usually attained by

paying a great deal more attention to the detailed structures of the problems and their

solutions, to take advantage of possible systematic short cuts.”212 The field included a

theoretical dimension of exploring the structural properties of problems and solutions

but also a practical dimension of how to exploit those structures with feasible computa-

tion. It was both an application of pure logic, but had the ability to in turn contribute

novel theoretical insights to logic and mathematics by making visible new structural

and algorithmic dimensions of mathematical objects and problems. Wang taught some

courses on “inferential analysis” at Harvard University, but seldom referenced it after

the mid-1960s. Wang wanted a new field of mathematics that aimed to think about

proof through the lens of mechanization. This field never really emerged outside of

his immediate circles. Instead of a new mathematical field, a new discipline emerged -

computer science - that contained elements of “inferential analysis” in its formal study

of algorithms, but that was not focused on the work of proof. Wang never had an affil-

Wang, “A Variant to Turing’s Theory of Computing Machines” in Journal of the Association for
Computing Machinery Vol. 4, No 1 (1957): 63 - 92.

212Wang, “Proving Theorems by Pattern Recognition I,” p. 220.
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iation with a computer science department, and in fact, never really worked hands-on

with computers after the 1960s.

However, in 1983 Wang received, much to his surprise, more formal recognition

for his work in automated theorem-proving, and some recognition in mathematics.

He received the first ever “Milestone Award in Automated Theorem-Proving.” The

award was furnished by the American Mathematical Society, and was awarded at an

AMS conference that included sessions in automated theorem-proving. The goal of the

conference was to make the work of automated theorem-proving practitioners visible

to practicing mathematicians, and to cultivate collaborations and interest across those

communities. By 1982 certain significant results, like the computer-assisted proof of

the infamous Four Color Conjecture had garnered some interest in the subject. The

early 1980s also saw an effort on the part of automated theorem-proving practitioners

to solidify their field, including the creation of a dedicated journal - the Journal of

Automated Reasoning, the creation of the Association of Automated Reasoning and

the publication of several consolidating and synthesizing volumes of related articles.213

Wang’s work was widely recognized in those “disciplining” moments as inaugural and

significant, in spite of the fact that many of Wang’s disciplinary and departmental

struggles. I turn now to that work that won Wang the award in order to see what

Reformalism transpired in Wang’s implementation of Herbrand’s Theorem.
213Including J. Siekman, G. Wrightson, eds. The Automation of Reasoning: Classical Papers on

Computational Logic, Volumes I and II, (Berlin: Springer, 1983) and D. Loveland, ed. Automated
Theorem Proving: After 25 Years.
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The Herbrand Universe

A substantial amount of early-twentieth century logical inquiry was directed towards

what is called the “decision problem,” or the Entscheidungsproblem.214 It was originally

introduced in Grundzüge der Theoretischen Logik (Principles of Mathematical Logic) -

a 1928 text by German logicians David Hilbert and Wilhelm Ackermann. Hilbert and

Ackermann were building directly on the project laid out by Whitehead and Russell,

namely the “complete enumeration of all the ideas and steps in reasoning employed

in mathematics.”215 Hilbert and Ackermann also sought to completely formalize the

branches of mathematics as axiomatic systems.216 These could in turn be analyzed

relative to certain key formal properties that correlate to what kinds of problems can

(or can’t) be solved in that system and how they can (or can’t) be solved.217 One such

formal property was “decidability.”

Logicians would call a system decidable if they can design a procedure that can

take any statement from that system and, in a finite number of steps, return an answer

of “yes” or “no.” The “yes” or “no” outcomes indicate whether or not that particular

statement was “universally valid” - no matter what interpretations are assigned to the
214Accessible introductions to the decision problem can be found in Petzhold, “Das Entschei-

dungsproblem” in The Annotated Turing: A guided Tour through Alan Turing’s Historic Paper on
Computability and the Turing Machine (Indianapolis, IN: Wiley Press, 2008):199 - 322; Martin Davis,
Computability and Unsolvability (New York, NY: Dover, 1973 [1958]), esp. xv - xvii, 66 - 80, and
162 - 178; Stephen Kleene, “Computability and Decidability” in Mathematical Logic (New York, NY:
Dover, 1967): 223 - 282.

215Whitehead, Russell, Principia Mathematica, Volume 1 p. 3.
216Hilbert is perhaps the person most strongly affiliated with this goal. Hilbert was committed

to the “axiomatic” approach to mathematical foundations. In 1921, he laid out at program for the
future of mathematics, usually called “Hilbert’s Program” that had two parts: the program “calls for a
formalization of all of mathematics in axiomatic form, together with a proof that this axiomatization
of mathematics is consistent.” See Richard Zach, “Hilbert’s Program” in the Stanford Encyclopedia of
Philosophy, 2003 (http://plato.stanford.edu/archives/spr2009/entries/hilbert-program/), p. 1. For a
historical exploration of Hilbert’s Program see Grattan-Guinness, The Search for Mathematical Roots,
1870 - 1940 (Princeton, NJ: Princeton University Press, 2000): 470 - 474.

217Among them, “consistency” - an axiomatic system was consistent if it contained no contradictions
(i.e. no statement and its negation could both be true); “completeness” - an axiomatic system was
complete if all statements that were true within it could also be proved within it.
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constituent elements of the statement, it will be true.218 These “decision procedures”

were abstract algorithms that would verify if any statement from an axiomatic system

was a tautology or not. Some decision procedures were found quite easily by logicians

in the 1920s. Others proved more difficult. Hilbert and Ackermann presented a decision

procedure for the propositional calculus in their 1928 treatise and they also posed a

challenge: to find a decision procedure for the predicate calculus:

While the decision problem was easy to solve in the sentential [proposi-
tional] calculus [...] in the predicate calculus it presents a very difficult
problem which as a whole remains unsolved. [...] Because of the central
position of the problem, however, even the attempts to give a decision
procedure at least for as large a class of formulas as possible are of great
interest.219

Hilbert and Ackermann suggested some directions a solution might take, but ultimately,

the decision problem for the predicate calculus remained unsolved until 1936.

And in fact, the task laid out by Hilbert and Ackermann turned out to be impossible.

No decision procedure can be constructed that would always correctly return “yes” or

“no” after a finite number of steps when given any statement that could be constructed

in the predicate calculus. Any algorithm that could be constructed would fail (i.e.

it would never stop, never return either “yes” or “no”) when run on certain predicate

statements. The undecidability of the predicate calculus was proved independently by

two logicians in 1936 - Alan Turing and Alonzo Church.220

218See David Hilbert, William Ackermann, Grundzüge Der Theoretischen Logik (Berlin: Springer
Verlan, 1928), pp. 72 - 81. The decision problem can be formulated for the question of “validity,”
“satisfiability,” “provability,” and “refutability” each requiring an algorithm to answer a different but
equivalent “yes” or “no” question (equivalent meaning that for any statement the answer to all questions
will either be “yes” or “no.”) The formulations pick out different properties of axiomatic systems, but
they are all equivalent. Hilbert and Ackermann give both an exposition of both the decision problem
for validity and for satisfiability.

219Hilbert, Ackermann, Principles of Mathematical Logic, trans. L. Hammond, G. Keckie, R. Stein-
hardt (New York, NY: Chelsea Publishing Company, 1950 [1928]), p. 117.

220Alan Turing, “On Computable Numbers with an Application to the Entscheidungsproblem” in
Proceedings of the London Mathematical Society, Vol. 42 (1937) [prepared, received in 1936]: 230 -
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The negative result of the decision problem for predicate calculus cast a shadow on

Hilbert’s project (and, of course, that of Whitehead and Russell before him). More

damaging were Kurt Gödel’s “incompleteness” results from 1931 in which he demon-

strates that sufficiently complex axiomatic systems must either be inconsistent or in-

complete. Meaning, either they will contain contradictions (i.e. a statement and its

negation will both be provable within it) or there will be statements that are true

within the system that cannot be proved within it. The goal of reducing mathemat-

ics to formal logical structures appeared increasingly infeasible as the limitations and

constraints of those formal structures were revealed.221 Mathematics turned out to be

more complicated than many mathematical logicians had hoped - not all of its truths

lay dormant in axioms waiting for rote mechanical deduction to reveal them by an

always terminating, finite number of iterative steps.

These negative results, however, did not empty mathematical logic of its interest

and relevance. Although it appeared that no logical system would ever be able to grab

a hold of all of mathematics, many interesting questions remained and new questions

emerged. If not all axiomatic systems are decidable, which ones are and which ones

aren’t? What relationships obtain between those that are and those that aren’t? What

other properties might be formally correlated with decidability and undecidability?

Herbrand’s Theorem, upon which Wang’s Program P was based, was most relevant

with regards to this kind of question.

Jaques Herbrand was a French mathematician born 1908. He presented the the-

orem that bears his name is his PhD dissertation, “Recherches sur la Théorie de la

Démonstration” one year before his premature death in a mountaineering accident.

265; Alonzo Church, “An unsolvable problem of elemental number theory” in American Journal of
Mathematics, Vol. 58 (1936): pp. 345 - 363; Church, “A Note on the Entscheidungsproblem,” in
Journal of Symbolic Logic, Vol. 1 (1936): 40 - 41.

221See Gödel, “Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Sys-
teme, I,” in Monatschefte für Mathematik und Physik, Vol. 38 (1931): 173 - 198.
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He received his degree from the Université de Paris and worked under the advise-

ment of French Logician Ernest Vissiot. Herbrand was also inspired and motivated by

Whitehead and Russell’s approach to reducing mathematics to logic and he was fully

committed to Hilbert’s Program of full and finitist axiomatizations of mathematics.222

Herbrand’s Theorem established that a particular relationship obtains between the

propositional calculus and the predicate calculus. The propositional calculus is the

simpler of the two, consisting of variables x, y, z, ... and the logical operators “AND”

(^), “OR” (_), “IMPLIES” (!) “NOT” (⇠), with “EQUIVALENCE” (⌘). For exam-

ple, (x _ y) ! z (read as “ ‘x or y’ implies z), x ! (x ^ y), and z _ (x ^ (y ! z)) are

all propositions in propositional logic. The predicate calculus is more complicated. In

addition to variables and the basic logical operators, it includes what are called “quan-

tifiers” - “FOR ALL” (8) and “THERE EXISTS” (9) which enable the construction

of more complicated propositions. For example, 8x9y : (x !⇠ y) (read as “for all x,

there exists some y such that x implies not-y”), 9a, y : (y ^ x) !⇠ z, and 8x : x ! y

are all statements in the predicate calculus.

Another crucial difference between the predicate calculus and the propositional

calculus concerns the kinds of values that can be assigned to the variables they contain.

The propositional calculus contains only what are called “logical variables” - they can

only be assigned the values of True or False. A logical proposition is a “theorem” if it is

a tautology: if it is rendered “true” by any assignment of True or False to its variables.

For example x_ ⇠ x is a tautology because either x or its negation is always true.

Conversely, x^ ⇠ x is never true because x and its negation can never both be true.

The predicate calculus, on the other hand, also contains non-logical variables that
222For a discussion of Herbrand’s training and influences see Warren Goldfarb, “Introduction” in

Jacques Herbrand, Logical Writings, ed. Warren Goldfarb (Dortrecht, Holland: Reidel Publishing,
1971): 1 - 20 and Claude Chevalley, Albert Lautman, “Biographical Note on Jacques Herbrand” in
Jacques Herbrand, Logical Writings: 21 - 23.
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can be assigned values from different branches of mathematics. This is what made the

predicate calculus a candidate foundation for mathematics. You could have variables

that represent the integers, for example or that represent functions, and so on. State-

ments in the predicate calculus are true if the assignment of values those non-logical

variables renders the statement true. So for example, if x, y, and z represent integers

I can construct a predicate statement like 8x9y : (x + y) > 10.This statement is a

theorem. No matter what integer value I assign to x, I can add some number to it to

get a number greater than 10. That predicate calculus includes non-logical variables

is part of what makes it more complicated and more powerful than the propositional

calculus.

Herbrand’s goal was to find a way to formulate the predicate calculus in terms

of the propositional calculus - the more complicated domain in terms of the simpler

one. In particular, he wanted to show how theorems in the predicate calculus might

be proved using the propositional calculus. Any successes in reducing the predicate

calculus to formulations in the propositional calculus would be surprising given that the

propositional calculus is decidable and the predicate calculus is not - solving problems

in the predicate calculus is harder than solving problems in the propositional calculus.

But Herbrand’s Theorem offered some success in this regard: it established a particular

relationship between the two branches of logic.

Herbrand’s Theorem provides a method for proving theorems in the predicate calcu-

lus using the propositional calculus. It states that for any statement P in the predicate

calculus, it is possible to construct a corresponding infinite series of statements in the

propositional calculus, S1, S2, S3, . . .. The construction of this corresponding series is

somethings called the “elimination of quantifiers” since P can contain the quantifiers

“for all” and “there exists” where as no S
n

in the propositional calculus can. This is also

a process of “reduction” since it is reducing an artifact from a more complicated domain

127



Stephanie Dick After Math

to an artifact in a simpler one. Herbrand’s Theorem goes on to show that S1, S2, S3, . . .

will be such that P is a theorem if, and only if, there exists a number N such that

S1_S2_ · · ·_S
N

is a tautology, where _ is the “OR” operator. Such a series is called a

“disjunctive series” because the OR operator is also called the “disjunctive” operator.

That is to say if for some N , the disjunction S1,_S2_ · · ·_S
N

is true no matter what

values are assigned to the variables contained in each S
i

, then P is a theorem. The

theorem presented the possibility of proving theorems in one logic using the elements

of another simpler one.

Of course, you can never get something for nothing. It was not possible to com-

pletely get around the fact that predicate calculus is not decidable - that it is intrinsi-

cally more complicated than the propositional calculus. Herbrand’s Theorem suggested

an “in principle” method for searching for a proof of P . One way would be to test if

S1_S2_ · · ·_S
N

is a tautology for N = 1, 2, 3 . . .. If P is a theorem in the predicate

calculus, then eventually this iterative search will produce a tautology and this would

suffice as a proof of P . This may sound easy enough, but even for fairly simple pred-

icate statements, N is usually an astronomically large number. But worse, if P was

not a theorem, this process would never stop - you would just keep on looking for a

tautology forever that you were never going to find.

So Herbrand’s Theorem offered an interesting insight to the relationship between

predicate calculus and propositional calculus, between quantified statements and quantifier-

free statements. This relationship became even more interesting in 1936 when Turing

and Church proved that the predicate calculus was not decidable: it also offered a rela-

tionship between a decidable and an undecidable domain of logic. But the theorem did

not offer a practical procedure for actually proving theorems from predicate calculus.

Nor was it intended to. Virtually all decision procedures were impossible to put into

practice. Even in cases where the procedure would work, there were too many cases for
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a person to execute. These and similar procedures were often described in the language

of machines and mechanical operations, but these too were only imagined. They were

“abstract” machines, “notional” machines that could be described but not actualized. In

his proof of the undecidability of the predicate calculus, Turing crafted one of the most

famous such “notional machines” - the Universal Turing Machine - to demonstrate the

existence of statements in that logic for which any finite algorithm would fail to return

“yes” or “no,” “universally valid” or “not universally valid.” And as Charles Petzhold

put it, “Turing’s imaginary computers have unlimited storage and all the time in the

world, so Turing can journey where the machine-bound programmers fear to tread.”223

Imaginary and abstract machines were the bread and butter of mathematical logic in

the 1920s and 30s but these were about to meet their materialized match.224

As described in the previous sections, Wang was a student of this logical tradition.

He was as familiar as one can be with the work of Hilbert, Herbrand, and the many

others working to reduce mathematics to logic and to study the formal properties of

axiomatic systems. And Wang lamented the fact that this work was not useful for

actually proving theorems on the ground and he lamented the fact that practicing

mathematicians were therefore not particularly interested in logic and its results. He

thought that actual computing machines of the kind that were developed in the 1940s

created new possibilities for setting the inert abstract procedures of logic in action.

Computers would scarcely be able to use Herbrand’s method any more than a

person could. Especially in the early decades of their development, computer memory

would be insufficient to handle the trillions of cases that could be required to find the

desired tautology that would prove some P to be a theorem. And when P was not
223Petzhold, The Annotated Turing, p. 220.
224Hao Wang himself later compiled two appendices in which he describes several of the most signif-

icant such “abstract machines” See Wang, “Appendix B: Algorithms and Machines” and “Appendix C:
Abstract Machines” in Popular Lectures on Mathematical Logic (New York, NY: Litton Educational
Publishing, 1981): 198 - 270.
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a theorem, the computer was as lost as a person - it would go on checking increasing

values of N until it ran completely out of resources or until it was stopped by a human

operator. If Wang wanted to use Herbrand’s Theorem to design a running program

to prove theorems from Principia Mathematica, he had to transform the method into

something that a computer could handle.

Reformalism I: Ruling the Propositional Calculus

Wang published the results of his first attempt to design and implement a theorem-

proving program in “Toward Mechanical Mathematics.” Here he first published his

vision of “inferential analysis” and some of his optimistic views for the role that com-

puters might play in future mathematics. He also gave a description of his first theorem-

proving program, the “System P” that proved theorems from the propositional calculus

- that more simple branch of logic. Before moving on to look at Wang’s implementation

of Herbrand’s Theorem in the Program P (the focus of the next section), it is worth

pausing for a brief comparison with the Logic Theory Machine. The latter program

was also capable only of tackling propositional logical theorems from the first three

chapters of Principia. In the previous chapter, I explored how Newell and Shaw de-

signed a new programming language for the JOHNNIAC computers - the Information

Processing Language - consisting for the most part in “list processing operations” for

creating, manipulating, and analyzing linked list data structures. They translated the

“rules of inference” laid out in Principia Mathematica - as interpreted by Hilbert and

Ackermann - into forty-four variations of eight basic list-processing operations.225 I

argued that this was a reformalism of Principia, introducing new formal and material
225Both Wang and Newell-Simon drew from the rules of inference as laid out by Hilbert and Acker-

mann rather than as presented in Principia itself. See Hilbert, Ackermann, Principles of Mathematical
Logic, esp. §§ 3 -9 in which they “establish the following rules for the transformation of logical expres-
sions”.
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manifestations of its logic and new practices and processes for proving theorems.

Wang also enacted a reformalism of Principia in developing and implementing his

System P. However, his translation looked quite different. His program was based on an

insight from the work of Herbrand and another German logician Gerhard Gentzen: any

statement in the predicate calculus can be broken down into its simplest constituent

parts such that if the simpler parts are theorems, then the original statement will be as

well.226 Using this insight, Wang created a set of eleven rules for pulling a given logical

proposition apart into sets of simpler and simpler formulae (ones that had fewer and

fewer logical connectives) until all that was left is set of atomic formulae that can’t be

further taken apart.227 Once the proposition had been so broken down, the computer

needed only to check if a certain property held among those atomic formulae and if

so, the original statement was a theorem.228 He provides a formal statement of those

rules, but he also described how those rules would be executed step by step by the

IBM 701 computer.
226Wang cites the result in “Towards Mechanical Mathematics.” p. 4. The result is originally

presented in Gentzen, “Untersuchungen über das Logische Schliessen,” in Mathematik Zeitschrift, Vol.
39 (1934-1935) 176 - 210, 405 - 431.

227The rules were used to iteratively “pull apart” any statement from the propositional calculus by
introducing and removing logical operators such that after each iteration, the proposition would be
left with one fewer connective, until only so-called atomic formulae were left. Atomic formulae here
are the basic unit out of which complicated logical propositions are constructed. They are indivisible,
in that if you removed any piece of them, they would cease to be sensical (or well-formed) propositions
at all. Think of them as representing propositions like P = “the sky is blue” or Q = “it is raining.”
There are rules for building more complex formulas out of these atomic ones like P IMPLES (NOT-Q)
here would mean “The sky is blue” implies that “it is not raining.” Of course, these natural language
sentences are just interpretations of the formal system that can be studied independent of any such
semantic content.

228There is one fundamental rule that Wang called P1 that states that “if l, x are strings of atomic
formulae, then l ! x is a theorem if some atomic formula occurs on both sides of the arrow.” The
arrow in this statement is not the typical “IMPLES” logical arrow, but is rather called a “sequent
arrow.” It is part of the formalization that Wang gives to the propositional calculus in order to
design the System P that is amenable to being “pulled apart” in this way. In his formulation, every
statement that can be input to the program will contain a sequent arrow. The rules for “pulling
apart” the statement act on both sides of the arrow such that, when they can’t be pulled apart any
more, if the same atomic formula appears on both sides of that arrow, then the original statement is a
theorem. Those interested in the formal specification of this system and the eleven rules can consult
Wang, “Toward Mechanical Mathematics” pp. 4 - 6. The implementation is given on pp. 6 - 7.
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In Wang’s implementation, every logical proposition is input to the computer as a

concatenation of seventy-two symbols (the number of columns on an IBM 704 punched

card), each to be stored in its own address in memory. He implemented each of his

eleven rules in terms of how it would operate on the seventy two memory addresses

for a given proposition in question. For example, the very beginning of any run of the

program would proceed as follows:

The program enables the machine to proceed as follows. Copy the card
into the reserved core storage COL1 to COL72 (72 addresses in all) in the
standard BCD notation, i.e., a conventional way of representing symbols
by numbers, one symbol in each address. Append the number 1 at the last
address, viz., COL 72. Search for the arrow sign. If it does not occur, then
the line is regarded as ordinary prose, printed out without comment, and
the machine begins to study the next card. In particular, the machine stops
if the card is blank. If the arrow sign occurs, then the machine marks all
symbols before the arrow sign as negative and proceeds to find the earliest
logical connective.229

This was a memory-demanding effort (since each new, simplified proposition generated

by the rules would also require seventy-two available memory address), but the IBM 704

was still able to prove all two-hundred-twenty theorems from the first three chapters

of Principia in three minutes. Wang’s rules and representations for Principia-by-

computer introduced yet different new processes and materials than those developed

by Newell, Shaw, and Simon. This was a different reformalism.

Also interesting is that, like Newell, Shaw, and Simon, Wang made use of a tree

diagram to represent what proofs looked like in the System P. It is very common,

in fact, throughout computer science to represent “searches” of different kinds with a

tree structure. However, what the nodes and branches of those trees represent can be

very different and can have built into them different kinds of processes, assumptions,

motivations. Here is one case where an apparent similarity opens in to high level
229Wang, “Toward Mechanical Mathematics,” p. 6.
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Figure 2.1: Tree Diagram of Program P Proof. Wang, “Toward Mechanical Mathemat-
ics,” p. 6.

and low level differences in program design and implementation. Recall that Newell,

Shaw, and Simon used a tree-structure to represent the “working backwards” and “sub

problem chaining” mechanisms that they believed simulated human heuristics in logical

theorem proving. As shown in Figure 2.1, Wang too proposed that with his System P,

“each proof is a tree structure.”

But in his tree, the “branches” represent different processes and different relation-

ships than did the “branches” of Newell, Shaw, and Simon’s trees. Each branch in

Newell, Shaw, and Simon’s trees represented the process of “subproblem generation”

by which, the computer would generate a set of subproblems (“child nodes”) for some

logical proposition (the “parent node”) that, if true, would lead that proposition in one

permissible inference step. The branches are supposed to represent a human practice,

a human search heuristic, as performed by a computer. In Wang’s tree, the child nodes

are produced by the iterative application of rules for breaking apart a given logical

proposition into increasingly simple formulas.

The two trees are also “growing” towards different outcomes. Both trees represent

a trajectory towards “simplification” - but the way in which is proposition is being
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simplified is different in each case. The branches in Wang’s trees approach “atomic for-

mulae” - the most basic constituent elements of a given proposition. Moreover, Wang’s

branches guarantee this outcome: every well formed proposition can broken down into

atomic formulae in the way that Wang’s program proceeds. His trees represent a guar-

anteed (though sometimes computationally costly) path to a proof. However, Wang’s

branches do not represent a human practice. People would only be able to do this

“pulling apart” in simple cases, and would be unlikely to go about actually proving

theorems this way. Newell, Shaw, and Simon’s trees, conversely, approach the axioms

of propositional logic - the goal is to trace a path from a desired theorem to the axioms

which, if possible, would provide a proof. However, there is no guarantee that the ax-

ioms can be produced in this way. Newell, Shaw, and Simon did not mind not having a

guarantee because practicing human mathematicians seldom do. The two “proof trees”

represent different processes and goals and speak to the two quite different reformalisms

that Newell-Shaw-Simon and Wang enacted on Principia.

After describing the System P in “Toward Mechanical Mathematics,” Wang goes on

to speculate how a computer might be used to take on the more complicated theorems

from Principia - those from the predicate calculus presented in later chapters. Here

he leaves behind the rules for breaking apart statements from the propositional calcu-

lus (which would not serve to prove theorems in the undecidable predicate calculus in

the same way) and imagines how one might go about using Herbrand’s Theorem. He

imagined four “steps” that would suffice to prove a given theorem from the predicate

calculus.230 The four steps were a kind of naive or preliminary implementation of the

theorem. Steps one and two served to simplify the statement by eliminating the quan-

tifiers and converting it into a particular form and step three related to the production

of correlating statements from the propositional calculus. And Step four sounded a lot
230These steps are elaborated in Wang, “Toward Mechanical Mathematics,” pp. 13 - 14.
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like the core of Herbrand’s Theorem:

Step IV: Make all possible substitutions on these [propositions] obtaining
results S1, S2, S3, et cetera. The original [statement] is a theorem if and
only if there is a truth-functional tautology among S1, S1_S2, S1_S2_S3,
et cetera.231

However, as I’ve said a few times in the chapter so far - it wouldn’t actually be possible

for the computer to “make all possible substitutions” in this way because it would often

include even more cases than computers could handle, especially in the 1950s. Wang

was imagining the possibility of using Herbrand’s theorem, but had yet to devise a

way to do so, saying “A program for [this method] has no yet been written. It seems

clear that certain auxiliary procedures will be useful in reducing the running time and

extending the range of application.”232

Later, in the summer of 1958, Wang worked out some “auxiliary procedures” that

enabled him to implement a program capable of proving all of the theorems in predicate

logic from Principia. The program was still clearly limited and still faced some of the

unavoidable difficulties contained in Herbrand’s Theorem - but it was powerful enough

to deal with the theorems in Principia and make a real case for the implementation of

abstract logical procedures. Those “auxiliary methods” are the reformalism that I take

to be most significant in his work. While proving already known theorems - those from

Principia - the Program P also revealed a new property of those propositions pointing

to the epistemological significance of implementation: first, the “proofs” produced by

the Program P were a new kind of proof that a person could not make. Moreover,

Wang identified new knowledge about predicate logic in the behavior of the Program

P. New things became known and in new ways in the design, implementation, and

execution of the Program P.
231Wang, “Toward Mechanical Mathematics,” p. 14.
232Wang, “Towards Mechanical Mathematics,” p. 15
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Reformalism II: Finding Patterns in the Predicate Cal-

culus

Recall that Herbrand’s Theorem establishes a connection between the propositional and

the predicate calculus: for every statement P from the predicate calculus it is possible to

construct a corresponding infinite series of statements S1, S2, S3, . . . from propositional

logic. If P is a theorem, then for some number N the disjunctive series S1_S2_· · ·_SN

will be a tautology. However, recall also that the catch with Herbrand’s Theorem is

that, one [the imaginary machine or person implementing the hypothetical method]

can never tell when P is not a theorem. The hypothetical agent checking all these

disjunctive series could never know whether or not by adding one more S
i

he/she/it

would discover a tautology or whether no added S
i

will ever produce a tautology.

Herbrand’s Theorem could not be implemented “as is.”233

Wang decided instead to see if there was a way to use the computer to check for

counterexamples. His question was this: were there structural properties of S1, S2, . . .

such that it would be impossible for S1, S1 _ S2, . . . ever to be a tautology? If such
233Wang did in fact consider another possibility, which he also rejected because it was unfeasible

for actual computation. For some kinds of propositions in the predicate calculus, there was a known
method for calculating N . With that number in hand, the computer would know exactly how many
statements from the propositional calculus to construct, and then it could check if their disjunction
was a tautology or not. The way to compute N , however, was “hardly feasible even on machines” and
so Wang rejected this other possibility as well. See Wang, “Proving Theorems by Pattern Recognition,”
p. 222. It is no longer particularly common in computer science publications for authors to describe
their “en route” failures - the ideas that they had and discarded for reasons of elegance, efficiency, or
feasibility. However, Wang and also Newell, Shaw, and Simon included many such discarded options
even in their published works. In fact, the presentation of possibilities and steps in development that
Wang presents in his published works resembles quite closely the way those developments appear
to have taken place in his unpublished notebooks. Not all of his notebooks survive from this time,
but those that do show similar possibilities being imagined and discarded en route to his actual
implementation. It is interesting that some of the behind the scenes processes are present in early
published works, and it offers a window to historians and to other practitioners of the time, into
the kind of thinking and problem solving that went into early program implementation. Wang’s
notes on this implementation can be found especially in RAC-RU-HW, Series 3, Box 97, Folder 1369-
[Notebook, Bell Telephone Laboratories, 1959]; Series 3, Box 37a, Folder - [Unlabeled Notes, 1957 -
1958].
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a structural property existed it could be used to disprove statements that were not

theorems - if that property was present, no tautology would be possible and therefore

the statement couldn’t be true. And the structural property of S1, S2, . . . that Wang

used was given by the method for constructing them, which was part of Herbrand’s

Theorem. Wang summarized the core to his approach to implementation as follows:

The writer now feels that a more basic step is to eliminate in advance use-
less terms among S1, S2, etc. or alternative, instead of actually constructing
and testing the disjunctions, examine in advance, for each given problem,
all the possible course along which counterexamples to S1, S1_S2, etc. may
be continued. Using the second alternative, we obtain at the same time a
disproving procedure for most cases. The detailed techniques for achieving
these goals are here called the method of proving theorems (and disprov-
ing theorems) by pattern recognition, or, more specifically, the method of
sequential tables.234

Wang wanted to mobilize computers for the task of recognizing structural possibilities

for the statements in propositional logic that corresponded to a given statement in

predicate calculus, in order to see whether it was possible for no tautology to exist.

This method - of looking for the possibility or impossibility of counterexamples as

a way to avoid the impossible task of traversing an infinite series not knowing when

to stop - is used often in mathematics. It is a tool for avoiding infinity. However, the

patterns that Wang sent the computer looking for and the methods for recognizing

them were beyond the capacity of unaided human use. These were new patterns and

new forms of recognition than those involved in mathematical practice prior to the

introduction of computers. Worth noting too is that there was a certain element of

“brute force” to this implementation. The computer was going to be tasked with

checking many cases. However, that does not mean that this was either an obvious or

a trivial use of computers, e.g. to simply apply the rules of inference to a set of axioms
234Wang, “Proving Theorems by Pattern Recognition,” p. 223.
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in order to deduce all possible consequences. The program in fact constituted a “short

cut” or “trick” for managing what would otherwise be an impossibly infinite set of cases.

In fact, Wang made a note to himself in the margins of his notebooks that it would

be “Important to find some examples difficult by brute force yet simple by pattern

recognition” to demonstrate the comparative merit of his implementation.235 This was

an “intelligent” use of computers, but one that capitalized on the speed and efficiency

of computing machinery. This was a method of “buying originality with plodding.”

The method of sequential tables, or “pattern recognition” that Wang devised for his

computer program was a method of looking for ways that a disjunctive series could fail

to be a tautology, rather than looking for a tautology. Wang went looking in Herbrand’s

Theorem for structures or patterns that the computer could exploit. Wang’s attention

was turned to different properties of Herbrand’s Theorem. No one was looking for

these patterns before, perhaps because there was no reason to. The patterns became

relevant for Wang because he was rethinking Herbrand’s Theorem with the computer

in mind. He was seeking an actionable implementation and this diverted his gaze from

the kind of question and structure upon which proof theorists generally turned their

gaze.

The method he devised works like this: Herbrand’s Theorem gives a method for

producing a series of statements S1, S2, . . . in the propositional calculus that correspond

to a given statement, P in the more complicated predicate calculus. At the most basic

level, those propositional statements are constructed as follows: first, P is simplified

into a standard form, and the statements S
i

are produced by substituting all possible

values for the variables in P into the simplified form.236 The reason the series of S
i

is
235RAC-RU-HW, Series 3, Box 97, Folder 1369- [Notebook, Bell Telephone Laboratories, 1959], p.

148.
236The process of simplification uses known methods for eliminating quantifiers and standardizing

logical operators, and so on.
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usually infinite is because the variables of P usually have an infinite range of possible

values (like the integers, for example).

Each disjunction S1_· · ·_SN

may provide a “certificate” that the original statement

was a theorem - if the disjunction is a tautology, then P is a theorem - that is the heart

of Herbrand’s theorem. Wang realized that since the statements S
i

are all obtained

in the same way - namely by assigning values to variables in P , there are structural

similarities between them. Crucially, sometimes multiple statements S
i

will contain

the same variables in such a way that guarantees no tautology will be found.

The method of sequential tables attempts to find a pattern in the S
i

that guarantees

there is a truth assignment to the variables in the S
i

that simultaneously falsifies all of

them. Due to the structural similarity in the statements (and that they are produced

out of a statement in the predicate calculus that has finite length), Wang shows that

there are only a finite number of “patterns” in the variable assignment that could falsify

each S
i

. And since the statements share variables, applying one pattern that falsifies

statement S
i

may make it impossible to apply another pattern to falsify S
j

because

some of the variables in S
j

have already been assigned a truth value.

This “pattern recognition” method either demonstrates that no pattern can falsify

all the S
i

simultaneously and therefore there must be a tautology; or, it finds a pattern

that could be used to construct a variable assignment that simultaneously falsifies all

the statements S1, S2, etc. and there must be no tautology. Because there are only a

finite number of patterns at play, this method will also terminate for any statement in

the predicate calculus.

Although the method would always terminate, it would still usually take an enor-

mous number of steps. For very simple examples it would be possible for a person to

check these patterns and value assignments, but the size of the table (each of whose

rows is a particular variable assignment) grows exponentially with the appearance
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of variables in S
i

. These patterns weren’t ones that people could recognize and the

method of recognizing them was beyond reach of unaided human combinatorial abil-

ity: “the method of sequential tables, seems to be a new feature that goes beyond the

general method of pattern cognition.”237 These, I claim, introduced new meanings to

the words “pattern” and “recognition” - meanings that were not predicated on human

visual perception or with inscriptions on the page. These should perhaps be called

“algorithmic patterns” since human access to them is indirect, once removed - peo-

ple could survey the operations that produced and analyzed the patters, but not the

patterns themselves.

Nonetheless, or perhaps even because access to these patterns had to be primarily in-

direct, Wang elected to describe program function on sufficiently simple examples that

the steps of the method could be surveyed by a human reader. Even these examples

left out some information, but they were meant to be illustrative rather than compre-

hensive. His first example is the following: Example (1): (9x)(y)(z)[(Gyy ^Gxx) =)

(Gzx ^Gzz)].238 In this formulation, G is what is called a “predicate function.” Each

G takes some variables (here, G is a binary function taking only 2), and it tells us

whether or not a given relationship holds between them. A possible G could be, for

example, Gab = both a and b are even or Gab = a is the sum of b and its square.

Each instance of G can have a value of true or false depending on whether or not the

relationship captured by the specific predicate function holds between a given pair of

variables (that can be assigned domains of numbers). The predicate calculus is set up

in such a way that practitioners need not give a concrete interpretation of G in order

to study the formal relationships that interest them. That is to say that if a statement
237Wang, “Proving Theorems by Pattern Recognition,” p. 223.
238Wang, “Proving Theorems by Pattern Recognition,” p. 222. Wang uses the symbol & rather than

^ for the logical operation “AND” and the symbol � rather than =) for “IMPLIES” but I have
altered the symbols to remain consist with my exposition elsewhere in the chapter. He intends the
same logical relations by these symbols.
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is a theorem, it will hold for all possible well formed definitions of G.239 The example

statement can be read as follows: “There exists a variable x such that, for all variables

y and z,240 if a given binary relationship obtains between y and itself, and that re-

lationship holds between x and itself, then it follows that that relationship must also

hold between some variable z and x and z and itself. It turns out that this statement

is a non-theorem, and Wang’s method should therefore produce a counterexample.

Herbrand’s theorem constructs an infinite series of statements from the proposi-

tional logic S1, S2, . . . such that (1) is a theorem if, and only if, there is a number N

such that the disjunction S1 _ S2 _ · · · _ S
N

is a tautology. Each predicate function G

has a value of either true or false depending on the value assigned to its arguments.

For a fixed set of arguments, the value of G is a variable in the propositional calculus.

The variables that appear in S
i

are exactly these. So in the example case, each S
i

is

produced by assigning a certain value to x, y, and z here treated as integers. For Ex-

ample (1), the first four propositional statements constructed according to Herbrand’s

theorem are:

S1 = (x, y, z) = (1, 2, 3) : (G22 ^G11) =) (G31 ^G33)

S2 = (x, y, z) = (2, 4, 5) : (G44 ^G22) =) (G52 ^G55)

S3 = (x, y, z) = (3, 6, 7) : (G33 ^G66) =) (G73 ^G77)

S4 = (x, y, z) = (4, 8, 9) : (G44 ^G88) =) (G94 ^G99)

· · · 241

These are the first four statements generated by Herbrand’s theorem. If these, or
239These predicates can also describe relations and take variables from nonnumeric branches of

mathematics, for example if a and b are sets, rather than numbers Gab could mean that a and b

contain no shared elements. The freedom of G is born out of the desire to enable logicians to study
the formal structure of mathematics independent of its content. I will talk about the variables of G
as being the integers.

240In later formulations of logical symbolism, the 8 symbol is used to denote universal quantification,
or “for all.” However, in Principia and in Hilbert-Ackermann, universal quantification is denoted
simply by stand-alone parentheses rather than an explicit symbol.

241Wang, “Proving Theorems by Pattern Recognition I,” p. 222.
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any other prefix can be shown to constitute a disjunctive tautology, then (1) is a

theorem. If (1) is not a theorem, then such a disjunctive tautology will be impossible

among all prefixes of S
i

. Rather than trying to find disjunctions in the statements

S1, S2, . . ., Wang’s method attempts to prove that no possible truth assignments to the

propositional variables can make every S
i

false. Intuitively, what Wang’s method relies

on is the possibility of fixing the values of the propositional variables (e.g. G
xx

, G
yy

,

G
zx

, G
zz

) so that if a disjunctive tautology is impossible, this will be forced in to view

in a finite number of steps.

It turns out that (1) is not a theorem, and the program reveals it as such in the

following way. Recall that each G can have one of two values - true or false - depending

on whether some relation holds between it’s two input variables upon a given value

assignment. For the statement (1) each S
i

contains four instances of G: Gxx, Gyy,

Gzx, and Gzz can have either the value of true or false. A comprehensive truth table

for S
i

would therefore have 24 = 16 rows . However, the =) “implies” logical relation

is only false if the left hand side is true and the right hand side is false. In each

expression S
i

the left hand side will be true only when Gxx and Gyy are true. The

right hand side will be false if either or both of Gzx and Gzz are false.

So the subset of the truth table for which (Gyy ^Gxx) =) (Gzx ^Gzz) is false

consists of only three rows:

Gxx Gyy Gzx Gzz

t t f t

t t t f

t t f f

The program’s first substantial operation is to create this kind of truth table, enu-

merating the possible assignments of true and false to every appearance of G in an
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expression that render the expression as a whole false. Each row of the table provides

one “pattern” by which the statements S
i

may be made false. If it is possible to choose

one row of the table to falsify each of the statements S
i

such that the chosen rows do

not contradict each other (i.e., by requiring that some variable be both true and false),

then the disjunction of any prefix will not be a tautology because this constitutes a

falsifying assignment. Conversely, if it is not possible to choose rows that falsify each

of the S
i

, then there must be a tautology and the original statement is a theorem.

In this example, S1 = (x, y, z) = (1, 2, 3) : (G22 ^G11) =) (G31 ^G33). According

to the second row of the table, we can make S1 false by making G11 true, G22 true, G31

true, and G33 false. However, with this assignment of truth values, we force S3 to be

true because there, G33 appears on the right hand side of the equation, rather than the

left: S3 = (x, y, z) = (3, 6, 7) : (G33 ^ G66) =) (G73 ^ G77). Indeed, in this example

every value of z will eventually be assigned to a variable on the left hand side of some

S
i

rendering that statement true. As such, the second row of the above table is not a

candidate for falsifying all S
i

in this example. The same holds for the last row of the

truth table in which G
zz

is also falsified.

In this way, the program checks each way of making S
j

false to see if this requires

that another S
k

be true, according to the construction of each S
i

by Herbrand’s theo-

rem. Wang shows that, as it turns out, for all statements in Principia, these patterns

can be detected mechanically. As will be discussed in the next section, this was a

surprising result yielded by working with the Program P. This illustrative example

obscures the complexity of most such problems. In general, there may be more than

one predicate and each predicate may have any parity (unary, binary, etc). As a conse-

quence, there will typically be many more patterns of possible falsification (false rows

in the truth table).

In Example (1), the first row in which Gxx is true, Gyy is true, Gzx is false, and
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Gzz is true is the only candidate for failure. In the case of S1 from this example, this

model of failure would make G11 true, G22 true, G31 false, and G33 true. Crucially,

the false term G31 never appears on the left hand side of any S
i

because its arguments

are not equal and therefore it has the wrong form. Moreover, the S
i

constructed by

Herbrand’s theorem will never assign the same value to x and z, so using row 1 of the

table will never force a false variable to appear on the left.

Here I have not elaborated the discrete operations that the program actually follows

(indeed, Wang gives a more in depth but still incomplete survey of the operations for

two equally simple examples that occupy some 15 pages)242 but I have walked along

the kind of steps and case checks that the program performs. These steps can be

mechanized for the type of statements appearing in Principia.

First the program constructs a table, each row of which is a possible way that G

(and any other predicates) could be made false. Wang shows that when the statement

has a particular form, which it turns out that all propositions in Principia do, then

there are simple rules that can be used to eliminate rows of the table as candidates for

falsifying the S
i

. He also shows that, in these cases, a given statement is a theorem if

and only if all rows are eliminated by these simple rules. The program then repeatedly

applies these rules to eliminate rows from the table until either the table is empty,

or a tautology is forced. The method of sequential tables operates on the finite table

of possible falsifying assignments, which circumvents dealing directly with the infinite

sequence of propositional statements. This insight and the tools with which Wang

actualizes it constitute a rethinking and retooling of Herbrand’s theorem.

In the previous chapter describing the Logic Theory Machine, I was focused on a

very low level of implementation - the assignment and manipulation of values in words

of computer memory. My description of Wang’s program has focused on a somewhat
242See Wang, “Proving Theorems by Pattern Recognition II,” pp. 9-22
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more abstract level. These operations are, however, I claim still part of the implementa-

tion to be differentiated from abstract algorithm because they were devised in service

of the creation of a running program. Moreover, abstractions are required for any

tractable discussion of this method because, in this case, the significant transformation

of proof was introduced in the method rather than in the details of the existing IBM-704

assembly language into which the method was translated. This method was focused

on efficiency and the elimination of “useless terms” that rendered Herbrand’s Theorem

on its own impossible to implement. This differentiated his method from Herbrand’s

high-level algorithm: “The basic ideas of the general method of pattern recognition,

though not the special addition of the method of sequential tables directed at efficiency,

go back to Herbrand.”243

Moreover, Wang’s method differentiated in this regard from the one previous at-

tempt of Martin Davis and Hilary Putnam to create a Herbrand-based algorithm. They

too did not sufficiently accommodate the finiteness and practical limitations of actual

computers: “their method is concerned only with the last stage, viz., that of testing

each disjunction, [so] it can of course do nothing with nontheorems. [...] Moreover,

since it provides no decide for deleting useless terms among S1, S2, etc. it is not likely

to be of use even when a formula is indeed a theorem.”244 That is to say that the

Davis-Putnam method actually checks every disjunctive prefix for a tautology, which

may never terminate. So although this description of Wang’s method doesn’t get down

to the level of bits of memory as in the previous case, it is still “less abstract” than

Herbrand’s theorem in the sense that it was designed with an actual limited computing

machine in mind.

To say that Wang’s method is an “application” of Herbrand’s theorem is true but
243Wang, “Proving Theorems by Pattern Recognition I,” p. 223.
244Wang, “Proving Theorems by Pattern Recognition I,” p. 223.
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over-simple. The development of his method consists was an act of translation through

the lens of a specific machine and a specific ideology - one in which Wang sought to

make an abstract idea useful and in so doing, surpass the capabilities of unaided human

cognition. The method bears traces of both elements of the ideology. He clearly begins

with Herbrand’s theorem and its related results, and looks for sites where it becomes

practically impossible to compute. In those moments, he exploits parts of the theorem

to devise previously unhelpful tricks (unhelpful because still unusable by people) and

forges his own insights. There is no automation without invention.

The way that Wang wrote and diagrammed about this method in his notes is

indicative of the method’s incompatibility with human use and with paper media.

Very few examples of actual tables with their rows of variable assignment filled in can

be found in Wang’s publications or his notes. Instead, his notes contain unfinished

tables, the outlines of table, or sketches of tables. These gesture to the kind of thing

the computer is doing, but do not actually do it. The first time the phrase “method

of sequential tables” appears in his notes, shown in Figure 2.2.245 There, Wang was

exploring the kinds of “patterns” that corresponded to a particular predicate statement,

but he leaves us with an empty table bordered by numbers like 2(k+1)2N and 2(k+1)N

that indicate the number of cases involved - clearly out of human reach.

Where he writes “if and only if every one has a repetition,” Wang refers to the

recurrence of variables in various S
i

that makes the method work. But most important

about this table, to my mind, is that it is empty. The actual tables, with all the rows

populated with values and surveyed in search of certificates that some statement is a

theorem or not only ever existed in the storage systems of the IBM 704 computer upon

which Wang ran the program in the summer of 1959.
245The Gi on the vertical axis are the variables in the various Si, which are in turn generated by the

assignment of iterative values to the variables of the original predicate statement.
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Figure 2.2: Hand Drawn Pattern Recognition Table from Wang’s Notes. RAC-RU-
HW, Series 3, Box 97, Folder 1369 - [Notebook, Bell Telephone Laboratories, 1959], p.
134.
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This is where another set of new materialities enter into the implementation. Wang

actually wrote and ran the executable program and this too was part of what it meant

to put Herbrand’s Theorem to work on a computer, part of this reformalism. Whereas

Newell, Shaw, and Simon created their own programming language in order to im-

plement the Logic Theory Machine, Wang made use of an existing one - the SHARE

Assembly Programming language or SAP, though with the added “impurity” of Bell’s

Labs unique subroutines for reading and writing on memory tape.246 The act of trans-

forming his method of pattern recognition and translating it into the obtuse formality

of a programming language proved an enlightening task for Wang - one in which he

encountered different perspectives about mathematical practice. He remarked in his

notebook that "[p]rogramming is an interesting strange intellectual experience. It leads

one to conclude that nearly all math contains errors. Surprising they work - a different

criterion of mistakes too."247 Human mathematicians adhered to certain standards of

rigor, success, and failure. The computer was held to different ones, but these latter

were introduced to mathematics in the work of mathematical programming.

As with the System P described in the previous section, the Program P accepted

as input a single punched card whose seventy-two columns contained a seventy-two

symbol representation of a single statement from the predicate calculus contained in
246SHARE was a community of IBM 704 and IBM 709 computer practitioners who sought to achieve

some standardization in programming languages. Newell, Shaw, and Simon faced a particular chal-
lenge in working with the JOHNNIAC because that computer had only ever been understood as a
numerical processing machine and its existing programming tools were oriented towards the coding
of numerical tasks. The IBM 704, however, was understood as a more versatile machine already in
its inception. SAP was a language designed to be flexible for the implementation of numerical and
nonnumerical tasks, and Wang was happy to work within it. For a historical discussion of the SAP
language see Mark Priestly, A Science of Operations: Machines, Logic and the Invention of Program-
ming (Berlin: Springer, 2011): 205 - 209. As for the Bell Labs sub routines, these had been designed
to accommodate particular Bell Labs equipment and Wang notes that by altering a few lines of code,
the program could be made “portable” to other machines. See Wang, “Proving Theorems by Pattern
Recognition,” p. 225.

247RAC-RU-HW, Series 3, Box 97: Folder 1369- [Notebook, Bell Telephone Laboratories, 1959], p.
106. By “they” I imagine he means the results of less formalized and less formal mathematical work.
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Principia. The program itself was given to the IBM 704 by way of three-thousand, two-

hundred punched cards of instructions and operations that occupied thirteen-thousand

words of core memory during program runs. Wang was eager to emphasize that the

program was not that resource-consuming, indicating that with some editing, it would

be possible to “fit everything into a machine with 8000 words. Auxiliary storages are

not needed except that, as a convenience, tapes are used to avoid going through on-

line input-output equipments.”248 Wang’s abstract algorithm for pattern recognition -

already a reformalism in the sense that it involved new formal and material tools for

Principia and new computer-inflected perspectives on Principia - was also translated

into the languages and materials of the IBM 704 in which the actual pattern recognition

took place.

Here again, someone crafted a set of tools that were not amenable to human use.

And these tools were added to the repertoire of theorem-proving materials and practices

and ideas where none like it were before. The Program P produced proofs with a

different form than those of Whitehead and Russell and those of the Logic Theory

Machine. This form of proof would either be a demonstration that it was impossible to

produce a tautology in the disjunction of S
i

or that it was impossible not to produce one.

Although the steps would not be surveyable by a person, that output “certification”

was. In proving all of the more than three-hundred fifty theorems from the first nine

chapters of Principia, the Program P output one-hundred ten pages with sixty lines

each presenting these certifications whose status as “proofs” was grounded in the proof

theoretic results out of which the method of pattern recognition was fashioned. Here

was a form of proof that had a new relationship to existing results - rather than “calling

on” Herbrand’s Theorem as, for example, a step in a demonstration, these proofs were

fashioned out of the pieces of Herbrand’s Theorem as Wang transformed them into
248Wang, “Proving Theorems with Pattern Recognition,” p. 225.
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lines of code. This is how Wang believed we should proceed with computers: “Man

will have to devise methods or methods for devising methods, the machine will use

the methods to do things which man cannot feasibly do.”249 Wang both rethought

Herbrand’s Theorem through the lens of what computers could do, and then actually

transformed it into things that computers could do by devising a new process and

implementing it with technologies of digital computing. And Wang, like other theorem-

proving practitioners, believed that by proceeding this way, the computer would show

us things we didn’t know before. Even though Wang fashioned all of the tools that

were put to work in the Program P, the Program P produced a result that he did not

see coming.

Conclusion: “A Rather Surprising Discovery”

Even if all the Program P had done was prove the theorems from Principia, some-

thing interesting would have happened. A reformalism would have occurred. A logical

abstraction would have been translated into an actionable tool kit. The status and

meaning and interest of Herbrand’s Theorem would have been changed. A new form of

proof with a new relationship to existing ideas would have been fashioned. But some-

thing even more happened, lending added credence to my claim that implementation

has epistemological significance for the history of mathematics.

It turned out that the Program P also yielded a new result. New knowledge about

Principia was made visible to Wang in the behavior of the program. One way to

describe the result is this: “the theorems in Principia are far easier to prove than

expected.”250 Within the predicate calculus, there are different “subdomains” of state-

ments that have particular forms, usually given by the combination of quantifiers they
249Wang, “Proving Theorems by Pattern Recognition,” p. 224.
250Wang, “Proving Theorems by Pattern Recognition,” p. 226.
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contain. For example, some statements are in the so-called 89 class, where 8 is the “for

all” quantifier and 9 is the “exists” quantifier. Statements within this subdomain all

begin with those one 8 quantifier followed by zero or more 9 quantifiers. For example,

8x9y : (x + y) > 10, which reads “for all x there exists some y such that the sum of

x and y is greater than 10. Other subdomains were carved out by other combinations

of quantifiers like 898. For a statement to be a member of any such subdomain it

has to be possible to transform it into an equivalent statement with these particular

quantified forms. Logicians in the twentieth century were interested in studying these

different subdomains - what are their formal properties? Are some of them harder or

easier to prove than others? Are some subdomains of undecidable domains decidable?

And so on.

In running the Program P and inspecting the output proofs, Wang discovered that

in fact, every predicate calculus theorem in Principia falls into one particular subdo-

main: the 89 domain. Included in Principia was a method for simplifying predicate

statements, and after applying this method to each statement in Principia, they all

were in the 89 domain. Although the predicate calculus is an undecidable domain

(which is where Herbrand’s Theorem is a powerful tool), the 89 domain is decidable -

one can formulate a procedure (i.e., Wang’s method of sequential tables) that would

return either “yes” or “no” when given any statement of that form. This was an action-

able method rather than an abstract one. It hadn’t been shown before that Principia

contained only theorems of this form. Wang proposed that this was a rather “sur-

prising discovery, which tends to indicate our general ignorance of the extensive range

of decidable subdomains.”251 The negative result of the “decision problem” and Kurt

Gödel’s incompleteness results of the 1930s certainly were a blow to some goals of

mathematical logic. However, relative to his computer-assisted discovery Wang wrote
251Wang, “Toward Mechanical Mathematics,” p. 4.
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that “[o]ne may even claim that a new life is given to the Hilbert program of the

Entscheidungsproblem,” by opening up new directions for the study of formal systems.

Just because Wang devised and implemented the method of pattern recognition,

the Program P surprised him. In the minds of most computer practitioners, computers

have significant potential for producing surprises and novelty in spite of the fact that

they can only do what they are programmed to do. But the kinds of surprise and

the kinds of novelty that different practitioners are after can vary. As discussed in the

concluding section of the previous chapter, the Logic Theory Machine was championed

for producing a previously unknown and “more elegant” human-style proof of a propo-

sition from Principia. Wang was excited about his program for demonstrating to him

that all of the canonical theorems from that same text in fact share a fundamental

structural property. Computing made possible new perspectives and new results but

different perspectives and different results emerged depending on what practitioners

were hoping to do with their machines. From Wang’s perspective, “[w]ith machines,

large masses of well-organized minute details seem to be the only sure way to make the

correct surprises emerge.”252 He took tools from the abstract realms of logic and trans-

formed them into tools for managing masses of detail in pursuit of a bridge between

abstraction, action, and mathematical practice. In the next chapter we will see yet

another approach to automated theorem-proving, yet another example of reformalism

in which different elements of mathematics were transformed differently, and in which

a different kind of surprise was celebrated in the results.

252Wang, “Proving Theorems by Pattern Recognition,” p. 234.
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Chapter 3

A New Collaborator:

Implementing Intuition and Inference

Introduction: Divisions of Labor

Hao Wang was the recipient of the American Mathematical Society “Milestone Award

in Automated Theorem-Proving” at a conference in 1982 for his work on the Program

P. A second award was given at that same conference - the “Current Research Award in

Automated Theorem-Proving.” It was given to two practitioners based at the Argonne

National Laboratory, Lawrence Wos and Steven Winker. In their acceptance speech,

Wos and Winker said the following:

With the advent of the computer, interest was expressed in attempting to
automate the activity of proving theorems. Perhaps understandably, some
originally thought that the entire activity eventually could be automated -
thought that a computer program could be written to accept a purported
theorem, and return a proof. [...] As history proved, this all-powerful
program would not be found. Proving theorems in mathematics and in
logic is too complex a task for total automation for it requires insight, deep
thought, and much knowledge and experience.253

253Larry Wos, Steven Winker, “Open Questions Solved with the Assistance of AURA,” in Automated
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For all their differences, Wang and Newell-Shaw Simon shared a belief that the com-

puter could be programmed to prove theorems, on its own. Both of their programs

were designed to take a logical statement from Principia Mathematica and to produce

a proof of it without any human intervention (beyond the programming). Both imag-

ined the possibility of developing programs that would eventually prove theorems from

more complicated branches of mathematics also on their own. Wos and Winker and

the automated theorem-proving team they worked with at Argonne believed otherwise:

they believed that computers would never be able to prove significant theorems from

more complex branches of mathematics on their own.254

Instead, the Argonne team wanted to develop collaborative theorem-proving pro-

grams that would work with a human user to prove theorems. Their approach in some

ways synthesized the perspectives of Newell-Shaw-Simon and Wang. They agreed with

Newell, Shaw, and Simon that human intuitions, insights, and ideas were and should

remain a central element of theorem-proving practices. But unlike Newell, Shaw, and

Simon they did not think that those human intuitions could be automated. Newell

and Simon sought to identify in human theorem-proving practice and then implement

them as rule-bound algorithmic computer operations, like “subproblem chaining” and

“working backwards.” Wos and his team believed that the human insights that under-

pinned proof search were not the result of any rule-bound process and so could never

Theorem Proving: After 25 Years [Contemporary Mathematics, Vol. 29] (Providence, RI: American
Mathematical Society, 1983): 73 - 88, p. 73, p. 74.

254Some members of the team, among them Steve Winker and Ross Overbeek, were actually employed
at the Northern Illinois University until the early 1980s. According to Overbeek, a quarrel with the
University Administration regarding the trajectory of their then rapidly growing Computer Science
department, provoked his (and many others’) departure. Until that time, the Northern ATP group
was quite separate from and even in competition with the Argonne group. However after the exodus
from Northern, many transferred to Argonne, essentially merging the two teams. In 1983, when
Overbeek officially arrived at Argonne, AURA was already under construction and included design
features from the Northern group and the Argonne group.
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be automated.255

Wos and his team agreed with Wang that human reasoning and computation were

qualitatively different processes. The latter was good at processing large masses of

details and at following inferential paths that would be impossible for humans to follow.

They too thought that this feature of computing machines should be exploited, that

computers offered a way to surpass “the traditional limitation on the complexity of

inference” and exploration in mathematics.256 However, they diverged from Wang

in that they believed that the speed and efficiency of computers without continuous

guidance from people would not be able to solve mathematical problems more difficult

than those found in the pages of Principia Mathematica. They believed that the speed

and power of computer should be harnessed for the work of theorem-proving but that

it should be directed, in “real time” during particular searches for a proof, by a human

user. The Argonne team eschewed the project of total automation and instead aimed

to implement what they called a reasoning assistant that could collaborate with human

users. The users would provide their insights and intuitions about a proof search and

the computer program would follow those insights along paths that the people might

not be able to pursue.

Another difference was that the Argonne team wasn’t interested in Principia Mathe-

matica at all. They didn’t want to harness a computer to produce proofs of statements

already known to be theorems. They wanted to see whether or not they could get

computers to be useful in more complicated branches of mathematics, i.e. not the

predicate calculus: they wanted to work on “problems that were previously unsolvable
255Peter Galison documents a similar position held by Luis Alvarez, a prominent 20th century ex-

perimental physicist, in “FORTRAN and Human Nature” from Image and Logic; A Material Culture
of Microphysics (Chicago: University of Chicago Press, 1997) at pp. 403 - 411. Alvarez reportedly
believed that humans had the unique ability to “unravel pictures” that could not be “built into a
computer” (p. 406).

256John Alan Robinson, “A Machine-Oriented Logic Based on the Resolution Principle” in the Journal
of the Association for Computing Machinery, Vol. 12, No. 1 (January 1965): 23 - 41, p. 24.
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by automated systems. Included would be problems considered difficult because of the

complex nature of the axiom set, such as set theory or certain database problems, and

problems considered difficult because of the length of the proof or the nature of the

inferences require in the proof.”257 And they wanted to see whether or not they could

get computers to be useful in solving open problems - proving or disproving conjectures

that weren’t known yet to be true or false.

I have traced that new ways of knowing and thinking about logic were produced in

the development of both the Logic Theory Machine and the Program P. But here, new

knowledge was produced in the more traditional sense: in designing, implementing, and

then collaborating with their theorem proving program, the Argonne team purported

to have produced proofs of previously unknown theorems. Wos and Winker claimed

that “...researchers involved in the effort knew and know almost nothing of the fields

from which the questions were selected. Rather than indicating the triviality of the

questions (some of which are far from easy to answer), this fact shows the potential

value of having access to an automated assistant – a colleague in the form of a theorem-

proving program”.258 They argued that the program was not a mere extension or

amplification of their existing knowledge of mathematics, but that by collaborating

with it, they were able to prove theorems in new ways, beyond the limitations of their

existing mathematical knowledge.

This chapter explores the earliest and one of the most successful collaborative au-

tomated theorem-proving programs developed by the Argonne team - the Automated

Reasoning Assistant (AURA) - implemented and employed during the late 1970s and
257Robert Veroff, “Canonicalization and Demodulation” Argonne National Laboratory Technical Re-

port ANL-81-6 (February 1981), p. 6.
258Larry Wos, Steve Winker, “Open Questions Solved with the Assistance of AURA” in Contemporary

Mathematics, Vol. 29. p. 74.
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early 1980s, but incorporating an earlier result from 1965.259 It was designed accord-

ing to a specific understanding of proof. For the Argonne team, proof consisted of two

kinds of processes: intuition, which they reserved for people, and inference, which they

wanted to assign to computers. Mathematical exploration, in their view, was guided

by the unautomatable insights and intuitions of human beings who had experience

and instincts with mathematical knowledge that computers could never achieve. But

computers were more powerful at executing complex logical operations and so could be

used to “infer” faster, farther, and in new directions than there human counterparts.

In this chapter I explore two cases of reformalism: I explore how both intuition and

inference were transformed in the design and implementation of the AURA program.

In the first instance, even though the Argonne team reserved intuition for people,

believing that it could not be automated, they still fashioned new forms for it to take.

In order for human users to impart their insights and intuitions to a computer, they

had to first translate them so that the computer could understand and use them -

human intuition had to be made into input. In designing the human-user interface for

the AURA, one member of the Argonne team - Ross Overbeek - designed what was
259My study of the AURA is primarily based on technical reports documenting its design, and the

“reference manuals” that were circulated at Argonne. In particular, Brian Smith, Reference Manual
for the Environmental Theorem Prover: An Incarnation of AURA (Automated Reasoning Assistant),
Argonne National Laboratory, Technical ReportANL-88-2 (March 1988) and Robert Veroff, “Canon-
icalization and Demodulation” Argonne National Laboratory Technical Report ANL-81-6 (February
1981). Although the former was published somewhat late in the development of AURA, it was primar-
ily a collection of previously existing documents for the purpose of enabling people around Argonne
to make use of the system. The central published works describing the system and its results are:
Steven Winker, “Generation and Verification of Finite Models and Counter-examples Using an Auto-
mated Theorem Prover Answering Two Open Questions” in Journal of the Association for Computing
Machinery Vol. 29 (1982): 273 - 284; Winker, Lawrence Wos, “Automated Generation of Models and
Counterexamples and its Application to Open Questions in Ternary Boolean Algebra,” in Proceedings
of the Eighth International Symposium on Multiple-Valued Logic, (Rosemont, IL: IEEE and ACM
Publications, 1978): 251 - 256; Winker, Wos, Ewing Luks, “Semigroups, antiautomorphisms, and
Involutions: A Computer Solution to an Open Problem, I” in Mathematics of Computation, Vol. 37
(1981): 533 - 545; Wos, “Solving Open Questions with an Automated Theorem-Proving Program” at
the 6th Conference on Automated Deduction, [Lecture Notes in Computer Science Vol. 138], ed. Don-
ald Loveland (Berlin: Springer-Verlag, 1982): 1 - 31; Wos, Winker, Lusk, “An automated reasoning
system,” in AFIPS Conference Proceedings, Vol. 50 *1981): 697 - 702.
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called a “weighting mechanism” by which human intuitions were input to the computer

as quantitative measures of the relative significance of certain inference paths. These

“weighting mechanisms” were quite different from the so-called eureka moments with

which Larry Wos identified unautomatable human insights. This transformations in

“intuition” is the subject of Section 3 “Reformalism I: Inputting Eureka.”

The second case of reformalism concerns logical inference - the part of proof that

the Argonne team wanted to offload onto the computer. And, in contrast to intu-

ition, they wanted to make a big change. During the mid-1960s, a Classicist turned

computing practitioner by the name of John Alan Robinson was visiting Argonne. He

was interested in how computers might make possible entirely new forms of inference

in mathematics. Inference rules are the principles that enable mathematicians to get

from one idea to the next, they are the justification for why something follows from

another. What counts as a sound inference, an acceptable step, has changed through

history but Robinson suggested that always human psychology was at the core of those

rules. Inference rules were designed “to be apprehended as correct by a human being

in a single intellectual act.”260 He wanted to design inference principles that might not

be apprehensible to the human mind as correct in a “single intellectual act” but that

rather capitalized on the kinds of acts computers could perform. In 1965, Robinson

designed such an inference principle - called Resolution. The Resolution principle and

its many variations, were and are still built in to many theorem-proving programs. And

it was built in to the AURA - Resolution constituted the computer’s contribution to

the human-machine collaboration. The Resolution Principle is the subject of Section

4 “Reformalism II: “A Single Step.” ”

But more, the AURA was full of surprises. Although the program could only do

precisely what it was programmed to, and although users would impart their hunches
260Robinson, “A Machine-Oriented Logic Based on the Resolution Principle,” p. 23.
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about how to proceed, they could not know in advance what the consequences of their

instructions would be. Indeed as I have often stated throughout the dissertation, if

they could, they would have had little need for a fast computer to do this work for

them. Especially when the computer was employing a rule like Resolution that ex-

ceeded easy human cognizing, the computer would end up in surprising places. As

such, Argonne researchers studied printouts of thousands of clauses from run after

run on AURA in order to understand what was going on when the engine looked for

proofs. To accommodate their a posteriori revelations, the Argonne group adopted

a committed experimental paradigm for automated theorem-proving, in which AURA

was constantly improved and redesigned. I propose that in fact, those prized human

insights and intuitions that the Argonne researchers reserved for the human, rather

than materializing from the cognitive ether, began to emerge from their intimate and

prolonged experimental work with the computer program. Experimental experience de-

termined the character, form, and relevance of their input intuitions for AURA proof

searches. By privileging and isolating a traditional notion of human thought in their

design, the Argonne team in fact made possible radically new forms of intuition and

insight grounded in knowledge of computational behavior. New experiences and prac-

tices - namely working with the AURA - shaped new kinds of intuitions than those

the team had in mind before. Even though they cordoned off intuition as something

uniquely human, something impossible for computers, they still transformed it through

encounters with computing. Intuition was made into computer input and intuition was

derived from new kinds of experiences with computers. These practices and experi-

ences that constituted theorem-proving with AURA are the subject of Section 5 “The

Quickest and Surest Way to Insight.”Before investigating these reformalisms, however,

this chapter begins with a discussion of Argonne’s place in the postwar landscape, and

its role in the disciplinary trajectory of automated theorem-proving.
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Disciplining Automated Theorem Proving

The architects of the AURA were based, in varying capacities, at the Applied Mathe-

matics Division of the Argonne National Laboratory near Chicago, IL throughout the

1970s and 1980s. The core of the group was constituted by Larry Wos, Steve Winker,

Ross Overbeek, John Alan Robinson, Brian Smith, and Ewin “Rusty” Lusk. Argonne

was a state organization, funded by the Department of Energy. It was founded dur-

ing the Second World War in conjunction with the University of Chicago Fermilab.

Fermilab was affiliated with the Manhattan project and, under the direction of Enrico

Fermi, was tasked with the generation of a self-sustaining nuclear chain reaction. After

the war, Argonne remained operational as a scientific research center after the close

of the war. Given that Argonne was established primarily as a nuclear reactor testing

laboratory for the Manhattan Project, it might be surprising to discover a team of

automated theorem-proving researchers there. Its existence seems to have been the

achievement of William Miller - the Director of the Applied Mathematics Division at

Argonne from its founding in 1956 until 1965.

Much like the Numerical Analysis Department (later Programming Department) at

the RAND Corporation, The Division was originally intended to provide information

processing services, computing services, and mathematical analysis to other research

groups at Argonne. In spite of its “service” role, Miller was deeply interested in com-

puting, however, believing that its limitations and possibilities should be the subject of

inquiry in its own right. Historian Donald MacKenzie also reports that Miller “had a

broad conception of his role. He was thinking a great deal about ‘what could be auto-

mated’... and was ‘much influenced’ by the codeveloper of the Logic Theory Machine,

Allen Newell”.261

261Newell was another ATP researcher. MacKenzie, Mechanizing Proof; Computing, Risk, and Trust,
Cambridge: MIT Press, 2001, p. 78.
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Miller, apparently interested in computing research for its own sake, attended a

number of computing conferences in the 1950s at which he encountered Allen Newell,

who sparked his interest in theorem-proving as a fruitful domain of computing re-

search and the question of the limits of automation. That Newell was an original

motivating factor in the creation of automated theorem-proving research at Argonne

is somewhat ironic, given that, as we will see, the team there was central in effecting a

separation of automated theorem-proving from Artificial Intelligence in which Newell’s

efforts were most grounded. Miller managed to allocate resources and personnel for

theoretical computer research through the 1950s, the most influential core of which

was the automated theorem-proving group, led by his first such hire, Larry Wos. Jack

Holl, a historian of Argonne, indicated that Miller “was not modest and believed that

his applied mathematics division was engaged in the most important, profound, and

far-reaching activity of any group at Argonne”.262

Wos came to Argonne in 1957 by a somewhat untraditional path. He was a pure

mathematician by training, receiving his B.Sc. from the University of Chicago and

his PhD from the University of Illinois at Urbana Champagne. It was not uncommon

for mathematicians to find themselves at military or industrial research centers in the

1950s, but Wos’s reason for ending up at Argonne was somewhat unique. Wos has

been blind since his birth. In order to pursue his mathematics education, he and his

professors had to develop a braille system with which he could encounter mathematical

objects and texts.

It had been his intention to remain in academic mathematics, but he had difficulty

securing a position after graduation. He claims that, in spite of offering to share his

salary with someone who could do the ‘board work’ in his classes, and in spite of feeling
262Holl, Argonne National Laboratory, 1946 - 96, Chicago: University of Illinois Press, 1997, p.

125. Argonne still hosts a highly successful, robust, and exciting team - called the Computational
Mathematics group - engaged in enrolling computers in the production of mathematical knowledge.
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fully supported by the mathematics department at the University of Illinois at Urbana

Champagne, Wos was denied a teaching position by a Dean at the university because of

perceived obstacles presented by his blindness.263 His lack of teaching experience and

his encounters with skepticism from his own dean left him feeling nervous about job

prospects. He was also newly married and eager to secure a position and an income,

so when he saw that Argonne was hiring, he applied.

Wos had never encountered a computer before arriving at Argonne, so it was per-

haps somewhat surprising that he would be hired for a position in a computing de-

partment. Miller found Wos to be an attractive hire, however, because he was a

mathematician. Miller wanted someone who could direct automated theorem-proving

research in the Division, and who better than a mathematician to fill that role. Wos ap-

parently had no trouble learning the ropes of computation, claiming that there wasn’t

a single bug in the first program he wrote at Argonne in 1957.264 However, it was not

until the mid-1960s that Wos turned his efforts in earnest towards the development

of a program for automated theorem-proving research. At that time, Wos began ar-

ranging for visits from various logicians, engineers, and philosophers. This community

would ultimately become one of the most vibrant communities of automated theorem-

proving research in history. Wos and the community he fashioned at Argonne would

also become instrumental in the disciplinary trajectory of automated theorem-proving.

The early 1980s was a time of disciplinary stabilization for the field of automated

theorem-proving. As computing research more generally became increasingly estab-

lished in institutional, academic, and professional milieus, practitioners of different

subfields carved out their intellectual territory and their identity by way of disciplin-
263Tim A. Obermiller, “Top of His Game”, University of Chicago Magazine, 1997, Vol. 89, No. 4

(online edition).
264Interview with Wos, November 4, 2010.
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ing technologies like journals, conferences, courses, awards, and so on.265 Automated

theorem-proving was among those subfields, grounding and articulating its character

through an array of disciplinary tools. I have already mentioned the creation of the

“Milestone Award in Automated Theorem-Proving” and the “Current Research Award

in Automated Theorem Proving” that were first given in 1982. These awards served

to establish criteria of “significance” relative to work in the field.

A number of early 1980s publications also served to “canonize” and consolidate

a body of literature whose content would bound the subject. Following the Ameri-

can Mathematical Society Conference at which those awards were given, Automated

Theorem-Proving: After 25 Years was published in which the proceedings of that con-

ference were collected and framed with actor-historical reflections on the trajectory of

the field.266 In the same year, a two-volume set of “classical papers” from the field was

published in 1983.267 These volumes served to establish boundaries around the kind of

work that “counted” as automated theorem-proving and they held up particular con-

tributions - including perhaps especially those of Newell, Simon, Shaw, Wang, and the
265 Beginning in the late 1960s and accelerating through the 1970s, computer science departments

were being established at universities, degree programs were being developed at the undergraduate
and graduate levels, and different academic and industrial professions related to computer work were
available. It is well beyond the scope of this discussion to offer a comprehensive exploration of the
overall “disciplining” of computer science, especially since no account of it has yet been given. However,
pieces of the story are told in: Nathan Ensmenger, The Computer Boys Take Over: Computers, Pro-
grammers, and the Politics of Technical Expertise (Cambridge, MA: The MIT Press, 2010); Thomas
Haigh, “Inventing Information Systems: The Systems Men and the Computer, 1950-1968,” in The
Business History Review Vol. 75, No. 1 (Spring 2001): 15 - 61; Brent Jesiek, “The Origins and Early
History of Computer Engineering in the United States” in IEEE Annals of the History of Computing
Vol. 35, No. 3 (July-September 2013): 6 - 18; David Grier, “The ENIAC, the verb “to program”
and the emergence of digital computer” in IEEE Annals of the History of Computing, Vol. 18, No.
1 (1996): 51 - 55; William Aspray, “Was Early Entry a Competitive Advantage? US Universities
that Entered Computing in the 1940s” in IEEE Annals of the History of Computing Vol. 22 No. 3
(July-September 2000): 42 - 87; Michael Mahoney, “Finding a History for Software Engineering” in
IEEE Annals of the History of Computing Vol. 26, No. 1 (2004): 8 - 19.

266In particular Donald Loveland, “Automated Theorem-Proving: a Quarter-Century Review” in
Automated Theorem-Proving: After 25 Years: 1 - 46.

267Jörg Siekmann, Graham Wrightson, eds. Automation of Reasoning 1: Classical Papers on Com-
putational Logic 1957 - 1966 (Berlin: Springer-Verlag, 1983); Siekmann, Wrightson, Automation of
Reasoning 2: Classical Papers on Computational Logic: 1967 - 1970 (Berlin: Springer-Verlag, 1983).
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Argonne team - as significant, and the offered historical reflections of the trajectory of

the field.268 Interesting also is what was excluded from these volumes. For example,

Automated Theorem Proving: After 25 Years did not contain any articles exhibiting

traditional Artificial Intelligence approaches to theorem-proving, like that of Newell

and Simon. This was strange given that Artificial Intelligence pioneer John McCarthy

presented at the the 1982 American Mathematical Society Conference on which the

volume was based, but his paper - “Non-monotonic reasoning and Common Sense In-

ference” - did not appear in the volume. I was unable to discover why this was the

case, but regardless of the reason, the absence of this approach conveyed a particular

“bound” around the approaches that were included.

The disciplinary distance emerging between automated theorem-proving and Ar-

tificial Intelligence was further reinforced when, also in 1983, Larry Wos of Argonne

became the first Editor-in-Chief of the Journal of Automated Reasoning. The journal

aimed to collect results from automated theorem-proving, logic programming, com-

putational logic and other fields aimed at the provision of “automated assistance for

those aspects of problem solving that require reasoning.”269 Uniting these fields was

the goal of studying reasoning, deduction, and inference in a computational context

without limiting those processes to their various human-based manifestations. Given

this difference, it was not surprising that some automated theorem-proving practition-

ers struggled to publish their work in Artificial Intelligence journals. Another Argonne

practitioner, Ross Overbeek recounted the following story:

When Steve Winker submitted a lovely paper on qualified hyperresolution
to one of the main AI journals, a senior editor did not even send it out
for refereeing; he just returned a short note stating, “The JACM [Journal
of the Association of Computing Machinery ] is still publishing such pa-

268Especially Martin Davis, “The Prehistory and Early History of Automated Deduction” in Au-
tomation of Reasoning 1 : 1 - 28.

269Wos, “A Journal is Born” in Journal of Automated Reasoning, Vol. 1, No. 1 (1985): 1 - 3, p. 2.
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pers, although I don’t know why.” This last phrase symbolized the broader
AI community in our eyes. Like perceptrons, formal logic had [...] been
evaluated and found lacking.270

Practitioners at Argonne were central to the “disciplining” of automated theorem-

proving, and the slightly more generalized domains of “automated deduction” and

“automated reasoning.” Even before this flurry of disciplining activity in the early

1980s, they hosted the first Conference on Automated Deduction (CADE) in 1974 - a

conference that remains a vibrant annual event for practitioners working in the field.271

In 1992, another award for automated theorem-proving was created in conjunction

with CADE - the “Herbrand Award,” so-called because of the success of programs that,

following Wang’s, used techniques from Herbrand’s Theorem and other related results

of proof theory. Larry Wos of Argonne was the first recipient. John Alan Robinson,

who consulted at Argonne during the 1960s and who I will discuss in the section on the

“Resolution Principle,” was the third recipient.272 Yet another member of the Argonne

team, William McCune who architected many descendants of the AURA program was

the seventh recipient. Argonne loomed large in the field and its practitioners played

a central role in shaping and directing it. Recently at the 2012 CADE, I learned in

conversation that a prominent current automated theorem-proving researcher Geoff

Sutcliffe had spent some time at Argonne during the 1990s. I remarked that I hadn’t

known he spent time there to which he responded off-handedly that “oh everyone spent

time at Argonne.” The Department of Energy cut funding to automated theorem-

proving research at Argonne in 2006 resulting in the dissolution of the community that
270Ross Overbeek, Ewing Lusk, “Wos and Automated Deduction at ANL: The Ethos” in Automated

Reasoning and its Applications; Essays in Honor of Larry Wos (Cambrudge, MA: The MIT Press,
1997): 1 - 12, p. 6.

271See the Conclusion of this dissertation for a brief discussion of the current state of affairs in the
field.

272John Alan Robinson also received the AMS Milestone Award for Automated Theorem-Proving in
1985, following Wang.
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remained there, but until that time it was central site for the cultivation and circulation

of work in the field.273

The Argonne community had a different disciplinary orientation than the practition-

ers discussed in previous chapters. Recall that for Newell and Simon, theorem-proving

was not an end in itself but rather just an example of a more general phenomena -

symbolic information processing - that they believed could be manifest in computers

as in human minds. Their engagement with theorem-proving was limited largely to

the 1950s and both moved on to study other problem domains and to the problem of

human problem-solving in general. They both became prominent figures in Artificial

Intelligence - a quite distinct field aimed at the production of human-like reasoning

processes in computing machines. People like Wos and Robinson, similar to Wang as

discussed in the previous chapter, were interested in processes of inference, deduction,

and logical analysis that may bear no resemblance to their human counterparts.274

Also like Wang, Wos - whose perspective was central in shaping automated theorem-

proving researchers at Argonne - was a mathematician by training and was motivated

by the desire to introduce computers to mathematical problem solving.

However, the Argonne community differed somewhat from Wang as well. Recall

that Wang wanted to institute a new field - inferential analysis - within mathematics.

Automated theorem-proving, however, turned out to stabilize as a field in its own right

more closely allied with computer science than with mathematics. Moreover, although

the team at Argonne was very interested in attracting the attention of mathemati-
273At this time, key researchers still there (like Wos himself) either retired or accepted positions

elsewhere: Ross Overbeek to Stephanie Dick, email 6 january 2011.
274There were some automated theorem-proving communities that remained committed to the simu-

lation of human methods in theorem-proving, especially a team led by Woody Bledsoe at the University
of Texas at Austin. Their work was well respected among more logic-oriented theorem-proving prac-
titioners and was also recognized by certain Artificial Intelligence practitioners as well. However, they
were in the minority. See, for example, Woody Bledsoe, “Some Automatic Proofs in Analysis” in
Automated Theorem Proving: After 25 Years: 89 - 118.
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cians or others who might be interested in “conducting research” with a program like

AURA, they were also open to extra-mathematical applications for theorem-proving

programs.275 Moreover, as was clear in the design and implementation of the Program

P, Wang was working very much within the realm of his expert knowledge - he wanted

to apply difficult results from proof theory in order to produce novel insights for proof

theory. The Argonne team wanted instead to use computers to newly enable people to

work in fields about which practitioners “know almost nothing” by devising a particular

division of labor between human users and computers.276 This represented a different

vision for the future of mathematics - in which computers would become like colleagues

or assistants for human researchers. The AURA was one of Argonne’s earliest programs

and it embodied many of their research priorities that would be expanded upon and

appropriated throughout the field later and even still today.

Reformalism I: Inputting Eureka

The overall design of AURA and the research program in automated theorem-proving

at Argonne more generally, was shaped by the perspectives of Larry Wos. Wos advo-

cated the design of collaborative theorem-proving software that would combine what

he believed were the very different skill-sets of humans and computers. Human users
275Wos, Winker, “Open Questions Solved with the Assistance of AURA,” p. 75. In particular,

theorem-proving software developed at Argonne was used for the optimization of circuit design, and for
the significant field of “program correctness proving.” During the 1970s and 1980s, there was growing
unease about computers. They were occupying increasingly many and increasingly important positions
in the financial, military, political, and industrial infrastructure of the country. And sometimes they
didn’t behave as they were intended. In order to trust computers, people wanted a guarantee that
they would behave as their programmers intended - that programs did not contain errors or bugs that
could jeopardize the computer’s performance. One approach to solving this problem was to represent
computer programs themselves as mathematical systems and then prove that they would behave in the
desired fashion. Often, and somewhat ironically, automated theorem-provers were used to produce said
proofs since programs could be incredibly large and unmanageable for human practitioners. Program
correctness proofs are the primary focus of MacKenzie’s Mechanizing Proof.

276Wos, Winker, “Open Questions Solved with the Assistance of AURA,” p. 75.
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would, in Wos’ design, be tasked with the supply of insights, intuitions, and instincts

about the mathematical problems at hand. These would be derived from their experi-

ences with mathematics and from what he took to be the mysterious world of human

cognition that would forever elude any attempts at reduction to rule-bound algorithm.

The computer would be tasked with the execution of complex and iterative operations

that would follow those human intuitions farther, faster, and in different directions than

the human user would be able. Built into this vision was a particular vision of proof

as constituted by processes of iterative inference punctuated by flashes of intuition.

It also entailed a particular division of labor - intuition for the people and inference

for the computer. In the remainder of this chapter, I argue that both intuition and

inference were reformalized in the design and implementation of the AURA program

as each was translated into the context of collaborative computing.

Wos accepted a position in Applied Mathematics department at Argonne in 1957

upon leaving the world of academic mathematics. Wos firmly believed (and still be-

lieves) that human mathematical practice could not, even in principle, be fully au-

tomated. His conviction was based in large part on his personal experiences with

mathematical research. His mathematical work seemed to him to proceed by way of

seemingly spontaneous moments of insight that were not produced by any process of

conscious or rule-abiding reasoning. Wos recounted one story in which the primary

realization for his development of so-called “Quad arithmetic” came to him while he

was sleeping: “It just came to me. So if you want to give credit, if you want to get

pedantic as hell - I’ve got a big imagination that works when I’m asleep!”277

Wos’ account of mathematical intuition is reminiscent of Jacques Hadamard’s in-

fluential essay The Psychology of Invention in the Mathematical Field:
277Wos interview. Wos also cites anecdotally certain famous historical mathematicians like Henri

Poincaré who recounted similar experiences.
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One phenomenon is certain and I can vouch for its absolute certainty: the
sudden and immediate appearance of a solution at the very moment of
sudden awakening. On being very abruptly awakened by an external noise,
a solution long searched for appeared to me at once without the slightest
instant of reflection on my part - the fact was remarkable enough to have
struck me unforgettably - and in a quite different direction from any of
those which I had previously tried to follow.278

Hadamard’s essay is one of the best known attempts to import insights from psychol-

ogy, especially about the unconscious, into studies of mathematical discovery. Both

Hadamard and Wos called upon their own personal experience as evidence that mathe-

matical problem solving cannot be reduced to intentional and conscious reasoning prac-

tices. However, such accounts of personal experience are often influenced by prevalent

cultural narratives. Although anecdotal and somewhat folk psychological, these kinds

of so-called Eureka moments are common tropes in narratives about mathematical dis-

covery. From Archimedes himself, with whom the Eureka moment myth originated to

Carl Friedrich Gauss, to William Rowan Hamilton, to Henri Poincaré, and beyond sto-

ries abound of sudden insight emerging seemingly from no where when the practitioner

was engaged in something other than mathematical thinking.279

Though Wos never cites such stories or accounts explicitly, he clearly seems to be
278 Jacques Haramard, The Psychology of Invention in the Mathematical Field (Princeton, NJ:

Princeton University Press, 1945). p.8.
279This is especially the case in popular histories. The phrase “Eureka moment” refers to the

Greek Archimedes’ reportedly sudden realization of his eponymous principle (also called the first
law of hydrostatics). As narrated by Amir Aczel, “Suddenly it hit him: the water displaced was
equal in volume to that of his body. Famously, he jumped out of the bath and ran naked through
the streets of Syracuse shouting, “Eureka, eureka!” (I found it, I found it!)” Aczel, A Strange
Wilderness: The Lives of the Great Mathematicians (New York, NY: Sterling, 2011): p. 25, my
emphasis. Aczel also reports that the famous mathematician Carl Friedrich Gauss penned “EU-
REKA!” next to a result in a 1796 notebook, Aczel, p. 151. The idea of “eureka” is also often
cited in descriptions of William Rowan Hamilton’s discovery of quanternions. The podcast Anti-
matter relayed the account as follows: “As regards quaternions, we know exactly when Hamilton
had his Eureka moment. According to his own writing, inspiration struck on the 16th October
in 1843, as he was walking with his wife [...] He was so pleased with the breakthrough that he
used his penknife to carve the new equation onto Broom bridge as they past,” Antimatter, Oc-
tober 16, 2011 (http://coraifeartaigh.wordpress.com/2011/10/16/hamilton-walk-and-maths-week-in-
ireland/), my emphasis.
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drawing from a body of cultural resources that presents mathematical discovery as

consisting in part of such flashes of insight. And Wos brought this perspective to bear

on the prospects of automated theorem-proving. Computers would be helpful where

rules of deduction and inference and analysis could be made explicit, but they would

never be capable of attaining those insights that propel mathematical investigation

forward in unpredictable ways. Wos agreed with Newell and Simon that intuition

was a central element in mathematical theorem-proving. He disagreed with them and

with George Polya whose “heuristics” they borrowed, that those intuitions could be

translated into algorithms and transferred to a computing machine.

According to Overbeek, not everyone at Argonne held this position with as much

conviction as Wos but most did agree that collaborative software was likely the most

promising for approaching open problems in mathematics.280 More, Wos is a particu-

larly charismatic leader and had a correspondingly central role in shaping the research

environment at Argonne until it lost funding in 2006.281 In line with his view, the base

assumption at Argonne was that “Proving theorems in mathematics and in logic is too

complex a task for total automation, for it requires insight, deep thought, and much

knowledge and experience”.282 So the task of intuiting the way forward in particular

proof searches would fall on the human users.

But there was a catch: if human users were going to impart their unautomatable

intuitions to the AURA program they needed to put their intuitions into a form that
280Overbeek interview, November 2010. They were not the only automated theorem-proving practi-

tioners to hold this position. The development of stand alone theorem-proving programs turned out
to be quite difficult, especially for branches of mathematics more complex than the predicate calcu-
lus. Increasing effort was directed towards the development of collaborative programs as early at the
late 1960s. For example, J.R. Guard, F.C. Aglesby, J.H. Bennett and L.G. Settle, “Semi-Automated
Mathematics” in Automation of Reasoning 2 : 203 - 216; J. Allen, D. Luckham, “An Interactive
Theorem-Proving Program” in Automation of Reasoning 2 : 417 - 434.

281The image of Wos as a charismatic and influential director of research at Argonne comes through
clearly in the personal accounts of his colleagues in Robert Veroff, ed. Automated Reasoning and Its
Applications: Essays in Honor of Larry Wos (Cambridge, MA: The MIT Press, 1993).

282Wos, Winker. “Open Questions Solved with the Assistance of AURA”, p. 74.
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the computer could understand and act upon. In order to implement a collaborative

theorem-proving program, the Argonne team had to fashion an interface for human-

computer communication. Intuitions had to be translated into computer input. So

even though the Argonne team cordoned off intuition as a uniquely human and unau-

tomatable faculty, they still had to rethink intuition with their computer in mind. They

had to translate intuition into the technical language of computing. That translation

was a reformalism - they fashioned intuition into a new form that accommodated the

affordances of computing even if it was not produced by them.

The AURA program was constituted by several so-called ‘modules’ or ‘environ-

ments’, each of which was a programmed subroutine that performed a certain task in

the search for a proof.283 There was one special module whose function was to read in

all of the initial input information (called the SYSIN file).284 This would include a for-

mulation of the problem that the program was going to help solve and the parameters

of the mathematical domain from which that problem originated - its axioms and def-

initions. The SYSIN module was the “first contact” in which a user would present the

AURA with a problem. The SYSIN module also afforded users their first opportunity

to impart their intuitions about a particular problem to the program.

In particular, users could make use of what was called a “weighting mechanism” -

a means for users to translate their ideas about how a certain proof might be found

into quantitative directions to guide the program’s search.285 Primarily, the computer
283Complete specifications are available from Brian Smith, Reference Manual for the Environmental

Theorem Prover: An Incarnation of AURA (Springfield, VA: National Technical Information Service,
U.S. Department of Commerce, 2010 [originally printed by Argonne National Laboratory in March
1988]).

284Each input and control specification was coded with the relevant verb first, followed by any extra
subparameters the user desired, followed by a semicolon. ‘Verb’, a term no longer commonly used in
computer science, simply denotes what kind of action the computer is to perform on the subparameters
that follow. A complete list of the permissible SYSIN verbs is available at Smith, Reference Manual
for the Environmental Theorem Prover, pp. 14 - 18.

285It was designed and implemented specifically by Ross Overbeek as a part of his doctoral disser-
tation in 1971. Overbeek was already collaborating with Wos and others at Argonne at this time,

171



Stephanie Dick After Math

would be engaged in the application of rules of inference - deducing consequences from

assumptions, axioms, and known theorems using permitted operations of deduction.

Weighting was intended to restrict what kinds of deductions and what kinds of con-

sequences the program would prioritize in order to minimize the time spent deducing

things that weren’t relevant to a particular problem.

With weighting, human collaborators could provide their preliminary sense of what

kind of information would matter for a given proof. It was a way to communicate to

the program that, in deductively exploring a mathematical problem, it should prefer-

entially seek mathematical statements that had particular properties or that it should

preferentially employ certain rules of inference. To do this, users would formulate so-

called ‘weighting templates’ that would be included in the SYSIN file. They could

indicate, for example, that addition was more important than multiplication, or that

the sum of two sums was more important than the sum of two products. Or they could

indicate that steps which produced shorter mathematical statements - called clauses -

should be prefered to ones.286 Weighting templates could prioritize the appearance or

particular combination of certain terms in a mathematical statement. And so on.

AURA would check whether or not the mathematical statements at play in a given

and he designed the mechanism with their collaborative software development in mind. Overbeek also
went on to be one of the central developers of AURA.

286“Clauses” were just mathematical statements but with a particular form chosen by the Argonne
team for simplicity and standardization. Although AURA could handle problems from many branches
of mathematics, the problems would be represented by the predicate calculus. Clause is defined as
follows in the manual: “A clause is a logical expression in first-order predicate calculus, extended to
include functions, and is the disjunction (primary connective is OR) of primaries known as literals. For
our theorem-provers, an example of a clause that is read from an input file is CL q(x, y) �p(f(a, b))
where q(x, y) and �p(f(a, b)) are literals, p and q are predicates, � is the negation symbol, f is a
function, x and y and implicitly universally quantified variables, and a and b are constants. This clause
is thus the logical expression “for all x and y, q(x, y) or not p(f(a, b))”.” (Smith, Reference Manual
for the Environmental Theorem Prover, p. 3.) Recall from the previous chapter that variables in
the predicate calculus can take non-logical assignments, meaning that expressions of this form can be
used to represent and explore non-logical branches of mathematics. Taken together, all of the possible
deductions for a given problem were called the “clause space.” One way to think about Weighting is
an attempt to give the computer a “compass” for prioritizing certain paths through the “clause space.”
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proof search were instances of the general form given by a weighting template. For

example, [(x^y)_(x^z)] is an instance of the more general form A_B. Each weighting

template provided AURA with a recursive function for assigning “an integer (weight)

to any term (well formed formula) that can occur in a given theorem proving run”

depending on whether it contained instances of prioritized forms.287 Those integer

values would lead AURA to preferentially pursue those inferences whose ancestral

clauses have the highest concentration of relevant information as represented in the

templates.

As evidenced by the description of the weighting mechanism in the AURA Reference

Manual, these templates and functions were meant to reflect the user’s intuitions about

a given problem:288

Weighting is the process that assigns measures of complexity to clauses
in the clause space. The definition(s) of complexity can be chosen by the
user to reflect some predisposition that may be, for example, based on an
intuitive notion of how to direct the proof search. To create new inferences,
clauses that seed the next inference... are selected by least weight. Derived
inferences that are too complex (too heavy) are rejected.289

287Veroff, “Appendix A: Term Weighting” in “Canonicalization and Demodulation”: 23 - 24, p. 23.
288It bears noting that the AURA had a “reference Manual” in the first place. It was circulated

internally at Argonne as a technical report, but the distribution list went beyond the automated
theorem-proving team. Neither Newell, Shaw and Simon nor Wang drafted reference manuals for the
Logic Theory Machine or the Program P. This marks another difference about the AURA program -
the hope of the Argonne team was that it would be used. Someone other than the development team
could, in theory, put the AURA program on their IBM 360 computer and use it in their own problem-
solving world. Although AURA’s user community remained quite small, later software developed
by the Argonne team - especially OTTER and MACE - were circulated quite widely and can still be
found in certain variations for online use: http://www.cs.unm.edu/~mccune/otter/. Other large-scale
automated tool kits for mathematical problem solving have become nearly omnipresent in technical
communities - engineers, computer scientists, physicists, and some mathematicians make regular use of
systems like Wolfram’s Mathematica, Maple, and Mathlab. These systems, especially the earliest one,
called MACSYMA (a system for symbolic mathematical problem solving developed at MIT beginning
in the 1960s) will be the subject of some of my future work. I am particularly interested in the role of
the User’s Manual as a central part of the creation of novel forms of diffuse mathematical communities
that were held together not by research questions but by technological infrastructure and shared tools.

289Smith, Reference Manual for the Environmental Theorem Prover, p. 12. The implementation
details for weighting are described on p. 18. My emphasis.
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This description of the mechanism breathes “predisposition,” “intuitive notions,” and

the “complexity of clauses in the clause space” in the same breath. Intuition was here

translated into an algorithmic, quantitative, and actionable form that could be input

to the computer. I contend that these “weighting templates” were quite different from

the “flashes of insight” and unautomatable intuitions they were designed to capture.

Whatever those insights were and wherever they originated, they ended up being trans-

lated into weighting templates, punched onto cards, and were input along with the rest

of the AURA SYSIN File.290

This was a case of what I call reformalism. In fact, it was in considering the transfor-

mation of “intuition” in the design and implementation of AURA that I first conceived

of the idea that implementation was a significant site to explore how computing was

made to intervene in knowledge production: in spite of the fact that they wanted to

keep intuition out of the computer, reserve it for people, they still had to transform it

when time came to make a program that actually ran according to their design and

their beliefs. Intuition was here given a particular form, namely the “weighting mecha-

nism” and translated into a particular material, namely the punched card. This was a

new form of intuition, an exercise in fashioning ideas about proof in terms of weighted

paths in the set of possible paths to a proof. This was an example of how intuition

was understood and enacted differently to make collaboration with computers possible.

But this was only one half of the story.
290AURA was implemented on an IBM System\360/370 and, for the most part the Argonne team

used the punch-card based Assembly Language for those machines to write the program. Assembly
language is a low-level (close to the hardware) symbolic representation of instructions and data that
users wish to communicate to the computer. See Ned Chapin’s 360/370 Programming in Assembly
Language, second edition (New York: McGraw Hill, 1973 [1968]). The 360 preceded the 370, but with
backwards computability so that programs that were run on the former could be run on the latter as
well. These models were arguably the most successful of the IBM early commercial mainframe com-
puters. The complete technical specification of the IBM 360 is given in the manual, IBM Corporation,
IBM System\360 Principles of Operation (1964).
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Reformalism II: A Single Step

The weighting mechanism constituted the human contribution to a given human-

computer collaborative proof search. Weighting was a way of providing the computer

with “shortcuts” through the immense number of inferences permitted in some formal

system - a way of avoiding what users thought would be “unprofitable” inferences for

a given problem. But there was still inference work to be done and this is where

the computer contribution was to be made. The computer would actually go and see

what conclusions would eventually emerge from inferring along paths prioritized by

weighting templates.

The predicate calculus, which was used to represent problems in the AURA pro-

gram, came with a set of inference principles for doing that kind of thing.291 These

were laid out in Principia and re-presented in a concise and simplified form in Hilbert

and Ackermann’s canonical Principles of Mathematical Logic. They provide “rules for

the transformation of logical expressions” and for “deriving the consequences from any

premises whatsoever.”292 These rules were thought to capture what Whitehead and

Russell were after in Principia, namely the “complete enumeration of all the ideas and

steps in reasoning employed in mathematics.”293 They were rules that described how

mathematicians could get from their premises to their conclusions. Sound inference -

the logical step - the process and the justification for what follows from what, was cen-

tral to the twentieth-century project of axiomatization and deduction in mathematics.

But the AURA program wasn’t going to follow those rules. It’s contribution to

collaborative theorem-proving was to take different kind of “step” in deducing the
291Recall from the discussion in the previous chapter that the variables in predicate calculus can be

assigned various values from any branch of mathematics - they can be integers or sets or functions,
and so on.

292Hilbert, Ackermann, Principles of Mathematical Logic, p. 12, p. 101.
293Whitehead, Russell, Principia Mathematica, p. 3, my emphasis.

175



Stephanie Dick After Math

consequences of the premises and weighting templates it was given. That step was

called the “Resolution Principle” and it was first developed in 1965 by John Alan

Robinson. William Miller, director of the Applied Mathematics Division at Argonne,

invited Robinson to visit Argonne for six consecutive summers as a visiting researcher.

He developed the resolution principle while there, and while in conversation with Larry

Wos and other members of the automated theorem-proving group there. But before

that, Robinson received his PhD in Philosophy from Princeton University in Philosophy

in 1956. Unlike Wang, he did not work explicitly in analytic philosophy, but rather on

David Hume’s empiricist theory of causation. Like Wang, however, he also developed

a dissatisfaction with philosophy that led him into industry where he worked with

computers after graduation. In 1960, however, he became a post doctoral fellow at

the University of Pittsburgh. While there, he encountered an article documenting an

early attempt to use logical principles to prove mathematical theorems.294 Robinson

thought he could do better.

Although Robinson did not focus on logic for his doctoral research, he did have an

extensive and also historical training on the subject. Robinson did his undergraduate

degree at Cambridge University where he studied Classics and encountered the logic

of Aristotle and the Stoics, and also studied more modern logic in the early 1950s

with Hilary Putnam who was a member of his dissertation committee.295 Robinson

recognized differences in how logic was done through history, but he proposed that one
294The article was martin Martin Davis, Hilary Putnman, “A Computing Procedure for Quantifica-

tion Theory” in Journal of the Association for Computing Machinery Volume 7, No. 3 (1960): 201 -
215.

295Biographical information on Robinson is drawn from an autobiographical talk he presented at
the 2012 Conference on Automated Deduction in Manchester England; van Emden’s oral history
with Robinson as published in Association for Automated Reasoning Newsletter, No. 89 (October
2010), online edition; and Robinson’s autobiographical accounts in “Logic and Logic Programming”
in Communications of the ACM Vol. 35, No. 3 (March 1992): 41 - 65. Robinson is still alive and
his archives remain closed to researchers at this time. I had informal conversations with Robinson at
CADE 2012, but for health and travel reasons, Robinson was not able to sit for an oral history with
me.
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thing was constant: inference steps were designed with human psychology in mind.

From Aristotle’s syllogism to Hilbert and Ackermann’s rules of inference, “steps” in

mathematical inference had been designed to accommodate the affordances of human

cognition: “Traditionally, a single step in a deduction has been required, for pragmatic

and psychological reasons, to be simple enough, broadly speaking, to be apprehended

as correct by a human being in a single intellectual act.”296 This was not surprising,

Robinson proposed, because deductive proofs were supposed to demonstrate “indu-

bitably” that certain conclusions follow from given premises:

[E]ach step of a deduction should be indubitable [...] Part of the point, then,
of the logical analysis of deductive reasoning has been to reduce complex
inferences, which are beyond the capacity of the human mind to grasp as
single steps, to chains of simpler inferences, each of which is within the
capacity of the human mind to grasp as a single transaction.297

The ‘basic unit’ of inference had historically been the “single intellectual act” of a

thinking person. Robinson did not attempt to explain what such an act consisted in

or what the intrinsic character and limitations of human cognition were, but he was

nonetheless in good intellectual company: modern mathematical logic emerged in the

first place as a study of human thinking.298

Robinson thought that the advent of digital computing made possible new kinds

of steps. They were not limited by the same psychological or cognitive characteristics

as people - indeed they may not be cognitive or psychological things at all. Robinson

wanted to explore how logic could take different forms when it was designed to capitalize

on the affordances of computers rather than the limitations of human cognition. He
296Robinson, “A Machine-Oriented Logic Based on the Resolution Principle” in Journal of the As-

sociation for Computing Machinery, Vol. 12, No, 1 (January 1965): 23 - 41, p. 23. He in fact wrote
the paper in 1963, but it didn’t make it to press until 1965.

297Robinson, “A Machine-Oriented Logic Based on the Resolution Principle,” p. 23.
298Most famous perhaps was George Boole, An Investigation of the Laws of Thought on Which are

Founded the Mathematical Theories of Logic and Probabilities (1984).
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wanted to devise new processes and new justifications for deducing true consequences

from premises:

When the agent carrying out the application of an inference principle is a
modern computing machine, the traditional limitation on the complexity of
inference principles is no longer very appropriate. More powerful principles,
involving perhaps a much greater amount of combinatorial information-
processing for a single application, become a possibility.299

Robinson wanted to capitalize on the computer’s relative ease with complex opera-

tions dealing with large amounts of information in order to make new inference steps

possible. These rules would not appear as immediately or obviously justified to even

trained human perception. Instead, these rules would be fashioned by human pro-

grammers and justified over lengthy demonstrations (indeed, Robinson’s introduction

of the Resolution Principle occupied twenty-eight pages). But once a principle was

shown to be sound even if not obviously so to a person, these rules could be executed

as a single step by a computer. The computer could infer “further” along a possible

deductive path in a single step that a person could in pages of steps. These rules would

be difficult for people to understand and impossible for people to use in all the simplest

cases. The resolution principle was Robinson’s first example of a “computer-oriented”

logical principle.

Resolution was a procedure for taking a set of at least two “parent” clauses and

combing them in a particular way so as to create new “child” clauses - called the resol-

vents. The parent clauses had to have a particular feature in order for the resolution

principle to be applied: they had to contain what were called “complimentary literals.”

This feature was defined as follows in the AURA manual: “The condition is that there

exist a literal in each clause which, after a consistent replacement of well-formed ex-

pressions for the variables in each literal, become identical except for sign which must
299Robinson, “A Machine-Oriented Logic Based on the Resolution Principle,” p. 24.
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be opposite.”300 Two literals are complimentary if, under a certain assignment, one is

the negation of the other. Each of the parent clauses must contain such literals. For

example, consider the following two clauses: (1) P (X) Q(X), (2) �P (A) S(X). By

assigning A to X, the first literal in (1) will be the negation of the first literal in (2).301

Applying the resolution principle to this pair of clauses would produce a new clause

containing all the literals of its parent clauses except the complimentary ones. In this

example, the two clauses would resolve into (3) Q(A) S(X).

Presented this way, the rule may seem simple enough. However, these literals repre-

sent statements in the predicate calculus and these can be arbitrarily long and complex

in their own right. More, the resolution principle could be applied to sets of any num-

ber of parent clauses, not just two. Still more, applications of the resolution principle

checked to see if there were variable assignments that would create the necessary com-

plimentary literals to make them candidates for resolution. The work done by a single

application of the resolution principle could require pages of by-hand analysis. The rule

in fact was so powerful that “it alone, as a sole inference principle, forms a complete

system of first-order logic.”302 That is to say that every provable theorem in first-order

logic can be proved by the application of the resolution principle alone, where prior

formulations involved many rules.

If resolution was so complex that it wasn’t easily apprehended “as correct” in a

single cognitive act, then how could Robinson claim that it was a sound rule of infer-

ence at all? He had to prove that it was. In the article where Robinson introduces

resolution, he also provides proofs that the resolvents in fact follow from the parent
300Smith, Reference Manual for the Environmental Theorem Prover, p. 10.
301This example is given in Smith, Reference Manual for the Environmental Theorem Prover, p. 10.
302Robinson, “A Machine-Oriented Logic Based on the Resolution Principle,”, p. 24. First-order

logic falls in between the propositional calculus and the predicate calculus that we have seen before.
It is more complex that propositional calculus because it contains the quantifiers “for all” and “there
exists.” However, it is simpler than the complete or higher-order predicate calculus because the kinds
of values that can be assigned to its variables is restricted.
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clauses, that any parent clauses containing complimentary literals can be so-resolved,

and so on. Robinson offers traditional, surveyable proofs to justify the resolution prin-

ciple as a tool for proving other theorems by computer. Robinson wrote that “The

resolution principle is quite powerful [...] in the psychological sense that it condones

single inferences which are often beyond the ability of the human to grasp (other than

discursively).”303 This was an inference principle that people would “grasp” by way of

demonstration or, discursive demonstration - by way of proofs, rather than by psycho-

logical perception. This “indirect” demonstration is an example of the epistemological

significance of automation - proof about inference replaces direct access to inference in

understandings and justifications of proof techniques.304

In attempting to pass on the underlying intuition of resolution to his students, one

computer scientist at the University of Texas at Austin, Gordon S. Novak Jr. created

the following example:

Consider the following axioms:
1. All hounds howl at night.
2. Anyone who has any cats will not have any mice.
3. Light sleepers do not have anything which howls at night.
4. John has either a cat or a hound.305

Novak demonstrates that one application of the resolution principle produces from

these axioms the conclusion “If John is a light sleeper, then John does not have any

mice.” Resolution works only for “proof by contradiction” in which the conclusion is
303Robinson, “A Machine-Oriented Logic Based on the Resolution Principle,” p. 24.
304Of course, there are those who question the “immediacy” and the “obviousness” of even more basic

logical inference. What makes it obvious that the basic rules of inference are sound? What forces
someone to adhere to them? The claim that some things just obviously follow from others is justified
only by that supposed obviousness. C.S. Lewis offers a critique of that claim in his delightful piece,
“What the Tortoise Said to Achilles” in Mind Vol. 4, No 14 (April 1895): 278 - 280. This piece is
made famous in Douglas Hofstadter’s Gödel, Escher, Bach: An Eternal Golden Braid (New York,
NY: Basic Books, 1979).

305Gordon Novak, “Resolution Example and Exercises,” http://www.cs.utexas.edu/users/novak/reso.html.
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included as an axiom and it is shown that a contradiction occurs. So in what follows

this conclusion will be statement 5., the fifth axiom.

Novak instructs the students that in order to reach this conclusion using the reso-

lution principle, one need only first transform the propositions into a particular form -

conjunctive normal form - in which only the OR logical operator is used. In that form,

the presence of complimentary literals can be seen and the axioms “resolved” in differ-

ent combinations to achieve eventually the desired conclusion. For this example, the

transformation of axioms into well-formed formulas in the predicate calculus and finally

to conjunctive normal form can be relatively easily achieved and automated. I will use

different notation than Novak for the sake of consistency with notation throughout this

dissertation, but the underlying statements are equivalent.

1. 8x : HOUND(x) =) HOWL(x)

2. 8x8y : (HAV E(x, y) ^ (CAT (y)) =) ¬(9z : HAV E(x, z) ^MOUSE(z))

3. 8x : LIGHTSLEEPER(x) =) ¬(9y(HAV E(x, y) ^HOWL(y)))

4. 9x : HAV E(JOHN, x) ^ (CAT (x) _HOUND(x))

5. (Conclusion) LIGHTSLEEPER(JOHN) =) ¬(9zHAV E(JOHN, z)^MOUSE(z))

These well-formed predicate statements translate into conjunctive normal form as fol-

lows:

1. ¬HOUND(x) _HOWL(x)

2. ¬HAV E(x, y) _ ¬CAT (y) _ ¬HAV E(x, z) _ (¬(MOUSE(z))

3. ¬LIGHTSLEEPER(x) _ ¬HAV E(x, y) _ ¬HOWL(y)

4. a: HAV E(JOHN, a); b: CAT (a) _HOUND(a)

5. a: LIGHTSLEEPER(JOHN); b:HAV E(JOHN, b); c: MOUSE(b)
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The resolution is based on the presence of complimentary literals in parent clauses -

that is, two clauses can only be “resolved” if one contains a negation of some literal

found in the other. Resolution allows the following new clauses to be created in this

way:

• Clauses 1. and 4.b contain the complimentary literal HOUND and ¬HOUND
and with resolution they create
6. CAT (a) _HOWL(a) (a new clause without any appearance of HOUND)

• Clauses 2. and 5.c. contain the complimentary literals MOUSE and ¬MOUSE
and can be resolved into
7. ¬HAV E(x, y) _ ¬CAT (y) _ ¬HAV E(x, b)

• Clauses 7 and 5.b resolve into
8. ¬HAV E(JOHN, y) _ ¬(CAT (y)

• Clauses 6. and 8. resolve into
9. ¬HAV E(JOHN, a) _HOWL(a)

• Clauses 4.a and 9. resolve into
10. HOWL(a)

• Clauses 3. and 10. resolve into
11. ¬LIGHTSLEEPER(x) _ ¬HAV E(x, a)

• Clauses 4.a. and 11 resolve into
12. ¬LIGHTSLEEPER(JOHN)

• However we now have a contradiction. 12. amounts to “John is not a light sleeper”
but we have from 5.a. that John is a light sleeper. So with 5.a. and 12 we have
the desired conclusion, demonstrating that the originally assumed conclusion is,
in fact, correct.

This example highlights the extent to which resolution is dependent upon form. Rather

than serving some secondary function, the structure given to logical propositions in

this case makes visible the element that enables resolution, namely, complimentary

literals. Conjunctive normal form was not devised in service of resolution. It was

developed earlier in the twentieth century as a means of “simplifying” logic in the
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sense that statements in conjuctive normal form have a predictable and repetetive

form. This choice of representation enables certain patterns to become visible, like

the complimentary literals in logical propositions. However, what is in one sense a

“simplification,” i.e. a reduction in the number of operators, was, at the same time,

a complication. Propositions in conjunctive normal form become as a rule longer and

more unwieldily. This is a reason why computers were better suited to exploit the

structural features of the notation. When computers apply resolution, they check to

see if a given set of propositions can be transformed into clauses in conjunctive normal

form containing complimentary literals far far beyond what unaided people can do.

I also think this example highlights the extent to which resolution is not obvious. In

calling on resolution, I am relying on Robinson’s extensive proofs of its correctness as

a principle. I know that I can take two propositions in the right form and resolve them

into a new clause, but I don’t know why until I survey and study Robinson’s proof of

its correctness. Of course, mathematicians do this all the time - they rely on previous

results and incorporate them into their current research. However, they did not do

this in logic, relative to inference principles. Those principles were meant to capture

the basic steps of reasoning, our primitive notions of what follows from what which is

what was meant to guarantee that the results were correct. Robinson turned to explore

different possibilities for logic because he wanted to capitalize on computation not build

mathematics up from the bottom according to primitive human cognizing. They could

infer more and faster and differently. And more and faster really was different.

Resolution transformed automated theorem-proving: the principle was built in to

countless theorem-proving program and many practitioners worked to design variations

of the principle for their specific theorem-proving goals. AURA was among the earliest

resolution-based programs, and it was the first collaborative theorem-proving program

to use the resolution principle. And herein lay what I take to be one final element of
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epistemological significance related to AURA: the program would arrive at conclusions

or exhibit behavior that the users did not understand. They simply did not know

where AURA would end up when “inferring” its way around a problem using resolution.

Although the program followed paths given by user weighting templates, it often ended

up in places that surprised the users. In using AURA and studying the results, the

Argonne team developed a different kind of intuitions and perspectives than the ones

they initially set out to preserve. They developed an experimentally and empirically

grounded set of intuitions about resolution - about how their computer program might

behave - rather than merely intuitions about the mathematical problem at hand.

Empirical Intuition: “The Quickest sand Surest Way

to Insight”

The Argonne group was committed to an experimental regime. Rather than applying

theoretical models of the human mind as Newell and Simon did, or building in a fixed

set of logical principles like Wang did, the Argonne group experimented extensively

with different test problems to observe how AURA behaved under different conditions.

They spent huge amounts of time pouring over AURA’s output - printed lists of clauses

recording what paths AURA took during some proof search. They used these outputs

to understand what AURA was doing, but they also used these outputs to try and

identify promising behavior : they looked for patterns and search paths in the output

clauses hoping to isolate what appeared to be fruitful directions of inference for different

kinds of problems. They would also identify what they thought were repetitive and

uninteresting trajectories in order to retard the engine’s pursuit of them.

This empirical and experimental evidence would in turn shape the kind of weighting
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templates the users input to the program. This is remarkable because those templates

were designed to capture traditional mathematical intuitions about how to proceed in

a given proof. Instead, many weighting templates reflected the Argonne team’s grow-

ing familiarity with the behavior of resolution-based computational inference. These

intuitions were grounded in empirical experience with the program. The users’ sense

of what information to weight emerged from understanding which algorithms cut down

clause development in what ways and what patterns were visible in AURA’s output on

various inputs. Experimentation with and knowledge of the AURA program, rather

than the “knowledge and experience” with mathematics provided the content, the struc-

ture, and the sources of weighting insights.

For example, one of the earliest strategies developed at Argonne - the Unit Prefer-

ence Strategy - prioritized shorter clauses over longer ones. Wos presents the strategy

in direct response to the nature of clause generation from engines that use the resolu-

tion principle. Resolution only permits the inference of new clauses when it is known

in advance that the resulting clause was not derivable from either parent clause alone:

[The Unit Preference Strategy] arises from the fact that the object of the
resolution principle is the generation through inferences of two unit clauses
which are manifestly contradictory... With this in mind, it seemed worth-
while to orient the program to produce shorter and still shorter clauses in
preference to other possible inferences.306

After extensive experimentation with resolution-based machines, the Argonne group

decided that more productive contradictions were formed between shorter clauses. The

human intuition was based on a sense of ‘productive contradictions’ which was in turn

grounded in experimentation and the a posteriori analysis of resolution-based behavior.
306Wos uses ‘contradictory’ in the equivalent sense described earlier in which parent clauses for

resolution must contain complimentary literals. If one clause contained the L and the other contained
not-L (represented with a minus sign as -L), these clauses had the desired character. Wos, “Unit
Preference Strategy in Theorem Proving”, p. 20.
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A second form of intuition could be imparted to AURA in the SYSIN file through

the “Set of Support Strategy”. This mechanism allowed human users to restrict what

sequences of inferences AURA could make.307 Users could input a list of inferences

at least one of which must precede every subsequent inference, as a way of preventing

AURA from indiscriminately inferring anything permissible. Through this mechanism,

the human user could encode intuitions about what combinations, patterns, or se-

quences of inferences produced types of clauses that might be relevant to the theorem

in question and prevent what was perceived as unproductive swapping of uninteresting

equalities. Even more than weighting, such intuitions were tied to extensive experi-

mental knowledge of AURA’s runs and which search paths and decision trees resulted

from the application of various sequences of inference rules and what kinds of clauses

they produced. The weighting strategy and the Set of Support strategy are obviously

not the product of traditional mathematical Eureka moments. Rather than bringing

some human insight into the mathematical problem at hand, users brought insights

about computation and AURA’s behavior relative to a mathematical problem.

In some sense, AURA’s contributions resemble the preliminary ‘scratch work’ math-

ematicians use to approach a new problem. They often try several cases and examples,

and search for patterns or useful analogies in order to guide their approach to a proof.

By offloading that part of the work to AURA, the resulting human insights were not

about the mathematical problem at hand, but about the behavior of a computer pro-

gram.308 Here, transformations in mathematical practice were not restricted to the
307Smith, Reference Manual for the Environmental Theorem Prover, pp. 10 -11.
308The humans+AURA system qualifies as what Andy Clark and David Chalmers call a “coupled

system” of extended cognition: “If, as we confront a task, a part of the world functions as a process
which, were it done in the head, we would have no hesitation in recognizing as part of the cognitive
process, then that part of the world is (so we claim) part of the cognitive process. Cognitive processes
ain’t all in the head!... In these cases, the human organism is linked with an external entity in a
two-way interaction, creating a coupled system that can be seen as a cognitive system in its own right.
All components in the system play an active causal role, and they jointly govern behavior in the same
sort of way that cognition usually does”. Clark, Chalmers. “The Extended Mind” in The Extended
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process of implementation, but continued as users gained experience and new insights

from working with the program.

A third form of human-AURA interaction was not part of the SYSIN file. Steve

Winker believed that proof-seeking involved more than deductive inferences.309 Hu-

mans, equipped with their unautomatable intuitions, also construct models of prob-

lems and search for counter-examples. He therefore devised a way for human users

and AURA to collaborate in building simple models of problems to further structure

proof searches. It was the addition of this mechanism that lead to AURA’s successes

in answering open problems from pure mathematics. To understand what is meant

by ‘model’, consider an example from Ternary Boolean Algebra; such algebras are de-

fined by a set of five axioms built with five variables and two functions (one giving

the product and the other, the inverse).310 It was an open problem whether or not

any of the axioms were independent - meaning that they could not be derived from

any combination of the other four. The fourth and fifth axioms were already known

to be dependent - meaning they could be derived from the others - but the question

remained open for the rest.311 In order to show the independence of, for example, the

first axiom, it was thought sufficient to find values for each variable that satisfied all

of the axioms except the first: if the first axiom could be derived from the others,

Mind, ed. Menary. Cambridge: MIT Press, 2010, pp. 27 - 42 at p. 29.
309Winker, Steve. “Generation and Verification of Finite Models and Counterexamples Using an

Atuomated Theorem Prover Answering Two Open Questions”, in Journal of the Association for Com-
puting Machinery, Vol. 29, No 2 (April 1982) pp. 273 - 284.

310A list of the axioms is available from Wos, “Solving Open Questions with an Automated Theorem-
Proving Program” in Proceedings of the Sixth Conference on Automated Deduction, Vol. 138 (1982)
at p. 1.

311This result was established by another automated theorem prover designed by J. Allen and D.
Luckham. See “An interactive theorem-proving program” in Machine Intelligence, Vol. 5 (1970),
pp. 321 - 336. Dependence of axioms, it turns out, is quite easy to demonstrate with an automated
theorem prover: all you have to do is produce many deductions and check if an axiom is among the
conclusions. Independence is much more difficult to establish because we need to show that it is
impossible to decude one axiom from the others, which cannot be done by enumerating the infinitely
many possible deductions.
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whenever they were true, the first must also be true. In this example, Winker wanted

human users and AURA to collaboratively develop a model consisting of a revealing

domain of values that could be checked for each axiom to see if this was the case.

Winker’s model-producing method capitalized on certain features of using AURA

that I have identified here: he emphasized that “no properties of the field of math-

ematics to which the method is applied are used in the method for” producing the

model.312 Humans could have mathematically relevant insights about a problem based

on interactions with AURA without necessarily having more traditional mathematical

knowledge of a problem. The method consisted in three phases, each separated by an

exchange of information between the human and the AURA. The fascinating shift in

the character of mathematical intuition towards pattern recognition and a posteriori

structural experimentation is most clear in this design feature.

First, AURA was run on a problem according to the standard protocols to produce

many clauses, giving the human user more information to work with. This phase was

based on the insight that “mathematical axiom systems are near-minimal... sets that

express only the bare necessities to define the mathematical structure under study.

Such axiom systems certainly do not include large numbers of extra “interesting” iden-

tities”.313 In the first phase AURA provided the user with thousands of printed clauses

to peruse in search of ones that appear interesting, useful, or important to the user

and again, these value judgements were based on experimental knowledge of AURA’s

behavior. The human took the insights and equalities gleaned from the first phase

and returned to AURA a partial model for testing. AURA then performed a second

run, this time incorporating the the incomplete model and output all those equalities
312Winker, “Generation and Verification of Finite Models and Counterexamples Using an Automated

Theorem Prover Answering Two Open Questions”, p. 274.
313Winker, “Generation and Verification of Finite Models and Counterexamples Using an Automated

Theorem Prover”, p. 278.
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or formulas that pertain to the missing parts. Again, the user studied thousands of

printed clauses looking for patterns and potentially useful identities in order to com-

plete the model. AURA then, without further human input, checked every instance

of the model. For the case of Ternary Boolean Algebras, AURA checked that every

instance of the model satisfied all axioms except the first. If the verification run was

successful, and in this case it was, the desired theorem would be proved. Therefore, in

1978 humans+AURA proved that, indeed, the first three axioms of Ternary Boolean

Algebras are independent, thus making their first novel contribution to mathematical

knowledge.

Each instance of human input based on the Argonne team’s idea of what was

interesting, what was potentially and important, and what might work - weighting,

Set of Support, and model construction - was based on extensive experimentation and

intimate knowledge of the lists of clauses AURA output on various previous runs.

Ross Overbeek’s made the following revealing statement about the Argonne group’s

methodology:

I began to realize that Wos took experimentation very seriously... Most
of our work together focused on laying out a set of problems that could
not be solved, examining thousands of output clauses to determine what
was going wrong, designing algorithms to correct the situation, and then
observing the result. This is the first and most central aspect of Argonne
culture: ... Rule 1. Run experiments and observe what is going wrong. It’s
the quickest and surest way to insight.314

Furthermore, Overbeek acknowledged that the kind of intuition needed to successfully

collaborate with AURA was not simply or obviously logical or mathematical intuition.

In fact, he proposed that “the trained logicians, with the exception of George Robinson,

really had little idea of how the proposed algorithms actually worked (or why they did
314Overbeek, “Wos and Automated Deduction at ANL: The Ethos” in Automated Reasoning and Its

Applications; Essays in Honor of Larry Wos, ed. Robert Veroff, Gail Pieper. Cambridge: MIT Press,
1997, pp. 1 - 12 at pp. 2 - 3. My emphasis.
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not work)”.315 This was not traditional mathematical intuition; it was technological

and computational intuition, grounded in experimental experience and a posteriori

revelation. And yet, this new collaborative and experimental method led to solutions

of open mathematical problems.

Conclusions: Open Problems

Throughout the dissertation, I have argued that implementation has epistemological

significance. In designing computer programs for proving theorems and actually mak-

ing them run, new mathematical knowledge known in new ways emerge. These are

associated with the practices and perspectives that came out of reconceptualizing ele-

ments of mathematics through the lens of computing. The theorem-proving programs I

discussed in previous chapters, however, only proved theorems that were already known

to be theorems. The AURA, however, worked with human users to provide proofs for

previously open problems. And unlike, for example, the computer-assisted proof of the

Four Color Theorem, it was not known in advance what contribution the computer

would ultimately make to these new solutions.

Upon receiving the “Award for Current Research in Automated Theorem-Proving,”

Wos and Winker recounted their experience working with AURA to solve two open

problems. The anecdotes, taken from Finite Semigroups and Equivalential Calculus,

were designed to demonstrate that AURA could enable and surprise its users beyond

what traditional mathematicians might expect. In the case of Finite Semigroups, the

Argonne team knew so little that they misunderstood an open problem completely and

in the first instance ended up proving the wrong thing all together.316 After realizing
315Personal email from Overbeek, November 2010.
316Wos, Winker; “Open Questions Solved with the Assistance of AURA”, pp. 75 - 77.
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this, they went on to work with AURA to solve the real problem in 1981.317 They used

this case to emphasize that AURA had enabled them to work in fields beyond their

knowledge. In the case of Equivalential Calculus, after many unsuccessful runs, Brian

Smith attempted to force AURA to recreate a known proof of some theorem using

weighting. Instead, AURA went ahead and “found a proof half as long”.318 Even the

heavy-handed imposition of the user’s knowledge could lead to surprising results.319

The Argonne team, in spite of always emphasizing the necessity of human insight

and experience in the work of mathematics, proposed that AURA’s assistance made

possible new and surprising possibilities for the work of proof. Not just implementation

but also use had transformative epistemological significance. Wos has even indicated

that, if it weren’t for the fact that he may not have been taken seriously by journal

editors, he would have liked to include the name of his Automated Reasoning engines

as co-authors of produced proofs.320

However, the Argonne group did not justify AURA’s value merely in terms of the

theorems they proved with it. Similarly, AURA’s relevance to the history of mathe-

matics is not in its contributing grand theorems to the corpus of mathematical truths.

Instead, the Argonne team proposed that a new way of contributing to mathematical

knowledge was made possible through collaboration with their unconventional assis-

tant. AURA’s significance to the history of mathematics is similarly grounded in its

revealing how the image of mathematics, the practice of mathematics and the way

in which mathematical problems are understood and solved are constantly negotiated

within the material culture and practices of mathematical communities. I have also
317Winker, Wos; “Semigroups, antiautomorphisms, and involutions: a computer solution to an open

problem, I,” in Mathematics of Computation, Vol. 37 (1981), pp. 533 - 545.
318Wos, Winker; “Open Questions Solved with the Assistance of AURA”, p. 78.
319Hans Jörg Rheinberger’s concept of an “experimental system” is meant to capture precisely how

very disciplined scientific instruments can still produce surprises in the making of scientific knowledge.
See Toward a History of Experimental Things (Stanford University Press, 1997).

320Wos interview.
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argued that mathematical intuition took on new form and new content - intuitions

trained by working with software and about that software’s behavior - were introduced

as possibilities for theorem-proving.

192



Conclusion: Reflections on the

Aftermath

Intuition and Inference: (Re)configuring Minds and

Computing

To compare people to computers, even to say that they are different, transforms the

terms within which both are understood. Lucy Suchman made this point in Human-

Machine Reconfigurations, relative to the development of emotive robotics. Following

the work of Monica Casper and Sara Ahmed, she would challenge any account that

seeks to distinguish “human” from “nonhuman” in advance of historical or sociological

analysis:

[E]mpirical investigations of the concrete practices through which categories
of human and nonhuman are mobilized become salient within particular
fields of action. And in thinking through relations of sameness and dif-
ference more broadly, Ahmed (1998) proposes a shift from a concern with
these questions as something to be settled once and for all to the occasioned
inquiry of “which differences matter, here.”321

321Suchman, Human-Machine Reconfigurations, pp. 1 - 2. Casper, Monica. “Reframing and ground-
ing nonhuman agency: What makes a fetus an agent” in American Behavioral Scientist, Vol. 37 (1994):
839 - 856. Sara Ahmed, Differences that Matter: Feminist Theory and Postmodernism (Cambridge
UK: Cambridge University Press, 1998).
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Following Suchman who inspired the subtitle of this dissertation, I ask - which differ-

ences mattered here, in this particular field of action, in automated theorem-proving?

How were humans and computers understood relative to one another in the hands of

those who sought to automate mathematical proof? What categories of human and

nonhuman were mobilized and salient within attempts to automate the work of proof?

My actors disagreed, as we have seen, about how and how much computers resem-

bled their human counterparts in pursuing the work of proof. But their disagreement

went deeper than that - in establishing “sameness” or “difference” between people and

computers, they fashioned each differently, according to particular, carefully chosen

theories of human faculties and machine possibilities.

For Newell and Simon, if computers were going to be admitted as agents of proof,

they would have to exhibit the same faculties that supported human mathematical

agency. The lens of systems analysis, a dominant research paradigm at RAND, en-

abled them to perceive a fundamental sameness between human minds and digital

computers. For them, both were “species of the genus information processor” - sys-

tematic, algorithmic manipulators of symbolic information.322 Human mathematical

agency was constituted by faculties of deductive reasoning and heuristic search, each

construed as a formalizable rule-bound process. If they could identify those rules of

reason and those heuristics, they could program a computer to perform the very same.

Newell and Simon were not concerned that this problem-solving behavior would be

made manifest in quite different material substrata - brains and computers, that is.

They focused on higher-level formal behavior as the fundamental seat of reasoning and

intuition and they believed that this formal faculty could be shared between human and

machine. In fashioning human-computer similarity, Newell and Simon de-emphasized
322Newell, Simon, Human Problem Solving. Vol. 104, No. 8. Englewood Cliffs, NJ: Prentice-Hall,

1972 as cited in Heyck, “Defining the Computer, Part I,” p. 43.
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human bodies and brains and lived experiences. The faculties of mathematical intuition

and imagination, associated by others like Wos with embodied experience, irrationality,

or the unconscious, were for Newell and Simon exercises in rule-bound information

processing. Although this vision of mathematical reasoning as a disembodied, rule-

bound, symbolic enterprise has a history dating back to the nineteenth century at

least, it was given new formulations in the context of computation. Brains became

the “hardware” in which the mind - associated with “programs” or “software” - was

realized. The overwhelming material differences between human brains and bodies

and the mammoth metal machines that constituted 1950s computing were quieted

through the characterization of reasoning as an abstract formal activity.

Hao Wang did not see a fundamental sameness between human reason and compu-

tation. He didn’t just disagree with the comparison, he disagreed with the formulation

of human faculties that made it possible. He didn’t recognize human intuition and

human practice in Newell and Simon’s automatable heuristics. Wang believed that hu-

man mathematical faculties were only partially, rather than entirely, rule bound. Some

of what we do could be reduced to algorithmic processes and subsequently automated,

but other parts of what we do could not.323 For Wang, human thinking was a contingent

and complicated faculty, shaped by the particular experiences and circumstances of the

thinker. In 1983, upon receipt of the AMS Milestone award for automated theorem-

proving, he remarked that “[a] particular act of recognition or reasoning depends on

one’s genes, the history of one’s mind and body, some essential relation to desire, even

race, class, sex and many other factors. Of most of these factors we have at best an
323It is perhaps worth noting that this position resembles, and precedes by a few decades, sociologist

of science Harry Collins’ criticism of Artificial Intelligence - that computers will only be capable of
intelligence in those domains where human activity has already been mechanized, like calculation.
Other domains where tacit, embodied, and deeply social dimensions constitute human knowledge,
will prohibit automation. Collins, Artificial Experts: Social Knowledge and Intelligent Machines.
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imperfect knowledge and understanding.”324 Human reasoning could not be reduced

to a universal formalism because each person’s reasoning faculty develops uniquely

according to numerous, only partially understood factors. What Wang recognized in

computation was instead an ideal human reasoning agent, one historically imagined by

logicians, philosophers, and mathematicians to proceed according to formality alone.

He faulted Newell and Simon for accepting as truth the myth that human mathemat-

ical reasoning was rule-bound, algorithmic, disembodied. What they automated was

an abstract model of the mathematician that resembled actual mathematicians just as

much as computers resembled brains.

Wang fashioned difference between people and computers on quantitative and ma-

terial grounds. Even where human practices and faculties did operate according to

some automatable rule, computers would be able to follow more of those rules faster

and further and more efficiently than any person could. And for Wang, more was differ-

ent - this speed and efficiency opened up new possibilities for theorem-proving agency.

In his fashioning, the materiality of people mattered - it shaped their reasoning facul-

ties. And the materiality of computers mattered too - the technological specificity of

modern computers afforded them speed and efficiency that would be impossible for an

unaided person.

From where Wang stood, there was a deep difference between humans and machines

tied to the different possibilities that different forms of embodiment could afford. Al-

though they would never reason like people or prove theorems like people, computers

could approximate an ideal of the mathematician, leaving the real ones behind, and in

so doing become powerful but quite different agents of proof.
324Wang, “Computer Theorem Proving and Artificial Intelligence” in Automated Theorem Proving:

After 25 Years, p. 55.
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The approach of the Argonne group represented a kind of synthesis to the “thesis”

and “antithesis” presented by Newell-Simon and Wang. They agreed with the former

that intuition was a fundamental element of mathematical research, but they disagreed

that it could be automated. They agreed with Wang that computers, by following rules

faster and further than people, opened up new and powerful possibilities for deduction,

but they disagreed that such methods could constitute proof on their own, in the

absence of human intuition and understanding.

Larry Wos, accordingly directed early automated theorem-proving research at Ar-

gonne toward the development of collaborative software that would incorporate both

human intuitions and computational power. Like Wang, they primarily emphasized

difference between human and machine - associating unautomatable intuitions with

the former and fast, efficient deduction with the latter. But in fashioning these facul-

ties so as to emphasize difference, they posited a third agent - the hybrid collaborative

human-computer agent that would be capable of proving theorems in ways that would

be impossible for each on their own.325 They parsed the work of proof into two com-

ponents - intuition, reserved for human users, and inference, assigned to computers,

which together would constitute a superior and quite new form of collaborative and

hybrid agency of proof.

In each case, the prospect of automation prompted practitioners to reflect on the

character of human faculties through the lens of computation. Practitioners identified

faculties like mathematical intuition and deductive reasoning as either rule-bound or

not, embodied or not, unique or not. Their questions were as new as computers. That

is to say they were at once very new and very old. Recent histories of computing

walk a precarious line, emphasizing on the one hand, that computers did not represent

a decisive break from the machines and practices that preceded them, while on the
325I explore this hybrid agency in Dick, “AfterMath.”
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other hand, admitting significant novelty. Similarly, questions about the sameness and

difference that obtains between people and computers took up centuries-old threads

dating back to debates about mechanism, determinism, and mind-body dualism.

In another sense, these questions were very new. This was in part given the novel

metaphorical, practical, and technical resources - like programming languages, hard-

ware and software, studies of algorithm and complexity - that were mobilized in service

of these debates where computers were involved. Where human faculties were seen as

of-a-kind with computation, they had to be understood in these terms and translated

into these tools. And where human faculties were being opposed to computation, they

had to be defined with the scepter of this quite particular “other.”

The practitioners I studied in this dissertation didn’t just disagree about how much

computers were like people. While fashioning sameness and difference between them,

these practitioners emphasized different characteristics - materialities and formalisms,

speeds and temporalities, rules and indeterminacies. Not only did I want to under-

stand the differences and samenesses that my actors carved out between people and

machines and theorem-provers, I wanted to know how these were in turn translated

into their actual software development. I wanted to know what they did with these

configurations, what new practices and tools they introduced to proof in tandem.

Practitioners of automated theorem-proving reflected upon the character of human

mathematical faculties through the lens of computation, in order to fashion sameness

and/or difference between them. In this way those faculties were (re)configured -

parsed in new ways, understood through new metaphors, held together or apart from

elements of the new technology. But that technology was (re)configured in tandem,

as practitioners developed quite different sets of tools and techniques to embody their

views. I have argued that you could not translate views about the relationship of

people and machines into running programs without transforming them yet again.
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Consider for example, the very different ideas of human intuition that were at work

in the Logic Theory Machine and the AURA. Both development teams wanted to pre-

serve human intuition, unchanged. In the case of the former, Newell and Simon sought

to identify the heuristic rules that lay at the heart of human intuition and automate

them. The Argonne group who developed AURA did not believe that intuition could

be so automated, and instead wanted to provide human intuitions to computers from

the outside to guide their deductive search. A particular vision of human intuition

informed each project, and both wanted to keep that vision in tact in the context of

computer proof. But in each case, human intuition in fact was given a quite different

form, visible only when one attends to often neglected process of implementation.

In the case of the Logic Theory Machine, Newell, Simon, and Shaw developed a

whole new programming language thought to capture the kind of “symbolic information

processing” at work in human minds. In that language, as I discussed in Chapter

One, objects were represented in a particular way - namely as “linked list information

structures” - and manipulated according to particular processes - namely, list processing

operations. This formal and material system, I argued, represented a very decisive

break from the paper-based representations and operations with which human logicians

worked on logical proof. The system introduced quite foreign processes and structures

to the logic of Russell and Whitehead that Newell and Simon sought to preserve in

automation.

Wos and his team also sought to preserve the character of human intuition in de-

veloping the AURA. Unlike Newell and Simon, however, they did not believe that

intuition could be reduced to a set of rules and automated. Instead, they cordoned

off intuition as a uniquely human faculty. They wanted human users to provide their

unautomatable intuitions to AURA to guide the latter’s deductive search, prioritizing

certain inferential paths over others. But even here, where they did not seek to au-
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tomate intuition at all, that faculty was still given a very new formulation. If human

users were going to collaborate with the AURA, if they were going to provide it with

their intuitions, these latter had to be transformed into input. Intuitions had to be

translated into a form that the computer could understand. As discussed in Chapter

Three, Ross Overbeek developed what was called a “weighting mechanism” by which

users could input templates for patterns of inference and forms of logical proposition

that were to be prioritized or avoided. These weighting templates were a far cry from

the uniquely human, unautomtable “Eureka” moments that Wos sought to preserve.

They represented a translation of that view into an actionable computational tool, part

of an interface that enabled a particular form of human-computer collaboration in the

work of proof.

In a sense, Newell-Simon and the Argonne team operated with opposite views

of intuition. For the former, it was rule-bound, automatable, heuristic search. For

the latter, it was unautomatable, embodied, and uniquely human. Each devised a

set of computational tools to put those visions of intuition to work in the context of

automated theorem-proving. In both cases, the computational tools developed diverged

in quite significant ways from the vision of human intuition that preceded it. In both

cases, that vision of human intuition had to be made to accommodate the limitations

and constraints of computation. That translation was always transformative, even in

cases like this where practitioners sought to preserve something human.

Interesting transformations also took place where practitioners sought instead to

harness the power, speed, and efficacy of computation for something decidedly not

human. Both Hao Wang and John Alan Robinson were interested in what computers

made possible for proof that would be impossible for their human counterparts. In

developing the Program P, Wang worked with an existing theorem from mathemati-

cal logic, Herbrand’s Theorem. That theorem, as seen in Chapter Two, established a
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relationship between propositional logic and the more complex predicate logic, giving

an algorithm for proving theorems from the latter using only tools from the former.

However, it was impossible to actually use this algorithm to prove theorems because it

would require the execution of an infinite number of steps. Only some “ideal” math-

ematician that could go one applying the theorem’s dictates forever would be able to

actually prove theorems this way.

The theorem instead offered a particular insight - a way of understanding two

branches of logic in terms of one another. Wang believed that computers better ap-

proximated that “ideal” mathematician better than any person. He took Herbrand’s

theorem - an “in principle” algorithm - and he transformed it into a set of compu-

tational tools. The Program P deployed methods of so-called pattern recognition by

sequential tables that produced actual proofs of predicate theorems in terms of the in-

frastructure of propositional calculus, methods that were beyond the reach of unaided

human mathematicians who could not execute enough steps to realize them. Here,

the epistemological status of Herbrand’s theorem was transformed. The theorem went

from being a kind of “meta” insight about the relationship between two branches of

logic to an actionable tool kit for producing proofs. It went from being an imaginary

algorithm to an actual set of computational operations. With it, the ideal mathemati-

cian who could go on forever, was partially actualized by a machine that could go on

much further and faster than any person could.

John Alan Robinson also sought to exceed perceived human limitations with com-

puters, and precipitated an epistemological transformation as a result. He proposed

that, through all of history, the rules of logical inference, the deductive scaffolding

that held logical formalism together, were decisively human-oriented. Those rules were

meant to capture steps for moving from something true to something else true in a

manner that could be perceived as correct by human minds, with all of their particular
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psychological and combinatorial limitations.

Computers did not share these limitations and neither, Robinson believed, should

their logics. He set to work devising computer-oriented logics with new inference rules

that may not be perceptible to people, but that computers could easily execute. The

Resolution Principle was just such a rule. As discussed in Chapter Three, it was pow-

erful enough to replace all of the inference rules in Principia Mathematica, sufficing

alone as the mechanism for establishing the theorems in those volumes. Resolution

enabled computers to find more efficient paths through the sets of permissible infer-

ences, finding shorter routes to desired theorems. But resolution was hard for humans

to follow. It was too complex to be perceived as intuitively or obviously correct by

human logicians. And the proofs it produced quickly became intractable as well.

In developing the Resolution Principle, Robinson precipitated a transformation of

logic itself. Logic was once the project of identifying and capturing the basic units of

human thought. George Boole, a founding father of the discipline, in fact took these

to be one and the same, as evidenced by the title of his most foundational work -

An Investigation of the Laws of Thought, On Which are Founded the Mathematical

Theories of Logic and Probabilities.

When Russell and Whitehead elected logic as the foundation for all of mathemat-

ics, within which its truths could be established, they too wanted to make explicit

the “primitive ideas” and the “simplest and most convenient notation” in order, ul-

timately, to enable the “complete enumeration of all the ideas and steps in reasoning

employed in mathematics.”326 They didn’t want the most economical or powerful steps

for reasoning but the ones that captured and made clear what right human logical rea-

soning looks like and how that accounts for the truths of mathematics. Resolution,

and other computer-oriented logics like it, were not primitive, they weren’t simple, and
326Whitehead, Russell, Principia Mathematica, Volume One, pp. 1 - 3.
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they weren’t convenient for human perception. Where they were developed and set in

motion, logic was disassociated from human thinking.

This disassociation had an institutional dimension as well. Resolution-based proofs

were not recognized, for obvious reasons, as part of Artificial Intelligence research. Au-

tomated theorem-proving based on formal logics that did not necessarily accommodate

human thinking was “found lacking” by the Artificial Intelligence Community.327 As

such, different designators were chosen - especially “Automated Deduction” and “Au-

tomated Reasoning” - under which resolution and other computer-oriented studies of

logic would be united. Journals and conferences were created for the collection and

distribution of work in these fields. Today, most automated theorem-proving work is

presented at the Conference on Automated Deduction (CADE) and the International

Joint Conference on Automated Reasoning (IJCAR).

Resolution: (Re)configuring Proof

In 2012, I attended the annual CADE in Manchester, England. Each year, in con-

junction with that conference a tournament for automated theorem-proving programs

is held: The CADE ATP System Competition, World Championship for Automated

Theorem Proving (CASC).328 CASC was created in 1997 by Geoff Sutcliffe and Chris-

tian Suttner who remain its organizers today. The competition is housed each year

somewhere at the CADE conference venue and runs alongside presentations and pan-

els until an award ceremony concludes the conference. The competition has a playful

feel, with the development teams of different systems asking each other questions about

design choice as they watch the results come in. As shown in Figure 4.1, the results

come in the guise of horse race iconography displayed on a TV monitor.
327Overbeek, Lusk, “Wos and Automated Deduction at ANL,” p. 6.
328The tournament website: http://www.cs.miami.edu/~tptp/CASC/.
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Figure 4.1: CASC 2012 Results Display. My photograph. Manchester, UK, 2012.

Depicted in Figure 4.1 are the results of the “first-order logic” (or predicate calculus)

theorem proving category at the CADE 2012 CASC tournament. Each program is

represented by a racing horse figure and its progress is measured by a horizontal colored

bar.

Progress in this tournament is measured relative to a standardized body of bench-

mark problems called the TPTP Problem Library, for “Thousands of Problems for

Theorem Provers.”329 The library was created in 1994, in an attempt to “move the

testing and evaluation of ATP systems from the present ad hoc situation onto a firm

footing.”330 As we have seen in previous chapters, some problems are harder than

others, and some have more revealing structural properties as well.

The TPTP Library aimed to provide a shared set of benchmarks that would ac-

tually reveal “the intrinsic power” of a given theorem-proving program rather than

the idiosyncratic results that make their way into published presentations of theorem
329See Geoff Sutcliffe, Christian Suttner, Theodor Yemenis, “The TPTP Problem Library” in Pro-

ceedings of the 12th Conference in Automated Deduction (1994): 252 - 266.
330Sutcliffe, Suttner, Yemenis, “The TPTP Problem Library,” p. 252.
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proving programs.331 TPTP continues to grow and change over time, preventing a stag-

nation of theorem-proving system development and also now accepts problems from

outside parties as well. For example, some problems come from industry - as long

as a problem is voided of its content and presented in the “unambiguous format” of

problems in the library, it can be included and subjected to the efforts of participat-

ing theorem-proving programs. The horse race bars indicate how many of the TPTP

library a the associated program has solved (if it was able to solve them) and in how

much time.

The tournament has traces of Argonne everywhere. The benchmark “programs

to beat” at CASC well into the twenty-first century were Argonne theorem-proving

programs OTTER and the EQP (for Equational Prover) which both borrowed insights

and infrastructure from AURA.332 More, the TPTP Problem Library was inspired by

earlier efforts of the Argonne team, especially Wos, to identify and standardize problems

for comparing the merits of theorem-proving systems.333 But most especially, the

majority of the programs represented here, and indeed many theorem-proving programs

being developed today, incorporate variations of Robinson’s Resolution Principle.

Resolution turned out to be an incredibly powerful inference rule and incredibly

effective for use in computer deduction systems. The pages of the Journal of Automated

Reasoning filled up with variations, improvements, and expansions of resolution, and

power resolution-based theorem provers emerged around the U.S. and Europe.334

331Sutcliffe, Suttner, Yemenis, “The TPTP Problem Library,” p. 252.
332Both were developed under the direction of William McCune, who was just starting out at Argonne

when AURA was being developed in the late 1970s. The EQP is famous for having produced a solution
to a previously open problem concerning the axioms of Boolean Algebra - namely Robbins’ Conjecture.
See McCune, “Solution of the Robbins Problem” in Journal of Automated Reasoning Vol. 19, No. 3
(1997): 263 - 276.

333J. McCharen, A. Overbeek, L. Wos, “Problems and Experiments for and with Automated
Theorem-Proving Programs” in IEEE Transactions on Computers, C-25, No. 8 *August 1976): 773 -
782.

334There have been on the order of 500 articles on resolution published in the Journal of Automated
Reasoning since its founding in 1983.
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Recall from Chapter Three that resolution was designed to capitalize on the affor-

dances of computers, not to accommodate the restrictions of human psychology. In the

AURA program, however, the power of resolution remained tethered by the real-time

interventions of a human user. Increasingly, resolution provers worked with resolu-

tion and its variations alone. Or, as was explained to me Lawrence Paulson, many

contemporary programs today collaborate with another program that specialized in a

complimentary kind of problem-solving rather than a human user, aggregating their

complexity and their power increasingly beyond human tractability.335

Resolution took theorem-proving further and further from human view. Resolution

provers were using powerful tools of deduction and reasoning to process enormous data

bases, solve complex industry problems, prove the correctness or disfunction of other

programs, and to prove theorems in mathematics. As these programs became more

and more powerful, the human ability to recover and reconstruct their behavior and

to understand their results waned. Human intuition and direct understanding became

increasingly removed from the work of automated theorem-proving, which became

increasingly black-boxed.

The 2012 Conference on Automated Deduction was a particularly well-attended

affair because it was held in conjunction with the headlining celebration of the cen-

tenary of Alan Turing’s birth. Alan Turing who, in 1948, imagined the possibility

of disembodied brains engaging in mathematical theorem-proving. Part of the draw

of the conference was that a number of significant practitioners were invited to share

their reflections on the history and state of the field. Among them was John Alan
335Paulson is the original developer of a theorem prover called Isabelle. It is an interactive

prover, though primarily it collaborates with other programs designed to maximize performance
in complimentary inference practices. Isabelle’s main infrastructure is characterized by a ver-
sion of the Resolution Principle. See Paulson, “The Foundation of a Generic Theorem Prover” in
Journal of Automated Reasoning, Vol. 5, No. 3 (September 1989): 363 - 397. The most re-
cent variation of Isabelle is also described in Paulson, The Isabelle Reference Manual, July 2008:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.145.9052&rep=rep1&type=pdf.
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Robinson. He stood before a room full of automated theorem-proving researchers and,

to my astonishment, said that in fact “formalization is not the thing we do when we

are interested in the truth.”336

In the 1960s, Robinson sought to surpass human mathematical agency with machine-

oriented logic, justified by the infrastructure of formal logic alone, not by human per-

ceptions, intuitions, or cognitions. In 2012 Robinson was questioning what Resolution-

style formalization really offered. In his talk, he returned often to the question, “what

are proofs really for?” Instead of citing other formal logicians in this talk Robin-

son shared what he thought were the lessons of the French conglomerate Bourbaki,

Luitzen Egbertus Jan Brouwer, Ludwig Wittgenstein, and Imre Lakatos who stood

in opposition to Hilbert’s program of complete axiomatization and formalization in

mathematics.

In different ways, each of those mathematicians differentiated between a demonstra-

tion that something is true and why something is true. Reflecting on their positions

Robinson said “It’s no good just following step by step a proof and saying ok, ok, ok,

if you don’t really have understanding, if you don’t really know what’s going on. [...]

You haven’t really understood a proof if all you did is verify it. [...] It’s only if you

look into the ideas under that sequence of inference [that you] have you understood

the proof.”337 Robinson proposed to a room full of resolution researchers that it was

to those ideas and insights and to human understanding that they should turn their

automated theorem-proving efforts - that is “where we should go next.”

This was a quite different perspective compared with his earlier program of advo-

cating for a new logic, new principles and practices of inference that capitalized on the
336John Alan Robinson, “Davis, Putnam, UNIVAC, FORTRAN, and other miracles: How I got

involved with Computational Logic and What Happened Next,” delivered at the International Joint
Conference on Automated Reasoning, CADE invited Speaker, Friday June 29, 2012.

337Robinson, “Davis, Putnam, UNIVAC, FORTRAN, and other miracles.” He made these comments
beginning in minute 74 of the talk.
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power of computer, eschewing the limits of human understanding, human intuition,

and human psychology. In 2012, he capitulated that some of the critics of Resolution

did in fact “have something” when they warned that something important was lost in

the offloading of theorem-proving to processes of inference that were bereft of human

insight.

One formulation of this criticism was proposed by mathematician Michael Harris

in “Do Androids Prove Theorems in Their Sleep?”338 Harris writes that to comput-

ers, every “step” is the same. Computers cannot, unless directed by a person, identify

those “steps” in a proof that contain what he calls the key - the particular insights that

capture the why rather than the that of a theorem’s truth. He studies how mathe-

maticians identify in their demonstrative expositions some “key” or “main” or “crucial”

or “fundamental” or “essential” insight that “hints that mathematical arguments admit

not only the linear reading that conforms to logical deduction but also a topograph-

ical reading that more closely imitates the process of conception.”339 He cites David

Byrne’s dictum that “heaven is a place where nothing ever happens” to introduce the

world of the computer were all steps are created equal, all inferences are merely steps,

and computers cannot show people what “key” insight grounds the truth or reveals the

why of a mathematical theorem.340

The very possibility of automated theorem-proving, according to Harris, is predi-

cated on the belief that “nothing really happens when a theorem is proved.”341 And

this is a common criticism among mathematicians and philosophers - computers simply

can’t differentiate between the steps that “matter” and the steps that “don’t matter.”
338Harris, “Do Androids Prove Theorems in Their Sleep,” in Circles Disturbed, eds. A. Doxiadis, B.

Mazur, (Princeton, NJ: Princeton University Press, 2012): 130- 182.
339Harris, “Do Androids Prove Theorems in their Sleep?” p. 133.
340Harris, “Do Androids Prove Theorems,” p. 135.
341Harris, “Do Androids Prove Theorems,” p. 136.
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They can therefore only show that something is true but not why it is.342

Robinson invoked a debate from earlier in the twentieth century - between Hilbert

who he called “Mr. Formalization” and Brouwer, who opposed the project of formal

axiomatic proof to articulate his change of heart. For Brouwer, “mathematics is a

creation of the mind” and the “truth of a mathematical statement can only be conceived

via a mental construction that proves it to be true” and as such, mere deduction and

thoughtless automated deduction at that, could never in fact establish the truth of a

mathematical statement.

I see traces of something even older at work in the association of mathematical

truth with the work of human cognition. A related position can be identified even in

Aristotle who proposes that “thought is an energeia - namely a process that actualizes

what exists only in potentiality in the premises of a mathematical system.343 That is to

say - it is the thinking that introduces mathematical truths to the world even though

they are contained in potentiality within the axioms of some formal system.

Debates abut the role of human intuition and of formalization in proof is old.
342The belief that mathematics “reduces to an immense tautology”, that its truths are always al-

ready there, present in the axioms, needing only to be mechanically teased out, has been criticized
from a number of other angles in philosophy of mathematics (I borrow the phrase “reduces to an im-
mense tautology” from Stuart Shanker, in his analysis of Wittgenstein’s philosophy of proof. Shanker,
Wittgenstein and the Turning Point in the Philosophy of Mathematics, p. 82). Wittgenstein, for
example, emphasizes the normative role of proofs in establishing new “grammatical” rules to follow in
certain domains of mathematics. See Wittgenstein, Remarks of the Foundations of Mathematics Re-
marks on the Foundation of Mathematics, ed. G. H. Wright, R. Rhees, and G. E. M. Anscombe; trans.
G. E. M. Anscombe (Oxford, UK: Blackwell Publishing, 2001 [1956]), III). Or, Imre Lakatos has em-
phasized the constant reconstruction of boundaries around the class of objects or problem about which
something is being proved: whenever possible, mathematicians will define possible counter-examples
away rather than adopt a new approach to the proof all together (Proofs and Refutations, p. 10).
The actual construction of proofs by people in history serves at once to adjudicate what will count as
truth, and what objects, problems, and properties are included and excluded from that designation.
These are just two accounts of the work done by proofs and by theorem-provers that raise questions
for automation.

343My understanding of Aristotle’s position in this regard is due in large part to G.E.R. Lloyd,
“Mathematics and Narrative: An Aristotelian Perspective” in Circles Disturbed : 389 - 406. I am also
indebted to discussions with Barry Mazur and Mark Schiefsky and the other students of “Geometry
and Mechanics” at Harvard University, Spring of 2011-2012.
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However, I have argued the terms of that debate mean different things for different

people. In the wake of efforts to automate proof, both formality and intuition have

new meanings. Computers didn’t just prompt new interest and debate about intuition

and formalization. Engagement with computers produced quite new meanings of those

terms.

In the three programs discussed in this dissertation, for example, we have seen differ-

ent formulations of intuition - as heuristic search, as “Eureka” moments, as a “weighting

mechanism.” We have also seen intuition redirected. In the case of the AURA, input

human intuitions tended to emerge from empirical experience with the program itself,

rather than from reflection on the mathematical problem at hand. In his imaginations

of a new discipline - inferential analysis - Hao Wang thought human insights should

be directed away from specific problems and toward general problem-solving methods,

toward the “algorithmic dimension” of mathematical problems. The character of intu-

ition and its place in problem solving developed differently as communities fashioned

a place for computers in proof.

So too are the character of form and formalism at stake in the automation of proof.

As we saw, one basic building block of logical-deductive systems - inference rules -

were treated and fashioned quite differently in each of these programs. We saw infer-

ence manifested as list processing operations, as eleven rules for “pulling apart” logical

propositions according to Herbrand’s Theorem, as a method of pattern recognition

in sequential tables, and as as the machine-oriented Resolution Principle. Each of

these computer operations as a transformation of the basic infrastructure of the logic

presented in Principia Mathematica.

These were different processes for moving around within formal systems, for pre-

serving truth through transformation. Each was produced to accommodate the af-

fordances of modern digital computers. Each was a translation into the material and
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formal languages of computing machines. Each was what I have called a reformalism.

But crucially, these transformations of intuition, of inference, of formalism can

only be seen if you look at implementation. At high enough levels of abstraction, these

differences disappear. Newell-Simon-Shaw’s intuition is just like Polya’s. Wos’ intuition

is just like Archimedes. The character of intuition and of formality are precisely what’s

at stake in the automation of proof. Where does intuition fit in the work proof?

To explore that question, we must attend to the constantly shifting character and

orientation of intuition itself.
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